bootmem.c revision e782ab421bbba1912c87934bd0e8998630736418
1/*
2 *  bootmem - A boot-time physical memory allocator and configurator
3 *
4 *  Copyright (C) 1999 Ingo Molnar
5 *                1999 Kanoj Sarcar, SGI
6 *                2008 Johannes Weiner
7 *
8 * Access to this subsystem has to be serialized externally (which is true
9 * for the boot process anyway).
10 */
11#include <linux/init.h>
12#include <linux/pfn.h>
13#include <linux/slab.h>
14#include <linux/bootmem.h>
15#include <linux/module.h>
16#include <linux/kmemleak.h>
17#include <linux/range.h>
18#include <linux/memblock.h>
19
20#include <asm/bug.h>
21#include <asm/io.h>
22#include <asm/processor.h>
23
24#include "internal.h"
25
26#ifndef CONFIG_NEED_MULTIPLE_NODES
27struct pglist_data __refdata contig_page_data = {
28	.bdata = &bootmem_node_data[0]
29};
30EXPORT_SYMBOL(contig_page_data);
31#endif
32
33unsigned long max_low_pfn;
34unsigned long min_low_pfn;
35unsigned long max_pfn;
36
37#ifdef CONFIG_CRASH_DUMP
38/*
39 * If we have booted due to a crash, max_pfn will be a very low value. We need
40 * to know the amount of memory that the previous kernel used.
41 */
42unsigned long saved_max_pfn;
43#endif
44
45bootmem_data_t bootmem_node_data[MAX_NUMNODES] __initdata;
46
47static struct list_head bdata_list __initdata = LIST_HEAD_INIT(bdata_list);
48
49static int bootmem_debug;
50
51static int __init bootmem_debug_setup(char *buf)
52{
53	bootmem_debug = 1;
54	return 0;
55}
56early_param("bootmem_debug", bootmem_debug_setup);
57
58#define bdebug(fmt, args...) ({				\
59	if (unlikely(bootmem_debug))			\
60		printk(KERN_INFO			\
61			"bootmem::%s " fmt,		\
62			__func__, ## args);		\
63})
64
65static unsigned long __init bootmap_bytes(unsigned long pages)
66{
67	unsigned long bytes = (pages + 7) / 8;
68
69	return ALIGN(bytes, sizeof(long));
70}
71
72/**
73 * bootmem_bootmap_pages - calculate bitmap size in pages
74 * @pages: number of pages the bitmap has to represent
75 */
76unsigned long __init bootmem_bootmap_pages(unsigned long pages)
77{
78	unsigned long bytes = bootmap_bytes(pages);
79
80	return PAGE_ALIGN(bytes) >> PAGE_SHIFT;
81}
82
83/*
84 * link bdata in order
85 */
86static void __init link_bootmem(bootmem_data_t *bdata)
87{
88	struct list_head *iter;
89
90	list_for_each(iter, &bdata_list) {
91		bootmem_data_t *ent;
92
93		ent = list_entry(iter, bootmem_data_t, list);
94		if (bdata->node_min_pfn < ent->node_min_pfn)
95			break;
96	}
97	list_add_tail(&bdata->list, iter);
98}
99
100/*
101 * Called once to set up the allocator itself.
102 */
103static unsigned long __init init_bootmem_core(bootmem_data_t *bdata,
104	unsigned long mapstart, unsigned long start, unsigned long end)
105{
106	unsigned long mapsize;
107
108	mminit_validate_memmodel_limits(&start, &end);
109	bdata->node_bootmem_map = phys_to_virt(PFN_PHYS(mapstart));
110	bdata->node_min_pfn = start;
111	bdata->node_low_pfn = end;
112	link_bootmem(bdata);
113
114	/*
115	 * Initially all pages are reserved - setup_arch() has to
116	 * register free RAM areas explicitly.
