filemap.c revision 212260aa07135b327752dc02625c68cf4ce04caf
1/*
2 *	linux/mm/filemap.c
3 *
4 * Copyright (C) 1994-1999  Linus Torvalds
5 */
6
7/*
8 * This file handles the generic file mmap semantics used by
9 * most "normal" filesystems (but you don't /have/ to use this:
10 * the NFS filesystem used to do this differently, for example)
11 */
12#include <linux/module.h>
13#include <linux/compiler.h>
14#include <linux/fs.h>
15#include <linux/uaccess.h>
16#include <linux/aio.h>
17#include <linux/capability.h>
18#include <linux/kernel_stat.h>
19#include <linux/gfp.h>
20#include <linux/mm.h>
21#include <linux/swap.h>
22#include <linux/mman.h>
23#include <linux/pagemap.h>
24#include <linux/file.h>
25#include <linux/uio.h>
26#include <linux/hash.h>
27#include <linux/writeback.h>
28#include <linux/backing-dev.h>
29#include <linux/pagevec.h>
30#include <linux/blkdev.h>
31#include <linux/security.h>
32#include <linux/syscalls.h>
33#include <linux/cpuset.h>
34#include <linux/hardirq.h> /* for BUG_ON(!in_atomic()) only */
35#include <linux/memcontrol.h>
36#include <linux/mm_inline.h> /* for page_is_file_cache() */
37#include "internal.h"
38
39/*
40 * FIXME: remove all knowledge of the buffer layer from the core VM
41 */
42#include <linux/buffer_head.h> /* for try_to_free_buffers */
43
44#include <asm/mman.h>
45
46/*
47 * Shared mappings implemented 30.11.1994. It's not fully working yet,
48 * though.
49 *
50 * Shared mappings now work. 15.8.1995  Bruno.
51 *
52 * finished 'unifying' the page and buffer cache and SMP-threaded the
53 * page-cache, 21.05.1999, Ingo Molnar <mingo@redhat.com>
54 *
55 * SMP-threaded pagemap-LRU 1999, Andrea Arcangeli <andrea@suse.de>
56 */
57
58/*
59 * Lock ordering:
60 *
61 *  ->i_mmap_lock		(truncate_pagecache)
62 *    ->private_lock		(__free_pte->__set_page_dirty_buffers)
63 *      ->swap_lock		(exclusive_swap_page, others)
64 *        ->mapping->tree_lock
65 *
66 *  ->i_mutex
67 *    ->i_mmap_lock		(truncate->unmap_mapping_range)
68 *
69 *  ->mmap_sem
70 *    ->i_mmap_lock
71 *      ->page_table_lock or pte_lock	(various, mainly in memory.c)
72 *        ->mapping->tree_lock	(arch-dependent flush_dcache_mmap_lock)
73 *
74 *  ->mmap_sem
75 *    ->lock_page		(access_process_vm)
76 *
77 *  ->i_mutex			(generic_file_buffered_write)
78 *    ->mmap_sem		(fault_in_pages_readable->do_page_fault)
79 *
80 *  ->i_mutex
81 *    ->i_alloc_sem             (various)
82 *
83 *  ->inode_lock
84 *    ->sb_lock			(fs/fs-writeback.c)
85 *    ->mapping->tree_lock	(__sync_single_inode)
86 *
87 *  ->i_mmap_lock
88 *    ->anon_vma.lock		(vma_adjust)
89 *
90 *  ->anon_vma.lock
91 *    ->page_table_lock or pte_lock	(anon_vma_prepare and various)
92 *
93 *  ->page_table_lock or pte_lock
94 *    ->swap_lock		(try_to_unmap_one)
95 *    ->private_lock		(try_to_unmap_one)
96 *    ->tree_lock		(try_to_unmap_one)
97 *    ->zone.lru_lock		(follow_page->mark_page_accessed)
98 *    ->zone.lru_lock		(check_pte_range->isolate_lru_page)
99 *    ->private_lock		(page_remove_rmap->set_page_dirty)
100 *    ->tree_lock		(page_remove_rmap->set_page_dirty)
101 *    ->inode_lock		(page_remove_rmap->set_page_dirty)
102 *    ->inode_lock		(zap_pte_range->set_page_dirty)
103 *    ->private_lock		(zap_pte_range->__set_page_dirty_buffers)
104 *
105 *  (code doesn't rely on that order, so you could switch it around)
106 *  ->tasklist_lock             (memory_failure, collect_procs_ao)
107 *    ->i_mmap_lock
108 */
109
110/*
111 * Remove a page from the page cache and free it. Caller has to make
112 * sure the page is locked and that nobody else uses it - or that usage
113 * is safe.  The caller must hold the mapping's tree_lock.
