filemap.c revision 18bc0bbd162e3eb3e7ea2953c315ad4113a57164
1/*
2 *	linux/mm/filemap.c
3 *
4 * Copyright (C) 1994-1999  Linus Torvalds
5 */
6
7/*
8 * This file handles the generic file mmap semantics used by
9 * most "normal" filesystems (but you don't /have/ to use this:
10 * the NFS filesystem used to do this differently, for example)
11 */
12#include <linux/module.h>
13#include <linux/slab.h>
14#include <linux/compiler.h>
15#include <linux/fs.h>
16#include <linux/uaccess.h>
17#include <linux/aio.h>
18#include <linux/capability.h>
19#include <linux/kernel_stat.h>
20#include <linux/mm.h>
21#include <linux/swap.h>
22#include <linux/mman.h>
23#include <linux/pagemap.h>
24#include <linux/file.h>
25#include <linux/uio.h>
26#include <linux/hash.h>
27#include <linux/writeback.h>
28#include <linux/backing-dev.h>
29#include <linux/pagevec.h>
30#include <linux/blkdev.h>
31#include <linux/security.h>
32#include <linux/syscalls.h>
33#include <linux/cpuset.h>
34#include <linux/hardirq.h> /* for BUG_ON(!in_atomic()) only */
35#include <linux/memcontrol.h>
36#include <linux/mm_inline.h> /* for page_is_file_cache() */
37#include "internal.h"
38
39/*
40 * FIXME: remove all knowledge of the buffer layer from the core VM
41 */
42#include <linux/buffer_head.h> /* for generic_osync_inode */
43
44#include <asm/mman.h>
45
46
47/*
48 * Shared mappings implemented 30.11.1994. It's not fully working yet,
49 * though.
50 *
51 * Shared mappings now work. 15.8.1995  Bruno.
52 *
53 * finished 'unifying' the page and buffer cache and SMP-threaded the
54 * page-cache, 21.05.1999, Ingo Molnar <mingo@redhat.com>
55 *
56 * SMP-threaded pagemap-LRU 1999, Andrea Arcangeli <andrea@suse.de>
57 */
58
59/*
60 * Lock ordering:
61 *
62 *  ->i_mmap_lock		(vmtruncate)
63 *    ->private_lock		(__free_pte->__set_page_dirty_buffers)
64 *      ->swap_lock		(exclusive_swap_page, others)
65 *        ->mapping->tree_lock
66 *
67 *  ->i_mutex
68 *    ->i_mmap_lock		(truncate->unmap_mapping_range)
69 *
70 *  ->mmap_sem
71 *    ->i_mmap_lock
72 *      ->page_table_lock or pte_lock	(various, mainly in memory.c)
73 *        ->mapping->tree_lock	(arch-dependent flush_dcache_mmap_lock)
74 *
75 *  ->mmap_sem
76 *    ->lock_page		(access_process_vm)
77 *
78 *  ->i_mutex			(generic_file_buffered_write)
79 *    ->mmap_sem		(fault_in_pages_readable->do_page_fault)
80 *
81 *  ->i_mutex
82 *    ->i_alloc_sem             (various)
83 *
84 *  ->inode_lock
85 *    ->sb_lock			(fs/fs-writeback.c)
86 *    ->mapping->tree_lock	(__sync_single_inode)
87 *
88 *  ->i_mmap_lock
89 *    ->anon_vma.lock		(vma_adjust)
90 *
91 *  ->anon_vma.lock
92 *    ->page_table_lock or pte_lock	(anon_vma_prepare and various)
93 *
94 *  ->page_table_lock or pte_lock
95 *    ->swap_lock		(try_to_unmap_one)
96 *    ->private_lock		(try_to_unmap_one)
97 *    ->tree_lock		(try_to_unmap_one)
98 *    ->zone.lru_lock		(follow_page->mark_page_accessed)
99 *    ->zone.lru_lock		(check_pte_range->isolate_lru_page)
100 *    ->private_lock		(page_remove_rmap->set_page_dirty)
101 *    ->tree_lock		(page_remove_rmap->set_page_dirty)
102 *    ->inode_lock		(page_remove_rmap->set_page_dirty)
103 *    ->inode_lock		(zap_pte_range->set_page_dirty)
104 *    ->private_lock		(zap_pte_range->__set_page_dirty_buffers)
105 *
106 *  ->task->proc_lock
107 *    ->dcache_lock		(proc_pid_lookup)
108 */
109
110/*
111 * Remove a page from the page cache and free it. Caller has to make
112 * sure the page is locked and that nobody else uses it - or that usage
113 * is safe.  The caller must hold the mapping's tree_lock.
114 */
115void __remove_from_page_cache(struct page *page)
116{
117	struct address_space *mapping = page->mapping;
118
119	radix_tree_delete(&mapping->page_tree, page->index);
120	page->mapping = NULL;
121	mapping->nrpages--;
122	__dec_zone_page_state(page, NR_FILE_PAGES);
123	BUG_ON(page_mapped(page));
124	mem_cgroup_uncharge_cache_page(page);
125
126	/*
127	 * Some filesystems seem to re-dirty the page even after
128	 * the VM has canceled the dirty bit (eg ext3 journaling).
129	 *
130	 * Fix it up by doing a final dirty accounting check after
131	 * having removed the page entirely.
132	 */
133	if (PageDirty(page) && mapping_cap_account_dirty(mapping)) {
134		dec_zone_page_state(page, NR_FILE_DIRTY);
135		dec_bdi_stat(mapping->backing_dev_info, BDI_RECLAIMABLE);
136	}
137}
138
139void remove_from_page_cache(struct page *page)
140{
141	struct address_space *mapping = page->mapping;
142
143	BUG_ON(!PageLocked(page));
144
145	spin_lock_irq(&mapping->tree_lock);
146	__remove_from_page_cache(page);
147	spin_unlock_irq(&mapping->tree_lock);
148}
149
150static int sync_page(void *word)
151{
152	struct address_space *mapping;
153	struct page *page;
154
155	page = container_of((unsigned long *)word, struct page, flags);
156
157	/*
158	 * page_mapping() is being called without PG_locked held.
159	 * Some knowledge of the state and use of the page is used to
160	 * reduce the requirements down to a memory barrier.
161	 * The danger here is of a stale page_mapping() return value
162	 * indicating a struct address_space different from the one it's
163	 * associated with when it is associated with one.
164	 * After smp_mb(), it's either the correct page_mapping() for
165	 * the page, or an old page_mapping() and the page's own
166	 * page_mapping() has gone NULL.
167	 * The ->sync_page() address_space operation must tolerate
168	 * page_mapping() going NULL. By an amazing coincidence,
169	 * this comes about because none of the users of the page
170	 * in the ->sync_page() methods make essential use of the
171	 * page_mapping(), merely passing the page down to the backing
172	 * device's unplug functions when it's non-NULL, which in turn
173	 * ignore it for all cases but swap, where only page_private(page) is
174	 * of interest. When page_mapping() does go NULL, the entire
175	 * call stack gracefully ignores the page and returns.
176	 * -- wli
177	 */
178	smp_mb();
179	mapping = page_mapping(page);
180	if (mapping && mapping->a_ops && mapping->a_ops->sync_page)
181		mapping->a_ops->sync_page(page);
182	io_schedule();
183	return 0;
184}
185
186static int sync_page_killable(void *word)
187{
188	sync_page(word);
189	return fatal_signal_pending(current) ? -EINTR : 0;
190}
191
192/**
193 * __filemap_fdatawrite_range - start writeback on mapping dirty pages in range
194 * @mapping:	address space structure to write
195 * @start:	offset in bytes where the range starts
196 * @end:	offset in bytes where the range ends (inclusive)
197 * @sync_mode:	enable synchronous operation
198 *
199 * Start writeback against all of a mapping's dirty pages that lie
200 * within the byte offsets <start, end> inclusive.
201 *
202 * If sync_mode is WB_SYNC_ALL then this is a "data integrity" operation, as
203 * opposed to a regular memory cleansing writeback.  The difference between
204 * these two operations is that if a dirty page/buffer is encountered, it must
205 * be waited upon, and not just skipped over.
206 */
207int __filemap_fdatawrite_range(struct address_space *mapping, loff_t start,
208				loff_t end, int sync_mode)
209{
210	int ret;
211	struct writeback_control wbc = {
212		.sync_mode = sync_mode,
213		.nr_to_write = LONG_MAX,
214		.range_start = start,
215		.range_end = end,
216	};
217
218	if (!mapping_cap_writeback_dirty(mapping))
219		return 0;
220
221	ret = do_writepages(mapping, &wbc);
222	return ret;
223}
224
225static inline int __filemap_fdatawrite(struct address_space *mapping,
226	int sync_mode)
227{
228	return __filemap_fdatawrite_range(mapping, 0, LLONG_MAX, sync_mode);
229}
230
231int filemap_fdatawrite(struct address_space *mapping)
232{
233	return __filemap_fdatawrite(mapping, WB_SYNC_ALL);
234}
235EXPORT_SYMBOL(filemap_fdatawrite);
236
237int filemap_fdatawrite_range(struct address_space *mapping, loff_t start,
238				loff_t end)
239{
240	return __filemap_fdatawrite_range(mapping, start, end, WB_SYNC_ALL);
241}
242EXPORT_SYMBOL(filemap_fdatawrite_range);
243
244/**
245 * filemap_flush - mostly a non-blocking flush
246 * @mapping:	target address_space
247 *
248 * This is a mostly non-blocking flush.  Not suitable for data-integrity
249 * purposes - I/O may not be started against all dirty pages.
250 */
251int filemap_flush(struct address_space *mapping)
252{
253	return __filemap_fdatawrite(mapping, WB_SYNC_NONE);
254}
255EXPORT_SYMBOL(filemap_flush);
256
257/**
258 * wait_on_page_writeback_range - wait for writeback to complete
259 * @mapping:	target address_space
260 * @start:	beginning page index
261 * @end:	ending page index
262 *
263 * Wait for writeback to complete against pages indexed by start->end
264 * inclusive
265 */
266int wait_on_page_writeback_range(struct address_space *mapping,
267				pgoff_t start, pgoff_t end)
268{
269	struct pagevec pvec;
270	int nr_pages;
271	int ret = 0;
272	pgoff_t index;
273
274	if (end < start)
275		return 0;
276
277	pagevec_init(&pvec, 0);
278	index = start;
279	while ((index <= end) &&
280			(nr_pages = pagevec_lookup_tag(&pvec, mapping, &index,
281			PAGECACHE_TAG_WRITEBACK,
282			min(end - index, (pgoff_t)PAGEVEC_SIZE-1) + 1)) != 0) {
283		unsigned i;
284
285		for (i = 0; i < nr_pages; i++) {
286			struct page *page = pvec.pages[i];
287
288			/* until radix tree lookup accepts end_index */
289			if (page->index > end)
290				continue;
291
292			wait_on_page_writeback(page);
293			if (PageError(page))
294				ret = -EIO;
295		}
296		pagevec_release(&pvec);
297		cond_resched();
298	}
299
300	/* Check for outstanding write errors */
301	if (test_and_clear_bit(AS_ENOSPC, &mapping->flags))
302		ret = -ENOSPC;
303	if (test_and_clear_bit(AS_EIO, &mapping->flags))
304		ret = -EIO;
305
306	return ret;
307}
308
309/**
310 * sync_page_range - write and wait on all pages in the passed range
311 * @inode:	target inode
312 * @mapping:	target address_space
313 * @pos:	beginning offset in pages to write
314 * @count:	number of bytes to write
315 *
316 * Write and wait upon all the pages in the passed range.  This is a "data
317 * integrity" operation.  It waits upon in-flight writeout before starting and
318 * waiting upon new writeout.  If there was an IO error, return it.