117	 */
118	mapsize = bootmap_bytes(end - start);
119	memset(bdata->node_bootmem_map, 0xff, mapsize);
120
121	bdebug("nid=%td start=%lx map=%lx end=%lx mapsize=%lx\n",
122		bdata - bootmem_node_data, start, mapstart, end, mapsize);
123
124	return mapsize;
125}
126
127/**
128 * init_bootmem_node - register a node as boot memory
129 * @pgdat: node to register
130 * @freepfn: pfn where the bitmap for this node is to be placed
131 * @startpfn: first pfn on the node
132 * @endpfn: first pfn after the node
133 *
134 * Returns the number of bytes needed to hold the bitmap for this node.
135 */
136unsigned long __init init_bootmem_node(pg_data_t *pgdat, unsigned long freepfn,
137				unsigned long startpfn, unsigned long endpfn)
138{
139	return init_bootmem_core(pgdat->bdata, freepfn, startpfn, endpfn);
140}
141
142/**
143 * init_bootmem - register boot memory
144 * @start: pfn where the bitmap is to be placed
145 * @pages: number of available physical pages
146 *
147 * Returns the number of bytes needed to hold the bitmap.
148 */
149unsigned long __init init_bootmem(unsigned long start, unsigned long pages)
150{
151	max_low_pfn = pages;
152	min_low_pfn = start;
153	return init_bootmem_core(NODE_DATA(0)->bdata, start, 0, pages);
154}
155
156/*
157 * free_bootmem_late - free bootmem pages directly to page allocator
158 * @addr: starting address of the range
159 * @size: size of the range in bytes
160 *
161 * This is only useful when the bootmem allocator has already been torn
162 * down, but we are still initializing the system.  Pages are given directly
163 * to the page allocator, no bootmem metadata is updated because it is gone.
164 */
165void __init free_bootmem_late(unsigned long addr, unsigned long size)
166{
167	unsigned long cursor, end;
168
169	kmemleak_free_part(__va(addr), size);
170
171	cursor = PFN_UP(addr);
172	end = PFN_DOWN(addr + size);
173
174	for (; cursor < end; cursor++) {
175		__free_pages_bootmem(pfn_to_page(cursor), 0);
176		totalram_pages++;
177	}
178}
179
180static unsigned long __init free_all_bootmem_core(bootmem_data_t *bdata)
181{
182	int aligned;
183	struct page *page;
184	unsigned long start, end, pages, count = 0;
185
186	if (!bdata->node_bootmem_map)
187		return 0;
188
189	start = bdata->node_min_pfn;
190	end = bdata->node_low_pfn;
191
192	/*
193	 * If the start is aligned to the machines wordsize, we might
194	 * be able to free pages in bulks of that order.
195	 */
196	aligned = !(start & (BITS_PER_LONG - 1));
197
198	bdebug("nid=%td start=%lx end=%lx aligned=%d\n",
199		bdata - bootmem_node_data, start, end, aligned);
200
201	while (start < end) {
202		unsigned long *map, idx, vec;
203
204		map = bdata->node_bootmem_map;
205		idx = start - bdata->node_min_pfn;
206		vec = ~map[idx / BITS_PER_LONG];
207
208		if (aligned && vec == ~0UL && start + BITS_PER_LONG < end) {
209			int order = ilog2(BITS_PER_LONG);
210
211			__free_pages_bootmem(pfn_to_page(start), order);
212			count += BITS_PER_LONG;
213		} else {
214			unsigned long off = 0;
215
216			while (vec && off < BITS_PER_LONG) {
217				if (vec & 1) {
218					page = pfn_to_page(start + off);
219					__free_pages_bootmem(page, 0);
220					count++;
221				}
222				vec >>= 1;
223				off++;
224			}
225		}
226		start += BITS_PER_LONG;
227	}
228
229	page = virt_to_page(bdata->node_bootmem_map);
230	pages = bdata->node_low_pfn - bdata->node_min_pfn;
231	pages = bootmem_bootmap_pages(pages);
232	count += pages;
233	while (pages--)
234		__free_pages_bootmem(page++, 0);
235
236	bdebug("nid=%td released=%lx\n", bdata - bootmem_node_data, count);
237
238	return count;
239}
240
241/**
242 * free_all_bootmem_node - release a node's free pages to the buddy allocator
243 * @pgdat: node to be released
244 *
245 * Returns the number of pages actually released.
