compaction.c revision 5e7719058079a1423ccce56148b0aaa56b2df821
1/*
2 * linux/mm/compaction.c
3 *
4 * Memory compaction for the reduction of external fragmentation. Note that
5 * this heavily depends upon page migration to do all the real heavy
6 * lifting
7 *
8 * Copyright IBM Corp. 2007-2010 Mel Gorman <mel@csn.ul.ie>
9 */
10#include <linux/swap.h>
11#include <linux/migrate.h>
12#include <linux/compaction.h>
13#include <linux/mm_inline.h>
14#include <linux/backing-dev.h>
15#include <linux/sysctl.h>
16#include <linux/sysfs.h>
17#include "internal.h"
18
19/*
20 * compact_control is used to track pages being migrated and the free pages
21 * they are being migrated to during memory compaction. The free_pfn starts
22 * at the end of a zone and migrate_pfn begins at the start. Movable pages
23 * are moved to the end of a zone during a compaction run and the run
24 * completes when free_pfn <= migrate_pfn
25 */
26struct compact_control {
27	struct list_head freepages;	/* List of free pages to migrate to */
28	struct list_head migratepages;	/* List of pages being migrated */
29	unsigned long nr_freepages;	/* Number of isolated free pages */
30	unsigned long nr_migratepages;	/* Number of pages to migrate */
31	unsigned long free_pfn;		/* isolate_freepages search base */
32	unsigned long migrate_pfn;	/* isolate_migratepages search base */
33
34	/* Account for isolated anon and file pages */
35	unsigned long nr_anon;
36	unsigned long nr_file;
37
38	unsigned int order;		/* order a direct compactor needs */
39	int migratetype;		/* MOVABLE, RECLAIMABLE etc */
40	struct zone *zone;
41};
42
43static unsigned long release_freepages(struct list_head *freelist)
44{
45	struct page *page, *next;
46	unsigned long count = 0;
47
48	list_for_each_entry_safe(page, next, freelist, lru) {
49		list_del(&page->lru);
50		__free_page(page);
51		count++;
52	}
53
54	return count;
55}
56
57/* Isolate free pages onto a private freelist. Must hold zone->lock */
58static unsigned long isolate_freepages_block(struct zone *zone,
59				unsigned long blockpfn,
60				struct list_head *freelist)
61{
62	unsigned long zone_end_pfn, end_pfn;
63	int total_isolated = 0;
64	struct page *cursor;
65
66	/* Get the last PFN we should scan for free pages at */
67	zone_end_pfn = zone->zone_start_pfn + zone->spanned_pages;
68	end_pfn = min(blockpfn + pageblock_nr_pages, zone_end_pfn);
69
70	/* Find the first usable PFN in the block to initialse page cursor */
71	for (; blockpfn < end_pfn; blockpfn++) {
72		if (pfn_valid_within(blockpfn))
73			break;
74	}
75	cursor = pfn_to_page(blockpfn);
76
77	/* Isolate free pages. This assumes the block is valid */
78	for (; blockpfn < end_pfn; blockpfn++, cursor++) {
79		int isolated, i;
80		struct page *page = cursor;
81
82		if (!pfn_valid_within(blockpfn))
83			continue;
84
85		if (!PageBuddy(page))
86			continue;
87
88		/* Found a free page, break it into order-0 pages */
89		isolated = split_free_page(page);
90		total_isolated += isolated;
91		for (i = 0; i < isolated; i++) {
92			list_add(&page->lru, freelist);
93			page++;
94		}
95
96		/* If a page was split, advance to the end of it */
97		if (isolated) {
98			blockpfn += isolated - 1;
99			cursor += isolated - 1;
100		}
101	}
102
103	return total_isolated;
104}
105
106/* Returns true if the page is within a block suitable for migration to */
107static bool suitable_migration_target(struct page *page)
108{
109
110	int migratetype = get_pageblock_migratetype(page);
111
112	/* Don't interfere with memory hot-remove or the min_free_kbytes blocks */
113	if (migratetype == MIGRATE_ISOLATE || migratetype == MIGRATE_RESERVE)
114		return false;
115
116	/* If the page is a large free page, then allow migration */
117	if (PageBuddy(page) && page_order(page) >= pageblock_order)
118		return true;
119
120	/* If the block is MIGRATE_MOVABLE, allow migration */
121	if (migratetype == MIGRATE_MOVABLE)
122		return true;
123
124	/* Otherwise skip the block */
125	return false;
126}
127
128/*
129 * Based on information in the current compact_control, find blocks
130 * suitable for isolating free pages from and then isolate them.