319 *
320 * We need to re-take i_mutex during the generic_osync_inode list walk because
321 * it is otherwise livelockable.
322 */
323int sync_page_range(struct inode *inode, struct address_space *mapping,
324			loff_t pos, loff_t count)
325{
326	pgoff_t start = pos >> PAGE_CACHE_SHIFT;
327	pgoff_t end = (pos + count - 1) >> PAGE_CACHE_SHIFT;
328	int ret;
329
330	if (!mapping_cap_writeback_dirty(mapping) || !count)
331		return 0;
332	ret = filemap_fdatawrite_range(mapping, pos, pos + count - 1);
333	if (ret == 0) {
334		mutex_lock(&inode->i_mutex);
335		ret = generic_osync_inode(inode, mapping, OSYNC_METADATA);
336		mutex_unlock(&inode->i_mutex);
337	}
338	if (ret == 0)
339		ret = wait_on_page_writeback_range(mapping, start, end);
340	return ret;
341}
342EXPORT_SYMBOL(sync_page_range);
343
344/**
345 * sync_page_range_nolock - write & wait on all pages in the passed range without locking
346 * @inode:	target inode
347 * @mapping:	target address_space
348 * @pos:	beginning offset in pages to write
349 * @count:	number of bytes to write
350 *
351 * Note: Holding i_mutex across sync_page_range_nolock() is not a good idea
352 * as it forces O_SYNC writers to different parts of the same file
353 * to be serialised right until io completion.
354 */
355int sync_page_range_nolock(struct inode *inode, struct address_space *mapping,
356			   loff_t pos, loff_t count)
357{
358	pgoff_t start = pos >> PAGE_CACHE_SHIFT;
359	pgoff_t end = (pos + count - 1) >> PAGE_CACHE_SHIFT;
360	int ret;
361
362	if (!mapping_cap_writeback_dirty(mapping) || !count)
363		return 0;
364	ret = filemap_fdatawrite_range(mapping, pos, pos + count - 1);
365	if (ret == 0)
366		ret = generic_osync_inode(inode, mapping, OSYNC_METADATA);
367	if (ret == 0)
368		ret = wait_on_page_writeback_range(mapping, start, end);
369	return ret;
370}
371EXPORT_SYMBOL(sync_page_range_nolock);
372
373/**
374 * filemap_fdatawait - wait for all under-writeback pages to complete
375 * @mapping: address space structure to wait for
376 *
377 * Walk the list of under-writeback pages of the given address space
378 * and wait for all of them.
379 */
380int filemap_fdatawait(struct address_space *mapping)
381{
382	loff_t i_size = i_size_read(mapping->host);
383
384	if (i_size == 0)
385		return 0;
386
387	return wait_on_page_writeback_range(mapping, 0,
388				(i_size - 1) >> PAGE_CACHE_SHIFT);
389}
390EXPORT_SYMBOL(filemap_fdatawait);
391
392int filemap_write_and_wait(struct address_space *mapping)
393{
394	int err = 0;
395
396	if (mapping->nrpages) {
397		err = filemap_fdatawrite(mapping);
398		/*
399		 * Even if the above returned error, the pages may be
400		 * written partially (e.g. -ENOSPC), so we wait for it.
401		 * But the -EIO is special case, it may indicate the worst
402		 * thing (e.g. bug) happened, so we avoid waiting for it.
403		 */
404		if (err != -EIO) {
405			int err2 = filemap_fdatawait(mapping);
406			if (!err)
407				err = err2;
408		}
409	}
410	return err;
411}
412EXPORT_SYMBOL(filemap_write_and_wait);
413
414/**
415 * filemap_write_and_wait_range - write out & wait on a file range
416 * @mapping:	the address_space for the pages
417 * @lstart:	offset in bytes where the range starts
418 * @lend:	offset in bytes where the range ends (inclusive)
419 *
420 * Write out and wait upon file offsets lstart->lend, inclusive.
421 *
422 * Note that `lend' is inclusive (describes the last byte to be written) so
423 * that this function can be used to write to the very end-of-file (end = -1).
424 */
425int filemap_write_and_wait_range(struct address_space *mapping,
426				 loff_t lstart, loff_t lend)
427{
428	int err = 0;
429
430	if (mapping->nrpages) {
431		err = __filemap_fdatawrite_range(mapping, lstart, lend,
432						 WB_SYNC_ALL);
433		/* See comment of filemap_write_and_wait() */
434		if (err != -EIO) {
435			int err2 = wait_on_page_writeback_range(mapping,
436						lstart >> PAGE_CACHE_SHIFT,
437						lend >> PAGE_CACHE_SHIFT);
438			if (!err)
439				err = err2;
440		}
441	}
442	return err;
443}
444
445/**
446 * add_to_page_cache_locked - add a locked page to the pagecache
447 * @page:	page to add
448 * @mapping:	the page's address_space
449 * @offset:	page index
450 * @gfp_mask:	page allocation mode
451 *
452 * This function is used to add a page to the pagecache. It must be locked.
453 * This function does not add the page to the LRU.  The caller must do that.
454 */
455int add_to_page_cache_locked(struct page *page, struct address_space *mapping,
456		pgoff_t offset, gfp_t gfp_mask)
457{
458	int error;
459
460	VM_BUG_ON(!PageLocked(page));
461
462	error = mem_cgroup_cache_charge(page, current->mm,
463					gfp_mask & GFP_RECLAIM_MASK);
464	if (error)
465		goto out;
466
467	error = radix_tree_preload(gfp_mask & ~__GFP_HIGHMEM);
468	if (error == 0) {
469		page_cache_get(page);
470		page->mapping = mapping;
471		page->index = offset;
472
473		spin_lock_irq(&mapping->tree_lock);
474		error = radix_tree_insert(&mapping->page_tree, offset, page);
475		if (likely(!error)) {
476			mapping->nrpages++;
477			__inc_zone_page_state(page, NR_FILE_PAGES);
478		} else {
479			page->mapping = NULL;
480			mem_cgroup_uncharge_cache_page(page);
481			page_cache_release(page);
482		}
483
484		spin_unlock_irq(&mapping->tree_lock);
485		radix_tree_preload_end();
486	} else
487		mem_cgroup_uncharge_cache_page(page);
488out:
489	return error;
490}
491EXPORT_SYMBOL(add_to_page_cache_locked);
492
493int add_to_page_cache_lru(struct page *page, struct address_space *mapping,
494				pgoff_t offset, gfp_t gfp_mask)
495{
496	int ret;
497
498	/*
499	 * Splice_read and readahead add shmem/tmpfs pages into the page cache
500	 * before shmem_readpage has a chance to mark them as SwapBacked: they
501	 * need to go on the active_anon lru below, and mem_cgroup_cache_charge
502	 * (called in add_to_page_cache) needs to know where they're going too.
503	 */
504	if (mapping_cap_swap_backed(mapping))
505		SetPageSwapBacked(page);
506
507	ret = add_to_page_cache(page, mapping, offset, gfp_mask);
508	if (ret == 0) {
509		if (page_is_file_cache(page))
510			lru_cache_add_file(page);
511		else
512			lru_cache_add_active_anon(page);
513	}
514	return ret;
515}
516EXPORT_SYMBOL_GPL(add_to_page_cache_lru);
517
518#ifdef CONFIG_NUMA
519struct page *__page_cache_alloc(gfp_t gfp)
520{
521	if (cpuset_do_page_mem_spread()) {
522		int n = cpuset_mem_spread_node();
523		return alloc_pages_node(n, gfp, 0);
524	}
525	return alloc_pages(gfp, 0);
526}
527EXPORT_SYMBOL(__page_cache_alloc);
528#endif
529
530static int __sleep_on_page_lock(void *word)
531{
532	io_schedule();
533	return 0;
534}
535
536/*
537 * In order to wait for pages to become available there must be
538 * waitqueues associated with pages. By using a hash table of
539 * waitqueues where the bucket discipline is to maintain all
540 * waiters on the same queue and wake all when any of the pages
541 * become available, and for the woken contexts to check to be
542 * sure the appropriate page became available, this saves space
543 * at a cost of "thundering herd" phenomena during rare hash
544 * collisions.
545 */
546static wait_queue_head_t *page_waitqueue(struct page *page)
547{
548	const struct zone *zone = page_zone(page);
549
550	return &zone->wait_table[hash_ptr(page, zone->wait_table_bits)];
551}
552
553static inline void wake_up_page(struct page *page, int bit)
554{
555	__wake_up_bit(page_waitqueue(page), &page->flags, bit);
556}
557
558void wait_on_page_bit(struct page *page, int bit_nr)
559{
560	DEFINE_WAIT_BIT(wait, &page->flags, bit_nr);
561
562	if (test_bit(bit_nr, &page->flags))
563		__wait_on_bit(page_waitqueue(page), &wait, sync_page,
564							TASK_UNINTERRUPTIBLE);
565}
566EXPORT_SYMBOL(wait_on_page_bit);
567
568/**
569 * add_page_wait_queue - Add an arbitrary waiter to a page's wait queue
570 * @page - Page defining the wait queue of interest
571 * @waiter - Waiter to add to the queue
572 *
573 * Add an arbitrary @waiter to the wait queue for the nominated @page.
574 */
575void add_page_wait_queue(struct page *page, wait_queue_t *waiter)
576{
577	wait_queue_head_t *q = page_waitqueue(page);
578	unsigned long flags;
579
580	spin_lock_irqsave(&q->lock, flags);
581	__add_wait_queue(q, waiter);
582	spin_unlock_irqrestore(&q->lock, flags);
583}
584EXPORT_SYMBOL_GPL(add_page_wait_queue);
585
586/**
587 * unlock_page - unlock a locked page
588 * @page: the page
589 *
590 * Unlocks the page and wakes up sleepers in ___wait_on_page_locked().
591 * Also wakes sleepers in wait_on_page_writeback() because the wakeup
592 * mechananism between PageLocked pages and PageWriteback pages is shared.
593 * But that's OK - sleepers in wait_on_page_writeback() just go back to sleep.
594 *
595 * The mb is necessary to enforce ordering between the clear_bit and the read
596 * of the waitqueue (to avoid SMP races with a parallel wait_on_page_locked()).
