filemap.c revision 0bb7ba6b9c358c12084a3cbc6ac08c8d1e973937
1/*
2 *	linux/mm/filemap.c
3 *
4 * Copyright (C) 1994-1999  Linus Torvalds
5 */
6
7/*
8 * This file handles the generic file mmap semantics used by
9 * most "normal" filesystems (but you don't /have/ to use this:
10 * the NFS filesystem used to do this differently, for example)
11 */
12#include <linux/module.h>
13#include <linux/slab.h>
14#include <linux/compiler.h>
15#include <linux/fs.h>
16#include <linux/uaccess.h>
17#include <linux/aio.h>
18#include <linux/capability.h>
19#include <linux/kernel_stat.h>
20#include <linux/mm.h>
21#include <linux/swap.h>
22#include <linux/mman.h>
23#include <linux/pagemap.h>
24#include <linux/file.h>
25#include <linux/uio.h>
26#include <linux/hash.h>
27#include <linux/writeback.h>
28#include <linux/pagevec.h>
29#include <linux/blkdev.h>
30#include <linux/security.h>
31#include <linux/syscalls.h>
32#include <linux/cpuset.h>
33#include "filemap.h"
34#include "internal.h"
35
36/*
37 * FIXME: remove all knowledge of the buffer layer from the core VM
38 */
39#include <linux/buffer_head.h> /* for generic_osync_inode */
40
41#include <asm/mman.h>
42
43static ssize_t
44generic_file_direct_IO(int rw, struct kiocb *iocb, const struct iovec *iov,
45	loff_t offset, unsigned long nr_segs);
46
47/*
48 * Shared mappings implemented 30.11.1994. It's not fully working yet,
49 * though.
50 *
51 * Shared mappings now work. 15.8.1995  Bruno.
52 *
53 * finished 'unifying' the page and buffer cache and SMP-threaded the
54 * page-cache, 21.05.1999, Ingo Molnar <mingo@redhat.com>
55 *
56 * SMP-threaded pagemap-LRU 1999, Andrea Arcangeli <andrea@suse.de>
57 */
58
59/*
60 * Lock ordering:
61 *
62 *  ->i_mmap_lock		(vmtruncate)
63 *    ->private_lock		(__free_pte->__set_page_dirty_buffers)
64 *      ->swap_lock		(exclusive_swap_page, others)
65 *        ->mapping->tree_lock
66 *
67 *  ->i_mutex
68 *    ->i_mmap_lock		(truncate->unmap_mapping_range)
69 *
70 *  ->mmap_sem
71 *    ->i_mmap_lock
72 *      ->page_table_lock or pte_lock	(various, mainly in memory.c)
73 *        ->mapping->tree_lock	(arch-dependent flush_dcache_mmap_lock)
74 *
75 *  ->mmap_sem
76 *    ->lock_page		(access_process_vm)
77 *
78 *  ->i_mutex			(generic_file_buffered_write)
79 *    ->mmap_sem		(fault_in_pages_readable->do_page_fault)
80 *
81 *  ->i_mutex
82 *    ->i_alloc_sem             (various)
83 *
84 *  ->inode_lock
85 *    ->sb_lock			(fs/fs-writeback.c)
86 *    ->mapping->tree_lock	(__sync_single_inode)
87 *
88 *  ->i_mmap_lock
89 *    ->anon_vma.lock		(vma_adjust)
90 *
91 *  ->anon_vma.lock
92 *    ->page_table_lock or pte_lock	(anon_vma_prepare and various)
93 *
94 *  ->page_table_lock or pte_lock
95 *    ->swap_lock		(try_to_unmap_one)
96 *    ->private_lock		(try_to_unmap_one)
97 *    ->tree_lock		(try_to_unmap_one)
98 *    ->zone.lru_lock		(follow_page->mark_page_accessed)
99 *    ->zone.lru_lock		(check_pte_range->isolate_lru_page)
100 *    ->private_lock		(page_remove_rmap->set_page_dirty)
101 *    ->tree_lock		(page_remove_rmap->set_page_dirty)
102 *    ->inode_lock		(page_remove_rmap->set_page_dirty)
103 *    ->inode_lock		(zap_pte_range->set_page_dirty)
104 *    ->private_lock		(zap_pte_range->__set_page_dirty_buffers)
105 *
106 *  ->task->proc_lock
107 *    ->dcache_lock		(proc_pid_lookup)
108 */
109
110/*
111 * Remove a page from the page cache and free it. Caller has to make
112 * sure the page is locked and that nobody else uses it - or that usage
113 * is safe.  The caller must hold a write_lock on the mapping's tree_lock.
114 */
115void __remove_from_page_cache(struct page *page)
116{
117	struct address_space *mapping = page->mapping;
118
119	radix_tree_delete(&mapping->page_tree, page->index);
120	page->mapping = NULL;
121	mapping->nrpages--;
122	__dec_zone_page_state(page, NR_FILE_PAGES);
123	BUG_ON(page_mapped(page));
124}
125
126void remove_from_page_cache(struct page *page)
127{
128	struct address_space *mapping = page->mapping;
129
130	BUG_ON(!PageLocked(page));
131
132	write_lock_irq(&mapping->tree_lock);
133	__remove_from_page_cache(page);
134	write_unlock_irq(&mapping->tree_lock);
135}
136
137static int sync_page(void *word)
138{
139	struct address_space *mapping;
140	struct page *page;
141
142	page = container_of((unsigned long *)word, struct page, flags);
143
144	/*
145	 * page_mapping() is being called without PG_locked held.
146	 * Some knowledge of the state and use of the page is used to
147	 * reduce the requirements down to a memory barrier.
148	 * The danger here is of a stale page_mapping() return value
149	 * indicating a struct address_space different from the one it's
150	 * associated with when it is associated with one.
151	 * After smp_mb(), it's either the correct page_mapping() for
152	 * the page, or an old page_mapping() and the page's own
153	 * page_mapping() has gone NULL.
154	 * The ->sync_page() address_space operation must tolerate
155	 * page_mapping() going NULL. By an amazing coincidence,
156	 * this comes about because none of the users of the page
157	 * in the ->sync_page() methods make essential use of the
158	 * page_mapping(), merely passing the page down to the backing
159	 * device's unplug functions when it's non-NULL, which in turn
160	 * ignore it for all cases but swap, where only page_private(page) is
161	 * of interest. When page_mapping() does go NULL, the entire
162	 * call stack gracefully ignores the page and returns.
163	 * -- wli
164	 */
165	smp_mb();
166	mapping = page_mapping(page);
167	if (mapping && mapping->a_ops && mapping->a_ops->sync_page)
168		mapping->a_ops->sync_page(page);
169	io_schedule();
170	return 0;
171}
172
173/**
174 * __filemap_fdatawrite_range - start writeback on mapping dirty pages in range
175 * @mapping:	address space structure to write
176 * @start:	offset in bytes where the range starts
177 * @end:	offset in bytes where the range ends (inclusive)
178 * @sync_mode:	enable synchronous operation
179 *
180 * Start writeback against all of a mapping's dirty pages that lie
181 * within the byte offsets <start, end> inclusive.
182 *
183 * If sync_mode is WB_SYNC_ALL then this is a "data integrity" operation, as
184 * opposed to a regular memory cleansing writeback.  The difference between
185 * these two operations is that if a dirty page/buffer is encountered, it must
186 * be waited upon, and not just skipped over.
187 */
188int __filemap_fdatawrite_range(struct address_space *mapping, loff_t start,
189				loff_t end, int sync_mode)
190{
191	int ret;
192	struct writeback_control wbc = {
193		.sync_mode = sync_mode,
194		.nr_to_write = mapping->nrpages * 2,
195		.range_start = start,
196		.range_end = end,
197	};
198
199	if (!mapping_cap_writeback_dirty(mapping))
200		return 0;
201
202	ret = do_writepages(mapping, &wbc);
203	return ret;
204}
205
206static inline int __filemap_fdatawrite(struct address_space *mapping,
207	int sync_mode)
208{
209	return __filemap_fdatawrite_range(mapping, 0, LLONG_MAX, sync_mode);
210}
211
212int filemap_fdatawrite(struct address_space *mapping)
213{
214	return __filemap_fdatawrite(mapping, WB_SYNC_ALL);
215}
216EXPORT_SYMBOL(filemap_fdatawrite);
217
218static int filemap_fdatawrite_range(struct address_space *mapping, loff_t start,
219				loff_t end)
220{
221	return __filemap_fdatawrite_range(mapping, start, end, WB_SYNC_ALL);
222}
223
224/**
225 * filemap_flush - mostly a non-blocking flush
226 * @mapping:	target address_space
227 *
228 * This is a mostly non-blocking flush.  Not suitable for data-integrity
229 * purposes - I/O may not be started against all dirty pages.
230 */
231int filemap_flush(struct address_space *mapping)
232{
233	return __filemap_fdatawrite(mapping, WB_SYNC_NONE);
234}
235EXPORT_SYMBOL(filemap_flush);
236
237/**
238 * wait_on_page_writeback_range - wait for writeback to complete
239 * @mapping:	target address_space
240 * @start:	beginning page index
241 * @end:	ending page index
242 *
243 * Wait for writeback to complete against pages indexed by start->end
244 * inclusive
245 */
246int wait_on_page_writeback_range(struct address_space *mapping,
247				pgoff_t start, pgoff_t end)
248{
249	struct pagevec pvec;
250	int nr_pages;
251	int ret = 0;
252	pgoff_t index;
253
254	if (end < start)
255		return 0;
256
257	pagevec_init(&pvec, 0);
258	index = start;
259	while ((index <= end) &&
260			(nr_pages = pagevec_lookup_tag(&pvec, mapping, &index,
261			PAGECACHE_TAG_WRITEBACK,
262			min(end - index, (pgoff_t)PAGEVEC_SIZE-1) + 1)) != 0) {
263		unsigned i;
264
265		for (i = 0; i < nr_pages; i++) {
266			struct page *page = pvec.pages[i];
267
268			/* until radix tree lookup accepts end_index */
269			if (page->index > end)
270				continue;
271
272			wait_on_page_writeback(page);
273			if (PageError(page))
274				ret = -EIO;
275		}
276		pagevec_release(&pvec);
277		cond_resched();
278	}
279
280	/* Check for outstanding write errors */
281	if (test_and_clear_bit(AS_ENOSPC, &mapping->flags))
282		ret = -ENOSPC;
283	if (test_and_clear_bit(AS_EIO, &mapping->flags))
284		ret = -EIO;
285
286	return ret;
287}
288
289/**
290 * sync_page_range - write and wait on all pages in the passed range
291 * @inode:	target inode
292 * @mapping:	target address_space
293 * @pos:	beginning offset in pages to write
294 * @count:	number of bytes to write
295 *
296 * Write and wait upon all the pages in the passed range.  This is a "data
297 * integrity" operation.  It waits upon in-flight writeout before starting and
298 * waiting upon new writeout.  If there was an IO error, return it.
