compaction.c revision b7aba6984dc048503b69c2a885098cdd430832bf
1/*
2 * linux/mm/compaction.c
3 *
4 * Memory compaction for the reduction of external fragmentation. Note that
5 * this heavily depends upon page migration to do all the real heavy
6 * lifting
7 *
8 * Copyright IBM Corp. 2007-2010 Mel Gorman <mel@csn.ul.ie>
9 */
10#include <linux/swap.h>
11#include <linux/migrate.h>
12#include <linux/compaction.h>
13#include <linux/mm_inline.h>
14#include <linux/backing-dev.h>
15#include <linux/sysctl.h>
16#include <linux/sysfs.h>
17#include "internal.h"
18
19#define CREATE_TRACE_POINTS
20#include <trace/events/compaction.h>
21
22/*
23 * compact_control is used to track pages being migrated and the free pages
24 * they are being migrated to during memory compaction. The free_pfn starts
25 * at the end of a zone and migrate_pfn begins at the start. Movable pages
26 * are moved to the end of a zone during a compaction run and the run
27 * completes when free_pfn <= migrate_pfn
28 */
29struct compact_control {
30	struct list_head freepages;	/* List of free pages to migrate to */
31	struct list_head migratepages;	/* List of pages being migrated */
32	unsigned long nr_freepages;	/* Number of isolated free pages */
33	unsigned long nr_migratepages;	/* Number of pages to migrate */
34	unsigned long free_pfn;		/* isolate_freepages search base */
35	unsigned long migrate_pfn;	/* isolate_migratepages search base */
36
37	/* Account for isolated anon and file pages */
38	unsigned long nr_anon;
39	unsigned long nr_file;
40
41	unsigned int order;		/* order a direct compactor needs */
42	int migratetype;		/* MOVABLE, RECLAIMABLE etc */
43	struct zone *zone;
44};
45
46static unsigned long release_freepages(struct list_head *freelist)
47{
48	struct page *page, *next;
49	unsigned long count = 0;
50
51	list_for_each_entry_safe(page, next, freelist, lru) {
52		list_del(&page->lru);
53		__free_page(page);
54		count++;
55	}
56
57	return count;
58}
59
60/* Isolate free pages onto a private freelist. Must hold zone->lock */
61static unsigned long isolate_freepages_block(struct zone *zone,
62				unsigned long blockpfn,
63				struct list_head *freelist)
64{
65	unsigned long zone_end_pfn, end_pfn;
66	int nr_scanned = 0, total_isolated = 0;
67	struct page *cursor;
68
69	/* Get the last PFN we should scan for free pages at */
70	zone_end_pfn = zone->zone_start_pfn + zone->spanned_pages;
71	end_pfn = min(blockpfn + pageblock_nr_pages, zone_end_pfn);
72
73	/* Find the first usable PFN in the block to initialse page cursor */
74	for (; blockpfn < end_pfn; blockpfn++) {
75		if (pfn_valid_within(blockpfn))
76			break;
77	}
78	cursor = pfn_to_page(blockpfn);
79
80	/* Isolate free pages. This assumes the block is valid */
81	for (; blockpfn < end_pfn; blockpfn++, cursor++) {
82		int isolated, i;
83		struct page *page = cursor;
84
85		if (!pfn_valid_within(blockpfn))
86			continue;
87		nr_scanned++;
88
89		if (!PageBuddy(page))
90			continue;
91
92		/* Found a free page, break it into order-0 pages */
93		isolated = split_free_page(page);
94		total_isolated += isolated;
95		for (i = 0; i < isolated; i++) {
96			list_add(&page->lru, freelist);
97			page++;
98		}
99
100		/* If a page was split, advance to the end of it */
101		if (isolated) {
102			blockpfn += isolated - 1;
103			cursor += isolated - 1;
104		}
105	}
106
107	trace_mm_compaction_isolate_freepages(nr_scanned, total_isolated);
108	return total_isolated;
109}
110
111/* Returns true if the page is within a block suitable for migration to */
112static bool suitable_migration_target(struct page *page)
113{
114
115	int migratetype = get_pageblock_migratetype(page);
116
117	/* Don't interfere with memory hot-remove or the min_free_kbytes blocks */
118	if (migratetype == MIGRATE_ISOLATE || migratetype == MIGRATE_RESERVE)
119		return false;
120
121	/* If the page is a large free page, then allow migration */
122	if (PageBuddy(page) && page_order(page) >= pageblock_order)
123		return true;
124
125	/* If the block is MIGRATE_MOVABLE, allow migration */
126	if (migratetype == MIGRATE_MOVABLE)
127		return true;
128
129	/* Otherwise skip the block */
130	return false;
131}
132
133/*
134 * Based on information in the current compact_control, find blocks
135 * suitable for isolating free pages from and then isolate them.