246 */
247unsigned long __init free_all_bootmem_node(pg_data_t *pgdat)
248{
249	register_page_bootmem_info_node(pgdat);
250	return free_all_bootmem_core(pgdat->bdata);
251}
252
253/**
254 * free_all_bootmem - release free pages to the buddy allocator
255 *
256 * Returns the number of pages actually released.
257 */
258unsigned long __init free_all_bootmem(void)
259{
260	unsigned long total_pages = 0;
261	bootmem_data_t *bdata;
262
263	list_for_each_entry(bdata, &bdata_list, list)
264		total_pages += free_all_bootmem_core(bdata);
265
266	return total_pages;
267}
268
269static void __init __free(bootmem_data_t *bdata,
270			unsigned long sidx, unsigned long eidx)
271{
272	unsigned long idx;
273
274	bdebug("nid=%td start=%lx end=%lx\n", bdata - bootmem_node_data,
275		sidx + bdata->node_min_pfn,
276		eidx + bdata->node_min_pfn);
277
278	if (bdata->hint_idx > sidx)
279		bdata->hint_idx = sidx;
280
281	for (idx = sidx; idx < eidx; idx++)
282		if (!test_and_clear_bit(idx, bdata->node_bootmem_map))
283			BUG();
284}
285
286static int __init __reserve(bootmem_data_t *bdata, unsigned long sidx,
287			unsigned long eidx, int flags)
288{
289	unsigned long idx;
290	int exclusive = flags & BOOTMEM_EXCLUSIVE;
291
292	bdebug("nid=%td start=%lx end=%lx flags=%x\n",
293		bdata - bootmem_node_data,
294		sidx + bdata->node_min_pfn,
295		eidx + bdata->node_min_pfn,
296		flags);
297
298	for (idx = sidx; idx < eidx; idx++)
299		if (test_and_set_bit(idx, bdata->node_bootmem_map)) {
300			if (exclusive) {
301				__free(bdata, sidx, idx);
302				return -EBUSY;
303			}
304			bdebug("silent double reserve of PFN %lx\n",
305				idx + bdata->node_min_pfn);
306		}
307	return 0;
308}
309
310static int __init mark_bootmem_node(bootmem_data_t *bdata,
311				unsigned long start, unsigned long end,
312				int reserve, int flags)
313{
314	unsigned long sidx, eidx;
315
316	bdebug("nid=%td start=%lx end=%lx reserve=%d flags=%x\n",
317		bdata - bootmem_node_data, start, end, reserve, flags);
318
319	BUG_ON(start < bdata->node_min_pfn);
320	BUG_ON(end > bdata->node_low_pfn);
321
322	sidx = start - bdata->node_min_pfn;
323	eidx = end - bdata->node_min_pfn;
324
325	if (reserve)
326		return __reserve(bdata, sidx, eidx, flags);
327	else
328		__free(bdata, sidx, eidx);
329	return 0;
330}
331
332static int __init mark_bootmem(unsigned long start, unsigned long end,
333				int reserve, int flags)
334{
335	unsigned long pos;
336	bootmem_data_t *bdata;
337
338	pos = start;
339	list_for_each_entry(bdata, &bdata_list, list) {
340		int err;
341		unsigned long max;
342
343		if (pos < bdata->node_min_pfn ||
344		    pos >= bdata->node_low_pfn) {
345			BUG_ON(pos != start);
346			continue;
347		}
348
349		max = min(bdata->node_low_pfn, end);
350
351		err = mark_bootmem_node(bdata, pos, max, reserve, flags);
352		if (reserve && err) {
353			mark_bootmem(start, pos, 0, 0);
354			return err;
355		}
356
357		if (max == end)
358			return 0;
359		pos = bdata->node_low_pfn;
360	}
361	BUG();
362}
363
364/**
365 * free_bootmem_node - mark a page range as usable
366 * @pgdat: node the range resides on
367 * @physaddr: starting address of the range
368 * @size: size of the range in bytes
369 *
370 * Partial pages will be considered reserved and left as they are.