299 *
300 * We need to re-take i_mutex during the generic_osync_inode list walk because
301 * it is otherwise livelockable.
302 */
303int sync_page_range(struct inode *inode, struct address_space *mapping,
304			loff_t pos, loff_t count)
305{
306	pgoff_t start = pos >> PAGE_CACHE_SHIFT;
307	pgoff_t end = (pos + count - 1) >> PAGE_CACHE_SHIFT;
308	int ret;
309
310	if (!mapping_cap_writeback_dirty(mapping) || !count)
311		return 0;
312	ret = filemap_fdatawrite_range(mapping, pos, pos + count - 1);
313	if (ret == 0) {
314		mutex_lock(&inode->i_mutex);
315		ret = generic_osync_inode(inode, mapping, OSYNC_METADATA);
316		mutex_unlock(&inode->i_mutex);
317	}
318	if (ret == 0)
319		ret = wait_on_page_writeback_range(mapping, start, end);
320	return ret;
321}
322EXPORT_SYMBOL(sync_page_range);
323
324/**
325 * sync_page_range_nolock
326 * @inode:	target inode
327 * @mapping:	target address_space
328 * @pos:	beginning offset in pages to write
329 * @count:	number of bytes to write
330 *
331 * Note: Holding i_mutex across sync_page_range_nolock() is not a good idea
332 * as it forces O_SYNC writers to different parts of the same file
333 * to be serialised right until io completion.
334 */
335int sync_page_range_nolock(struct inode *inode, struct address_space *mapping,
336			   loff_t pos, loff_t count)
337{
338	pgoff_t start = pos >> PAGE_CACHE_SHIFT;
339	pgoff_t end = (pos + count - 1) >> PAGE_CACHE_SHIFT;
340	int ret;
341
342	if (!mapping_cap_writeback_dirty(mapping) || !count)
343		return 0;
344	ret = filemap_fdatawrite_range(mapping, pos, pos + count - 1);
345	if (ret == 0)
346		ret = generic_osync_inode(inode, mapping, OSYNC_METADATA);
347	if (ret == 0)
348		ret = wait_on_page_writeback_range(mapping, start, end);
349	return ret;
350}
351EXPORT_SYMBOL(sync_page_range_nolock);
352
353/**
354 * filemap_fdatawait - wait for all under-writeback pages to complete
355 * @mapping: address space structure to wait for
356 *
357 * Walk the list of under-writeback pages of the given address space
358 * and wait for all of them.
359 */
360int filemap_fdatawait(struct address_space *mapping)
361{
362	loff_t i_size = i_size_read(mapping->host);
363
364	if (i_size == 0)
365		return 0;
366
367	return wait_on_page_writeback_range(mapping, 0,
368				(i_size - 1) >> PAGE_CACHE_SHIFT);
369}
370EXPORT_SYMBOL(filemap_fdatawait);
371
372int filemap_write_and_wait(struct address_space *mapping)
373{
374	int err = 0;
375
376	if (mapping->nrpages) {
377		err = filemap_fdatawrite(mapping);
378		/*
379		 * Even if the above returned error, the pages may be
380		 * written partially (e.g. -ENOSPC), so we wait for it.
381		 * But the -EIO is special case, it may indicate the worst
382		 * thing (e.g. bug) happened, so we avoid waiting for it.
383		 */
384		if (err != -EIO) {
385			int err2 = filemap_fdatawait(mapping);
386			if (!err)
387				err = err2;
388		}
389	}
390	return err;
391}
392EXPORT_SYMBOL(filemap_write_and_wait);
393
394/**
395 * filemap_write_and_wait_range - write out & wait on a file range
396 * @mapping:	the address_space for the pages
397 * @lstart:	offset in bytes where the range starts
398 * @lend:	offset in bytes where the range ends (inclusive)
399 *
400 * Write out and wait upon file offsets lstart->lend, inclusive.
401 *
402 * Note that `lend' is inclusive (describes the last byte to be written) so
403 * that this function can be used to write to the very end-of-file (end = -1).
404 */
405int filemap_write_and_wait_range(struct address_space *mapping,
406				 loff_t lstart, loff_t lend)
407{
408	int err = 0;
409
410	if (mapping->nrpages) {
411		err = __filemap_fdatawrite_range(mapping, lstart, lend,
412						 WB_SYNC_ALL);
413		/* See comment of filemap_write_and_wait() */
414		if (err != -EIO) {
415			int err2 = wait_on_page_writeback_range(mapping,
416						lstart >> PAGE_CACHE_SHIFT,
417						lend >> PAGE_CACHE_SHIFT);
418			if (!err)
419				err = err2;
420		}
421	}
422	return err;
423}
424
425/**
426 * add_to_page_cache - add newly allocated pagecache pages
427 * @page:	page to add
428 * @mapping:	the page's address_space
429 * @offset:	page index
430 * @gfp_mask:	page allocation mode
431 *
432 * This function is used to add newly allocated pagecache pages;
433 * the page is new, so we can just run SetPageLocked() against it.
434 * The other page state flags were set by rmqueue().
435 *
436 * This function does not add the page to the LRU.  The caller must do that.
437 */
438int add_to_page_cache(struct page *page, struct address_space *mapping,
439		pgoff_t offset, gfp_t gfp_mask)
440{
441	int error = radix_tree_preload(gfp_mask & ~__GFP_HIGHMEM);
442
443	if (error == 0) {
444		write_lock_irq(&mapping->tree_lock);
445		error = radix_tree_insert(&mapping->page_tree, offset, page);
446		if (!error) {
447			page_cache_get(page);
448			SetPageLocked(page);
449			page->mapping = mapping;
450			page->index = offset;
451			mapping->nrpages++;
452			__inc_zone_page_state(page, NR_FILE_PAGES);
453		}
454		write_unlock_irq(&mapping->tree_lock);
455		radix_tree_preload_end();
456	}
457	return error;
458}
459EXPORT_SYMBOL(add_to_page_cache);
460
461int add_to_page_cache_lru(struct page *page, struct address_space *mapping,
462				pgoff_t offset, gfp_t gfp_mask)
463{
464	int ret = add_to_page_cache(page, mapping, offset, gfp_mask);
465	if (ret == 0)
466		lru_cache_add(page);
467	return ret;
468}
469
470#ifdef CONFIG_NUMA
471struct page *__page_cache_alloc(gfp_t gfp)
472{
473	if (cpuset_do_page_mem_spread()) {
474		int n = cpuset_mem_spread_node();
475		return alloc_pages_node(n, gfp, 0);
476	}
477	return alloc_pages(gfp, 0);
478}
479EXPORT_SYMBOL(__page_cache_alloc);
480#endif
481
482static int __sleep_on_page_lock(void *word)
483{
484	io_schedule();
485	return 0;
486}
487
488/*
489 * In order to wait for pages to become available there must be
490 * waitqueues associated with pages. By using a hash table of
491 * waitqueues where the bucket discipline is to maintain all
492 * waiters on the same queue and wake all when any of the pages
493 * become available, and for the woken contexts to check to be
494 * sure the appropriate page became available, this saves space
495 * at a cost of "thundering herd" phenomena during rare hash
496 * collisions.
497 */
498static wait_queue_head_t *page_waitqueue(struct page *page)
499{
500	const struct zone *zone = page_zone(page);
501
502	return &zone->wait_table[hash_ptr(page, zone->wait_table_bits)];
503}
504
505static inline void wake_up_page(struct page *page, int bit)
506{
507	__wake_up_bit(page_waitqueue(page), &page->flags, bit);
508}
509
510void fastcall wait_on_page_bit(struct page *page, int bit_nr)
511{
512	DEFINE_WAIT_BIT(wait, &page->flags, bit_nr);
513
514	if (test_bit(bit_nr, &page->flags))
515		__wait_on_bit(page_waitqueue(page), &wait, sync_page,
516							TASK_UNINTERRUPTIBLE);
517}
518EXPORT_SYMBOL(wait_on_page_bit);
519
520/**
521 * unlock_page - unlock a locked page
522 * @page: the page
523 *
524 * Unlocks the page and wakes up sleepers in ___wait_on_page_locked().
525 * Also wakes sleepers in wait_on_page_writeback() because the wakeup
526 * mechananism between PageLocked pages and PageWriteback pages is shared.
527 * But that's OK - sleepers in wait_on_page_writeback() just go back to sleep.
528 *
529 * The first mb is necessary to safely close the critical section opened by the
530 * TestSetPageLocked(), the second mb is necessary to enforce ordering between
531 * the clear_bit and the read of the waitqueue (to avoid SMP races with a
532 * parallel wait_on_page_locked()).