114 */
115void __remove_from_page_cache(struct page *page)
116{
117	struct address_space *mapping = page->mapping;
118
119	radix_tree_delete(&mapping->page_tree, page->index);
120	page->mapping = NULL;
121	mapping->nrpages--;
122	__dec_zone_page_state(page, NR_FILE_PAGES);
123	if (PageSwapBacked(page))
124		__dec_zone_page_state(page, NR_SHMEM);
125	BUG_ON(page_mapped(page));
126
127	/*
128	 * Some filesystems seem to re-dirty the page even after
129	 * the VM has canceled the dirty bit (eg ext3 journaling).
130	 *
131	 * Fix it up by doing a final dirty accounting check after
132	 * having removed the page entirely.
133	 */
134	if (PageDirty(page) && mapping_cap_account_dirty(mapping)) {
135		dec_zone_page_state(page, NR_FILE_DIRTY);
136		dec_bdi_stat(mapping->backing_dev_info, BDI_RECLAIMABLE);
137	}
138}
139
140void remove_from_page_cache(struct page *page)
141{
142	struct address_space *mapping = page->mapping;
143	void (*freepage)(struct page *);
144
145	BUG_ON(!PageLocked(page));
146
147	freepage = mapping->a_ops->freepage;
148	spin_lock_irq(&mapping->tree_lock);
149	__remove_from_page_cache(page);
150	spin_unlock_irq(&mapping->tree_lock);
151	mem_cgroup_uncharge_cache_page(page);
152
153	if (freepage)
154		freepage(page);
155}
156EXPORT_SYMBOL(remove_from_page_cache);
157
158static int sync_page(void *word)
159{
160	struct address_space *mapping;
161	struct page *page;
162
163	page = container_of((unsigned long *)word, struct page, flags);
164
165	/*
166	 * page_mapping() is being called without PG_locked held.
167	 * Some knowledge of the state and use of the page is used to
168	 * reduce the requirements down to a memory barrier.
169	 * The danger here is of a stale page_mapping() return value
170	 * indicating a struct address_space different from the one it's
171	 * associated with when it is associated with one.
172	 * After smp_mb(), it's either the correct page_mapping() for
173	 * the page, or an old page_mapping() and the page's own
174	 * page_mapping() has gone NULL.
175	 * The ->sync_page() address_space operation must tolerate
176	 * page_mapping() going NULL. By an amazing coincidence,
177	 * this comes about because none of the users of the page
178	 * in the ->sync_page() methods make essential use of the
179	 * page_mapping(), merely passing the page down to the backing
180	 * device's unplug functions when it's non-NULL, which in turn
181	 * ignore it for all cases but swap, where only page_private(page) is
182	 * of interest. When page_mapping() does go NULL, the entire
183	 * call stack gracefully ignores the page and returns.
184	 * -- wli
185	 */
186	smp_mb();
187	mapping = page_mapping(page);
188	if (mapping && mapping->a_ops && mapping->a_ops->sync_page)
189		mapping->a_ops->sync_page(page);
190	io_schedule();
191	return 0;
192}
193
194static int sync_page_killable(void *word)
195{
196	sync_page(word);
197	return fatal_signal_pending(current) ? -EINTR : 0;
198}
199
200/**
201 * __filemap_fdatawrite_range - start writeback on mapping dirty pages in range
202 * @mapping:	address space structure to write
203 * @start:	offset in bytes where the range starts
204 * @end:	offset in bytes where the range ends (inclusive)
205 * @sync_mode:	enable synchronous operation
206 *
207 * Start writeback against all of a mapping's dirty pages that lie
208 * within the byte offsets <start, end> inclusive.
209 *
210 * If sync_mode is WB_SYNC_ALL then this is a "data integrity" operation, as
211 * opposed to a regular memory cleansing writeback.  The difference between
212 * these two operations is that if a dirty page/buffer is encountered, it must
213 * be waited upon, and not just skipped over.