131 */
132static void isolate_freepages(struct zone *zone,
133				struct compact_control *cc)
134{
135	struct page *page;
136	unsigned long high_pfn, low_pfn, pfn;
137	unsigned long flags;
138	int nr_freepages = cc->nr_freepages;
139	struct list_head *freelist = &cc->freepages;
140
141	pfn = cc->free_pfn;
142	low_pfn = cc->migrate_pfn + pageblock_nr_pages;
143	high_pfn = low_pfn;
144
145	/*
146	 * Isolate free pages until enough are available to migrate the
147	 * pages on cc->migratepages. We stop searching if the migrate
148	 * and free page scanners meet or enough free pages are isolated.
149	 */
150	spin_lock_irqsave(&zone->lock, flags);
151	for (; pfn > low_pfn && cc->nr_migratepages > nr_freepages;
152					pfn -= pageblock_nr_pages) {
153		unsigned long isolated;
154
155		if (!pfn_valid(pfn))
156			continue;
157
158		/*
159		 * Check for overlapping nodes/zones. It's possible on some
160		 * configurations to have a setup like
161		 * node0 node1 node0
162		 * i.e. it's possible that all pages within a zones range of
163		 * pages do not belong to a single zone.
164		 */
165		page = pfn_to_page(pfn);
166		if (page_zone(page) != zone)
167			continue;
168
169		/* Check the block is suitable for migration */
170		if (!suitable_migration_target(page))
171			continue;
172
173		/* Found a block suitable for isolating free pages from */
174		isolated = isolate_freepages_block(zone, pfn, freelist);
175		nr_freepages += isolated;
176
177		/*
178		 * Record the highest PFN we isolated pages from. When next
179		 * looking for free pages, the search will restart here as
180		 * page migration may have returned some pages to the allocator
181		 */
182		if (isolated)
183			high_pfn = max(high_pfn, pfn);
184	}
185	spin_unlock_irqrestore(&zone->lock, flags);
186
187	/* split_free_page does not map the pages */
188	list_for_each_entry(page, freelist, lru) {
189		arch_alloc_page(page, 0);
190		kernel_map_pages(page, 1, 1);
191	}
192
193	cc->free_pfn = high_pfn;
194	cc->nr_freepages = nr_freepages;
195}
196
197/* Update the number of anon and file isolated pages in the zone */
198static void acct_isolated(struct zone *zone, struct compact_control *cc)
199{
200	struct page *page;
201	unsigned int count[NR_LRU_LISTS] = { 0, };
202
203	list_for_each_entry(page, &cc->migratepages, lru) {
204		int lru = page_lru_base_type(page);
205		count[lru]++;
206	}
207
208	cc->nr_anon = count[LRU_ACTIVE_ANON] + count[LRU_INACTIVE_ANON];
209	cc->nr_file = count[LRU_ACTIVE_FILE] + count[LRU_INACTIVE_FILE];
210	__mod_zone_page_state(zone, NR_ISOLATED_ANON, cc->nr_anon);
211	__mod_zone_page_state(zone, NR_ISOLATED_FILE, cc->nr_file);
212}
213
214/* Similar to reclaim, but different enough that they don't share logic */
215static bool too_many_isolated(struct zone *zone)
216{
217
218	unsigned long inactive, isolated;
219
220	inactive = zone_page_state(zone, NR_INACTIVE_FILE) +
221					zone_page_state(zone, NR_INACTIVE_ANON);
222	isolated = zone_page_state(zone, NR_ISOLATED_FILE) +
223					zone_page_state(zone, NR_ISOLATED_ANON);
224
225	return isolated > inactive;
226}
227
228/*
229 * Isolate all pages that can be migrated from the block pointed to by
230 * the migrate scanner within compact_control.