533 */
534void fastcall unlock_page(struct page *page)
535{
536	smp_mb__before_clear_bit();
537	if (!TestClearPageLocked(page))
538		BUG();
539	smp_mb__after_clear_bit();
540	wake_up_page(page, PG_locked);
541}
542EXPORT_SYMBOL(unlock_page);
543
544/**
545 * end_page_writeback - end writeback against a page
546 * @page: the page
547 */
548void end_page_writeback(struct page *page)
549{
550	if (!TestClearPageReclaim(page) || rotate_reclaimable_page(page)) {
551		if (!test_clear_page_writeback(page))
552			BUG();
553	}
554	smp_mb__after_clear_bit();
555	wake_up_page(page, PG_writeback);
556}
557EXPORT_SYMBOL(end_page_writeback);
558
559/**
560 * __lock_page - get a lock on the page, assuming we need to sleep to get it
561 * @page: the page to lock
562 *
563 * Ugly. Running sync_page() in state TASK_UNINTERRUPTIBLE is scary.  If some
564 * random driver's requestfn sets TASK_RUNNING, we could busywait.  However
565 * chances are that on the second loop, the block layer's plug list is empty,
566 * so sync_page() will then return in state TASK_UNINTERRUPTIBLE.
567 */
568void fastcall __lock_page(struct page *page)
569{
570	DEFINE_WAIT_BIT(wait, &page->flags, PG_locked);
571
572	__wait_on_bit_lock(page_waitqueue(page), &wait, sync_page,
573							TASK_UNINTERRUPTIBLE);
574}
575EXPORT_SYMBOL(__lock_page);
576
577/*
578 * Variant of lock_page that does not require the caller to hold a reference
579 * on the page's mapping.
580 */
581void fastcall __lock_page_nosync(struct page *page)
582{
583	DEFINE_WAIT_BIT(wait, &page->flags, PG_locked);
584	__wait_on_bit_lock(page_waitqueue(page), &wait, __sleep_on_page_lock,
585							TASK_UNINTERRUPTIBLE);
586}
587
588/**
589 * find_get_page - find and get a page reference
590 * @mapping: the address_space to search
591 * @offset: the page index
592 *
593 * Is there a pagecache struct page at the given (mapping, offset) tuple?
594 * If yes, increment its refcount and return it; if no, return NULL.
595 */
596struct page * find_get_page(struct address_space *mapping, unsigned long offset)
597{
598	struct page *page;
599
600	read_lock_irq(&mapping->tree_lock);
601	page = radix_tree_lookup(&mapping->page_tree, offset);
602	if (page)
603		page_cache_get(page);
604	read_unlock_irq(&mapping->tree_lock);
605	return page;
606}
607EXPORT_SYMBOL(find_get_page);
608
609/**
610 * find_lock_page - locate, pin and lock a pagecache page
611 * @mapping: the address_space to search
612 * @offset: the page index
613 *
614 * Locates the desired pagecache page, locks it, increments its reference
615 * count and returns its address.
616 *
617 * Returns zero if the page was not present. find_lock_page() may sleep.
618 */
619struct page *find_lock_page(struct address_space *mapping,
620				unsigned long offset)
621{
622	struct page *page;
623
624	read_lock_irq(&mapping->tree_lock);
625repeat:
626	page = radix_tree_lookup(&mapping->page_tree, offset);
627	if (page) {
628		page_cache_get(page);
629		if (TestSetPageLocked(page)) {
630			read_unlock_irq(&mapping->tree_lock);
631			__lock_page(page);
632			read_lock_irq(&mapping->tree_lock);
633
634			/* Has the page been truncated while we slept? */
635			if (unlikely(page->mapping != mapping ||
636				     page->index != offset)) {
637				unlock_page(page);
638				page_cache_release(page);
639				goto repeat;
640			}
641		}
642	}
643	read_unlock_irq(&mapping->tree_lock);
644	return page;
645}
646EXPORT_SYMBOL(find_lock_page);
647
648/**
649 * find_or_create_page - locate or add a pagecache page
650 * @mapping: the page's address_space
651 * @index: the page's index into the mapping
652 * @gfp_mask: page allocation mode
653 *
654 * Locates a page in the pagecache.  If the page is not present, a new page
655 * is allocated using @gfp_mask and is added to the pagecache and to the VM's
656 * LRU list.  The returned page is locked and has its reference count
657 * incremented.
658 *
659 * find_or_create_page() may sleep, even if @gfp_flags specifies an atomic
660 * allocation!
661 *
662 * find_or_create_page() returns the desired page's address, or zero on
663 * memory exhaustion.
664 */
665struct page *find_or_create_page(struct address_space *mapping,
666		unsigned long index, gfp_t gfp_mask)
667{
668	struct page *page, *cached_page = NULL;
669	int err;
670repeat:
671	page = find_lock_page(mapping, index);
672	if (!page) {
673		if (!cached_page) {
674			cached_page =
675				__page_cache_alloc(gfp_mask);
676			if (!cached_page)
677				return NULL;
678		}
679		err = add_to_page_cache_lru(cached_page, mapping,
680					index, gfp_mask);
681		if (!err) {
682			page = cached_page;
683			cached_page = NULL;
684		} else if (err == -EEXIST)
685			goto repeat;
686	}
687	if (cached_page)
688		page_cache_release(cached_page);
689	return page;
690}
691EXPORT_SYMBOL(find_or_create_page);
692
693/**
694 * find_get_pages - gang pagecache lookup
695 * @mapping:	The address_space to search
696 * @start:	The starting page index
697 * @nr_pages:	The maximum number of pages
698 * @pages:	Where the resulting pages are placed
699 *
700 * find_get_pages() will search for and return a group of up to
701 * @nr_pages pages in the mapping.  The pages are placed at @pages.
702 * find_get_pages() takes a reference against the returned pages.
703 *
704 * The search returns a group of mapping-contiguous pages with ascending
705 * indexes.  There may be holes in the indices due to not-present pages.
706 *
707 * find_get_pages() returns the number of pages which were found.
708 */
709unsigned find_get_pages(struct address_space *mapping, pgoff_t start,
710			    unsigned int nr_pages, struct page **pages)
711{
712	unsigned int i;
713	unsigned int ret;
714
715	read_lock_irq(&mapping->tree_lock);
716	ret = radix_tree_gang_lookup(&mapping->page_tree,
717				(void **)pages, start, nr_pages);
718	for (i = 0; i < ret; i++)
719		page_cache_get(pages[i]);
720	read_unlock_irq(&mapping->tree_lock);
721	return ret;
722}
723
724/**
725 * find_get_pages_contig - gang contiguous pagecache lookup
726 * @mapping:	The address_space to search
727 * @index:	The starting page index
728 * @nr_pages:	The maximum number of pages
729 * @pages:	Where the resulting pages are placed
730 *
731 * find_get_pages_contig() works exactly like find_get_pages(), except
732 * that the returned number of pages are guaranteed to be contiguous.
733 *
734 * find_get_pages_contig() returns the number of pages which were found.
735 */
736unsigned find_get_pages_contig(struct address_space *mapping, pgoff_t index,
737			       unsigned int nr_pages, struct page **pages)
738{
739	unsigned int i;
740	unsigned int ret;
741
742	read_lock_irq(&mapping->tree_lock);
743	ret = radix_tree_gang_lookup(&mapping->page_tree,
744				(void **)pages, index, nr_pages);
745	for (i = 0; i < ret; i++) {
746		if (pages[i]->mapping == NULL || pages[i]->index != index)
747			break;
748
749		page_cache_get(pages[i]);
750		index++;
751	}
752	read_unlock_irq(&mapping->tree_lock);
753	return i;
754}
755EXPORT_SYMBOL(find_get_pages_contig);
756
757/**
758 * find_get_pages_tag - find and return pages that match @tag
759 * @mapping:	the address_space to search
760 * @index:	the starting page index
761 * @tag:	the tag index
762 * @nr_pages:	the maximum number of pages
763 * @pages:	where the resulting pages are placed
764 *
765 * Like find_get_pages, except we only return pages which are tagged with
766 * @tag.   We update @index to index the next page for the traversal.
767 */
768unsigned find_get_pages_tag(struct address_space *mapping, pgoff_t *index,
769			int tag, unsigned int nr_pages, struct page **pages)
770{
771	unsigned int i;
772	unsigned int ret;
773
774	read_lock_irq(&mapping->tree_lock);
775	ret = radix_tree_gang_lookup_tag(&mapping->page_tree,
776				(void **)pages, *index, nr_pages, tag);
777	for (i = 0; i < ret; i++)
778		page_cache_get(pages[i]);
779	if (ret)
780		*index = pages[ret - 1]->index + 1;
781	read_unlock_irq(&mapping->tree_lock);
782	return ret;
783}
784EXPORT_SYMBOL(find_get_pages_tag);
785
786/**
787 * grab_cache_page_nowait - returns locked page at given index in given cache
788 * @mapping: target address_space
789 * @index: the page index
790 *
791 * Same as grab_cache_page(), but do not wait if the page is unavailable.
792 * This is intended for speculative data generators, where the data can
793 * be regenerated if the page couldn't be grabbed.  This routine should
794 * be safe to call while holding the lock for another page.
795 *
796 * Clear __GFP_FS when allocating the page to avoid recursion into the fs
797 * and deadlock against the caller's locked page.
798 */
799struct page *
800grab_cache_page_nowait(struct address_space *mapping, unsigned long index)
801{
802	struct page *page = find_get_page(mapping, index);
803
804	if (page) {
805		if (!TestSetPageLocked(page))
806			return page;
807		page_cache_release(page);
808		return NULL;
809	}
810	page = __page_cache_alloc(mapping_gfp_mask(mapping) & ~__GFP_FS);
811	if (page && add_to_page_cache_lru(page, mapping, index, GFP_KERNEL)) {
812		page_cache_release(page);
813		page = NULL;
814	}
815	return page;
816}
817EXPORT_SYMBOL(grab_cache_page_nowait);
818
819/*
820 * CD/DVDs are error prone. When a medium error occurs, the driver may fail
821 * a _large_ part of the i/o request. Imagine the worst scenario:
822 *
823 *      ---R__________________________________________B__________
824 *         ^ reading here                             ^ bad block(assume 4k)
825 *
826 * read(R) => miss => readahead(R...B) => media error => frustrating retries
827 * => failing the whole request => read(R) => read(R+1) =>
828 * readahead(R+1...B+1) => bang => read(R+2) => read(R+3) =>
829 * readahead(R+3...B+2) => bang => read(R+3) => read(R+4) =>
830 * readahead(R+4...B+3) => bang => read(R+4) => read(R+5) => ......