214 */
215int __filemap_fdatawrite_range(struct address_space *mapping, loff_t start,
216				loff_t end, int sync_mode)
217{
218	int ret;
219	struct writeback_control wbc = {
220		.sync_mode = sync_mode,
221		.nr_to_write = LONG_MAX,
222		.range_start = start,
223		.range_end = end,
224	};
225
226	if (!mapping_cap_writeback_dirty(mapping))
227		return 0;
228
229	ret = do_writepages(mapping, &wbc);
230	return ret;
231}
232
233static inline int __filemap_fdatawrite(struct address_space *mapping,
234	int sync_mode)
235{
236	return __filemap_fdatawrite_range(mapping, 0, LLONG_MAX, sync_mode);
237}
238
239int filemap_fdatawrite(struct address_space *mapping)
240{
241	return __filemap_fdatawrite(mapping, WB_SYNC_ALL);
242}
243EXPORT_SYMBOL(filemap_fdatawrite);
244
245int filemap_fdatawrite_range(struct address_space *mapping, loff_t start,
246				loff_t end)
247{
248	return __filemap_fdatawrite_range(mapping, start, end, WB_SYNC_ALL);
249}
250EXPORT_SYMBOL(filemap_fdatawrite_range);
251
252/**
253 * filemap_flush - mostly a non-blocking flush
254 * @mapping:	target address_space
255 *
256 * This is a mostly non-blocking flush.  Not suitable for data-integrity
257 * purposes - I/O may not be started against all dirty pages.
258 */
259int filemap_flush(struct address_space *mapping)
260{
261	return __filemap_fdatawrite(mapping, WB_SYNC_NONE);
262}
263EXPORT_SYMBOL(filemap_flush);
264
265/**
266 * filemap_fdatawait_range - wait for writeback to complete
267 * @mapping:		address space structure to wait for
268 * @start_byte:		offset in bytes where the range starts
269 * @end_byte:		offset in bytes where the range ends (inclusive)
270 *
271 * Walk the list of under-writeback pages of the given address space
272 * in the given range and wait for all of them.
273 */
274int filemap_fdatawait_range(struct address_space *mapping, loff_t start_byte,
275			    loff_t end_byte)
276{
277	pgoff_t index = start_byte >> PAGE_CACHE_SHIFT;
278	pgoff_t end = end_byte >> PAGE_CACHE_SHIFT;
279	struct pagevec pvec;
280	int nr_pages;
281	int ret = 0;
282
283	if (end_byte < start_byte)
284		return 0;
285
286	pagevec_init(&pvec, 0);
287	while ((index <= end) &&
288			(nr_pages = pagevec_lookup_tag(&pvec, mapping, &index,
289			PAGECACHE_TAG_WRITEBACK,
290			min(end - index, (pgoff_t)PAGEVEC_SIZE-1) + 1)) != 0) {
291		unsigned i;
292
293		for (i = 0; i < nr_pages; i++) {
294			struct page *page = pvec.pages[i];
295
296			/* until radix tree lookup accepts end_index */
297			if (page->index > end)
298				continue;
299
300			wait_on_page_writeback(page);
301			if (TestClearPageError(page))
302				ret = -EIO;
303		}
304		pagevec_release(&pvec);
305		cond_resched();
306	}
307
308	/* Check for outstanding write errors */
309	if (test_and_clear_bit(AS_ENOSPC, &mapping->flags))
310		ret = -ENOSPC;
311	if (test_and_clear_bit(AS_EIO, &mapping->flags))
312		ret = -EIO;
313
314	return ret;
315}
316EXPORT_SYMBOL(filemap_fdatawait_range);
317
318/**
319 * filemap_fdatawait - wait for all under-writeback pages to complete
320 * @mapping: address space structure to wait for
321 *
322 * Walk the list of under-writeback pages of the given address space
323 * and wait for all of them.
324 */
325int filemap_fdatawait(struct address_space *mapping)
326{
327	loff_t i_size = i_size_read(mapping->host);
328
329	if (i_size == 0)
330		return 0;
331
332	return filemap_fdatawait_range(mapping, 0, i_size - 1);
333}
334EXPORT_SYMBOL(filemap_fdatawait);
335
336int filemap_write_and_wait(struct address_space *mapping)
337{
338	int err = 0;
339
340	if (mapping->nrpages) {
341		err = filemap_fdatawrite(mapping);
342		/*
343		 * Even if the above returned error, the pages may be
344		 * written partially (e.g. -ENOSPC), so we wait for it.
345		 * But the -EIO is special case, it may indicate the worst
346		 * thing (e.g. bug) happened, so we avoid waiting for it.
347		 */
348		if (err != -EIO) {
349			int err2 = filemap_fdatawait(mapping);
350			if (!err)
351				err = err2;
352		}
353	}
354	return err;
355}
356EXPORT_SYMBOL(filemap_write_and_wait);
357
358/**
359 * filemap_write_and_wait_range - write out & wait on a file range
360 * @mapping:	the address_space for the pages
361 * @lstart:	offset in bytes where the range starts
362 * @lend:	offset in bytes where the range ends (inclusive)
363 *
364 * Write out and wait upon file offsets lstart->lend, inclusive.