597 */
598void unlock_page(struct page *page)
599{
600	VM_BUG_ON(!PageLocked(page));
601	clear_bit_unlock(PG_locked, &page->flags);
602	smp_mb__after_clear_bit();
603	wake_up_page(page, PG_locked);
604}
605EXPORT_SYMBOL(unlock_page);
606
607/**
608 * end_page_writeback - end writeback against a page
609 * @page: the page
610 */
611void end_page_writeback(struct page *page)
612{
613	if (TestClearPageReclaim(page))
614		rotate_reclaimable_page(page);
615
616	if (!test_clear_page_writeback(page))
617		BUG();
618
619	smp_mb__after_clear_bit();
620	wake_up_page(page, PG_writeback);
621}
622EXPORT_SYMBOL(end_page_writeback);
623
624/**
625 * __lock_page - get a lock on the page, assuming we need to sleep to get it
626 * @page: the page to lock
627 *
628 * Ugly. Running sync_page() in state TASK_UNINTERRUPTIBLE is scary.  If some
629 * random driver's requestfn sets TASK_RUNNING, we could busywait.  However
630 * chances are that on the second loop, the block layer's plug list is empty,
631 * so sync_page() will then return in state TASK_UNINTERRUPTIBLE.
632 */
633void __lock_page(struct page *page)
634{
635	DEFINE_WAIT_BIT(wait, &page->flags, PG_locked);
636
637	__wait_on_bit_lock(page_waitqueue(page), &wait, sync_page,
638							TASK_UNINTERRUPTIBLE);
639}
640EXPORT_SYMBOL(__lock_page);
641
642int __lock_page_killable(struct page *page)
643{
644	DEFINE_WAIT_BIT(wait, &page->flags, PG_locked);
645
646	return __wait_on_bit_lock(page_waitqueue(page), &wait,
647					sync_page_killable, TASK_KILLABLE);
648}
649EXPORT_SYMBOL_GPL(__lock_page_killable);
650
651/**
652 * __lock_page_nosync - get a lock on the page, without calling sync_page()
653 * @page: the page to lock
654 *
655 * Variant of lock_page that does not require the caller to hold a reference
656 * on the page's mapping.
657 */
658void __lock_page_nosync(struct page *page)
659{
660	DEFINE_WAIT_BIT(wait, &page->flags, PG_locked);
661	__wait_on_bit_lock(page_waitqueue(page), &wait, __sleep_on_page_lock,
662							TASK_UNINTERRUPTIBLE);
663}
664
665/**
666 * find_get_page - find and get a page reference
667 * @mapping: the address_space to search
668 * @offset: the page index
669 *
670 * Is there a pagecache struct page at the given (mapping, offset) tuple?
671 * If yes, increment its refcount and return it; if no, return NULL.
672 */
673struct page *find_get_page(struct address_space *mapping, pgoff_t offset)
674{
675	void **pagep;
676	struct page *page;
677
678	rcu_read_lock();
679repeat:
680	page = NULL;
681	pagep = radix_tree_lookup_slot(&mapping->page_tree, offset);
682	if (pagep) {
683		page = radix_tree_deref_slot(pagep);
684		if (unlikely(!page || page == RADIX_TREE_RETRY))
685			goto repeat;
686
687		if (!page_cache_get_speculative(page))
688			goto repeat;
689
690		/*
691		 * Has the page moved?
692		 * This is part of the lockless pagecache protocol. See
693		 * include/linux/pagemap.h for details.
694		 */
695		if (unlikely(page != *pagep)) {
696			page_cache_release(page);
697			goto repeat;
698		}
699	}
700	rcu_read_unlock();
701
702	return page;
703}
704EXPORT_SYMBOL(find_get_page);
705
706/**
707 * find_lock_page - locate, pin and lock a pagecache page
708 * @mapping: the address_space to search
709 * @offset: the page index
710 *
711 * Locates the desired pagecache page, locks it, increments its reference
712 * count and returns its address.
713 *
714 * Returns zero if the page was not present. find_lock_page() may sleep.
715 */
716struct page *find_lock_page(struct address_space *mapping, pgoff_t offset)
717{
718	struct page *page;
719
720repeat:
721	page = find_get_page(mapping, offset);
722	if (page) {
723		lock_page(page);
724		/* Has the page been truncated? */
725		if (unlikely(page->mapping != mapping)) {
726			unlock_page(page);
727			page_cache_release(page);
728			goto repeat;
729		}
730		VM_BUG_ON(page->index != offset);
731	}
732	return page;
733}
734EXPORT_SYMBOL(find_lock_page);
735
736/**
737 * find_or_create_page - locate or add a pagecache page
738 * @mapping: the page's address_space
739 * @index: the page's index into the mapping
740 * @gfp_mask: page allocation mode
741 *
742 * Locates a page in the pagecache.  If the page is not present, a new page
743 * is allocated using @gfp_mask and is added to the pagecache and to the VM's
744 * LRU list.  The returned page is locked and has its reference count
745 * incremented.
746 *
747 * find_or_create_page() may sleep, even if @gfp_flags specifies an atomic
748 * allocation!
749 *
750 * find_or_create_page() returns the desired page's address, or zero on
751 * memory exhaustion.
752 */
753struct page *find_or_create_page(struct address_space *mapping,
754		pgoff_t index, gfp_t gfp_mask)
755{
756	struct page *page;
757	int err;
758repeat:
759	page = find_lock_page(mapping, index);
760	if (!page) {
761		page = __page_cache_alloc(gfp_mask);
762		if (!page)
763			return NULL;
764		/*
765		 * We want a regular kernel memory (not highmem or DMA etc)
766		 * allocation for the radix tree nodes, but we need to honour
767		 * the context-specific requirements the caller has asked for.
768		 * GFP_RECLAIM_MASK collects those requirements.
769		 */
770		err = add_to_page_cache_lru(page, mapping, index,
771			(gfp_mask & GFP_RECLAIM_MASK));
772		if (unlikely(err)) {
773			page_cache_release(page);
774			page = NULL;
775			if (err == -EEXIST)
776				goto repeat;
777		}
778	}
779	return page;
780}
781EXPORT_SYMBOL(find_or_create_page);
782
783/**
784 * find_get_pages - gang pagecache lookup
785 * @mapping:	The address_space to search
786 * @start:	The starting page index
787 * @nr_pages:	The maximum number of pages
788 * @pages:	Where the resulting pages are placed
789 *
790 * find_get_pages() will search for and return a group of up to
791 * @nr_pages pages in the mapping.  The pages are placed at @pages.
792 * find_get_pages() takes a reference against the returned pages.
793 *
794 * The search returns a group of mapping-contiguous pages with ascending
795 * indexes.  There may be holes in the indices due to not-present pages.
796 *
797 * find_get_pages() returns the number of pages which were found.
798 */
799unsigned find_get_pages(struct address_space *mapping, pgoff_t start,
800			    unsigned int nr_pages, struct page **pages)
801{
802	unsigned int i;
803	unsigned int ret;
804	unsigned int nr_found;
805
806	rcu_read_lock();
807restart:
808	nr_found = radix_tree_gang_lookup_slot(&mapping->page_tree,
809				(void ***)pages, start, nr_pages);
810	ret = 0;
811	for (i = 0; i < nr_found; i++) {
812		struct page *page;
813repeat:
814		page = radix_tree_deref_slot((void **)pages[i]);
815		if (unlikely(!page))
816			continue;
817		/*
818		 * this can only trigger if nr_found == 1, making livelock
819		 * a non issue.
820		 */
821		if (unlikely(page == RADIX_TREE_RETRY))
822			goto restart;
823
824		if (!page_cache_get_speculative(page))
825			goto repeat;
826
827		/* Has the page moved? */
828		if (unlikely(page != *((void **)pages[i]))) {
829			page_cache_release(page);
830			goto repeat;
831		}
832
833		pages[ret] = page;
834		ret++;
835	}
836	rcu_read_unlock();
837	return ret;
838}
839
840/**
841 * find_get_pages_contig - gang contiguous pagecache lookup
842 * @mapping:	The address_space to search
843 * @index:	The starting page index
844 * @nr_pages:	The maximum number of pages
845 * @pages:	Where the resulting pages are placed
846 *
847 * find_get_pages_contig() works exactly like find_get_pages(), except
848 * that the returned number of pages are guaranteed to be contiguous.
849 *
850 * find_get_pages_contig() returns the number of pages which were found.
851 */
852unsigned find_get_pages_contig(struct address_space *mapping, pgoff_t index,
853			       unsigned int nr_pages, struct page **pages)
854{
855	unsigned int i;
856	unsigned int ret;
857	unsigned int nr_found;
858
859	rcu_read_lock();
860restart:
861	nr_found = radix_tree_gang_lookup_slot(&mapping->page_tree,
862				(void ***)pages, index, nr_pages);
863	ret = 0;
864	for (i = 0; i < nr_found; i++) {
865		struct page *page;
866repeat:
867		page = radix_tree_deref_slot((void **)pages[i]);
868		if (unlikely(!page))
869			continue;
870		/*
871		 * this can only trigger if nr_found == 1, making livelock
872		 * a non issue.
873		 */
874		if (unlikely(page == RADIX_TREE_RETRY))
875			goto restart;
876
877		if (page->mapping == NULL || page->index != index)
878			break;
879
880		if (!page_cache_get_speculative(page))
881			goto repeat;
882
883		/* Has the page moved? */
884		if (unlikely(page != *((void **)pages[i]))) {
885			page_cache_release(page);
886			goto repeat;
887		}
888
889		pages[ret] = page;
890		ret++;
891		index++;
892	}
893	rcu_read_unlock();
894	return ret;
895}
896EXPORT_SYMBOL(find_get_pages_contig);
897
898/**
899 * find_get_pages_tag - find and return pages that match @tag
900 * @mapping:	the address_space to search
901 * @index:	the starting page index
902 * @tag:	the tag index
903 * @nr_pages:	the maximum number of pages
904 * @pages:	where the resulting pages are placed
905 *
906 * Like find_get_pages, except we only return pages which are tagged with
907 * @tag.   We update @index to index the next page for the traversal.
908 */
909unsigned find_get_pages_tag(struct address_space *mapping, pgoff_t *index,
910			int tag, unsigned int nr_pages, struct page **pages)
911{
912	unsigned int i;
913	unsigned int ret;
914	unsigned int nr_found;
915
916	rcu_read_lock();
917restart:
918	nr_found = radix_tree_gang_lookup_tag_slot(&mapping->page_tree,
919				(void ***)pages, *index, nr_pages, tag);
920	ret = 0;
921	for (i = 0; i < nr_found; i++) {
922		struct page *page;
923repeat:
924		page = radix_tree_deref_slot((void **)pages[i]);
925		if (unlikely(!page))
926			continue;
927		/*
928		 * this can only trigger if nr_found == 1, making livelock
929		 * a non issue.
930		 */
931		if (unlikely(page == RADIX_TREE_RETRY))
932			goto restart;
933
934		if (!page_cache_get_speculative(page))
935			goto repeat;
936
937		/* Has the page moved? */
938		if (unlikely(page != *((void **)pages[i]))) {
939			page_cache_release(page);
940			goto repeat;
941		}
942
943		pages[ret] = page;
944		ret++;
945	}
946	rcu_read_unlock();
947
948	if (ret)
949		*index = pages[ret - 1]->index + 1;
950
951	return ret;
952}
953EXPORT_SYMBOL(find_get_pages_tag);
954
955/**
956 * grab_cache_page_nowait - returns locked page at given index in given cache
957 * @mapping: target address_space
958 * @index: the page index
959 *
960 * Same as grab_cache_page(), but do not wait if the page is unavailable.