831 *
832 * It is going insane. Fix it by quickly scaling down the readahead size.
833 */
834static void shrink_readahead_size_eio(struct file *filp,
835					struct file_ra_state *ra)
836{
837	if (!ra->ra_pages)
838		return;
839
840	ra->ra_pages /= 4;
841}
842
843/**
844 * do_generic_mapping_read - generic file read routine
845 * @mapping:	address_space to be read
846 * @_ra:	file's readahead state
847 * @filp:	the file to read
848 * @ppos:	current file position
849 * @desc:	read_descriptor
850 * @actor:	read method
851 *
852 * This is a generic file read routine, and uses the
853 * mapping->a_ops->readpage() function for the actual low-level stuff.
854 *
855 * This is really ugly. But the goto's actually try to clarify some
856 * of the logic when it comes to error handling etc.
857 *
858 * Note the struct file* is only passed for the use of readpage.
859 * It may be NULL.
860 */
861void do_generic_mapping_read(struct address_space *mapping,
862			     struct file_ra_state *_ra,
863			     struct file *filp,
864			     loff_t *ppos,
865			     read_descriptor_t *desc,
866			     read_actor_t actor)
867{
868	struct inode *inode = mapping->host;
869	unsigned long index;
870	unsigned long offset;
871	unsigned long last_index;
872	unsigned long next_index;
873	unsigned long prev_index;
874	unsigned int prev_offset;
875	struct page *cached_page;
876	int error;
877	struct file_ra_state ra = *_ra;
878
879	cached_page = NULL;
880	index = *ppos >> PAGE_CACHE_SHIFT;
881	next_index = index;
882	prev_index = ra.prev_index;
883	prev_offset = ra.prev_offset;
884	last_index = (*ppos + desc->count + PAGE_CACHE_SIZE-1) >> PAGE_CACHE_SHIFT;
885	offset = *ppos & ~PAGE_CACHE_MASK;
886
887	for (;;) {
888		struct page *page;
889		unsigned long end_index;
890		loff_t isize;
891		unsigned long nr, ret;
892
893		cond_resched();
894find_page:
895		page = find_get_page(mapping, index);
896		if (!page) {
897			page_cache_sync_readahead(mapping,
898					&ra, filp,
899					index, last_index - index);
900			page = find_get_page(mapping, index);
901			if (unlikely(page == NULL))
902				goto no_cached_page;
903		}
904		if (PageReadahead(page)) {
905			page_cache_async_readahead(mapping,
906					&ra, filp, page,
907					index, last_index - index);
908		}
909		if (!PageUptodate(page))
910			goto page_not_up_to_date;
911page_ok:
912		/*
913		 * i_size must be checked after we know the page is Uptodate.
914		 *
915		 * Checking i_size after the check allows us to calculate
916		 * the correct value for "nr", which means the zero-filled
917		 * part of the page is not copied back to userspace (unless
918		 * another truncate extends the file - this is desired though).
919		 */
920
921		isize = i_size_read(inode);
922		end_index = (isize - 1) >> PAGE_CACHE_SHIFT;
923		if (unlikely(!isize || index > end_index)) {
924			page_cache_release(page);
925			goto out;
926		}
927
928		/* nr is the maximum number of bytes to copy from this page */
929		nr = PAGE_CACHE_SIZE;
930		if (index == end_index) {
931			nr = ((isize - 1) & ~PAGE_CACHE_MASK) + 1;
932			if (nr <= offset) {
933				page_cache_release(page);
934				goto out;
935			}
936		}
937		nr = nr - offset;
938
939		/* If users can be writing to this page using arbitrary
940		 * virtual addresses, take care about potential aliasing
941		 * before reading the page on the kernel side.
942		 */
943		if (mapping_writably_mapped(mapping))
944			flush_dcache_page(page);
945
946		/*
947		 * When a sequential read accesses a page several times,
948		 * only mark it as accessed the first time.
949		 */
950		if (prev_index != index || offset != prev_offset)
951			mark_page_accessed(page);
952		prev_index = index;
953
954		/*
955		 * Ok, we have the page, and it's up-to-date, so
956		 * now we can copy it to user space...
957		 *
958		 * The actor routine returns how many bytes were actually used..
959		 * NOTE! This may not be the same as how much of a user buffer
960		 * we filled up (we may be padding etc), so we can only update
961		 * "pos" here (the actor routine has to update the user buffer
962		 * pointers and the remaining count).
963		 */
964		ret = actor(desc, page, offset, nr);
965		offset += ret;
966		index += offset >> PAGE_CACHE_SHIFT;
967		offset &= ~PAGE_CACHE_MASK;
968		prev_offset = offset;
969		ra.prev_offset = offset;
970
971		page_cache_release(page);
972		if (ret == nr && desc->count)
973			continue;
974		goto out;
975
976page_not_up_to_date:
977		/* Get exclusive access to the page ... */
978		lock_page(page);
979
980		/* Did it get truncated before we got the lock? */
981		if (!page->mapping) {
982			unlock_page(page);
983			page_cache_release(page);
984			continue;
985		}
986
987		/* Did somebody else fill it already? */
988		if (PageUptodate(page)) {
989			unlock_page(page);
990			goto page_ok;
991		}
992
993readpage:
994		/* Start the actual read. The read will unlock the page. */
995		error = mapping->a_ops->readpage(filp, page);
996
997		if (unlikely(error)) {
998			if (error == AOP_TRUNCATED_PAGE) {
999				page_cache_release(page);
1000				goto find_page;
1001			}
1002			goto readpage_error;
1003		}
1004
1005		if (!PageUptodate(page)) {
1006			lock_page(page);
1007			if (!PageUptodate(page)) {
1008				if (page->mapping == NULL) {
1009					/*
1010					 * invalidate_inode_pages got it
1011					 */
1012					unlock_page(page);
1013					page_cache_release(page);
1014					goto find_page;
1015				}
1016				unlock_page(page);
1017				error = -EIO;
1018				shrink_readahead_size_eio(filp, &ra);
1019				goto readpage_error;
1020			}
1021			unlock_page(page);
1022		}
1023
1024		goto page_ok;
1025
1026readpage_error:
1027		/* UHHUH! A synchronous read error occurred. Report it */
1028		desc->error = error;
1029		page_cache_release(page);
1030		goto out;
1031
1032no_cached_page:
1033		/*
1034		 * Ok, it wasn't cached, so we need to create a new
1035		 * page..
1036		 */
1037		if (!cached_page) {
1038			cached_page = page_cache_alloc_cold(mapping);
1039			if (!cached_page) {
1040				desc->error = -ENOMEM;
1041				goto out;
1042			}
1043		}
1044		error = add_to_page_cache_lru(cached_page, mapping,
1045						index, GFP_KERNEL);
1046		if (error) {
1047			if (error == -EEXIST)
1048				goto find_page;
1049			desc->error = error;
1050			goto out;
1051		}
1052		page = cached_page;
1053		cached_page = NULL;
1054		goto readpage;
1055	}
1056
1057out:
1058	*_ra = ra;
1059	_ra->prev_index = prev_index;
1060
1061	*ppos = ((loff_t) index << PAGE_CACHE_SHIFT) + offset;
1062	if (cached_page)
1063		page_cache_release(cached_page);
1064	if (filp)
1065		file_accessed(filp);
1066}
1067EXPORT_SYMBOL(do_generic_mapping_read);
1068
1069int file_read_actor(read_descriptor_t *desc, struct page *page,
1070			unsigned long offset, unsigned long size)
1071{
1072	char *kaddr;
1073	unsigned long left, count = desc->count;
1074
1075	if (size > count)
1076		size = count;
1077
1078	/*
1079	 * Faults on the destination of a read are common, so do it before
1080	 * taking the kmap.
1081	 */
1082	if (!fault_in_pages_writeable(desc->arg.buf, size)) {
1083		kaddr = kmap_atomic(page, KM_USER0);
1084		left = __copy_to_user_inatomic(desc->arg.buf,
1085						kaddr + offset, size);
1086		kunmap_atomic(kaddr, KM_USER0);
1087		if (left == 0)
1088			goto success;
1089	}
1090
1091	/* Do it the slow way */
1092	kaddr = kmap(page);
1093	left = __copy_to_user(desc->arg.buf, kaddr + offset, size);
1094	kunmap(page);
1095
1096	if (left) {
1097		size -= left;
1098		desc->error = -EFAULT;
1099	}
1100success:
1101	desc->count = count - size;
1102	desc->written += size;
1103	desc->arg.buf += size;
1104	return size;
1105}
1106
1107/*
1108 * Performs necessary checks before doing a write
1109 * @iov:	io vector request
1110 * @nr_segs:	number of segments in the iovec
1111 * @count:	number of bytes to write
1112 * @access_flags: type of access: %VERIFY_READ or %VERIFY_WRITE
1113 *
1114 * Adjust number of segments and amount of bytes to write (nr_segs should be
1115 * properly initialized first). Returns appropriate error code that caller
1116 * should return or zero in case that write should be allowed.
1117 */
1118int generic_segment_checks(const struct iovec *iov,
1119			unsigned long *nr_segs, size_t *count, int access_flags)
1120{
1121	unsigned long   seg;
1122	size_t cnt = 0;
1123	for (seg = 0; seg < *nr_segs; seg++) {
1124		const struct iovec *iv = &iov[seg];
1125
1126		/*
1127		 * If any segment has a negative length, or the cumulative
1128		 * length ever wraps negative then return -EINVAL.