136 */
137static void isolate_freepages(struct zone *zone,
138				struct compact_control *cc)
139{
140	struct page *page;
141	unsigned long high_pfn, low_pfn, pfn;
142	unsigned long flags;
143	int nr_freepages = cc->nr_freepages;
144	struct list_head *freelist = &cc->freepages;
145
146	pfn = cc->free_pfn;
147	low_pfn = cc->migrate_pfn + pageblock_nr_pages;
148	high_pfn = low_pfn;
149
150	/*
151	 * Isolate free pages until enough are available to migrate the
152	 * pages on cc->migratepages. We stop searching if the migrate
153	 * and free page scanners meet or enough free pages are isolated.
154	 */
155	spin_lock_irqsave(&zone->lock, flags);
156	for (; pfn > low_pfn && cc->nr_migratepages > nr_freepages;
157					pfn -= pageblock_nr_pages) {
158		unsigned long isolated;
159
160		if (!pfn_valid(pfn))
161			continue;
162
163		/*
164		 * Check for overlapping nodes/zones. It's possible on some
165		 * configurations to have a setup like
166		 * node0 node1 node0
167		 * i.e. it's possible that all pages within a zones range of
168		 * pages do not belong to a single zone.
169		 */
170		page = pfn_to_page(pfn);
171		if (page_zone(page) != zone)
172			continue;
173
174		/* Check the block is suitable for migration */
175		if (!suitable_migration_target(page))
176			continue;
177
178		/* Found a block suitable for isolating free pages from */
179		isolated = isolate_freepages_block(zone, pfn, freelist);
180		nr_freepages += isolated;
181
182		/*
183		 * Record the highest PFN we isolated pages from. When next
184		 * looking for free pages, the search will restart here as
185		 * page migration may have returned some pages to the allocator
186		 */
187		if (isolated)
188			high_pfn = max(high_pfn, pfn);
189	}
190	spin_unlock_irqrestore(&zone->lock, flags);
191
192	/* split_free_page does not map the pages */
193	list_for_each_entry(page, freelist, lru) {
194		arch_alloc_page(page, 0);
195		kernel_map_pages(page, 1, 1);
196	}
197
198	cc->free_pfn = high_pfn;
199	cc->nr_freepages = nr_freepages;
200}
201
202/* Update the number of anon and file isolated pages in the zone */
203static void acct_isolated(struct zone *zone, struct compact_control *cc)
204{
205	struct page *page;
206	unsigned int count[NR_LRU_LISTS] = { 0, };
207
208	list_for_each_entry(page, &cc->migratepages, lru) {
209		int lru = page_lru_base_type(page);
210		count[lru]++;
211	}
212
213	cc->nr_anon = count[LRU_ACTIVE_ANON] + count[LRU_INACTIVE_ANON];
214	cc->nr_file = count[LRU_ACTIVE_FILE] + count[LRU_INACTIVE_FILE];
215	__mod_zone_page_state(zone, NR_ISOLATED_ANON, cc->nr_anon);
216	__mod_zone_page_state(zone, NR_ISOLATED_FILE, cc->nr_file);
217}
218
219/* Similar to reclaim, but different enough that they don't share logic */
220static bool too_many_isolated(struct zone *zone)
221{
222	unsigned long active, inactive, isolated;
223
224	inactive = zone_page_state(zone, NR_INACTIVE_FILE) +
225					zone_page_state(zone, NR_INACTIVE_ANON);
226	active = zone_page_state(zone, NR_ACTIVE_FILE) +
227					zone_page_state(zone, NR_ACTIVE_ANON);
228	isolated = zone_page_state(zone, NR_ISOLATED_FILE) +
229					zone_page_state(zone, NR_ISOLATED_ANON);
230
231	return isolated > (inactive + active) / 2;
232}
233
234/*
235 * Isolate all pages that can be migrated from the block pointed to by
236 * the migrate scanner within compact_control.