961 * This is intended for speculative data generators, where the data can
962 * be regenerated if the page couldn't be grabbed.  This routine should
963 * be safe to call while holding the lock for another page.
964 *
965 * Clear __GFP_FS when allocating the page to avoid recursion into the fs
966 * and deadlock against the caller's locked page.
967 */
968struct page *
969grab_cache_page_nowait(struct address_space *mapping, pgoff_t index)
970{
971	struct page *page = find_get_page(mapping, index);
972
973	if (page) {
974		if (trylock_page(page))
975			return page;
976		page_cache_release(page);
977		return NULL;
978	}
979	page = __page_cache_alloc(mapping_gfp_mask(mapping) & ~__GFP_FS);
980	if (page && add_to_page_cache_lru(page, mapping, index, GFP_NOFS)) {
981		page_cache_release(page);
982		page = NULL;
983	}
984	return page;
985}
986EXPORT_SYMBOL(grab_cache_page_nowait);
987
988/*
989 * CD/DVDs are error prone. When a medium error occurs, the driver may fail
990 * a _large_ part of the i/o request. Imagine the worst scenario:
991 *
992 *      ---R__________________________________________B__________
993 *         ^ reading here                             ^ bad block(assume 4k)
994 *
995 * read(R) => miss => readahead(R...B) => media error => frustrating retries
996 * => failing the whole request => read(R) => read(R+1) =>
997 * readahead(R+1...B+1) => bang => read(R+2) => read(R+3) =>
998 * readahead(R+3...B+2) => bang => read(R+3) => read(R+4) =>
999 * readahead(R+4...B+3) => bang => read(R+4) => read(R+5) => ......
1000 *
1001 * It is going insane. Fix it by quickly scaling down the readahead size.
1002 */
1003static void shrink_readahead_size_eio(struct file *filp,
1004					struct file_ra_state *ra)
1005{
1006	if (!ra->ra_pages)
1007		return;
1008
1009	ra->ra_pages /= 4;
1010}
1011
1012/**
1013 * do_generic_file_read - generic file read routine
1014 * @filp:	the file to read
1015 * @ppos:	current file position
1016 * @desc:	read_descriptor
1017 * @actor:	read method
1018 *
1019 * This is a generic file read routine, and uses the
1020 * mapping->a_ops->readpage() function for the actual low-level stuff.
1021 *
1022 * This is really ugly. But the goto's actually try to clarify some
1023 * of the logic when it comes to error handling etc.
1024 */
1025static void do_generic_file_read(struct file *filp, loff_t *ppos,
1026		read_descriptor_t *desc, read_actor_t actor)
1027{
1028	struct address_space *mapping = filp->f_mapping;
1029	struct inode *inode = mapping->host;
1030	struct file_ra_state *ra = &filp->f_ra;
1031	pgoff_t index;
1032	pgoff_t last_index;
1033	pgoff_t prev_index;
1034	unsigned long offset;      /* offset into pagecache page */
1035	unsigned int prev_offset;
1036	int error;
1037
1038	index = *ppos >> PAGE_CACHE_SHIFT;
1039	prev_index = ra->prev_pos >> PAGE_CACHE_SHIFT;
1040	prev_offset = ra->prev_pos & (PAGE_CACHE_SIZE-1);
1041	last_index = (*ppos + desc->count + PAGE_CACHE_SIZE-1) >> PAGE_CACHE_SHIFT;
1042	offset = *ppos & ~PAGE_CACHE_MASK;
1043
1044	for (;;) {
1045		struct page *page;
1046		pgoff_t end_index;
1047		loff_t isize;
1048		unsigned long nr, ret;
1049
1050		cond_resched();
1051find_page:
1052		page = find_get_page(mapping, index);
1053		if (!page) {
1054			page_cache_sync_readahead(mapping,
1055					ra, filp,
1056					index, last_index - index);
1057			page = find_get_page(mapping, index);
1058			if (unlikely(page == NULL))
1059				goto no_cached_page;
1060		}
1061		if (PageReadahead(page)) {
1062			page_cache_async_readahead(mapping,
1063					ra, filp, page,
1064					index, last_index - index);
1065		}
1066		if (!PageUptodate(page)) {
1067			if (inode->i_blkbits == PAGE_CACHE_SHIFT ||
1068					!mapping->a_ops->is_partially_uptodate)
1069				goto page_not_up_to_date;
1070			if (!trylock_page(page))
1071				goto page_not_up_to_date;
1072			if (!mapping->a_ops->is_partially_uptodate(page,
1073								desc, offset))
1074				goto page_not_up_to_date_locked;
1075			unlock_page(page);
1076		}
1077page_ok:
1078		/*
1079		 * i_size must be checked after we know the page is Uptodate.
1080		 *
1081		 * Checking i_size after the check allows us to calculate
1082		 * the correct value for "nr", which means the zero-filled
1083		 * part of the page is not copied back to userspace (unless
1084		 * another truncate extends the file - this is desired though).
1085		 */
1086
1087		isize = i_size_read(inode);
1088		end_index = (isize - 1) >> PAGE_CACHE_SHIFT;
1089		if (unlikely(!isize || index > end_index)) {
1090			page_cache_release(page);
1091			goto out;
1092		}
1093
1094		/* nr is the maximum number of bytes to copy from this page */
1095		nr = PAGE_CACHE_SIZE;
1096		if (index == end_index) {
1097			nr = ((isize - 1) & ~PAGE_CACHE_MASK) + 1;
1098			if (nr <= offset) {
1099				page_cache_release(page);
1100				goto out;
1101			}
1102		}
1103		nr = nr - offset;
1104
1105		/* If users can be writing to this page using arbitrary
1106		 * virtual addresses, take care about potential aliasing
1107		 * before reading the page on the kernel side.
1108		 */
1109		if (mapping_writably_mapped(mapping))
1110			flush_dcache_page(page);
1111
1112		/*
1113		 * When a sequential read accesses a page several times,
1114		 * only mark it as accessed the first time.
1115		 */
1116		if (prev_index != index || offset != prev_offset)
1117			mark_page_accessed(page);
1118		prev_index = index;
1119
1120		/*
1121		 * Ok, we have the page, and it's up-to-date, so
1122		 * now we can copy it to user space...
1123		 *
1124		 * The actor routine returns how many bytes were actually used..
1125		 * NOTE! This may not be the same as how much of a user buffer
1126		 * we filled up (we may be padding etc), so we can only update
1127		 * "pos" here (the actor routine has to update the user buffer
1128		 * pointers and the remaining count).
1129		 */
1130		ret = actor(desc, page, offset, nr);
1131		offset += ret;
1132		index += offset >> PAGE_CACHE_SHIFT;
1133		offset &= ~PAGE_CACHE_MASK;
1134		prev_offset = offset;
1135
1136		page_cache_release(page);
1137		if (ret == nr && desc->count)
1138			continue;
1139		goto out;
1140
1141page_not_up_to_date:
1142		/* Get exclusive access to the page ... */
1143		error = lock_page_killable(page);
1144		if (unlikely(error))
1145			goto readpage_error;
1146
1147page_not_up_to_date_locked:
1148		/* Did it get truncated before we got the lock? */
1149		if (!page->mapping) {
1150			unlock_page(page);
1151			page_cache_release(page);
1152			continue;
1153		}
1154
1155		/* Did somebody else fill it already? */
1156		if (PageUptodate(page)) {
1157			unlock_page(page);
1158			goto page_ok;
1159		}
1160
1161readpage:
1162		/* Start the actual read. The read will unlock the page. */
1163		error = mapping->a_ops->readpage(filp, page);
1164
1165		if (unlikely(error)) {
1166			if (error == AOP_TRUNCATED_PAGE) {
1167				page_cache_release(page);
1168				goto find_page;
1169			}
1170			goto readpage_error;
1171		}
1172
1173		if (!PageUptodate(page)) {
1174			error = lock_page_killable(page);
1175			if (unlikely(error))
1176				goto readpage_error;
1177			if (!PageUptodate(page)) {
1178				if (page->mapping == NULL) {
1179					/*
1180					 * invalidate_inode_pages got it
1181					 */
1182					unlock_page(page);
1183					page_cache_release(page);
1184					goto find_page;
1185				}
1186				unlock_page(page);
1187				shrink_readahead_size_eio(filp, ra);
1188				error = -EIO;
1189				goto readpage_error;
1190			}
1191			unlock_page(page);
1192		}
1193
1194		goto page_ok;
1195
1196readpage_error:
1197		/* UHHUH! A synchronous read error occurred. Report it */
1198		desc->error = error;
1199		page_cache_release(page);
1200		goto out;
1201
1202no_cached_page:
1203		/*
1204		 * Ok, it wasn't cached, so we need to create a new
1205		 * page..
1206		 */
1207		page = page_cache_alloc_cold(mapping);
1208		if (!page) {
1209			desc->error = -ENOMEM;
1210			goto out;
1211		}
1212		error = add_to_page_cache_lru(page, mapping,
1213						index, GFP_KERNEL);
1214		if (error) {
1215			page_cache_release(page);
1216			if (error == -EEXIST)
1217				goto find_page;
1218			desc->error = error;
1219			goto out;
1220		}
1221		goto readpage;
1222	}
1223
1224out:
1225	ra->prev_pos = prev_index;
1226	ra->prev_pos <<= PAGE_CACHE_SHIFT;
1227	ra->prev_pos |= prev_offset;
1228
1229	*ppos = ((loff_t)index << PAGE_CACHE_SHIFT) + offset;
1230	file_accessed(filp);
1231}
1232
1233int file_read_actor(read_descriptor_t *desc, struct page *page,
1234			unsigned long offset, unsigned long size)
1235{
1236	char *kaddr;
1237	unsigned long left, count = desc->count;
1238
1239	if (size > count)
1240		size = count;
1241
1242	/*
1243	 * Faults on the destination of a read are common, so do it before
1244	 * taking the kmap.
1245	 */
1246	if (!fault_in_pages_writeable(desc->arg.buf, size)) {
1247		kaddr = kmap_atomic(page, KM_USER0);
1248		left = __copy_to_user_inatomic(desc->arg.buf,
1249						kaddr + offset, size);
1250		kunmap_atomic(kaddr, KM_USER0);
1251		if (left == 0)
1252			goto success;
1253	}
1254
1255	/* Do it the slow way */
1256	kaddr = kmap(page);
1257	left = __copy_to_user(desc->arg.buf, kaddr + offset, size);
1258	kunmap(page);
1259
1260	if (left) {
1261		size -= left;
1262		desc->error = -EFAULT;
1263	}
1264success:
1265	desc->count = count - size;
1266	desc->written += size;
1267	desc->arg.buf += size;
1268	return size;
1269}
1270
1271/*
1272 * Performs necessary checks before doing a write
1273 * @iov:	io vector request
1274 * @nr_segs:	number of segments in the iovec
1275 * @count:	number of bytes to write
1276 * @access_flags: type of access: %VERIFY_READ or %VERIFY_WRITE
1277 *
1278 * Adjust number of segments and amount of bytes to write (nr_segs should be
1279 * properly initialized first). Returns appropriate error code that caller
1280 * should return or zero in case that write should be allowed.