231 */
232static unsigned long isolate_migratepages(struct zone *zone,
233					struct compact_control *cc)
234{
235	unsigned long low_pfn, end_pfn;
236	struct list_head *migratelist = &cc->migratepages;
237
238	/* Do not scan outside zone boundaries */
239	low_pfn = max(cc->migrate_pfn, zone->zone_start_pfn);
240
241	/* Only scan within a pageblock boundary */
242	end_pfn = ALIGN(low_pfn + pageblock_nr_pages, pageblock_nr_pages);
243
244	/* Do not cross the free scanner or scan within a memory hole */
245	if (end_pfn > cc->free_pfn || !pfn_valid(low_pfn)) {
246		cc->migrate_pfn = end_pfn;
247		return 0;
248	}
249
250	/*
251	 * Ensure that there are not too many pages isolated from the LRU
252	 * list by either parallel reclaimers or compaction. If there are,
253	 * delay for some time until fewer pages are isolated
254	 */
255	while (unlikely(too_many_isolated(zone))) {
256		congestion_wait(BLK_RW_ASYNC, HZ/10);
257
258		if (fatal_signal_pending(current))
259			return 0;
260	}
261
262	/* Time to isolate some pages for migration */
263	spin_lock_irq(&zone->lru_lock);
264	for (; low_pfn < end_pfn; low_pfn++) {
265		struct page *page;
266		if (!pfn_valid_within(low_pfn))
267			continue;
268
269		/* Get the page and skip if free */
270		page = pfn_to_page(low_pfn);
271		if (PageBuddy(page))
272			continue;
273
274		/* Try isolate the page */
275		if (__isolate_lru_page(page, ISOLATE_BOTH, 0) != 0)
276			continue;
277
278		/* Successfully isolated */
279		del_page_from_lru_list(zone, page, page_lru(page));
280		list_add(&page->lru, migratelist);
281		mem_cgroup_del_lru(page);
282		cc->nr_migratepages++;
283
284		/* Avoid isolating too much */
285		if (cc->nr_migratepages == COMPACT_CLUSTER_MAX)
286			break;
287	}
288
289	acct_isolated(zone, cc);
290
291	spin_unlock_irq(&zone->lru_lock);
292	cc->migrate_pfn = low_pfn;
293
294	return cc->nr_migratepages;
295}
296
297/*
298 * This is a migrate-callback that "allocates" freepages by taking pages
299 * from the isolated freelists in the block we are migrating to.
300 */
301static struct page *compaction_alloc(struct page *migratepage,
302					unsigned long data,
303					int **result)
304{
305	struct compact_control *cc = (struct compact_control *)data;
306	struct page *freepage;
307
308	/* Isolate free pages if necessary */
309	if (list_empty(&cc->freepages)) {
310		isolate_freepages(cc->zone, cc);
311
312		if (list_empty(&cc->freepages))
313			return NULL;
314	}
315
316	freepage = list_entry(cc->freepages.next, struct page, lru);
317	list_del(&freepage->lru);
318	cc->nr_freepages--;
319
320	return freepage;
321}
322
323/*
324 * We cannot control nr_migratepages and nr_freepages fully when migration is
325 * running as migrate_pages() has no knowledge of compact_control. When
326 * migration is complete, we count the number of pages on the lists by hand.