237 */
238static unsigned long isolate_migratepages(struct zone *zone,
239					struct compact_control *cc)
240{
241	unsigned long low_pfn, end_pfn;
242	unsigned long nr_scanned = 0, nr_isolated = 0;
243	struct list_head *migratelist = &cc->migratepages;
244
245	/* Do not scan outside zone boundaries */
246	low_pfn = max(cc->migrate_pfn, zone->zone_start_pfn);
247
248	/* Only scan within a pageblock boundary */
249	end_pfn = ALIGN(low_pfn + pageblock_nr_pages, pageblock_nr_pages);
250
251	/* Do not cross the free scanner or scan within a memory hole */
252	if (end_pfn > cc->free_pfn || !pfn_valid(low_pfn)) {
253		cc->migrate_pfn = end_pfn;
254		return 0;
255	}
256
257	/*
258	 * Ensure that there are not too many pages isolated from the LRU
259	 * list by either parallel reclaimers or compaction. If there are,
260	 * delay for some time until fewer pages are isolated
261	 */
262	while (unlikely(too_many_isolated(zone))) {
263		congestion_wait(BLK_RW_ASYNC, HZ/10);
264
265		if (fatal_signal_pending(current))
266			return 0;
267	}
268
269	/* Time to isolate some pages for migration */
270	spin_lock_irq(&zone->lru_lock);
271	for (; low_pfn < end_pfn; low_pfn++) {
272		struct page *page;
273		if (!pfn_valid_within(low_pfn))
274			continue;
275		nr_scanned++;
276
277		/* Get the page and skip if free */
278		page = pfn_to_page(low_pfn);
279		if (PageBuddy(page))
280			continue;
281
282		/* Try isolate the page */
283		if (__isolate_lru_page(page, ISOLATE_BOTH, 0) != 0)
284			continue;
285
286		/* Successfully isolated */
287		del_page_from_lru_list(zone, page, page_lru(page));
288		list_add(&page->lru, migratelist);
289		cc->nr_migratepages++;
290		nr_isolated++;
291
292		/* Avoid isolating too much */
293		if (cc->nr_migratepages == COMPACT_CLUSTER_MAX)
294			break;
295	}
296
297	acct_isolated(zone, cc);
298
299	spin_unlock_irq(&zone->lru_lock);
300	cc->migrate_pfn = low_pfn;
301
302	trace_mm_compaction_isolate_migratepages(nr_scanned, nr_isolated);
303
304	return cc->nr_migratepages;
305}
306
307/*
308 * This is a migrate-callback that "allocates" freepages by taking pages
309 * from the isolated freelists in the block we are migrating to.
310 */
311static struct page *compaction_alloc(struct page *migratepage,
312					unsigned long data,
313					int **result)
314{
315	struct compact_control *cc = (struct compact_control *)data;
316	struct page *freepage;
317
318	/* Isolate free pages if necessary */
319	if (list_empty(&cc->freepages)) {
320		isolate_freepages(cc->zone, cc);
321
322		if (list_empty(&cc->freepages))
323			return NULL;
324	}
325
326	freepage = list_entry(cc->freepages.next, struct page, lru);
327	list_del(&freepage->lru);
328	cc->nr_freepages--;
329
330	return freepage;
331}
332
333/*
334 * We cannot control nr_migratepages and nr_freepages fully when migration is
335 * running as migrate_pages() has no knowledge of compact_control. When
336 * migration is complete, we count the number of pages on the lists by hand.