1281 */
1282int generic_segment_checks(const struct iovec *iov,
1283			unsigned long *nr_segs, size_t *count, int access_flags)
1284{
1285	unsigned long   seg;
1286	size_t cnt = 0;
1287	for (seg = 0; seg < *nr_segs; seg++) {
1288		const struct iovec *iv = &iov[seg];
1289
1290		/*
1291		 * If any segment has a negative length, or the cumulative
1292		 * length ever wraps negative then return -EINVAL.
1293		 */
1294		cnt += iv->iov_len;
1295		if (unlikely((ssize_t)(cnt|iv->iov_len) < 0))
1296			return -EINVAL;
1297		if (access_ok(access_flags, iv->iov_base, iv->iov_len))
1298			continue;
1299		if (seg == 0)
1300			return -EFAULT;
1301		*nr_segs = seg;
1302		cnt -= iv->iov_len;	/* This segment is no good */
1303		break;
1304	}
1305	*count = cnt;
1306	return 0;
1307}
1308EXPORT_SYMBOL(generic_segment_checks);
1309
1310/**
1311 * generic_file_aio_read - generic filesystem read routine
1312 * @iocb:	kernel I/O control block
1313 * @iov:	io vector request
1314 * @nr_segs:	number of segments in the iovec
1315 * @pos:	current file position
1316 *
1317 * This is the "read()" routine for all filesystems
1318 * that can use the page cache directly.
1319 */
1320ssize_t
1321generic_file_aio_read(struct kiocb *iocb, const struct iovec *iov,
1322		unsigned long nr_segs, loff_t pos)
1323{
1324	struct file *filp = iocb->ki_filp;
1325	ssize_t retval;
1326	unsigned long seg;
1327	size_t count;
1328	loff_t *ppos = &iocb->ki_pos;
1329
1330	count = 0;
1331	retval = generic_segment_checks(iov, &nr_segs, &count, VERIFY_WRITE);
1332	if (retval)
1333		return retval;
1334
1335	/* coalesce the iovecs and go direct-to-BIO for O_DIRECT */
1336	if (filp->f_flags & O_DIRECT) {
1337		loff_t size;
1338		struct address_space *mapping;
1339		struct inode *inode;
1340
1341		mapping = filp->f_mapping;
1342		inode = mapping->host;
1343		if (!count)
1344			goto out; /* skip atime */
1345		size = i_size_read(inode);
1346		if (pos < size) {
1347			retval = filemap_write_and_wait_range(mapping, pos,
1348					pos + iov_length(iov, nr_segs) - 1);
1349			if (!retval) {
1350				retval = mapping->a_ops->direct_IO(READ, iocb,
1351							iov, pos, nr_segs);
1352			}
1353			if (retval > 0)
1354				*ppos = pos + retval;
1355			if (retval) {
1356				file_accessed(filp);
1357				goto out;
1358			}
1359		}
1360	}
1361
1362	for (seg = 0; seg < nr_segs; seg++) {
1363		read_descriptor_t desc;
1364
1365		desc.written = 0;
1366		desc.arg.buf = iov[seg].iov_base;
1367		desc.count = iov[seg].iov_len;
1368		if (desc.count == 0)
1369			continue;
1370		desc.error = 0;
1371		do_generic_file_read(filp, ppos, &desc, file_read_actor);
1372		retval += desc.written;
1373		if (desc.error) {
1374			retval = retval ?: desc.error;
1375			break;
1376		}
1377		if (desc.count > 0)
1378			break;
1379	}
1380out:
1381	return retval;
1382}
1383EXPORT_SYMBOL(generic_file_aio_read);
1384
1385static ssize_t
1386do_readahead(struct address_space *mapping, struct file *filp,
1387	     pgoff_t index, unsigned long nr)
1388{
1389	if (!mapping || !mapping->a_ops || !mapping->a_ops->readpage)
1390		return -EINVAL;
1391
1392	force_page_cache_readahead(mapping, filp, index,
1393					max_sane_readahead(nr));
1394	return 0;
1395}
1396
1397SYSCALL_DEFINE(readahead)(int fd, loff_t offset, size_t count)
1398{
1399	ssize_t ret;
1400	struct file *file;
1401
1402	ret = -EBADF;
1403	file = fget(fd);
1404	if (file) {
1405		if (file->f_mode & FMODE_READ) {
1406			struct address_space *mapping = file->f_mapping;
1407			pgoff_t start = offset >> PAGE_CACHE_SHIFT;
1408			pgoff_t end = (offset + count - 1) >> PAGE_CACHE_SHIFT;
1409			unsigned long len = end - start + 1;
1410			ret = do_readahead(mapping, file, start, len);
1411		}
1412		fput(file);
1413	}
1414	return ret;
1415}
1416#ifdef CONFIG_HAVE_SYSCALL_WRAPPERS
1417asmlinkage long SyS_readahead(long fd, loff_t offset, long count)
1418{
1419	return SYSC_readahead((int) fd, offset, (size_t) count);
1420}
1421SYSCALL_ALIAS(sys_readahead, SyS_readahead);
1422#endif
1423
1424#ifdef CONFIG_MMU
1425/**
1426 * page_cache_read - adds requested page to the page cache if not already there
1427 * @file:	file to read
1428 * @offset:	page index
1429 *
1430 * This adds the requested page to the page cache if it isn't already there,
1431 * and schedules an I/O to read in its contents from disk.
1432 */
1433static int page_cache_read(struct file *file, pgoff_t offset)
1434{
1435	struct address_space *mapping = file->f_mapping;
1436	struct page *page;
1437	int ret;
1438
1439	do {
1440		page = page_cache_alloc_cold(mapping);
1441		if (!page)
1442			return -ENOMEM;
1443
1444		ret = add_to_page_cache_lru(page, mapping, offset, GFP_KERNEL);
1445		if (ret == 0)
1446			ret = mapping->a_ops->readpage(file, page);
1447		else if (ret == -EEXIST)
1448			ret = 0; /* losing race to add is OK */
1449
1450		page_cache_release(page);
1451
1452	} while (ret == AOP_TRUNCATED_PAGE);
1453
1454	return ret;
1455}
1456
1457#define MMAP_LOTSAMISS  (100)
1458
1459/**
1460 * filemap_fault - read in file data for page fault handling
1461 * @vma:	vma in which the fault was taken
1462 * @vmf:	struct vm_fault containing details of the fault
1463 *
1464 * filemap_fault() is invoked via the vma operations vector for a
1465 * mapped memory region to read in file data during a page fault.
1466 *
1467 * The goto's are kind of ugly, but this streamlines the normal case of having
1468 * it in the page cache, and handles the special cases reasonably without
1469 * having a lot of duplicated code.
1470 */
1471int filemap_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
1472{
1473	int error;
1474	struct file *file = vma->vm_file;
1475	struct address_space *mapping = file->f_mapping;
1476	struct file_ra_state *ra = &file->f_ra;
1477	struct inode *inode = mapping->host;
1478	struct page *page;
1479	pgoff_t size;
1480	int did_readaround = 0;
1481	int ret = 0;
1482
1483	size = (i_size_read(inode) + PAGE_CACHE_SIZE - 1) >> PAGE_CACHE_SHIFT;
1484	if (vmf->pgoff >= size)
1485		return VM_FAULT_SIGBUS;
1486
1487	/* If we don't want any read-ahead, don't bother */
1488	if (VM_RandomReadHint(vma))
1489		goto no_cached_page;
1490
1491	/*
1492	 * Do we have something in the page cache already?
1493	 */
1494retry_find:
1495	page = find_lock_page(mapping, vmf->pgoff);
1496	/*
1497	 * For sequential accesses, we use the generic readahead logic.
1498	 */
1499	if (VM_SequentialReadHint(vma)) {
1500		if (!page) {
1501			page_cache_sync_readahead(mapping, ra, file,
1502							   vmf->pgoff, 1);
1503			page = find_lock_page(mapping, vmf->pgoff);
1504			if (!page)
1505				goto no_cached_page;
1506		}
1507		if (PageReadahead(page)) {
1508			page_cache_async_readahead(mapping, ra, file, page,
1509							   vmf->pgoff, 1);
1510		}
1511	}
1512
1513	if (!page) {
1514		unsigned long ra_pages;
1515
1516		ra->mmap_miss++;
1517
1518		/*
1519		 * Do we miss much more than hit in this file? If so,
1520		 * stop bothering with read-ahead. It will only hurt.
1521		 */
1522		if (ra->mmap_miss > MMAP_LOTSAMISS)
1523			goto no_cached_page;
1524
1525		/*
1526		 * To keep the pgmajfault counter straight, we need to
1527		 * check did_readaround, as this is an inner loop.
1528		 */
1529		if (!did_readaround) {
1530			ret = VM_FAULT_MAJOR;
1531			count_vm_event(PGMAJFAULT);
1532		}
1533		did_readaround = 1;
1534		ra_pages = max_sane_readahead(file->f_ra.ra_pages);
1535		if (ra_pages) {
1536			pgoff_t start = 0;
1537
1538			if (vmf->pgoff > ra_pages / 2)
1539				start = vmf->pgoff - ra_pages / 2;
1540			do_page_cache_readahead(mapping, file, start, ra_pages);
1541		}
1542		page = find_lock_page(mapping, vmf->pgoff);
1543		if (!page)
1544			goto no_cached_page;
1545	}
1546
1547	if (!did_readaround)
1548		ra->mmap_miss--;
1549
1550	/*
1551	 * We have a locked page in the page cache, now we need to check
1552	 * that it's up-to-date. If not, it is going to be due to an error.
1553	 */
1554	if (unlikely(!PageUptodate(page)))
1555		goto page_not_uptodate;
1556
1557	/* Must recheck i_size under page lock */
1558	size = (i_size_read(inode) + PAGE_CACHE_SIZE - 1) >> PAGE_CACHE_SHIFT;
1559	if (unlikely(vmf->pgoff >= size)) {
1560		unlock_page(page);
1561		page_cache_release(page);
1562		return VM_FAULT_SIGBUS;
1563	}
1564
1565	/*
1566	 * Found the page and have a reference on it.
1567	 */
1568	ra->prev_pos = (loff_t)page->index << PAGE_CACHE_SHIFT;
1569	vmf->page = page;
1570	return ret | VM_FAULT_LOCKED;
1571
1572no_cached_page:
1573	/*
1574	 * We're only likely to ever get here if MADV_RANDOM is in
1575	 * effect.
1576	 */
1577	error = page_cache_read(file, vmf->pgoff);
1578
1579	/*
1580	 * The page we want has now been added to the page cache.
1581	 * In the unlikely event that someone removed it in the
1582	 * meantime, we'll just come back here and read it again.