365 *
366 * Note that `lend' is inclusive (describes the last byte to be written) so
367 * that this function can be used to write to the very end-of-file (end = -1).
368 */
369int filemap_write_and_wait_range(struct address_space *mapping,
370				 loff_t lstart, loff_t lend)
371{
372	int err = 0;
373
374	if (mapping->nrpages) {
375		err = __filemap_fdatawrite_range(mapping, lstart, lend,
376						 WB_SYNC_ALL);
377		/* See comment of filemap_write_and_wait() */
378		if (err != -EIO) {
379			int err2 = filemap_fdatawait_range(mapping,
380						lstart, lend);
381			if (!err)
382				err = err2;
383		}
384	}
385	return err;
386}
387EXPORT_SYMBOL(filemap_write_and_wait_range);
388
389/**
390 * add_to_page_cache_locked - add a locked page to the pagecache
391 * @page:	page to add
392 * @mapping:	the page's address_space
393 * @offset:	page index
394 * @gfp_mask:	page allocation mode
395 *
396 * This function is used to add a page to the pagecache. It must be locked.
397 * This function does not add the page to the LRU.  The caller must do that.
398 */
399int add_to_page_cache_locked(struct page *page, struct address_space *mapping,
400		pgoff_t offset, gfp_t gfp_mask)
401{
402	int error;
403
404	VM_BUG_ON(!PageLocked(page));
405
406	error = mem_cgroup_cache_charge(page, current->mm,
407					gfp_mask & GFP_RECLAIM_MASK);
408	if (error)
409		goto out;
410
411	error = radix_tree_preload(gfp_mask & ~__GFP_HIGHMEM);
412	if (error == 0) {
413		page_cache_get(page);
414		page->mapping = mapping;
415		page->index = offset;
416
417		spin_lock_irq(&mapping->tree_lock);
418		error = radix_tree_insert(&mapping->page_tree, offset, page);
419		if (likely(!error)) {
420			mapping->nrpages++;
421			__inc_zone_page_state(page, NR_FILE_PAGES);
422			if (PageSwapBacked(page))
423				__inc_zone_page_state(page, NR_SHMEM);
424			spin_unlock_irq(&mapping->tree_lock);
425		} else {
426			page->mapping = NULL;
427			spin_unlock_irq(&mapping->tree_lock);
428			mem_cgroup_uncharge_cache_page(page);
429			page_cache_release(page);
430		}
431		radix_tree_preload_end();
432	} else
433		mem_cgroup_uncharge_cache_page(page);
434out:
435	return error;
436}
437EXPORT_SYMBOL(add_to_page_cache_locked);
438
439int add_to_page_cache_lru(struct page *page, struct address_space *mapping,
440				pgoff_t offset, gfp_t gfp_mask)
441{
442	int ret;
443
444	/*
445	 * Splice_read and readahead add shmem/tmpfs pages into the page cache
446	 * before shmem_readpage has a chance to mark them as SwapBacked: they
447	 * need to go on the anon lru below, and mem_cgroup_cache_charge
448	 * (called in add_to_page_cache) needs to know where they're going too.
449	 */
450	if (mapping_cap_swap_backed(mapping))
451		SetPageSwapBacked(page);
452
453	ret = add_to_page_cache(page, mapping, offset, gfp_mask);
454	if (ret == 0) {
455		if (page_is_file_cache(page))
456			lru_cache_add_file(page);
457		else
458			lru_cache_add_anon(page);
459	}
460	return ret;
461}
462EXPORT_SYMBOL_GPL(add_to_page_cache_lru);
463
464#ifdef CONFIG_NUMA
465struct page *__page_cache_alloc(gfp_t gfp)
466{
467	int n;
468	struct page *page;
469
470	if (cpuset_do_page_mem_spread()) {
471		get_mems_allowed();
472		n = cpuset_mem_spread_node();
473		page = alloc_pages_exact_node(n, gfp, 0);
474		put_mems_allowed();
475		return page;
476	}
477	return alloc_pages(gfp, 0);
478}
479EXPORT_SYMBOL(__page_cache_alloc);
480#endif
481
482static int __sleep_on_page_lock(void *word)
483{
484	io_schedule();
485	return 0;
486}
487
488/*
489 * In order to wait for pages to become available there must be
490 * waitqueues associated with pages. By using a hash table of
491 * waitqueues where the bucket discipline is to maintain all
492 * waiters on the same queue and wake all when any of the pages
493 * become available, and for the woken contexts to check to be
494 * sure the appropriate page became available, this saves space
495 * at a cost of "thundering herd" phenomena during rare hash
496 * collisions.