371 *
372 * The range must reside completely on the specified node.
373 */
374void __init free_bootmem_node(pg_data_t *pgdat, unsigned long physaddr,
375			      unsigned long size)
376{
377	unsigned long start, end;
378
379	kmemleak_free_part(__va(physaddr), size);
380
381	start = PFN_UP(physaddr);
382	end = PFN_DOWN(physaddr + size);
383
384	mark_bootmem_node(pgdat->bdata, start, end, 0, 0);
385}
386
387/**
388 * free_bootmem - mark a page range as usable
389 * @addr: starting address of the range
390 * @size: size of the range in bytes
391 *
392 * Partial pages will be considered reserved and left as they are.
393 *
394 * The range must be contiguous but may span node boundaries.
395 */
396void __init free_bootmem(unsigned long addr, unsigned long size)
397{
398	unsigned long start, end;
399
400	kmemleak_free_part(__va(addr), size);
401
402	start = PFN_UP(addr);
403	end = PFN_DOWN(addr + size);
404
405	mark_bootmem(start, end, 0, 0);
406}
407
408/**
409 * reserve_bootmem_node - mark a page range as reserved
410 * @pgdat: node the range resides on
411 * @physaddr: starting address of the range
412 * @size: size of the range in bytes
413 * @flags: reservation flags (see linux/bootmem.h)
414 *
415 * Partial pages will be reserved.
416 *
417 * The range must reside completely on the specified node.
418 */
419int __init reserve_bootmem_node(pg_data_t *pgdat, unsigned long physaddr,
420				 unsigned long size, int flags)
421{
422	unsigned long start, end;
423
424	start = PFN_DOWN(physaddr);
425	end = PFN_UP(physaddr + size);
426
427	return mark_bootmem_node(pgdat->bdata, start, end, 1, flags);
428}
429
430/**
431 * reserve_bootmem - mark a page range as usable
432 * @addr: starting address of the range
433 * @size: size of the range in bytes
434 * @flags: reservation flags (see linux/bootmem.h)
435 *
436 * Partial pages will be reserved.
437 *
438 * The range must be contiguous but may span node boundaries.
439 */
440int __init reserve_bootmem(unsigned long addr, unsigned long size,
441			    int flags)
442{
443	unsigned long start, end;
444
445	start = PFN_DOWN(addr);
446	end = PFN_UP(addr + size);
447
448	return mark_bootmem(start, end, 1, flags);
449}
450
451int __weak __init reserve_bootmem_generic(unsigned long phys, unsigned long len,
452				   int flags)
453{
454	return reserve_bootmem(phys, len, flags);
455}
456
457static unsigned long __init align_idx(struct bootmem_data *bdata,
458				      unsigned long idx, unsigned long step)
459{
460	unsigned long base = bdata->node_min_pfn;
461
462	/*
463	 * Align the index with respect to the node start so that the
464	 * combination of both satisfies the requested alignment.
465	 */
466
467	return ALIGN(base + idx, step) - base;
468}
469
470static unsigned long __init align_off(struct bootmem_data *bdata,
471				      unsigned long off, unsigned long align)
472{
473	unsigned long base = PFN_PHYS(bdata->node_min_pfn);
474
475	/* Same as align_idx for byte offsets */
476
477	return ALIGN(base + off, align) - base;
478}
479
480static void * __init alloc_bootmem_core(struct bootmem_data *bdata,
481					unsigned long size, unsigned long align,
482					unsigned long goal, unsigned long limit)
483{
484	unsigned long fallback = 0;
485	unsigned long min, max, start, sidx, midx, step;
486
487	bdebug("nid=%td size=%lx [%lu pages] align=%lx goal=%lx limit=%lx\n",
488		bdata - bootmem_node_data, size, PAGE_ALIGN(size) >> PAGE_SHIFT,
489		align, goal, limit);
490
491	BUG_ON(!size);
492	BUG_ON(align & (align - 1));
493	BUG_ON(limit && goal + size > limit);
494
495	if (!bdata->node_bootmem_map)
496		return NULL;
497
498	min = bdata->node_min_pfn;
499	max = bdata->node_low_pfn;
500
501	goal >>= PAGE_SHIFT;
502	limit >>= PAGE_SHIFT;
503
504	if (limit && max > limit)
505		max = limit;
506	if (max <= min)
507		return NULL;
508
509	step = max(align >> PAGE_SHIFT, 1UL);
510
511	if (goal && min < goal && goal < max)
512		start = ALIGN(goal, step);
513	else
514		start = ALIGN(min, step);
515
516	sidx = start - bdata->node_min_pfn;
517	midx = max - bdata->node_min_pfn;
518
519	if (bdata->hint_idx > sidx) {
520		/*
521		 * Handle the valid case of sidx being zero and still
522		 * catch the fallback below.