1129		 */
1130		cnt += iv->iov_len;
1131		if (unlikely((ssize_t)(cnt|iv->iov_len) < 0))
1132			return -EINVAL;
1133		if (access_ok(access_flags, iv->iov_base, iv->iov_len))
1134			continue;
1135		if (seg == 0)
1136			return -EFAULT;
1137		*nr_segs = seg;
1138		cnt -= iv->iov_len;	/* This segment is no good */
1139		break;
1140	}
1141	*count = cnt;
1142	return 0;
1143}
1144EXPORT_SYMBOL(generic_segment_checks);
1145
1146/**
1147 * generic_file_aio_read - generic filesystem read routine
1148 * @iocb:	kernel I/O control block
1149 * @iov:	io vector request
1150 * @nr_segs:	number of segments in the iovec
1151 * @pos:	current file position
1152 *
1153 * This is the "read()" routine for all filesystems
1154 * that can use the page cache directly.
1155 */
1156ssize_t
1157generic_file_aio_read(struct kiocb *iocb, const struct iovec *iov,
1158		unsigned long nr_segs, loff_t pos)
1159{
1160	struct file *filp = iocb->ki_filp;
1161	ssize_t retval;
1162	unsigned long seg;
1163	size_t count;
1164	loff_t *ppos = &iocb->ki_pos;
1165
1166	count = 0;
1167	retval = generic_segment_checks(iov, &nr_segs, &count, VERIFY_WRITE);
1168	if (retval)
1169		return retval;
1170
1171	/* coalesce the iovecs and go direct-to-BIO for O_DIRECT */
1172	if (filp->f_flags & O_DIRECT) {
1173		loff_t size;
1174		struct address_space *mapping;
1175		struct inode *inode;
1176
1177		mapping = filp->f_mapping;
1178		inode = mapping->host;
1179		retval = 0;
1180		if (!count)
1181			goto out; /* skip atime */
1182		size = i_size_read(inode);
1183		if (pos < size) {
1184			retval = generic_file_direct_IO(READ, iocb,
1185						iov, pos, nr_segs);
1186			if (retval > 0)
1187				*ppos = pos + retval;
1188		}
1189		if (likely(retval != 0)) {
1190			file_accessed(filp);
1191			goto out;
1192		}
1193	}
1194
1195	retval = 0;
1196	if (count) {
1197		for (seg = 0; seg < nr_segs; seg++) {
1198			read_descriptor_t desc;
1199
1200			desc.written = 0;
1201			desc.arg.buf = iov[seg].iov_base;
1202			desc.count = iov[seg].iov_len;
1203			if (desc.count == 0)
1204				continue;
1205			desc.error = 0;
1206			do_generic_file_read(filp,ppos,&desc,file_read_actor);
1207			retval += desc.written;
1208			if (desc.error) {
1209				retval = retval ?: desc.error;
1210				break;
1211			}
1212			if (desc.count > 0)
1213				break;
1214		}
1215	}
1216out:
1217	return retval;
1218}
1219EXPORT_SYMBOL(generic_file_aio_read);
1220
1221static ssize_t
1222do_readahead(struct address_space *mapping, struct file *filp,
1223	     unsigned long index, unsigned long nr)
1224{
1225	if (!mapping || !mapping->a_ops || !mapping->a_ops->readpage)
1226		return -EINVAL;
1227
1228	force_page_cache_readahead(mapping, filp, index,
1229					max_sane_readahead(nr));
1230	return 0;
1231}
1232
1233asmlinkage ssize_t sys_readahead(int fd, loff_t offset, size_t count)
1234{
1235	ssize_t ret;
1236	struct file *file;
1237
1238	ret = -EBADF;
1239	file = fget(fd);
1240	if (file) {
1241		if (file->f_mode & FMODE_READ) {
1242			struct address_space *mapping = file->f_mapping;
1243			unsigned long start = offset >> PAGE_CACHE_SHIFT;
1244			unsigned long end = (offset + count - 1) >> PAGE_CACHE_SHIFT;
1245			unsigned long len = end - start + 1;
1246			ret = do_readahead(mapping, file, start, len);
1247		}
1248		fput(file);
1249	}
1250	return ret;
1251}
1252
1253#ifdef CONFIG_MMU
1254static int FASTCALL(page_cache_read(struct file * file, unsigned long offset));
1255/**
1256 * page_cache_read - adds requested page to the page cache if not already there
1257 * @file:	file to read
1258 * @offset:	page index
1259 *
1260 * This adds the requested page to the page cache if it isn't already there,
1261 * and schedules an I/O to read in its contents from disk.
1262 */
1263static int fastcall page_cache_read(struct file * file, unsigned long offset)
1264{
1265	struct address_space *mapping = file->f_mapping;
1266	struct page *page;
1267	int ret;
1268
1269	do {
1270		page = page_cache_alloc_cold(mapping);
1271		if (!page)
1272			return -ENOMEM;
1273
1274		ret = add_to_page_cache_lru(page, mapping, offset, GFP_KERNEL);
1275		if (ret == 0)
1276			ret = mapping->a_ops->readpage(file, page);
1277		else if (ret == -EEXIST)
1278			ret = 0; /* losing race to add is OK */
1279
1280		page_cache_release(page);
1281
1282	} while (ret == AOP_TRUNCATED_PAGE);
1283
1284	return ret;
1285}
1286
1287#define MMAP_LOTSAMISS  (100)
1288
1289/**
1290 * filemap_fault - read in file data for page fault handling
1291 * @vma:	vma in which the fault was taken
1292 * @vmf:	struct vm_fault containing details of the fault
1293 *
1294 * filemap_fault() is invoked via the vma operations vector for a
1295 * mapped memory region to read in file data during a page fault.
1296 *
1297 * The goto's are kind of ugly, but this streamlines the normal case of having
1298 * it in the page cache, and handles the special cases reasonably without
1299 * having a lot of duplicated code.
1300 */
1301int filemap_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
1302{
1303	int error;
1304	struct file *file = vma->vm_file;
1305	struct address_space *mapping = file->f_mapping;
1306	struct file_ra_state *ra = &file->f_ra;
1307	struct inode *inode = mapping->host;
1308	struct page *page;
1309	unsigned long size;
1310	int did_readaround = 0;
1311	int ret = 0;
1312
1313	size = (i_size_read(inode) + PAGE_CACHE_SIZE - 1) >> PAGE_CACHE_SHIFT;
1314	if (vmf->pgoff >= size)
1315		goto outside_data_content;
1316
1317	/* If we don't want any read-ahead, don't bother */
1318	if (VM_RandomReadHint(vma))
1319		goto no_cached_page;
1320
1321	/*
1322	 * Do we have something in the page cache already?
1323	 */
1324retry_find:
1325	page = find_lock_page(mapping, vmf->pgoff);
1326	/*
1327	 * For sequential accesses, we use the generic readahead logic.
1328	 */
1329	if (VM_SequentialReadHint(vma)) {
1330		if (!page) {
1331			page_cache_sync_readahead(mapping, ra, file,
1332							   vmf->pgoff, 1);
1333			page = find_lock_page(mapping, vmf->pgoff);
1334			if (!page)
1335				goto no_cached_page;
1336		}
1337		if (PageReadahead(page)) {
1338			page_cache_async_readahead(mapping, ra, file, page,
1339							   vmf->pgoff, 1);
1340		}
1341	}
1342
1343	if (!page) {
1344		unsigned long ra_pages;
1345
1346		ra->mmap_miss++;
1347
1348		/*
1349		 * Do we miss much more than hit in this file? If so,
1350		 * stop bothering with read-ahead. It will only hurt.
1351		 */
1352		if (ra->mmap_miss > MMAP_LOTSAMISS)
1353			goto no_cached_page;
1354
1355		/*
1356		 * To keep the pgmajfault counter straight, we need to
1357		 * check did_readaround, as this is an inner loop.
1358		 */
1359		if (!did_readaround) {
1360			ret = VM_FAULT_MAJOR;
1361			count_vm_event(PGMAJFAULT);
1362		}
1363		did_readaround = 1;
1364		ra_pages = max_sane_readahead(file->f_ra.ra_pages);
1365		if (ra_pages) {
1366			pgoff_t start = 0;
1367
1368			if (vmf->pgoff > ra_pages / 2)
1369				start = vmf->pgoff - ra_pages / 2;
1370			do_page_cache_readahead(mapping, file, start, ra_pages);
1371		}
1372		page = find_lock_page(mapping, vmf->pgoff);
1373		if (!page)
1374			goto no_cached_page;
1375	}
1376
1377	if (!did_readaround)
1378		ra->mmap_miss--;
1379
1380	/*
1381	 * We have a locked page in the page cache, now we need to check
1382	 * that it's up-to-date. If not, it is going to be due to an error.
1383	 */
1384	if (unlikely(!PageUptodate(page)))
1385		goto page_not_uptodate;
1386
1387	/* Must recheck i_size under page lock */
1388	size = (i_size_read(inode) + PAGE_CACHE_SIZE - 1) >> PAGE_CACHE_SHIFT;
1389	if (unlikely(vmf->pgoff >= size)) {
1390		unlock_page(page);
1391		page_cache_release(page);
1392		goto outside_data_content;
1393	}
1394
1395	/*
1396	 * Found the page and have a reference on it.
1397	 */
1398	mark_page_accessed(page);
1399	ra->prev_index = page->index;
1400	vmf->page = page;
1401	return ret | VM_FAULT_LOCKED;
1402
1403outside_data_content:
1404	/*
1405	 * An external ptracer can access pages that normally aren't
1406	 * accessible..
1407	 */
1408	if (vma->vm_mm == current->mm)
1409		return VM_FAULT_SIGBUS;
1410
1411	/* Fall through to the non-read-ahead case */
1412no_cached_page:
1413	/*
1414	 * We're only likely to ever get here if MADV_RANDOM is in
1415	 * effect.