497 */
498static wait_queue_head_t *page_waitqueue(struct page *page)
499{
500	const struct zone *zone = page_zone(page);
501
502	return &zone->wait_table[hash_ptr(page, zone->wait_table_bits)];
503}
504
505static inline void wake_up_page(struct page *page, int bit)
506{
507	__wake_up_bit(page_waitqueue(page), &page->flags, bit);
508}
509
510void wait_on_page_bit(struct page *page, int bit_nr)
511{
512	DEFINE_WAIT_BIT(wait, &page->flags, bit_nr);
513
514	if (test_bit(bit_nr, &page->flags))
515		__wait_on_bit(page_waitqueue(page), &wait, sync_page,
516							TASK_UNINTERRUPTIBLE);
517}
518EXPORT_SYMBOL(wait_on_page_bit);
519
520/**
521 * add_page_wait_queue - Add an arbitrary waiter to a page's wait queue
522 * @page: Page defining the wait queue of interest
523 * @waiter: Waiter to add to the queue
524 *
525 * Add an arbitrary @waiter to the wait queue for the nominated @page.
526 */
527void add_page_wait_queue(struct page *page, wait_queue_t *waiter)
528{
529	wait_queue_head_t *q = page_waitqueue(page);
530	unsigned long flags;
531
532	spin_lock_irqsave(&q->lock, flags);
533	__add_wait_queue(q, waiter);
534	spin_unlock_irqrestore(&q->lock, flags);
535}
536EXPORT_SYMBOL_GPL(add_page_wait_queue);
537
538/**
539 * unlock_page - unlock a locked page
540 * @page: the page
541 *
542 * Unlocks the page and wakes up sleepers in ___wait_on_page_locked().
543 * Also wakes sleepers in wait_on_page_writeback() because the wakeup
544 * mechananism between PageLocked pages and PageWriteback pages is shared.
545 * But that's OK - sleepers in wait_on_page_writeback() just go back to sleep.
546 *
547 * The mb is necessary to enforce ordering between the clear_bit and the read
548 * of the waitqueue (to avoid SMP races with a parallel wait_on_page_locked()).
549 */
550void unlock_page(struct page *page)
551{
552	VM_BUG_ON(!PageLocked(page));
553	clear_bit_unlock(PG_locked, &page->flags);
554	smp_mb__after_clear_bit();
555	wake_up_page(page, PG_locked);
556}
557EXPORT_SYMBOL(unlock_page);
558
559/**
560 * end_page_writeback - end writeback against a page
561 * @page: the page
562 */
563void end_page_writeback(struct page *page)
564{
565	if (TestClearPageReclaim(page))
566		rotate_reclaimable_page(page);
567
568	if (!test_clear_page_writeback(page))
569		BUG();
570
571	smp_mb__after_clear_bit();
572	wake_up_page(page, PG_writeback);
573}
574EXPORT_SYMBOL(end_page_writeback);
575
576/**
577 * __lock_page - get a lock on the page, assuming we need to sleep to get it
578 * @page: the page to lock
579 *
580 * Ugly. Running sync_page() in state TASK_UNINTERRUPTIBLE is scary.  If some
581 * random driver's requestfn sets TASK_RUNNING, we could busywait.  However
582 * chances are that on the second loop, the block layer's plug list is empty,
583 * so sync_page() will then return in state TASK_UNINTERRUPTIBLE.
584 */
585void __lock_page(struct page *page)
586{
587	DEFINE_WAIT_BIT(wait, &page->flags, PG_locked);
588
589	__wait_on_bit_lock(page_waitqueue(page), &wait, sync_page,
590							TASK_UNINTERRUPTIBLE);
591}
592EXPORT_SYMBOL(__lock_page);
593
594int __lock_page_killable(struct page *page)
595{
596	DEFINE_WAIT_BIT(wait, &page->flags, PG_locked);
597
598	return __wait_on_bit_lock(page_waitqueue(page), &wait,
599					sync_page_killable, TASK_KILLABLE);
600}
601EXPORT_SYMBOL_GPL(__lock_page_killable);
602
603/**
604 * __lock_page_nosync - get a lock on the page, without calling sync_page()
605 * @page: the page to lock
606 *
607 * Variant of lock_page that does not require the caller to hold a reference
608 * on the page's mapping.