523		 */
524		fallback = sidx + 1;
525		sidx = align_idx(bdata, bdata->hint_idx, step);
526	}
527
528	while (1) {
529		int merge;
530		void *region;
531		unsigned long eidx, i, start_off, end_off;
532find_block:
533		sidx = find_next_zero_bit(bdata->node_bootmem_map, midx, sidx);
534		sidx = align_idx(bdata, sidx, step);
535		eidx = sidx + PFN_UP(size);
536
537		if (sidx >= midx || eidx > midx)
538			break;
539
540		for (i = sidx; i < eidx; i++)
541			if (test_bit(i, bdata->node_bootmem_map)) {
542				sidx = align_idx(bdata, i, step);
543				if (sidx == i)
544					sidx += step;
545				goto find_block;
546			}
547
548		if (bdata->last_end_off & (PAGE_SIZE - 1) &&
549				PFN_DOWN(bdata->last_end_off) + 1 == sidx)
550			start_off = align_off(bdata, bdata->last_end_off, align);
551		else
552			start_off = PFN_PHYS(sidx);
553
554		merge = PFN_DOWN(start_off) < sidx;
555		end_off = start_off + size;
556
557		bdata->last_end_off = end_off;
558		bdata->hint_idx = PFN_UP(end_off);
559
560		/*
561		 * Reserve the area now:
562		 */
563		if (__reserve(bdata, PFN_DOWN(start_off) + merge,
564				PFN_UP(end_off), BOOTMEM_EXCLUSIVE))
565			BUG();
566
567		region = phys_to_virt(PFN_PHYS(bdata->node_min_pfn) +
568				start_off);
569		memset(region, 0, size);
570		/*
571		 * The min_count is set to 0 so that bootmem allocated blocks
572		 * are never reported as leaks.
573		 */
574		kmemleak_alloc(region, size, 0, 0);
575		return region;
576	}
577
578	if (fallback) {
579		sidx = align_idx(bdata, fallback - 1, step);
580		fallback = 0;
581		goto find_block;
582	}
583
584	return NULL;
585}
586
587static void * __init alloc_arch_preferred_bootmem(bootmem_data_t *bdata,
588					unsigned long size, unsigned long align,
589					unsigned long goal, unsigned long limit)
590{
591	if (WARN_ON_ONCE(slab_is_available()))
592		return kzalloc(size, GFP_NOWAIT);
593
594#ifdef CONFIG_HAVE_ARCH_BOOTMEM
595	{
596		bootmem_data_t *p_bdata;
597
598		p_bdata = bootmem_arch_preferred_node(bdata, size, align,
599							goal, limit);
600		if (p_bdata)
601			return alloc_bootmem_core(p_bdata, size, align,
602							goal, limit);
603	}
604#endif
605	return NULL;
606}
607
608static void * __init ___alloc_bootmem_nopanic(unsigned long size,
609					unsigned long align,
610					unsigned long goal,
611					unsigned long limit)
612{
613	bootmem_data_t *bdata;
614	void *region;
615
616restart:
617	region = alloc_arch_preferred_bootmem(NULL, size, align, goal, limit);
618	if (region)
619		return region;
620
621	list_for_each_entry(bdata, &bdata_list, list) {
622		if (goal && bdata->node_low_pfn <= PFN_DOWN(goal))
623			continue;
624		if (limit && bdata->node_min_pfn >= PFN_DOWN(limit))
625			break;
626
627		region = alloc_bootmem_core(bdata, size, align, goal, limit);
628		if (region)
629			return region;
630	}
631
632	if (goal) {
633		goal = 0;
634		goto restart;
635	}
636
637	return NULL;
638}
639
640/**
641 * __alloc_bootmem_nopanic - allocate boot memory without panicking
642 * @size: size of the request in bytes
643 * @align: alignment of the region
644 * @goal: preferred starting address of the region
645 *
646 * The goal is dropped if it can not be satisfied and the allocation will
647 * fall back to memory below @goal.