1583	 */
1584	if (error >= 0)
1585		goto retry_find;
1586
1587	/*
1588	 * An error return from page_cache_read can result if the
1589	 * system is low on memory, or a problem occurs while trying
1590	 * to schedule I/O.
1591	 */
1592	if (error == -ENOMEM)
1593		return VM_FAULT_OOM;
1594	return VM_FAULT_SIGBUS;
1595
1596page_not_uptodate:
1597	/* IO error path */
1598	if (!did_readaround) {
1599		ret = VM_FAULT_MAJOR;
1600		count_vm_event(PGMAJFAULT);
1601	}
1602
1603	/*
1604	 * Umm, take care of errors if the page isn't up-to-date.
1605	 * Try to re-read it _once_. We do this synchronously,
1606	 * because there really aren't any performance issues here
1607	 * and we need to check for errors.
1608	 */
1609	ClearPageError(page);
1610	error = mapping->a_ops->readpage(file, page);
1611	if (!error) {
1612		wait_on_page_locked(page);
1613		if (!PageUptodate(page))
1614			error = -EIO;
1615	}
1616	page_cache_release(page);
1617
1618	if (!error || error == AOP_TRUNCATED_PAGE)
1619		goto retry_find;
1620
1621	/* Things didn't work out. Return zero to tell the mm layer so. */
1622	shrink_readahead_size_eio(file, ra);
1623	return VM_FAULT_SIGBUS;
1624}
1625EXPORT_SYMBOL(filemap_fault);
1626
1627struct vm_operations_struct generic_file_vm_ops = {
1628	.fault		= filemap_fault,
1629};
1630
1631/* This is used for a general mmap of a disk file */
1632
1633int generic_file_mmap(struct file * file, struct vm_area_struct * vma)
1634{
1635	struct address_space *mapping = file->f_mapping;
1636
1637	if (!mapping->a_ops->readpage)
1638		return -ENOEXEC;
1639	file_accessed(file);
1640	vma->vm_ops = &generic_file_vm_ops;
1641	vma->vm_flags |= VM_CAN_NONLINEAR;
1642	return 0;
1643}
1644
1645/*
1646 * This is for filesystems which do not implement ->writepage.
1647 */
1648int generic_file_readonly_mmap(struct file *file, struct vm_area_struct *vma)
1649{
1650	if ((vma->vm_flags & VM_SHARED) && (vma->vm_flags & VM_MAYWRITE))
1651		return -EINVAL;
1652	return generic_file_mmap(file, vma);
1653}
1654#else
1655int generic_file_mmap(struct file * file, struct vm_area_struct * vma)
1656{
1657	return -ENOSYS;
1658}
1659int generic_file_readonly_mmap(struct file * file, struct vm_area_struct * vma)
1660{
1661	return -ENOSYS;
1662}
1663#endif /* CONFIG_MMU */
1664
1665EXPORT_SYMBOL(generic_file_mmap);
1666EXPORT_SYMBOL(generic_file_readonly_mmap);
1667
1668static struct page *__read_cache_page(struct address_space *mapping,
1669				pgoff_t index,
1670				int (*filler)(void *,struct page*),
1671				void *data)
1672{
1673	struct page *page;
1674	int err;
1675repeat:
1676	page = find_get_page(mapping, index);
1677	if (!page) {
1678		page = page_cache_alloc_cold(mapping);
1679		if (!page)
1680			return ERR_PTR(-ENOMEM);
1681		err = add_to_page_cache_lru(page, mapping, index, GFP_KERNEL);
1682		if (unlikely(err)) {
1683			page_cache_release(page);
1684			if (err == -EEXIST)
1685				goto repeat;
1686			/* Presumably ENOMEM for radix tree node */
1687			return ERR_PTR(err);
1688		}
1689		err = filler(data, page);
1690		if (err < 0) {
1691			page_cache_release(page);
1692			page = ERR_PTR(err);
1693		}
1694	}
1695	return page;
1696}
1697
1698/**
1699 * read_cache_page_async - read into page cache, fill it if needed
1700 * @mapping:	the page's address_space
1701 * @index:	the page index
1702 * @filler:	function to perform the read
1703 * @data:	destination for read data
1704 *
1705 * Same as read_cache_page, but don't wait for page to become unlocked
1706 * after submitting it to the filler.
1707 *
1708 * Read into the page cache. If a page already exists, and PageUptodate() is
1709 * not set, try to fill the page but don't wait for it to become unlocked.
1710 *
1711 * If the page does not get brought uptodate, return -EIO.
1712 */
1713struct page *read_cache_page_async(struct address_space *mapping,
1714				pgoff_t index,
1715				int (*filler)(void *,struct page*),
1716				void *data)
1717{
1718	struct page *page;
1719	int err;
1720
1721retry:
1722	page = __read_cache_page(mapping, index, filler, data);
1723	if (IS_ERR(page))
1724		return page;
1725	if (PageUptodate(page))
1726		goto out;
1727
1728	lock_page(page);
1729	if (!page->mapping) {
1730		unlock_page(page);
1731		page_cache_release(page);
1732		goto retry;
1733	}
1734	if (PageUptodate(page)) {
1735		unlock_page(page);
1736		goto out;
1737	}
1738	err = filler(data, page);
1739	if (err < 0) {
1740		page_cache_release(page);
1741		return ERR_PTR(err);
1742	}
1743out:
1744	mark_page_accessed(page);
1745	return page;
1746}
1747EXPORT_SYMBOL(read_cache_page_async);
1748
1749/**
1750 * read_cache_page - read into page cache, fill it if needed
1751 * @mapping:	the page's address_space
1752 * @index:	the page index
1753 * @filler:	function to perform the read
1754 * @data:	destination for read data
1755 *
1756 * Read into the page cache. If a page already exists, and PageUptodate() is
1757 * not set, try to fill the page then wait for it to become unlocked.
1758 *
1759 * If the page does not get brought uptodate, return -EIO.
1760 */
1761struct page *read_cache_page(struct address_space *mapping,
1762				pgoff_t index,
1763				int (*filler)(void *,struct page*),
1764				void *data)
1765{
1766	struct page *page;
1767
1768	page = read_cache_page_async(mapping, index, filler, data);
1769	if (IS_ERR(page))
1770		goto out;
1771	wait_on_page_locked(page);
1772	if (!PageUptodate(page)) {
1773		page_cache_release(page);
1774		page = ERR_PTR(-EIO);
1775	}
1776 out:
1777	return page;
1778}
1779EXPORT_SYMBOL(read_cache_page);
1780
1781/*
1782 * The logic we want is
1783 *
1784 *	if suid or (sgid and xgrp)
1785 *		remove privs
1786 */
1787int should_remove_suid(struct dentry *dentry)
1788{
1789	mode_t mode = dentry->d_inode->i_mode;
1790	int kill = 0;
1791
1792	/* suid always must be killed */
1793	if (unlikely(mode & S_ISUID))
1794		kill = ATTR_KILL_SUID;
1795
1796	/*
1797	 * sgid without any exec bits is just a mandatory locking mark; leave
1798	 * it alone.  If some exec bits are set, it's a real sgid; kill it.
1799	 */
1800	if (unlikely((mode & S_ISGID) && (mode & S_IXGRP)))
1801		kill |= ATTR_KILL_SGID;
1802
1803	if (unlikely(kill && !capable(CAP_FSETID) && S_ISREG(mode)))
1804		return kill;
1805
1806	return 0;
1807}
1808EXPORT_SYMBOL(should_remove_suid);
1809
1810static int __remove_suid(struct dentry *dentry, int kill)
1811{
1812	struct iattr newattrs;
1813
1814	newattrs.ia_valid = ATTR_FORCE | kill;
1815	return notify_change(dentry, &newattrs);
1816}
1817
1818int file_remove_suid(struct file *file)
1819{
1820	struct dentry *dentry = file->f_path.dentry;
1821	int killsuid = should_remove_suid(dentry);
1822	int killpriv = security_inode_need_killpriv(dentry);
1823	int error = 0;
1824
1825	if (killpriv < 0)
1826		return killpriv;
1827	if (killpriv)
1828		error = security_inode_killpriv(dentry);
1829	if (!error && killsuid)
1830		error = __remove_suid(dentry, killsuid);
1831
1832	return error;
1833}
1834EXPORT_SYMBOL(file_remove_suid);
1835
1836static size_t __iovec_copy_from_user_inatomic(char *vaddr,
1837			const struct iovec *iov, size_t base, size_t bytes)
1838{
1839	size_t copied = 0, left = 0;
1840
1841	while (bytes) {
1842		char __user *buf = iov->iov_base + base;
1843		int copy = min(bytes, iov->iov_len - base);
1844
1845		base = 0;
1846		left = __copy_from_user_inatomic(vaddr, buf, copy);
1847		copied += copy;
1848		bytes -= copy;
1849		vaddr += copy;
1850		iov++;
1851
1852		if (unlikely(left))
1853			break;
1854	}
1855	return copied - left;
1856}
1857
1858/*
1859 * Copy as much as we can into the page and return the number of bytes which
1860 * were sucessfully copied.  If a fault is encountered then return the number of
1861 * bytes which were copied.
1862 */
1863size_t iov_iter_copy_from_user_atomic(struct page *page,
1864		struct iov_iter *i, unsigned long offset, size_t bytes)
1865{
1866	char *kaddr;
1867	size_t copied;
1868
1869	BUG_ON(!in_atomic());
1870	kaddr = kmap_atomic(page, KM_USER0);
1871	if (likely(i->nr_segs == 1)) {
1872		int left;
1873		char __user *buf = i->iov->iov_base + i->iov_offset;
1874		left = __copy_from_user_inatomic(kaddr + offset, buf, bytes);
1875		copied = bytes - left;
1876	} else {
1877		copied = __iovec_copy_from_user_inatomic(kaddr + offset,
1878						i->iov, i->iov_offset, bytes);
1879	}
1880	kunmap_atomic(kaddr, KM_USER0);
1881
1882	return copied;
1883}
1884EXPORT_SYMBOL(iov_iter_copy_from_user_atomic);
1885
1886/*
1887 * This has the same sideeffects and return value as
1888 * iov_iter_copy_from_user_atomic().
1889 * The difference is that it attempts to resolve faults.
1890 * Page must not be locked.
1891 */
1892size_t iov_iter_copy_from_user(struct page *page,
1893		struct iov_iter *i, unsigned long offset, size_t bytes)
1894{
1895	char *kaddr;
1896	size_t copied;
1897
1898	kaddr = kmap(page);
1899	if (likely(i->nr_segs == 1)) {
1900		int left;
1901		char __user *buf = i->iov->iov_base + i->iov_offset;
1902		left = __copy_from_user(kaddr + offset, buf, bytes);
1903		copied = bytes - left;
1904	} else {
1905		copied = __iovec_copy_from_user_inatomic(kaddr + offset,
1906						i->iov, i->iov_offset, bytes);
1907	}
1908	kunmap(page);
1909	return copied;
1910}
1911EXPORT_SYMBOL(iov_iter_copy_from_user);
1912
1913void iov_iter_advance(struct iov_iter *i, size_t bytes)
1914{
1915	BUG_ON(i->count < bytes);
1916
1917	if (likely(i->nr_segs == 1)) {
1918		i->iov_offset += bytes;
1919		i->count -= bytes;
1920	} else {
1921		const struct iovec *iov = i->iov;
1922		size_t base = i->iov_offset;
1923
1924		/*
1925		 * The !iov->iov_len check ensures we skip over unlikely
1926		 * zero-length segments (without overruning the iovec).