609 */
610void __lock_page_nosync(struct page *page)
611{
612	DEFINE_WAIT_BIT(wait, &page->flags, PG_locked);
613	__wait_on_bit_lock(page_waitqueue(page), &wait, __sleep_on_page_lock,
614							TASK_UNINTERRUPTIBLE);
615}
616
617int __lock_page_or_retry(struct page *page, struct mm_struct *mm,
618			 unsigned int flags)
619{
620	if (!(flags & FAULT_FLAG_ALLOW_RETRY)) {
621		__lock_page(page);
622		return 1;
623	} else {
624		up_read(&mm->mmap_sem);
625		wait_on_page_locked(page);
626		return 0;
627	}
628}
629
630/**
631 * find_get_page - find and get a page reference
632 * @mapping: the address_space to search
633 * @offset: the page index
634 *
635 * Is there a pagecache struct page at the given (mapping, offset) tuple?
636 * If yes, increment its refcount and return it; if no, return NULL.
637 */
638struct page *find_get_page(struct address_space *mapping, pgoff_t offset)
639{
640	void **pagep;
641	struct page *page;
642
643	rcu_read_lock();
644repeat:
645	page = NULL;
646	pagep = radix_tree_lookup_slot(&mapping->page_tree, offset);
647	if (pagep) {
648		page = radix_tree_deref_slot(pagep);
649		if (unlikely(!page))
650			goto out;
651		if (radix_tree_deref_retry(page))
652			goto repeat;
653
654		if (!page_cache_get_speculative(page))
655			goto repeat;
656
657		/*
658		 * Has the page moved?
659		 * This is part of the lockless pagecache protocol. See
660		 * include/linux/pagemap.h for details.
661		 */
662		if (unlikely(page != *pagep)) {
663			page_cache_release(page);
664			goto repeat;
665		}
666	}
667out:
668	rcu_read_unlock();
669
670	return page;
671}
672EXPORT_SYMBOL(find_get_page);
673
674/**
675 * find_lock_page - locate, pin and lock a pagecache page
676 * @mapping: the address_space to search
677 * @offset: the page index
678 *
679 * Locates the desired pagecache page, locks it, increments its reference
680 * count and returns its address.
681 *
682 * Returns zero if the page was not present. find_lock_page() may sleep.
683 */
684struct page *find_lock_page(struct address_space *mapping, pgoff_t offset)
685{
686	struct page *page;
687
688repeat:
689	page = find_get_page(mapping, offset);
690	if (page) {
691		lock_page(page);
692		/* Has the page been truncated? */
693		if (unlikely(page->mapping != mapping)) {
694			unlock_page(page);
695			page_cache_release(page);
696			goto repeat;
697		}
698		VM_BUG_ON(page->index != offset);
699	}
700	return page;
701}
702EXPORT_SYMBOL(find_lock_page);
703
704/**
705 * find_or_create_page - locate or add a pagecache page
706 * @mapping: the page's address_space
707 * @index: the page's index into the mapping
708 * @gfp_mask: page allocation mode
709 *
710 * Locates a page in the pagecache.  If the page is not present, a new page
711 * is allocated using @gfp_mask and is added to the pagecache and to the VM's
712 * LRU list.  The returned page is locked and has its reference count
713 * incremented.
714 *
715 * find_or_create_page() may sleep, even if @gfp_flags specifies an atomic
716 * allocation!
717 *
718 * find_or_create_page() returns the desired page's address, or zero on
719 * memory exhaustion.
720 */
721struct page *find_or_create_page(struct address_space *mapping,
722		pgoff_t index, gfp_t gfp_mask)
723{
724	struct page *page;
725	int err;
726repeat:
727	page = find_lock_page(mapping, index);
728	if (!page) {
729		page = __page_cache_alloc(gfp_mask);
730		if (!page)
731			return NULL;
732		/*
733		 * We want a regular kernel memory (not highmem or DMA etc)
734		 * allocation for the radix tree nodes, but we need to honour
735		 * the context-specific requirements the caller has asked for.
736		 * GFP_RECLAIM_MASK collects those requirements.
737		 */
738		err = add_to_page_cache_lru(page, mapping, index,
739			(gfp_mask & GFP_RECLAIM_MASK));
740		if (unlikely(err)) {
741			page_cache_release(page);
742			page = NULL;
743			if (err == -EEXIST)
744				goto repeat;
745		}
746	}
747	return page;
748}
749EXPORT_SYMBOL(find_or_create_page);
750
751/**
752 * find_get_pages - gang pagecache lookup
753 * @mapping:	The address_space to search
754 * @start:	The starting page index
755 * @nr_pages:	The maximum number of pages
756 * @pages:	Where the resulting pages are placed
757 *
758 * find_get_pages() will search for and return a group of up to
759 * @nr_pages pages in the mapping.  The pages are placed at @pages.