327 */
328static void update_nr_listpages(struct compact_control *cc)
329{
330	int nr_migratepages = 0;
331	int nr_freepages = 0;
332	struct page *page;
333
334	list_for_each_entry(page, &cc->migratepages, lru)
335		nr_migratepages++;
336	list_for_each_entry(page, &cc->freepages, lru)
337		nr_freepages++;
338
339	cc->nr_migratepages = nr_migratepages;
340	cc->nr_freepages = nr_freepages;
341}
342
343static int compact_finished(struct zone *zone,
344						struct compact_control *cc)
345{
346	unsigned int order;
347	unsigned long watermark = low_wmark_pages(zone) + (1 << cc->order);
348
349	if (fatal_signal_pending(current))
350		return COMPACT_PARTIAL;
351
352	/* Compaction run completes if the migrate and free scanner meet */
353	if (cc->free_pfn <= cc->migrate_pfn)
354		return COMPACT_COMPLETE;
355
356	/* Compaction run is not finished if the watermark is not met */
357	if (!zone_watermark_ok(zone, cc->order, watermark, 0, 0))
358		return COMPACT_CONTINUE;
359
360	if (cc->order == -1)
361		return COMPACT_CONTINUE;
362
363	/* Direct compactor: Is a suitable page free? */
364	for (order = cc->order; order < MAX_ORDER; order++) {
365		/* Job done if page is free of the right migratetype */
366		if (!list_empty(&zone->free_area[order].free_list[cc->migratetype]))
367			return COMPACT_PARTIAL;
368
369		/* Job done if allocation would set block type */
370		if (order >= pageblock_order && zone->free_area[order].nr_free)
371			return COMPACT_PARTIAL;
372	}
373
374	return COMPACT_CONTINUE;
375}
376
377static int compact_zone(struct zone *zone, struct compact_control *cc)
378{
379	int ret;
380
381	/* Setup to move all movable pages to the end of the zone */
382	cc->migrate_pfn = zone->zone_start_pfn;
383	cc->free_pfn = cc->migrate_pfn + zone->spanned_pages;
384	cc->free_pfn &= ~(pageblock_nr_pages-1);
385
386	migrate_prep_local();
387
388	while ((ret = compact_finished(zone, cc)) == COMPACT_CONTINUE) {
389		unsigned long nr_migrate, nr_remaining;
390
391		if (!isolate_migratepages(zone, cc))
392			continue;
393
394		nr_migrate = cc->nr_migratepages;
395		migrate_pages(&cc->migratepages, compaction_alloc,
396						(unsigned long)cc, 0);
397		update_nr_listpages(cc);
398		nr_remaining = cc->nr_migratepages;
399
400		count_vm_event(COMPACTBLOCKS);
401		count_vm_events(COMPACTPAGES, nr_migrate - nr_remaining);
402		if (nr_remaining)
403			count_vm_events(COMPACTPAGEFAILED, nr_remaining);
404
405		/* Release LRU pages not migrated */
406		if (!list_empty(&cc->migratepages)) {
407			putback_lru_pages(&cc->migratepages);
408			cc->nr_migratepages = 0;
409		}
410
411	}
412
413	/* Release free pages and check accounting */
414	cc->nr_freepages -= release_freepages(&cc->freepages);
415	VM_BUG_ON(cc->nr_freepages != 0);
416
417	return ret;
418}
419
420static unsigned long compact_zone_order(struct zone *zone,
421						int order, gfp_t gfp_mask)
422{
423	struct compact_control cc = {
424		.nr_freepages = 0,
425		.nr_migratepages = 0,
426		.order = order,
427		.migratetype = allocflags_to_migratetype(gfp_mask),
428		.zone = zone,
429	};
430	INIT_LIST_HEAD(&cc.freepages);
431	INIT_LIST_HEAD(&cc.migratepages);
432
433	return compact_zone(zone, &cc);
434}
435
436int sysctl_extfrag_threshold = 500;
437
438/**
439 * try_to_compact_pages - Direct compact to satisfy a high-order allocation
440 * @zonelist: The zonelist used for the current allocation
441 * @order: The order of the current allocation
442 * @gfp_mask: The GFP mask of the current allocation
443 * @nodemask: The allowed nodes to allocate from
444 *
445 * This is the main entry point for direct page compaction.
446 */
447unsigned long try_to_compact_pages(struct zonelist *zonelist,
448			int order, gfp_t gfp_mask, nodemask_t *nodemask)
449{
450	enum zone_type high_zoneidx = gfp_zone(gfp_mask);
451	int may_enter_fs = gfp_mask & __GFP_FS;
452	int may_perform_io = gfp_mask & __GFP_IO;
453	unsigned long watermark;
454	struct zoneref *z;
455	struct zone *zone;
456	int rc = COMPACT_SKIPPED;
457
458	/*
459	 * Check whether it is worth even starting compaction. The order check is
460	 * made because an assumption is made that the page allocator can satisfy
461	 * the "cheaper" orders without taking special steps
462	 */
463	if (order <= PAGE_ALLOC_COSTLY_ORDER || !may_enter_fs || !may_perform_io)
464		return rc;
465
466	count_vm_event(COMPACTSTALL);
467
468	/* Compact each zone in the list */
469	for_each_zone_zonelist_nodemask(zone, z, zonelist, high_zoneidx,
470								nodemask) {
471		int fragindex;
472		int status;
473
474		/*
475		 * Watermarks for order-0 must be met for compaction. Note
476		 * the 2UL. This is because during migration, copies of
477		 * pages need to be allocated and for a short time, the
478		 * footprint is higher
479		 */
480		watermark = low_wmark_pages(zone) + (2UL << order);
481		if (!zone_watermark_ok(zone, 0, watermark, 0, 0))
482			continue;
483
484		/*
485		 * fragmentation index determines if allocation failures are
486		 * due to low memory or external fragmentation
487		 *
488		 * index of -1 implies allocations might succeed depending
489		 * 	on watermarks
490		 * index towards 0 implies failure is due to lack of memory
491		 * index towards 1000 implies failure is due to fragmentation
492		 *
493		 * Only compact if a failure would be due to fragmentation.