648 *
649 * Allocation may happen on any node in the system.
650 *
651 * Returns NULL on failure.
652 */
653void * __init __alloc_bootmem_nopanic(unsigned long size, unsigned long align,
654					unsigned long goal)
655{
656	unsigned long limit = 0;
657
658	return ___alloc_bootmem_nopanic(size, align, goal, limit);
659}
660
661static void * __init ___alloc_bootmem(unsigned long size, unsigned long align,
662					unsigned long goal, unsigned long limit)
663{
664	void *mem = ___alloc_bootmem_nopanic(size, align, goal, limit);
665
666	if (mem)
667		return mem;
668	/*
669	 * Whoops, we cannot satisfy the allocation request.
670	 */
671	printk(KERN_ALERT "bootmem alloc of %lu bytes failed!\n", size);
672	panic("Out of memory");
673	return NULL;
674}
675
676/**
677 * __alloc_bootmem - allocate boot memory
678 * @size: size of the request in bytes
679 * @align: alignment of the region
680 * @goal: preferred starting address of the region
681 *
682 * The goal is dropped if it can not be satisfied and the allocation will
683 * fall back to memory below @goal.
684 *
685 * Allocation may happen on any node in the system.
686 *
687 * The function panics if the request can not be satisfied.
688 */
689void * __init __alloc_bootmem(unsigned long size, unsigned long align,
690			      unsigned long goal)
691{
692	unsigned long limit = 0;
693
694	return ___alloc_bootmem(size, align, goal, limit);
695}
696
697static void * __init ___alloc_bootmem_node(bootmem_data_t *bdata,
698				unsigned long size, unsigned long align,
699				unsigned long goal, unsigned long limit)
700{
701	void *ptr;
702
703	ptr = alloc_arch_preferred_bootmem(bdata, size, align, goal, limit);
704	if (ptr)
705		return ptr;
706
707	ptr = alloc_bootmem_core(bdata, size, align, goal, limit);
708	if (ptr)
709		return ptr;
710
711	return ___alloc_bootmem(size, align, goal, limit);
712}
713
714/**
715 * __alloc_bootmem_node - allocate boot memory from a specific node
716 * @pgdat: node to allocate from
717 * @size: size of the request in bytes
718 * @align: alignment of the region
719 * @goal: preferred starting address of the region
720 *
721 * The goal is dropped if it can not be satisfied and the allocation will
722 * fall back to memory below @goal.
723 *
724 * Allocation may fall back to any node in the system if the specified node
725 * can not hold the requested memory.
726 *
727 * The function panics if the request can not be satisfied.
728 */
729void * __init __alloc_bootmem_node(pg_data_t *pgdat, unsigned long size,
730				   unsigned long align, unsigned long goal)
731{
732	if (WARN_ON_ONCE(slab_is_available()))
733		return kzalloc_node(size, GFP_NOWAIT, pgdat->node_id);
734
735	return  ___alloc_bootmem_node(pgdat->bdata, size, align, goal, 0);
736}
737
738void * __init __alloc_bootmem_node_high(pg_data_t *pgdat, unsigned long size,
739				   unsigned long align, unsigned long goal)
740{
741#ifdef MAX_DMA32_PFN
742	unsigned long end_pfn;
743
744	if (WARN_ON_ONCE(slab_is_available()))
745		return kzalloc_node(size, GFP_NOWAIT, pgdat->node_id);
746
747	/* update goal according ...MAX_DMA32_PFN */
748	end_pfn = pgdat->node_start_pfn + pgdat->node_spanned_pages;
749
750	if (end_pfn > MAX_DMA32_PFN + (128 >> (20 - PAGE_SHIFT)) &&
751	    (goal >> PAGE_SHIFT) < MAX_DMA32_PFN) {
752		void *ptr;
753		unsigned long new_goal;
754
755		new_goal = MAX_DMA32_PFN << PAGE_SHIFT;
756		ptr = alloc_bootmem_core(pgdat->bdata, size, align,
757						 new_goal, 0);
758		if (ptr)
759			return ptr;
760	}
761#endif
762
763	return __alloc_bootmem_node(pgdat, size, align, goal);
764
765}
766
767#ifdef CONFIG_SPARSEMEM
768/**
769 * alloc_bootmem_section - allocate boot memory from a specific section
770 * @size: size of the request in bytes
771 * @section_nr: sparse map section to allocate from
772 *
773 * Return NULL on failure.