760 * find_get_pages() takes a reference against the returned pages.
761 *
762 * The search returns a group of mapping-contiguous pages with ascending
763 * indexes.  There may be holes in the indices due to not-present pages.
764 *
765 * find_get_pages() returns the number of pages which were found.
766 */
767unsigned find_get_pages(struct address_space *mapping, pgoff_t start,
768			    unsigned int nr_pages, struct page **pages)
769{
770	unsigned int i;
771	unsigned int ret;
772	unsigned int nr_found;
773
774	rcu_read_lock();
775restart:
776	nr_found = radix_tree_gang_lookup_slot(&mapping->page_tree,
777				(void ***)pages, start, nr_pages);
778	ret = 0;
779	for (i = 0; i < nr_found; i++) {
780		struct page *page;
781repeat:
782		page = radix_tree_deref_slot((void **)pages[i]);
783		if (unlikely(!page))
784			continue;
785		if (radix_tree_deref_retry(page)) {
786			if (ret)
787				start = pages[ret-1]->index;
788			goto restart;
789		}
790
791		if (!page_cache_get_speculative(page))
792			goto repeat;
793
794		/* Has the page moved? */
795		if (unlikely(page != *((void **)pages[i]))) {
796			page_cache_release(page);
797			goto repeat;
798		}
799
800		pages[ret] = page;
801		ret++;
802	}
803	rcu_read_unlock();
804	return ret;
805}
806
807/**
808 * find_get_pages_contig - gang contiguous pagecache lookup
809 * @mapping:	The address_space to search
810 * @index:	The starting page index
811 * @nr_pages:	The maximum number of pages
812 * @pages:	Where the resulting pages are placed
813 *
814 * find_get_pages_contig() works exactly like find_get_pages(), except
815 * that the returned number of pages are guaranteed to be contiguous.
816 *
817 * find_get_pages_contig() returns the number of pages which were found.
818 */
819unsigned find_get_pages_contig(struct address_space *mapping, pgoff_t index,
820			       unsigned int nr_pages, struct page **pages)
821{
822	unsigned int i;
823	unsigned int ret;
824	unsigned int nr_found;
825
826	rcu_read_lock();
827restart:
828	nr_found = radix_tree_gang_lookup_slot(&mapping->page_tree,
829				(void ***)pages, index, nr_pages);
830	ret = 0;
831	for (i = 0; i < nr_found; i++) {
832		struct page *page;
833repeat:
834		page = radix_tree_deref_slot((void **)pages[i]);
835		if (unlikely(!page))
836			continue;
837		if (radix_tree_deref_retry(page))
838			goto restart;
839
840		if (!page_cache_get_speculative(page))
841			goto repeat;
842
843		/* Has the page moved? */
844		if (unlikely(page != *((void **)pages[i]))) {
845			page_cache_release(page);
846			goto repeat;
847		}
848
849		/*
850		 * must check mapping and index after taking the ref.
851		 * otherwise we can get both false positives and false
852		 * negatives, which is just confusing to the caller.
853		 */
854		if (page->mapping == NULL || page->index != index) {
855			page_cache_release(page);
856			break;
857		}
858
859		pages[ret] = page;
860		ret++;
861		index++;
862	}
863	rcu_read_unlock();
864	return ret;
865}
866EXPORT_SYMBOL(find_get_pages_contig);
867
868/**
869 * find_get_pages_tag - find and return pages that match @tag
870 * @mapping:	the address_space to search
871 * @index:	the starting page index
872 * @tag:	the tag index
873 * @nr_pages:	the maximum number of pages
874 * @pages:	where the resulting pages are placed
875 *
876 * Like find_get_pages, except we only return pages which are tagged with
877 * @tag.   We update @index to index the next page for the traversal.