337 */
338static void update_nr_listpages(struct compact_control *cc)
339{
340	int nr_migratepages = 0;
341	int nr_freepages = 0;
342	struct page *page;
343
344	list_for_each_entry(page, &cc->migratepages, lru)
345		nr_migratepages++;
346	list_for_each_entry(page, &cc->freepages, lru)
347		nr_freepages++;
348
349	cc->nr_migratepages = nr_migratepages;
350	cc->nr_freepages = nr_freepages;
351}
352
353static int compact_finished(struct zone *zone,
354						struct compact_control *cc)
355{
356	unsigned int order;
357	unsigned long watermark = low_wmark_pages(zone) + (1 << cc->order);
358
359	if (fatal_signal_pending(current))
360		return COMPACT_PARTIAL;
361
362	/* Compaction run completes if the migrate and free scanner meet */
363	if (cc->free_pfn <= cc->migrate_pfn)
364		return COMPACT_COMPLETE;
365
366	/* Compaction run is not finished if the watermark is not met */
367	if (!zone_watermark_ok(zone, cc->order, watermark, 0, 0))
368		return COMPACT_CONTINUE;
369
370	if (cc->order == -1)
371		return COMPACT_CONTINUE;
372
373	/* Direct compactor: Is a suitable page free? */
374	for (order = cc->order; order < MAX_ORDER; order++) {
375		/* Job done if page is free of the right migratetype */
376		if (!list_empty(&zone->free_area[order].free_list[cc->migratetype]))
377			return COMPACT_PARTIAL;
378
379		/* Job done if allocation would set block type */
380		if (order >= pageblock_order && zone->free_area[order].nr_free)
381			return COMPACT_PARTIAL;
382	}
383
384	return COMPACT_CONTINUE;
385}
386
387static int compact_zone(struct zone *zone, struct compact_control *cc)
388{
389	int ret;
390
391	/* Setup to move all movable pages to the end of the zone */
392	cc->migrate_pfn = zone->zone_start_pfn;
393	cc->free_pfn = cc->migrate_pfn + zone->spanned_pages;
394	cc->free_pfn &= ~(pageblock_nr_pages-1);
395
396	migrate_prep_local();
397
398	while ((ret = compact_finished(zone, cc)) == COMPACT_CONTINUE) {
399		unsigned long nr_migrate, nr_remaining;
400
401		if (!isolate_migratepages(zone, cc))
402			continue;
403
404		nr_migrate = cc->nr_migratepages;
405		migrate_pages(&cc->migratepages, compaction_alloc,
406						(unsigned long)cc, 0);
407		update_nr_listpages(cc);
408		nr_remaining = cc->nr_migratepages;
409
410		count_vm_event(COMPACTBLOCKS);
411		count_vm_events(COMPACTPAGES, nr_migrate - nr_remaining);
412		if (nr_remaining)
413			count_vm_events(COMPACTPAGEFAILED, nr_remaining);
414		trace_mm_compaction_migratepages(nr_migrate - nr_remaining,
415						nr_remaining);
416
417		/* Release LRU pages not migrated */
418		if (!list_empty(&cc->migratepages)) {
419			putback_lru_pages(&cc->migratepages);
420			cc->nr_migratepages = 0;
421		}
422
423	}
424
425	/* Release free pages and check accounting */
426	cc->nr_freepages -= release_freepages(&cc->freepages);
427	VM_BUG_ON(cc->nr_freepages != 0);
428
429	return ret;
430}
431
432static unsigned long compact_zone_order(struct zone *zone,
433						int order, gfp_t gfp_mask)
434{
435	struct compact_control cc = {
436		.nr_freepages = 0,
437		.nr_migratepages = 0,
438		.order = order,
439		.migratetype = allocflags_to_migratetype(gfp_mask),
440		.zone = zone,
441	};
442	INIT_LIST_HEAD(&cc.freepages);
443	INIT_LIST_HEAD(&cc.migratepages);
444
445	return compact_zone(zone, &cc);
446}
447
448int sysctl_extfrag_threshold = 500;
449
450/**
451 * try_to_compact_pages - Direct compact to satisfy a high-order allocation
452 * @zonelist: The zonelist used for the current allocation
453 * @order: The order of the current allocation
454 * @gfp_mask: The GFP mask of the current allocation
455 * @nodemask: The allowed nodes to allocate from
456 *
457 * This is the main entry point for direct page compaction.