774 */
775void * __init alloc_bootmem_section(unsigned long size,
776				    unsigned long section_nr)
777{
778	bootmem_data_t *bdata;
779	unsigned long pfn, goal, limit;
780
781	pfn = section_nr_to_pfn(section_nr);
782	goal = pfn << PAGE_SHIFT;
783	limit = section_nr_to_pfn(section_nr + 1) << PAGE_SHIFT;
784	bdata = &bootmem_node_data[early_pfn_to_nid(pfn)];
785
786	return alloc_bootmem_core(bdata, size, SMP_CACHE_BYTES, goal, limit);
787}
788#endif
789
790void * __init __alloc_bootmem_node_nopanic(pg_data_t *pgdat, unsigned long size,
791				   unsigned long align, unsigned long goal)
792{
793	void *ptr;
794
795	if (WARN_ON_ONCE(slab_is_available()))
796		return kzalloc_node(size, GFP_NOWAIT, pgdat->node_id);
797
798	ptr = alloc_arch_preferred_bootmem(pgdat->bdata, size, align, goal, 0);
799	if (ptr)
800		return ptr;
801
802	ptr = alloc_bootmem_core(pgdat->bdata, size, align, goal, 0);
803	if (ptr)
804		return ptr;
805
806	return __alloc_bootmem_nopanic(size, align, goal);
807}
808
809#ifndef ARCH_LOW_ADDRESS_LIMIT
810#define ARCH_LOW_ADDRESS_LIMIT	0xffffffffUL
811#endif
812
813/**
814 * __alloc_bootmem_low - allocate low boot memory
815 * @size: size of the request in bytes
816 * @align: alignment of the region
817 * @goal: preferred starting address of the region
818 *
819 * The goal is dropped if it can not be satisfied and the allocation will
820 * fall back to memory below @goal.
821 *
822 * Allocation may happen on any node in the system.
823 *
824 * The function panics if the request can not be satisfied.
825 */
826void * __init __alloc_bootmem_low(unsigned long size, unsigned long align,
827				  unsigned long goal)
828{
829	return ___alloc_bootmem(size, align, goal, ARCH_LOW_ADDRESS_LIMIT);
830}
831
832/**
833 * __alloc_bootmem_low_node - allocate low boot memory from a specific node
834 * @pgdat: node to allocate from
835 * @size: size of the request in bytes
836 * @align: alignment of the region
837 * @goal: preferred starting address of the region
838 *
839 * The goal is dropped if it can not be satisfied and the allocation will
840 * fall back to memory below @goal.
841 *
842 * Allocation may fall back to any node in the system if the specified node
843 * can not hold the requested memory.
844 *
845 * The function panics if the request can not be satisfied.
846 */
847void * __init __alloc_bootmem_low_node(pg_data_t *pgdat, unsigned long size,
848				       unsigned long align, unsigned long goal)
849{
850	if (WARN_ON_ONCE(slab_is_available()))
851		return kzalloc_node(size, GFP_NOWAIT, pgdat->node_id);
852
853	return ___alloc_bootmem_node(pgdat->bdata, size, align,
854				goal, ARCH_LOW_ADDRESS_LIMIT);
855}
856