1416	 */
1417	error = page_cache_read(file, vmf->pgoff);
1418
1419	/*
1420	 * The page we want has now been added to the page cache.
1421	 * In the unlikely event that someone removed it in the
1422	 * meantime, we'll just come back here and read it again.
1423	 */
1424	if (error >= 0)
1425		goto retry_find;
1426
1427	/*
1428	 * An error return from page_cache_read can result if the
1429	 * system is low on memory, or a problem occurs while trying
1430	 * to schedule I/O.
1431	 */
1432	if (error == -ENOMEM)
1433		return VM_FAULT_OOM;
1434	return VM_FAULT_SIGBUS;
1435
1436page_not_uptodate:
1437	/* IO error path */
1438	if (!did_readaround) {
1439		ret = VM_FAULT_MAJOR;
1440		count_vm_event(PGMAJFAULT);
1441	}
1442
1443	/*
1444	 * Umm, take care of errors if the page isn't up-to-date.
1445	 * Try to re-read it _once_. We do this synchronously,
1446	 * because there really aren't any performance issues here
1447	 * and we need to check for errors.
1448	 */
1449	ClearPageError(page);
1450	error = mapping->a_ops->readpage(file, page);
1451	page_cache_release(page);
1452
1453	if (!error || error == AOP_TRUNCATED_PAGE)
1454		goto retry_find;
1455
1456	/* Things didn't work out. Return zero to tell the mm layer so. */
1457	shrink_readahead_size_eio(file, ra);
1458	return VM_FAULT_SIGBUS;
1459}
1460EXPORT_SYMBOL(filemap_fault);
1461
1462struct vm_operations_struct generic_file_vm_ops = {
1463	.fault		= filemap_fault,
1464};
1465
1466/* This is used for a general mmap of a disk file */
1467
1468int generic_file_mmap(struct file * file, struct vm_area_struct * vma)
1469{
1470	struct address_space *mapping = file->f_mapping;
1471
1472	if (!mapping->a_ops->readpage)
1473		return -ENOEXEC;
1474	file_accessed(file);
1475	vma->vm_ops = &generic_file_vm_ops;
1476	vma->vm_flags |= VM_CAN_NONLINEAR;
1477	return 0;
1478}
1479
1480/*
1481 * This is for filesystems which do not implement ->writepage.
1482 */
1483int generic_file_readonly_mmap(struct file *file, struct vm_area_struct *vma)
1484{
1485	if ((vma->vm_flags & VM_SHARED) && (vma->vm_flags & VM_MAYWRITE))
1486		return -EINVAL;
1487	return generic_file_mmap(file, vma);
1488}
1489#else
1490int generic_file_mmap(struct file * file, struct vm_area_struct * vma)
1491{
1492	return -ENOSYS;
1493}
1494int generic_file_readonly_mmap(struct file * file, struct vm_area_struct * vma)
1495{
1496	return -ENOSYS;
1497}
1498#endif /* CONFIG_MMU */
1499
1500EXPORT_SYMBOL(generic_file_mmap);
1501EXPORT_SYMBOL(generic_file_readonly_mmap);
1502
1503static struct page *__read_cache_page(struct address_space *mapping,
1504				unsigned long index,
1505				int (*filler)(void *,struct page*),
1506				void *data)
1507{
1508	struct page *page, *cached_page = NULL;
1509	int err;
1510repeat:
1511	page = find_get_page(mapping, index);
1512	if (!page) {
1513		if (!cached_page) {
1514			cached_page = page_cache_alloc_cold(mapping);
1515			if (!cached_page)
1516				return ERR_PTR(-ENOMEM);
1517		}
1518		err = add_to_page_cache_lru(cached_page, mapping,
1519					index, GFP_KERNEL);
1520		if (err == -EEXIST)
1521			goto repeat;
1522		if (err < 0) {
1523			/* Presumably ENOMEM for radix tree node */
1524			page_cache_release(cached_page);
1525			return ERR_PTR(err);
1526		}
1527		page = cached_page;
1528		cached_page = NULL;
1529		err = filler(data, page);
1530		if (err < 0) {
1531			page_cache_release(page);
1532			page = ERR_PTR(err);
1533		}
1534	}
1535	if (cached_page)
1536		page_cache_release(cached_page);
1537	return page;
1538}
1539
1540/*
1541 * Same as read_cache_page, but don't wait for page to become unlocked
1542 * after submitting it to the filler.
1543 */
1544struct page *read_cache_page_async(struct address_space *mapping,
1545				unsigned long index,
1546				int (*filler)(void *,struct page*),
1547				void *data)
1548{
1549	struct page *page;
1550	int err;
1551
1552retry:
1553	page = __read_cache_page(mapping, index, filler, data);
1554	if (IS_ERR(page))
1555		return page;
1556	if (PageUptodate(page))
1557		goto out;
1558
1559	lock_page(page);
1560	if (!page->mapping) {
1561		unlock_page(page);
1562		page_cache_release(page);
1563		goto retry;
1564	}
1565	if (PageUptodate(page)) {
1566		unlock_page(page);
1567		goto out;
1568	}
1569	err = filler(data, page);
1570	if (err < 0) {
1571		page_cache_release(page);
1572		return ERR_PTR(err);
1573	}
1574out:
1575	mark_page_accessed(page);
1576	return page;
1577}
1578EXPORT_SYMBOL(read_cache_page_async);
1579
1580/**
1581 * read_cache_page - read into page cache, fill it if needed
1582 * @mapping:	the page's address_space
1583 * @index:	the page index
1584 * @filler:	function to perform the read
1585 * @data:	destination for read data
1586 *
1587 * Read into the page cache. If a page already exists, and PageUptodate() is
1588 * not set, try to fill the page then wait for it to become unlocked.
1589 *
1590 * If the page does not get brought uptodate, return -EIO.
1591 */
1592struct page *read_cache_page(struct address_space *mapping,
1593				unsigned long index,
1594				int (*filler)(void *,struct page*),
1595				void *data)
1596{
1597	struct page *page;
1598
1599	page = read_cache_page_async(mapping, index, filler, data);
1600	if (IS_ERR(page))
1601		goto out;
1602	wait_on_page_locked(page);
1603	if (!PageUptodate(page)) {
1604		page_cache_release(page);
1605		page = ERR_PTR(-EIO);
1606	}
1607 out:
1608	return page;
1609}
1610EXPORT_SYMBOL(read_cache_page);
1611
1612/*
1613 * If the page was newly created, increment its refcount and add it to the
1614 * caller's lru-buffering pagevec.  This function is specifically for
1615 * generic_file_write().
1616 */
1617static inline struct page *
1618__grab_cache_page(struct address_space *mapping, unsigned long index,
1619			struct page **cached_page, struct pagevec *lru_pvec)
1620{
1621	int err;
1622	struct page *page;
1623repeat:
1624	page = find_lock_page(mapping, index);
1625	if (!page) {
1626		if (!*cached_page) {
1627			*cached_page = page_cache_alloc(mapping);
1628			if (!*cached_page)
1629				return NULL;
1630		}
1631		err = add_to_page_cache(*cached_page, mapping,
1632					index, GFP_KERNEL);
1633		if (err == -EEXIST)
1634			goto repeat;
1635		if (err == 0) {
1636			page = *cached_page;
1637			page_cache_get(page);
1638			if (!pagevec_add(lru_pvec, page))
1639				__pagevec_lru_add(lru_pvec);
1640			*cached_page = NULL;
1641		}
1642	}
1643	return page;
1644}
1645
1646/*
1647 * The logic we want is
1648 *
1649 *	if suid or (sgid and xgrp)
1650 *		remove privs
1651 */
1652int should_remove_suid(struct dentry *dentry)
1653{
1654	mode_t mode = dentry->d_inode->i_mode;
1655	int kill = 0;
1656
1657	/* suid always must be killed */
1658	if (unlikely(mode & S_ISUID))
1659		kill = ATTR_KILL_SUID;
1660
1661	/*
1662	 * sgid without any exec bits is just a mandatory locking mark; leave
1663	 * it alone.  If some exec bits are set, it's a real sgid; kill it.
1664	 */
1665	if (unlikely((mode & S_ISGID) && (mode & S_IXGRP)))
1666		kill |= ATTR_KILL_SGID;
1667
1668	if (unlikely(kill && !capable(CAP_FSETID)))
1669		return kill;
1670
1671	return 0;
1672}
1673EXPORT_SYMBOL(should_remove_suid);
1674
1675int __remove_suid(struct dentry *dentry, int kill)
1676{
1677	struct iattr newattrs;
1678
1679	newattrs.ia_valid = ATTR_FORCE | kill;
1680	return notify_change(dentry, &newattrs);
1681}
1682
1683int remove_suid(struct dentry *dentry)
1684{
1685	int kill = should_remove_suid(dentry);
1686
1687	if (unlikely(kill))
1688		return __remove_suid(dentry, kill);
1689
1690	return 0;
1691}
1692EXPORT_SYMBOL(remove_suid);
1693
1694size_t
1695__filemap_copy_from_user_iovec_inatomic(char *vaddr,
1696			const struct iovec *iov, size_t base, size_t bytes)
1697{
1698	size_t copied = 0, left = 0;
1699
1700	while (bytes) {
1701		char __user *buf = iov->iov_base + base;
1702		int copy = min(bytes, iov->iov_len - base);
1703
1704		base = 0;
1705		left = __copy_from_user_inatomic_nocache(vaddr, buf, copy);
1706		copied += copy;
1707		bytes -= copy;
1708		vaddr += copy;
1709		iov++;
1710
1711		if (unlikely(left))
1712			break;
1713	}
1714	return copied - left;
1715}
1716
1717/*
1718 * Performs necessary checks before doing a write
1719 *
1720 * Can adjust writing position or amount of bytes to write.