458 */
459unsigned long try_to_compact_pages(struct zonelist *zonelist,
460			int order, gfp_t gfp_mask, nodemask_t *nodemask)
461{
462	enum zone_type high_zoneidx = gfp_zone(gfp_mask);
463	int may_enter_fs = gfp_mask & __GFP_FS;
464	int may_perform_io = gfp_mask & __GFP_IO;
465	unsigned long watermark;
466	struct zoneref *z;
467	struct zone *zone;
468	int rc = COMPACT_SKIPPED;
469
470	/*
471	 * Check whether it is worth even starting compaction. The order check is
472	 * made because an assumption is made that the page allocator can satisfy
473	 * the "cheaper" orders without taking special steps
474	 */
475	if (order <= PAGE_ALLOC_COSTLY_ORDER || !may_enter_fs || !may_perform_io)
476		return rc;
477
478	count_vm_event(COMPACTSTALL);
479
480	/* Compact each zone in the list */
481	for_each_zone_zonelist_nodemask(zone, z, zonelist, high_zoneidx,
482								nodemask) {
483		int fragindex;
484		int status;
485
486		/*
487		 * Watermarks for order-0 must be met for compaction. Note
488		 * the 2UL. This is because during migration, copies of
489		 * pages need to be allocated and for a short time, the
490		 * footprint is higher
491		 */
492		watermark = low_wmark_pages(zone) + (2UL << order);
493		if (!zone_watermark_ok(zone, 0, watermark, 0, 0))
494			continue;
495
496		/*
497		 * fragmentation index determines if allocation failures are
498		 * due to low memory or external fragmentation
499		 *
500		 * index of -1 implies allocations might succeed depending
501		 * 	on watermarks
502		 * index towards 0 implies failure is due to lack of memory
503		 * index towards 1000 implies failure is due to fragmentation
504		 *
505		 * Only compact if a failure would be due to fragmentation.
506		 */
507		fragindex = fragmentation_index(zone, order);
508		if (fragindex >= 0 && fragindex <= sysctl_extfrag_threshold)
509			continue;
510
511		if (fragindex == -1 && zone_watermark_ok(zone, order, watermark, 0, 0)) {
512			rc = COMPACT_PARTIAL;
513			break;
514		}
515
516		status = compact_zone_order(zone, order, gfp_mask);
517		rc = max(status, rc);
518
519		if (zone_watermark_ok(zone, order, watermark, 0, 0))
520			break;
521	}
522
523	return rc;
524}
525
526
527/* Compact all zones within a node */
528static int compact_node(int nid)
529{
530	int zoneid;
531	pg_data_t *pgdat;
532	struct zone *zone;
533
534	if (nid < 0 || nid >= nr_node_ids || !node_online(nid))
535		return -EINVAL;
536	pgdat = NODE_DATA(nid);
537
538	/* Flush pending updates to the LRU lists */
539	lru_add_drain_all();
540
541	for (zoneid = 0; zoneid < MAX_NR_ZONES; zoneid++) {
542		struct compact_control cc = {
543			.nr_freepages = 0,
544			.nr_migratepages = 0,
545			.order = -1,
546		};
547
548		zone = &pgdat->node_zones[zoneid];
549		if (!populated_zone(zone))
550			continue;
551
552		cc.zone = zone;
553		INIT_LIST_HEAD(&cc.freepages);
554		INIT_LIST_HEAD(&cc.migratepages);
555
556		compact_zone(zone, &cc);
557
558		VM_BUG_ON(!list_empty(&cc.freepages));
559		VM_BUG_ON(!list_empty(&cc.migratepages));
560	}
561
562	return 0;
563}
564
565/* Compact all nodes in the system */
566static int compact_nodes(void)
567{
568	int nid;
569
570	for_each_online_node(nid)
571		compact_node(nid);
572
573	return COMPACT_COMPLETE;
574}
575
576/* The written value is actually unused, all memory is compacted */
577int sysctl_compact_memory;
578
579/* This is the entry point for compacting all nodes via /proc/sys/vm */
580int sysctl_compaction_handler(struct ctl_table *table, int write,
581			void __user *buffer, size_t *length, loff_t *ppos)
582{
583	if (write)
584		return compact_nodes();
585
586	return 0;
587}
588
589int sysctl_extfrag_handler(struct ctl_table *table, int write,
590			void __user *buffer, size_t *length, loff_t *ppos)
591{
592	proc_dointvec_minmax(table, write, buffer, length, ppos);
593
594	return 0;
595}
596
597#if defined(CONFIG_SYSFS) && defined(CONFIG_NUMA)
598ssize_t sysfs_compact_node(struct sys_device *dev,
599			struct sysdev_attribute *attr,
600			const char *buf, size_t count)
601{
602	compact_node(dev->id);
603
604	return count;
605}
606static SYSDEV_ATTR(compact, S_IWUSR, NULL, sysfs_compact_node);
607
608int compaction_register_node(struct node *node)
609{
610	return sysdev_create_file(&node->sysdev, &attr_compact);
611}
612
613void compaction_unregister_node(struct node *node)
614{
615	return sysdev_remove_file(&node->sysdev, &attr_compact);
616}
617#endif /* CONFIG_SYSFS && CONFIG_NUMA */
618