1927		 */
1928		while (bytes || unlikely(i->count && !iov->iov_len)) {
1929			int copy;
1930
1931			copy = min(bytes, iov->iov_len - base);
1932			BUG_ON(!i->count || i->count < copy);
1933			i->count -= copy;
1934			bytes -= copy;
1935			base += copy;
1936			if (iov->iov_len == base) {
1937				iov++;
1938				base = 0;
1939			}
1940		}
1941		i->iov = iov;
1942		i->iov_offset = base;
1943	}
1944}
1945EXPORT_SYMBOL(iov_iter_advance);
1946
1947/*
1948 * Fault in the first iovec of the given iov_iter, to a maximum length
1949 * of bytes. Returns 0 on success, or non-zero if the memory could not be
1950 * accessed (ie. because it is an invalid address).
1951 *
1952 * writev-intensive code may want this to prefault several iovecs -- that
1953 * would be possible (callers must not rely on the fact that _only_ the
1954 * first iovec will be faulted with the current implementation).
1955 */
1956int iov_iter_fault_in_readable(struct iov_iter *i, size_t bytes)
1957{
1958	char __user *buf = i->iov->iov_base + i->iov_offset;
1959	bytes = min(bytes, i->iov->iov_len - i->iov_offset);
1960	return fault_in_pages_readable(buf, bytes);
1961}
1962EXPORT_SYMBOL(iov_iter_fault_in_readable);
1963
1964/*
1965 * Return the count of just the current iov_iter segment.
1966 */
1967size_t iov_iter_single_seg_count(struct iov_iter *i)
1968{
1969	const struct iovec *iov = i->iov;
1970	if (i->nr_segs == 1)
1971		return i->count;
1972	else
1973		return min(i->count, iov->iov_len - i->iov_offset);
1974}
1975EXPORT_SYMBOL(iov_iter_single_seg_count);
1976
1977/*
1978 * Performs necessary checks before doing a write
1979 *
1980 * Can adjust writing position or amount of bytes to write.
1981 * Returns appropriate error code that caller should return or
1982 * zero in case that write should be allowed.
1983 */
1984inline int generic_write_checks(struct file *file, loff_t *pos, size_t *count, int isblk)
1985{
1986	struct inode *inode = file->f_mapping->host;
1987	unsigned long limit = current->signal->rlim[RLIMIT_FSIZE].rlim_cur;
1988
1989        if (unlikely(*pos < 0))
1990                return -EINVAL;
1991
1992	if (!isblk) {
1993		/* FIXME: this is for backwards compatibility with 2.4 */
1994		if (file->f_flags & O_APPEND)
1995                        *pos = i_size_read(inode);
1996
1997		if (limit != RLIM_INFINITY) {
1998			if (*pos >= limit) {
1999				send_sig(SIGXFSZ, current, 0);
2000				return -EFBIG;
2001			}
2002			if (*count > limit - (typeof(limit))*pos) {
2003				*count = limit - (typeof(limit))*pos;
2004			}
2005		}
2006	}
2007
2008	/*
2009	 * LFS rule
2010	 */
2011	if (unlikely(*pos + *count > MAX_NON_LFS &&
2012				!(file->f_flags & O_LARGEFILE))) {
2013		if (*pos >= MAX_NON_LFS) {
2014			return -EFBIG;
2015		}
2016		if (*count > MAX_NON_LFS - (unsigned long)*pos) {
2017			*count = MAX_NON_LFS - (unsigned long)*pos;
2018		}
2019	}
2020
2021	/*
2022	 * Are we about to exceed the fs block limit ?
2023	 *
2024	 * If we have written data it becomes a short write.  If we have
2025	 * exceeded without writing data we send a signal and return EFBIG.
2026	 * Linus frestrict idea will clean these up nicely..
2027	 */
2028	if (likely(!isblk)) {
2029		if (unlikely(*pos >= inode->i_sb->s_maxbytes)) {
2030			if (*count || *pos > inode->i_sb->s_maxbytes) {
2031				return -EFBIG;
2032			}
2033			/* zero-length writes at ->s_maxbytes are OK */
2034		}
2035
2036		if (unlikely(*pos + *count > inode->i_sb->s_maxbytes))
2037			*count = inode->i_sb->s_maxbytes - *pos;
2038	} else {
2039#ifdef CONFIG_BLOCK
2040		loff_t isize;
2041		if (bdev_read_only(I_BDEV(inode)))
2042			return -EPERM;
2043		isize = i_size_read(inode);
2044		if (*pos >= isize) {
2045			if (*count || *pos > isize)
2046				return -ENOSPC;
2047		}
2048
2049		if (*pos + *count > isize)
2050			*count = isize - *pos;
2051#else
2052		return -EPERM;
2053#endif
2054	}
2055	return 0;
2056}
2057EXPORT_SYMBOL(generic_write_checks);
2058
2059int pagecache_write_begin(struct file *file, struct address_space *mapping,
2060				loff_t pos, unsigned len, unsigned flags,
2061				struct page **pagep, void **fsdata)
2062{
2063	const struct address_space_operations *aops = mapping->a_ops;
2064
2065	return aops->write_begin(file, mapping, pos, len, flags,
2066							pagep, fsdata);
2067}
2068EXPORT_SYMBOL(pagecache_write_begin);
2069
2070int pagecache_write_end(struct file *file, struct address_space *mapping,
2071				loff_t pos, unsigned len, unsigned copied,
2072				struct page *page, void *fsdata)
2073{
2074	const struct address_space_operations *aops = mapping->a_ops;
2075
2076	mark_page_accessed(page);
2077	return aops->write_end(file, mapping, pos, len, copied, page, fsdata);
2078}
2079EXPORT_SYMBOL(pagecache_write_end);
2080
2081ssize_t
2082generic_file_direct_write(struct kiocb *iocb, const struct iovec *iov,
2083		unsigned long *nr_segs, loff_t pos, loff_t *ppos,
2084		size_t count, size_t ocount)
2085{
2086	struct file	*file = iocb->ki_filp;
2087	struct address_space *mapping = file->f_mapping;
2088	struct inode	*inode = mapping->host;
2089	ssize_t		written;
2090	size_t		write_len;
2091	pgoff_t		end;
2092
2093	if (count != ocount)
2094		*nr_segs = iov_shorten((struct iovec *)iov, *nr_segs, count);
2095
2096	write_len = iov_length(iov, *nr_segs);
2097	end = (pos + write_len - 1) >> PAGE_CACHE_SHIFT;
2098
2099	written = filemap_write_and_wait_range(mapping, pos, pos + write_len - 1);
2100	if (written)
2101		goto out;
2102
2103	/*
2104	 * After a write we want buffered reads to be sure to go to disk to get
2105	 * the new data.  We invalidate clean cached page from the region we're
2106	 * about to write.  We do this *before* the write so that we can return
2107	 * without clobbering -EIOCBQUEUED from ->direct_IO().
2108	 */
2109	if (mapping->nrpages) {
2110		written = invalidate_inode_pages2_range(mapping,
2111					pos >> PAGE_CACHE_SHIFT, end);
2112		/*
2113		 * If a page can not be invalidated, return 0 to fall back
2114		 * to buffered write.
2115		 */
2116		if (written) {
2117			if (written == -EBUSY)
2118				return 0;
2119			goto out;
2120		}
2121	}
2122
2123	written = mapping->a_ops->direct_IO(WRITE, iocb, iov, pos, *nr_segs);
2124
2125	/*
2126	 * Finally, try again to invalidate clean pages which might have been
2127	 * cached by non-direct readahead, or faulted in by get_user_pages()
2128	 * if the source of the write was an mmap'ed region of the file
2129	 * we're writing.  Either one is a pretty crazy thing to do,
2130	 * so we don't support it 100%.  If this invalidation
2131	 * fails, tough, the write still worked...
2132	 */
2133	if (mapping->nrpages) {
2134		invalidate_inode_pages2_range(mapping,
2135					      pos >> PAGE_CACHE_SHIFT, end);
2136	}
2137
2138	if (written > 0) {
2139		loff_t end = pos + written;
2140		if (end > i_size_read(inode) && !S_ISBLK(inode->i_mode)) {
2141			i_size_write(inode,  end);
2142			mark_inode_dirty(inode);
2143		}
2144		*ppos = end;
2145	}
2146
2147	/*
2148	 * Sync the fs metadata but not the minor inode changes and
2149	 * of course not the data as we did direct DMA for the IO.
2150	 * i_mutex is held, which protects generic_osync_inode() from
2151	 * livelocking.  AIO O_DIRECT ops attempt to sync metadata here.
2152	 */
2153out:
2154	if ((written >= 0 || written == -EIOCBQUEUED) &&
2155	    ((file->f_flags & O_SYNC) || IS_SYNC(inode))) {
2156		int err = generic_osync_inode(inode, mapping, OSYNC_METADATA);
2157		if (err < 0)
2158			written = err;
2159	}
2160	return written;
2161}
2162EXPORT_SYMBOL(generic_file_direct_write);
2163
2164/*
2165 * Find or create a page at the given pagecache position. Return the locked
2166 * page. This function is specifically for buffered writes.
2167 */
2168struct page *grab_cache_page_write_begin(struct address_space *mapping,
2169					pgoff_t index, unsigned flags)
2170{
2171	int status;
2172	struct page *page;
2173	gfp_t gfp_notmask = 0;
2174	if (flags & AOP_FLAG_NOFS)
2175		gfp_notmask = __GFP_FS;
2176repeat:
2177	page = find_lock_page(mapping, index);
2178	if (likely(page))
2179		return page;
2180
2181	page = __page_cache_alloc(mapping_gfp_mask(mapping) & ~gfp_notmask);
2182	if (!page)
2183		return NULL;
2184	status = add_to_page_cache_lru(page, mapping, index,
2185						GFP_KERNEL & ~gfp_notmask);
2186	if (unlikely(status)) {
2187		page_cache_release(page);
2188		if (status == -EEXIST)
2189			goto repeat;
2190		return NULL;
2191	}
2192	return page;
2193}
2194EXPORT_SYMBOL(grab_cache_page_write_begin);
2195
2196static ssize_t generic_perform_write(struct file *file,
2197				struct iov_iter *i, loff_t pos)
2198{
2199	struct address_space *mapping = file->f_mapping;
2200	const struct address_space_operations *a_ops = mapping->a_ops;
2201	long status = 0;
2202	ssize_t written = 0;
2203	unsigned int flags = 0;
2204
2205	/*
2206	 * Copies from kernel address space cannot fail (NFSD is a big user).