1721 * Returns appropriate error code that caller should return or
1722 * zero in case that write should be allowed.
1723 */
1724inline int generic_write_checks(struct file *file, loff_t *pos, size_t *count, int isblk)
1725{
1726	struct inode *inode = file->f_mapping->host;
1727	unsigned long limit = current->signal->rlim[RLIMIT_FSIZE].rlim_cur;
1728
1729        if (unlikely(*pos < 0))
1730                return -EINVAL;
1731
1732	if (!isblk) {
1733		/* FIXME: this is for backwards compatibility with 2.4 */
1734		if (file->f_flags & O_APPEND)
1735                        *pos = i_size_read(inode);
1736
1737		if (limit != RLIM_INFINITY) {
1738			if (*pos >= limit) {
1739				send_sig(SIGXFSZ, current, 0);
1740				return -EFBIG;
1741			}
1742			if (*count > limit - (typeof(limit))*pos) {
1743				*count = limit - (typeof(limit))*pos;
1744			}
1745		}
1746	}
1747
1748	/*
1749	 * LFS rule
1750	 */
1751	if (unlikely(*pos + *count > MAX_NON_LFS &&
1752				!(file->f_flags & O_LARGEFILE))) {
1753		if (*pos >= MAX_NON_LFS) {
1754			return -EFBIG;
1755		}
1756		if (*count > MAX_NON_LFS - (unsigned long)*pos) {
1757			*count = MAX_NON_LFS - (unsigned long)*pos;
1758		}
1759	}
1760
1761	/*
1762	 * Are we about to exceed the fs block limit ?
1763	 *
1764	 * If we have written data it becomes a short write.  If we have
1765	 * exceeded without writing data we send a signal and return EFBIG.
1766	 * Linus frestrict idea will clean these up nicely..
1767	 */
1768	if (likely(!isblk)) {
1769		if (unlikely(*pos >= inode->i_sb->s_maxbytes)) {
1770			if (*count || *pos > inode->i_sb->s_maxbytes) {
1771				return -EFBIG;
1772			}
1773			/* zero-length writes at ->s_maxbytes are OK */
1774		}
1775
1776		if (unlikely(*pos + *count > inode->i_sb->s_maxbytes))
1777			*count = inode->i_sb->s_maxbytes - *pos;
1778	} else {
1779#ifdef CONFIG_BLOCK
1780		loff_t isize;
1781		if (bdev_read_only(I_BDEV(inode)))
1782			return -EPERM;
1783		isize = i_size_read(inode);
1784		if (*pos >= isize) {
1785			if (*count || *pos > isize)
1786				return -ENOSPC;
1787		}
1788
1789		if (*pos + *count > isize)
1790			*count = isize - *pos;
1791#else
1792		return -EPERM;
1793#endif
1794	}
1795	return 0;
1796}
1797EXPORT_SYMBOL(generic_write_checks);
1798
1799ssize_t
1800generic_file_direct_write(struct kiocb *iocb, const struct iovec *iov,
1801		unsigned long *nr_segs, loff_t pos, loff_t *ppos,
1802		size_t count, size_t ocount)
1803{
1804	struct file	*file = iocb->ki_filp;
1805	struct address_space *mapping = file->f_mapping;
1806	struct inode	*inode = mapping->host;
1807	ssize_t		written;
1808
1809	if (count != ocount)
1810		*nr_segs = iov_shorten((struct iovec *)iov, *nr_segs, count);
1811
1812	written = generic_file_direct_IO(WRITE, iocb, iov, pos, *nr_segs);
1813	if (written > 0) {
1814		loff_t end = pos + written;
1815		if (end > i_size_read(inode) && !S_ISBLK(inode->i_mode)) {
1816			i_size_write(inode,  end);
1817			mark_inode_dirty(inode);
1818		}
1819		*ppos = end;
1820	}
1821
1822	/*
1823	 * Sync the fs metadata but not the minor inode changes and
1824	 * of course not the data as we did direct DMA for the IO.
1825	 * i_mutex is held, which protects generic_osync_inode() from
1826	 * livelocking.  AIO O_DIRECT ops attempt to sync metadata here.
1827	 */
1828	if ((written >= 0 || written == -EIOCBQUEUED) &&
1829	    ((file->f_flags & O_SYNC) || IS_SYNC(inode))) {
1830		int err = generic_osync_inode(inode, mapping, OSYNC_METADATA);
1831		if (err < 0)
1832			written = err;
1833	}
1834	return written;
1835}
1836EXPORT_SYMBOL(generic_file_direct_write);
1837
1838ssize_t
1839generic_file_buffered_write(struct kiocb *iocb, const struct iovec *iov,
1840		unsigned long nr_segs, loff_t pos, loff_t *ppos,
1841		size_t count, ssize_t written)
1842{
1843	struct file *file = iocb->ki_filp;
1844	struct address_space * mapping = file->f_mapping;
1845	const struct address_space_operations *a_ops = mapping->a_ops;
1846	struct inode 	*inode = mapping->host;
1847	long		status = 0;
1848	struct page	*page;
1849	struct page	*cached_page = NULL;
1850	size_t		bytes;
1851	struct pagevec	lru_pvec;
1852	const struct iovec *cur_iov = iov; /* current iovec */
1853	size_t		iov_base = 0;	   /* offset in the current iovec */
1854	char __user	*buf;
1855
1856	pagevec_init(&lru_pvec, 0);
1857
1858	/*
1859	 * handle partial DIO write.  Adjust cur_iov if needed.
1860	 */
1861	if (likely(nr_segs == 1))
1862		buf = iov->iov_base + written;
1863	else {
1864		filemap_set_next_iovec(&cur_iov, &iov_base, written);
1865		buf = cur_iov->iov_base + iov_base;
1866	}
1867
1868	do {
1869		unsigned long index;
1870		unsigned long offset;
1871		size_t copied;
1872
1873		offset = (pos & (PAGE_CACHE_SIZE -1)); /* Within page */
1874		index = pos >> PAGE_CACHE_SHIFT;
1875		bytes = PAGE_CACHE_SIZE - offset;
1876
1877		/* Limit the size of the copy to the caller's write size */
1878		bytes = min(bytes, count);
1879
1880		/* We only need to worry about prefaulting when writes are from
1881		 * user-space.  NFSd uses vfs_writev with several non-aligned
1882		 * segments in the vector, and limiting to one segment a time is
1883		 * a noticeable performance for re-write
1884		 */
1885		if (!segment_eq(get_fs(), KERNEL_DS)) {
1886			/*
1887			 * Limit the size of the copy to that of the current
1888			 * segment, because fault_in_pages_readable() doesn't
1889			 * know how to walk segments.
1890			 */
1891			bytes = min(bytes, cur_iov->iov_len - iov_base);
1892
1893			/*
1894			 * Bring in the user page that we will copy from
1895			 * _first_.  Otherwise there's a nasty deadlock on
1896			 * copying from the same page as we're writing to,
1897			 * without it being marked up-to-date.
1898			 */
1899			fault_in_pages_readable(buf, bytes);
1900		}
1901		page = __grab_cache_page(mapping,index,&cached_page,&lru_pvec);
1902		if (!page) {
1903			status = -ENOMEM;
1904			break;
1905		}
1906
1907		if (unlikely(bytes == 0)) {
1908			status = 0;
1909			copied = 0;
1910			goto zero_length_segment;
1911		}
1912
1913		status = a_ops->prepare_write(file, page, offset, offset+bytes);
1914		if (unlikely(status)) {
1915			loff_t isize = i_size_read(inode);
1916
1917			if (status != AOP_TRUNCATED_PAGE)
1918				unlock_page(page);
1919			page_cache_release(page);
1920			if (status == AOP_TRUNCATED_PAGE)
1921				continue;
1922			/*
1923			 * prepare_write() may have instantiated a few blocks
1924			 * outside i_size.  Trim these off again.
1925			 */
1926			if (pos + bytes > isize)
1927				vmtruncate(inode, isize);
1928			break;
1929		}
1930		if (likely(nr_segs == 1))
1931			copied = filemap_copy_from_user(page, offset,
1932							buf, bytes);
1933		else
1934			copied = filemap_copy_from_user_iovec(page, offset,
1935						cur_iov, iov_base, bytes);
1936		flush_dcache_page(page);
1937		status = a_ops->commit_write(file, page, offset, offset+bytes);
1938		if (status == AOP_TRUNCATED_PAGE) {
1939			page_cache_release(page);
1940			continue;
1941		}
1942zero_length_segment:
1943		if (likely(copied >= 0)) {
1944			if (!status)
1945				status = copied;
1946
1947			if (status >= 0) {
1948				written += status;
1949				count -= status;
1950				pos += status;
1951				buf += status;
1952				if (unlikely(nr_segs > 1)) {
1953					filemap_set_next_iovec(&cur_iov,
1954							&iov_base, status);
1955					if (count)
1956						buf = cur_iov->iov_base +
1957							iov_base;
1958				} else {
1959					iov_base += status;
1960				}
1961			}
1962		}
1963		if (unlikely(copied != bytes))
1964			if (status >= 0)
1965				status = -EFAULT;
1966		unlock_page(page);
1967		mark_page_accessed(page);
1968		page_cache_release(page);
1969		if (status < 0)
1970			break;
1971		balance_dirty_pages_ratelimited(mapping);
1972		cond_resched();
1973	} while (count);
1974	*ppos = pos;
1975
1976	if (cached_page)
1977		page_cache_release(cached_page);
1978
1979	/*
1980	 * For now, when the user asks for O_SYNC, we'll actually give O_DSYNC
1981	 */
1982	if (likely(status >= 0)) {
1983		if (unlikely((file->f_flags & O_SYNC) || IS_SYNC(inode))) {
1984			if (!a_ops->writepage || !is_sync_kiocb(iocb))
1985				status = generic_osync_inode(inode, mapping,
1986						OSYNC_METADATA|OSYNC_DATA);
1987		}
1988  	}
1989
1990	/*
1991	 * If we get here for O_DIRECT writes then we must have fallen through
1992	 * to buffered writes (block instantiation inside i_size).  So we sync
1993	 * the file data here, to try to honour O_DIRECT expectations.