494		 */
495		fragindex = fragmentation_index(zone, order);
496		if (fragindex >= 0 && fragindex <= sysctl_extfrag_threshold)
497			continue;
498
499		if (fragindex == -1 && zone_watermark_ok(zone, order, watermark, 0, 0)) {
500			rc = COMPACT_PARTIAL;
501			break;
502		}
503
504		status = compact_zone_order(zone, order, gfp_mask);
505		rc = max(status, rc);
506
507		if (zone_watermark_ok(zone, order, watermark, 0, 0))
508			break;
509	}
510
511	return rc;
512}
513
514
515/* Compact all zones within a node */
516static int compact_node(int nid)
517{
518	int zoneid;
519	pg_data_t *pgdat;
520	struct zone *zone;
521
522	if (nid < 0 || nid >= nr_node_ids || !node_online(nid))
523		return -EINVAL;
524	pgdat = NODE_DATA(nid);
525
526	/* Flush pending updates to the LRU lists */
527	lru_add_drain_all();
528
529	for (zoneid = 0; zoneid < MAX_NR_ZONES; zoneid++) {
530		struct compact_control cc = {
531			.nr_freepages = 0,
532			.nr_migratepages = 0,
533			.order = -1,
534		};
535
536		zone = &pgdat->node_zones[zoneid];
537		if (!populated_zone(zone))
538			continue;
539
540		cc.zone = zone;
541		INIT_LIST_HEAD(&cc.freepages);
542		INIT_LIST_HEAD(&cc.migratepages);
543
544		compact_zone(zone, &cc);
545
546		VM_BUG_ON(!list_empty(&cc.freepages));
547		VM_BUG_ON(!list_empty(&cc.migratepages));
548	}
549
550	return 0;
551}
552
553/* Compact all nodes in the system */
554static int compact_nodes(void)
555{
556	int nid;
557
558	for_each_online_node(nid)
559		compact_node(nid);
560
561	return COMPACT_COMPLETE;
562}
563
564/* The written value is actually unused, all memory is compacted */
565int sysctl_compact_memory;
566
567/* This is the entry point for compacting all nodes via /proc/sys/vm */
568int sysctl_compaction_handler(struct ctl_table *table, int write,
569			void __user *buffer, size_t *length, loff_t *ppos)
570{
571	if (write)
572		return compact_nodes();
573
574	return 0;
575}
576
577int sysctl_extfrag_handler(struct ctl_table *table, int write,
578			void __user *buffer, size_t *length, loff_t *ppos)
579{
580	proc_dointvec_minmax(table, write, buffer, length, ppos);
581
582	return 0;
583}
584
585#if defined(CONFIG_SYSFS) && defined(CONFIG_NUMA)
586ssize_t sysfs_compact_node(struct sys_device *dev,
587			struct sysdev_attribute *attr,
588			const char *buf, size_t count)
589{
590	compact_node(dev->id);
591
592	return count;
593}
594static SYSDEV_ATTR(compact, S_IWUSR, NULL, sysfs_compact_node);
595
596int compaction_register_node(struct node *node)
597{
598	return sysdev_create_file(&node->sysdev, &attr_compact);
599}
600
601void compaction_unregister_node(struct node *node)
602{
603	return sysdev_remove_file(&node->sysdev, &attr_compact);
604}
605#endif /* CONFIG_SYSFS && CONFIG_NUMA */
606