2207	 */
2208	if (segment_eq(get_fs(), KERNEL_DS))
2209		flags |= AOP_FLAG_UNINTERRUPTIBLE;
2210
2211	do {
2212		struct page *page;
2213		pgoff_t index;		/* Pagecache index for current page */
2214		unsigned long offset;	/* Offset into pagecache page */
2215		unsigned long bytes;	/* Bytes to write to page */
2216		size_t copied;		/* Bytes copied from user */
2217		void *fsdata;
2218
2219		offset = (pos & (PAGE_CACHE_SIZE - 1));
2220		index = pos >> PAGE_CACHE_SHIFT;
2221		bytes = min_t(unsigned long, PAGE_CACHE_SIZE - offset,
2222						iov_iter_count(i));
2223
2224again:
2225
2226		/*
2227		 * Bring in the user page that we will copy from _first_.
2228		 * Otherwise there's a nasty deadlock on copying from the
2229		 * same page as we're writing to, without it being marked
2230		 * up-to-date.
2231		 *
2232		 * Not only is this an optimisation, but it is also required
2233		 * to check that the address is actually valid, when atomic
2234		 * usercopies are used, below.
2235		 */
2236		if (unlikely(iov_iter_fault_in_readable(i, bytes))) {
2237			status = -EFAULT;
2238			break;
2239		}
2240
2241		status = a_ops->write_begin(file, mapping, pos, bytes, flags,
2242						&page, &fsdata);
2243		if (unlikely(status))
2244			break;
2245
2246		pagefault_disable();
2247		copied = iov_iter_copy_from_user_atomic(page, i, offset, bytes);
2248		pagefault_enable();
2249		flush_dcache_page(page);
2250
2251		status = a_ops->write_end(file, mapping, pos, bytes, copied,
2252						page, fsdata);
2253		if (unlikely(status < 0))
2254			break;
2255		copied = status;
2256
2257		cond_resched();
2258
2259		iov_iter_advance(i, copied);
2260		if (unlikely(copied == 0)) {
2261			/*
2262			 * If we were unable to copy any data at all, we must
2263			 * fall back to a single segment length write.
2264			 *
2265			 * If we didn't fallback here, we could livelock
2266			 * because not all segments in the iov can be copied at
2267			 * once without a pagefault.
2268			 */
2269			bytes = min_t(unsigned long, PAGE_CACHE_SIZE - offset,
2270						iov_iter_single_seg_count(i));
2271			goto again;
2272		}
2273		pos += copied;
2274		written += copied;
2275
2276		balance_dirty_pages_ratelimited(mapping);
2277
2278	} while (iov_iter_count(i));
2279
2280	return written ? written : status;
2281}
2282
2283ssize_t
2284generic_file_buffered_write(struct kiocb *iocb, const struct iovec *iov,
2285		unsigned long nr_segs, loff_t pos, loff_t *ppos,
2286		size_t count, ssize_t written)
2287{
2288	struct file *file = iocb->ki_filp;
2289	struct address_space *mapping = file->f_mapping;
2290	const struct address_space_operations *a_ops = mapping->a_ops;
2291	struct inode *inode = mapping->host;
2292	ssize_t status;
2293	struct iov_iter i;
2294
2295	iov_iter_init(&i, iov, nr_segs, count, written);
2296	status = generic_perform_write(file, &i, pos);
2297
2298	if (likely(status >= 0)) {
2299		written += status;
2300		*ppos = pos + status;
2301
2302		/*
2303		 * For now, when the user asks for O_SYNC, we'll actually give
2304		 * O_DSYNC
2305		 */
2306		if (unlikely((file->f_flags & O_SYNC) || IS_SYNC(inode))) {
2307			if (!a_ops->writepage || !is_sync_kiocb(iocb))
2308				status = generic_osync_inode(inode, mapping,
2309						OSYNC_METADATA|OSYNC_DATA);
2310		}
2311  	}
2312
2313	/*
2314	 * If we get here for O_DIRECT writes then we must have fallen through
2315	 * to buffered writes (block instantiation inside i_size).  So we sync
2316	 * the file data here, to try to honour O_DIRECT expectations.
2317	 */
2318	if (unlikely(file->f_flags & O_DIRECT) && written)
2319		status = filemap_write_and_wait_range(mapping,
2320					pos, pos + written - 1);
2321
2322	return written ? written : status;
2323}
2324EXPORT_SYMBOL(generic_file_buffered_write);
2325
2326static ssize_t
2327__generic_file_aio_write_nolock(struct kiocb *iocb, const struct iovec *iov,
2328				unsigned long nr_segs, loff_t *ppos)
2329{
2330	struct file *file = iocb->ki_filp;
2331	struct address_space * mapping = file->f_mapping;
2332	size_t ocount;		/* original count */
2333	size_t count;		/* after file limit checks */
2334	struct inode 	*inode = mapping->host;
2335	loff_t		pos;
2336	ssize_t		written;
2337	ssize_t		err;
2338
2339	ocount = 0;
2340	err = generic_segment_checks(iov, &nr_segs, &ocount, VERIFY_READ);
2341	if (err)
2342		return err;
2343
2344	count = ocount;
2345	pos = *ppos;
2346
2347	vfs_check_frozen(inode->i_sb, SB_FREEZE_WRITE);
2348
2349	/* We can write back this queue in page reclaim */
2350	current->backing_dev_info = mapping->backing_dev_info;
2351	written = 0;
2352
2353	err = generic_write_checks(file, &pos, &count, S_ISBLK(inode->i_mode));
2354	if (err)
2355		goto out;
2356
2357	if (count == 0)
2358		goto out;
2359
2360	err = file_remove_suid(file);
2361	if (err)
2362		goto out;
2363
2364	file_update_time(file);
2365
2366	/* coalesce the iovecs and go direct-to-BIO for O_DIRECT */
2367	if (unlikely(file->f_flags & O_DIRECT)) {
2368		loff_t endbyte;
2369		ssize_t written_buffered;
2370
2371		written = generic_file_direct_write(iocb, iov, &nr_segs, pos,
2372							ppos, count, ocount);
2373		if (written < 0 || written == count)
2374			goto out;
2375		/*
2376		 * direct-io write to a hole: fall through to buffered I/O
2377		 * for completing the rest of the request.
2378		 */
2379		pos += written;
2380		count -= written;
2381		written_buffered = generic_file_buffered_write(iocb, iov,
2382						nr_segs, pos, ppos, count,
2383						written);
2384		/*
2385		 * If generic_file_buffered_write() retuned a synchronous error
2386		 * then we want to return the number of bytes which were
2387		 * direct-written, or the error code if that was zero.  Note
2388		 * that this differs from normal direct-io semantics, which
2389		 * will return -EFOO even if some bytes were written.
2390		 */
2391		if (written_buffered < 0) {
2392			err = written_buffered;
2393			goto out;
2394		}
2395
2396		/*
2397		 * We need to ensure that the page cache pages are written to
2398		 * disk and invalidated to preserve the expected O_DIRECT
2399		 * semantics.
2400		 */
2401		endbyte = pos + written_buffered - written - 1;
2402		err = do_sync_mapping_range(file->f_mapping, pos, endbyte,
2403					    SYNC_FILE_RANGE_WAIT_BEFORE|
2404					    SYNC_FILE_RANGE_WRITE|
2405					    SYNC_FILE_RANGE_WAIT_AFTER);
2406		if (err == 0) {
2407			written = written_buffered;
2408			invalidate_mapping_pages(mapping,
2409						 pos >> PAGE_CACHE_SHIFT,
2410						 endbyte >> PAGE_CACHE_SHIFT);
2411		} else {
2412			/*
2413			 * We don't know how much we wrote, so just return
2414			 * the number of bytes which were direct-written
2415			 */
2416		}
2417	} else {
2418		written = generic_file_buffered_write(iocb, iov, nr_segs,
2419				pos, ppos, count, written);
2420	}
2421out:
2422	current->backing_dev_info = NULL;
2423	return written ? written : err;
2424}
2425
2426ssize_t generic_file_aio_write_nolock(struct kiocb *iocb,
2427		const struct iovec *iov, unsigned long nr_segs, loff_t pos)
2428{
2429	struct file *file = iocb->ki_filp;
2430	struct address_space *mapping = file->f_mapping;
2431	struct inode *inode = mapping->host;
2432	ssize_t ret;
2433
2434	BUG_ON(iocb->ki_pos != pos);
2435
2436	ret = __generic_file_aio_write_nolock(iocb, iov, nr_segs,
2437			&iocb->ki_pos);
2438
2439	if (ret > 0 && ((file->f_flags & O_SYNC) || IS_SYNC(inode))) {
2440		ssize_t err;
2441
2442		err = sync_page_range_nolock(inode, mapping, pos, ret);
2443		if (err < 0)
2444			ret = err;
2445	}
2446	return ret;
2447}
2448EXPORT_SYMBOL(generic_file_aio_write_nolock);
2449
2450ssize_t generic_file_aio_write(struct kiocb *iocb, const struct iovec *iov,
2451		unsigned long nr_segs, loff_t pos)
2452{
2453	struct file *file = iocb->ki_filp;
2454	struct address_space *mapping = file->f_mapping;
2455	struct inode *inode = mapping->host;
2456	ssize_t ret;
2457
2458	BUG_ON(iocb->ki_pos != pos);
2459
2460	mutex_lock(&inode->i_mutex);
2461	ret = __generic_file_aio_write_nolock(iocb, iov, nr_segs,
2462			&iocb->ki_pos);
2463	mutex_unlock(&inode->i_mutex);
2464
2465	if (ret > 0 && ((file->f_flags & O_SYNC) || IS_SYNC(inode))) {
2466		ssize_t err;
2467
2468		err = sync_page_range(inode, mapping, pos, ret);
2469		if (err < 0)
2470			ret = err;
2471	}
2472	return ret;
2473}
2474EXPORT_SYMBOL(generic_file_aio_write);
2475
2476/**
2477 * try_to_release_page() - release old fs-specific metadata on a page
2478 *
2479 * @page: the page which the kernel is trying to free
2480 * @gfp_mask: memory allocation flags (and I/O mode)
2481 *
2482 * The address_space is to try to release any data against the page
2483 * (presumably at page->private).  If the release was successful, return `1'.
2484 * Otherwise return zero.
2485 *
2486 * This may also be called if PG_fscache is set on a page, indicating that the
2487 * page is known to the local caching routines.
2488 *
2489 * The @gfp_mask argument specifies whether I/O may be performed to release
2490 * this page (__GFP_IO), and whether the call may block (__GFP_WAIT & __GFP_FS).
2491 *
2492 */
2493int try_to_release_page(struct page *page, gfp_t gfp_mask)
2494{
2495	struct address_space * const mapping = page->mapping;
2496
2497	BUG_ON(!PageLocked(page));
2498	if (PageWriteback(page))
2499		return 0;
2500
2501	if (mapping && mapping->a_ops->releasepage)
2502		return mapping->a_ops->releasepage(page, gfp_mask);
2503	return try_to_free_buffers(page);
2504}
2505
2506EXPORT_SYMBOL(try_to_release_page);
2507