1994	 */
1995	if (unlikely(file->f_flags & O_DIRECT) && written)
1996		status = filemap_write_and_wait(mapping);
1997
1998	pagevec_lru_add(&lru_pvec);
1999	return written ? written : status;
2000}
2001EXPORT_SYMBOL(generic_file_buffered_write);
2002
2003static ssize_t
2004__generic_file_aio_write_nolock(struct kiocb *iocb, const struct iovec *iov,
2005				unsigned long nr_segs, loff_t *ppos)
2006{
2007	struct file *file = iocb->ki_filp;
2008	struct address_space * mapping = file->f_mapping;
2009	size_t ocount;		/* original count */
2010	size_t count;		/* after file limit checks */
2011	struct inode 	*inode = mapping->host;
2012	loff_t		pos;
2013	ssize_t		written;
2014	ssize_t		err;
2015
2016	ocount = 0;
2017	err = generic_segment_checks(iov, &nr_segs, &ocount, VERIFY_READ);
2018	if (err)
2019		return err;
2020
2021	count = ocount;
2022	pos = *ppos;
2023
2024	vfs_check_frozen(inode->i_sb, SB_FREEZE_WRITE);
2025
2026	/* We can write back this queue in page reclaim */
2027	current->backing_dev_info = mapping->backing_dev_info;
2028	written = 0;
2029
2030	err = generic_write_checks(file, &pos, &count, S_ISBLK(inode->i_mode));
2031	if (err)
2032		goto out;
2033
2034	if (count == 0)
2035		goto out;
2036
2037	err = remove_suid(file->f_path.dentry);
2038	if (err)
2039		goto out;
2040
2041	file_update_time(file);
2042
2043	/* coalesce the iovecs and go direct-to-BIO for O_DIRECT */
2044	if (unlikely(file->f_flags & O_DIRECT)) {
2045		loff_t endbyte;
2046		ssize_t written_buffered;
2047
2048		written = generic_file_direct_write(iocb, iov, &nr_segs, pos,
2049							ppos, count, ocount);
2050		if (written < 0 || written == count)
2051			goto out;
2052		/*
2053		 * direct-io write to a hole: fall through to buffered I/O
2054		 * for completing the rest of the request.
2055		 */
2056		pos += written;
2057		count -= written;
2058		written_buffered = generic_file_buffered_write(iocb, iov,
2059						nr_segs, pos, ppos, count,
2060						written);
2061		/*
2062		 * If generic_file_buffered_write() retuned a synchronous error
2063		 * then we want to return the number of bytes which were
2064		 * direct-written, or the error code if that was zero.  Note
2065		 * that this differs from normal direct-io semantics, which
2066		 * will return -EFOO even if some bytes were written.
2067		 */
2068		if (written_buffered < 0) {
2069			err = written_buffered;
2070			goto out;
2071		}
2072
2073		/*
2074		 * We need to ensure that the page cache pages are written to
2075		 * disk and invalidated to preserve the expected O_DIRECT
2076		 * semantics.
2077		 */
2078		endbyte = pos + written_buffered - written - 1;
2079		err = do_sync_mapping_range(file->f_mapping, pos, endbyte,
2080					    SYNC_FILE_RANGE_WAIT_BEFORE|
2081					    SYNC_FILE_RANGE_WRITE|
2082					    SYNC_FILE_RANGE_WAIT_AFTER);
2083		if (err == 0) {
2084			written = written_buffered;
2085			invalidate_mapping_pages(mapping,
2086						 pos >> PAGE_CACHE_SHIFT,
2087						 endbyte >> PAGE_CACHE_SHIFT);
2088		} else {
2089			/*
2090			 * We don't know how much we wrote, so just return
2091			 * the number of bytes which were direct-written
2092			 */
2093		}
2094	} else {
2095		written = generic_file_buffered_write(iocb, iov, nr_segs,
2096				pos, ppos, count, written);
2097	}
2098out:
2099	current->backing_dev_info = NULL;
2100	return written ? written : err;
2101}
2102
2103ssize_t generic_file_aio_write_nolock(struct kiocb *iocb,
2104		const struct iovec *iov, unsigned long nr_segs, loff_t pos)
2105{
2106	struct file *file = iocb->ki_filp;
2107	struct address_space *mapping = file->f_mapping;
2108	struct inode *inode = mapping->host;
2109	ssize_t ret;
2110
2111	BUG_ON(iocb->ki_pos != pos);
2112
2113	ret = __generic_file_aio_write_nolock(iocb, iov, nr_segs,
2114			&iocb->ki_pos);
2115
2116	if (ret > 0 && ((file->f_flags & O_SYNC) || IS_SYNC(inode))) {
2117		ssize_t err;
2118
2119		err = sync_page_range_nolock(inode, mapping, pos, ret);
2120		if (err < 0)
2121			ret = err;
2122	}
2123	return ret;
2124}
2125EXPORT_SYMBOL(generic_file_aio_write_nolock);
2126
2127ssize_t generic_file_aio_write(struct kiocb *iocb, const struct iovec *iov,
2128		unsigned long nr_segs, loff_t pos)
2129{
2130	struct file *file = iocb->ki_filp;
2131	struct address_space *mapping = file->f_mapping;
2132	struct inode *inode = mapping->host;
2133	ssize_t ret;
2134
2135	BUG_ON(iocb->ki_pos != pos);
2136
2137	mutex_lock(&inode->i_mutex);
2138	ret = __generic_file_aio_write_nolock(iocb, iov, nr_segs,
2139			&iocb->ki_pos);
2140	mutex_unlock(&inode->i_mutex);
2141
2142	if (ret > 0 && ((file->f_flags & O_SYNC) || IS_SYNC(inode))) {
2143		ssize_t err;
2144
2145		err = sync_page_range(inode, mapping, pos, ret);
2146		if (err < 0)
2147			ret = err;
2148	}
2149	return ret;
2150}
2151EXPORT_SYMBOL(generic_file_aio_write);
2152
2153/*
2154 * Called under i_mutex for writes to S_ISREG files.   Returns -EIO if something
2155 * went wrong during pagecache shootdown.
2156 */
2157static ssize_t
2158generic_file_direct_IO(int rw, struct kiocb *iocb, const struct iovec *iov,
2159	loff_t offset, unsigned long nr_segs)
2160{
2161	struct file *file = iocb->ki_filp;
2162	struct address_space *mapping = file->f_mapping;
2163	ssize_t retval;
2164	size_t write_len;
2165	pgoff_t end = 0; /* silence gcc */
2166
2167	/*
2168	 * If it's a write, unmap all mmappings of the file up-front.  This
2169	 * will cause any pte dirty bits to be propagated into the pageframes
2170	 * for the subsequent filemap_write_and_wait().
2171	 */
2172	if (rw == WRITE) {
2173		write_len = iov_length(iov, nr_segs);
2174		end = (offset + write_len - 1) >> PAGE_CACHE_SHIFT;
2175	       	if (mapping_mapped(mapping))
2176			unmap_mapping_range(mapping, offset, write_len, 0);
2177	}
2178
2179	retval = filemap_write_and_wait(mapping);
2180	if (retval)
2181		goto out;
2182
2183	/*
2184	 * After a write we want buffered reads to be sure to go to disk to get
2185	 * the new data.  We invalidate clean cached page from the region we're
2186	 * about to write.  We do this *before* the write so that we can return
2187	 * -EIO without clobbering -EIOCBQUEUED from ->direct_IO().
2188	 */
2189	if (rw == WRITE && mapping->nrpages) {
2190		retval = invalidate_inode_pages2_range(mapping,
2191					offset >> PAGE_CACHE_SHIFT, end);
2192		if (retval)
2193			goto out;
2194	}
2195
2196	retval = mapping->a_ops->direct_IO(rw, iocb, iov, offset, nr_segs);
2197	if (retval)
2198		goto out;
2199
2200	/*
2201	 * Finally, try again to invalidate clean pages which might have been
2202	 * faulted in by get_user_pages() if the source of the write was an
2203	 * mmap()ed region of the file we're writing.  That's a pretty crazy
2204	 * thing to do, so we don't support it 100%.  If this invalidation
2205	 * fails and we have -EIOCBQUEUED we ignore the failure.
2206	 */
2207	if (rw == WRITE && mapping->nrpages) {
2208		int err = invalidate_inode_pages2_range(mapping,
2209					      offset >> PAGE_CACHE_SHIFT, end);
2210		if (err && retval >= 0)
2211			retval = err;
2212	}
2213out:
2214	return retval;
2215}
2216
2217/**
2218 * try_to_release_page() - release old fs-specific metadata on a page
2219 *
2220 * @page: the page which the kernel is trying to free
2221 * @gfp_mask: memory allocation flags (and I/O mode)
2222 *
2223 * The address_space is to try to release any data against the page
2224 * (presumably at page->private).  If the release was successful, return `1'.
2225 * Otherwise return zero.
2226 *
2227 * The @gfp_mask argument specifies whether I/O may be performed to release
2228 * this page (__GFP_IO), and whether the call may block (__GFP_WAIT).
2229 *
2230 * NOTE: @gfp_mask may go away, and this function may become non-blocking.
2231 */
2232int try_to_release_page(struct page *page, gfp_t gfp_mask)
2233{
2234	struct address_space * const mapping = page->mapping;
2235
2236	BUG_ON(!PageLocked(page));
2237	if (PageWriteback(page))
2238		return 0;
2239
2240	if (mapping && mapping->a_ops->releasepage)
2241		return mapping->a_ops->releasepage(page, gfp_mask);
2242	return try_to_free_buffers(page);
2243}
2244
2245EXPORT_SYMBOL(try_to_release_page);
2246