878 */
879unsigned find_get_pages_tag(struct address_space *mapping, pgoff_t *index,
880			int tag, unsigned int nr_pages, struct page **pages)
881{
882	unsigned int i;
883	unsigned int ret;
884	unsigned int nr_found;
885
886	rcu_read_lock();
887restart:
888	nr_found = radix_tree_gang_lookup_tag_slot(&mapping->page_tree,
889				(void ***)pages, *index, nr_pages, tag);
890	ret = 0;
891	for (i = 0; i < nr_found; i++) {
892		struct page *page;
893repeat:
894		page = radix_tree_deref_slot((void **)pages[i]);
895		if (unlikely(!page))
896			continue;
897		if (radix_tree_deref_retry(page))
898			goto restart;
899
900		if (!page_cache_get_speculative(page))
901			goto repeat;
902
903		/* Has the page moved? */
904		if (unlikely(page != *((void **)pages[i]))) {
905			page_cache_release(page);
906			goto repeat;
907		}
908
909		pages[ret] = page;
910		ret++;
911	}
912	rcu_read_unlock();
913
914	if (ret)
915		*index = pages[ret - 1]->index + 1;
916
917	return ret;
918}
919EXPORT_SYMBOL(find_get_pages_tag);
920
921/**
922 * grab_cache_page_nowait - returns locked page at given index in given cache
923 * @mapping: target address_space
924 * @index: the page index
925 *
926 * Same as grab_cache_page(), but do not wait if the page is unavailable.
927 * This is intended for speculative data generators, where the data can
928 * be regenerated if the page couldn't be grabbed.  This routine should
929 * be safe to call while holding the lock for another page.
930 *
931 * Clear __GFP_FS when allocating the page to avoid recursion into the fs
932 * and deadlock against the caller's locked page.
933 */
934struct page *
935grab_cache_page_nowait(struct address_space *mapping, pgoff_t index)
936{
937	struct page *page = find_get_page(mapping, index);
938
939	if (page) {
940		if (trylock_page(page))
941			return page;
942		page_cache_release(page);
943		return NULL;
944	}
945	page = __page_cache_alloc(mapping_gfp_mask(mapping) & ~__GFP_FS);
946	if (page && add_to_page_cache_lru(page, mapping, index, GFP_NOFS)) {
947		page_cache_release(page);
948		page = NULL;
949	}
950	return page;
951}
952EXPORT_SYMBOL(grab_cache_page_nowait);
953
954/*
955 * CD/DVDs are error prone. When a medium error occurs, the driver may fail
956 * a _large_ part of the i/o request. Imagine the worst scenario:
957 *
958 *      ---R__________________________________________B__________
959 *         ^ reading here                             ^ bad block(assume 4k)
960 *
961 * read(R) => miss => readahead(R...B) => media error => frustrating retries
962 * => failing the whole request => read(R) => read(R+1) =>
963 * readahead(R+1...B+1) => bang => read(R+2) => read(R+3) =>
964 * readahead(R+3...B+2) => bang => read(R+3) => read(R+4) =>
965 * readahead(R+4...B+3) => bang => read(R+4) => read(R+5) => ......
966 *
967 * It is going insane. Fix it by quickly scaling down the readahead size.
968 */
969static void shrink_readahead_size_eio(struct file *filp,
970					struct file_ra_state *ra)
971{
972	ra->ra_pages /= 4;
973}
974
975/**
976 * do_generic_file_read - generic file read routine
977 * @filp:	the file to read
978 * @ppos:	current file position
979 * @desc:	read_descriptor
980 * @actor:	read method
981 *
982 * This is a generic file read routine, and uses the
983 * mapping->a_ops->readpage() function for the actual low-level stuff.
984 *
985 * This is really ugly. But the goto's actually try to clarify some
986 * of the logic when it comes to error handling etc.
987 */
988static void do_generic_file_read(struct file *filp, loff_t *ppos,
989		read_descriptor_t *desc, read_actor_t actor)
990{
991	struct address_space *mapping = filp->f_mapping;
992	struct inode *inode = mapping->host;
993	struct file_ra_state *ra = &filp->f_ra;
994	pgoff_t index;
995	pgoff_t last_index;
996	pgoff_t prev_index;
997	unsigned long offset;      /* offset into pagecache page */
998	unsigned int prev_offset;
999	int error;
1000
1001	index = *ppos >> PAGE_CACHE_SHIFT;
1002	prev_index = ra->prev_pos >> PAGE_CACHE_SHIFT;
1003	prev_offset = ra->prev_pos & (PAGE_CACHE_SIZE-1);
1004	last_index = (*ppos + desc->count + PAGE_CACHE_SIZE-1) >> PAGE_CACHE_SHIFT;
1005	offset = *ppos & ~PAGE_CACHE_MASK;
1006
1007	for (;;) {
1008		struct page *page;
1009		pgoff_t end_index;
1010		loff_t isize;
1011		unsigned long nr, ret;
1012
1013		cond_resched();
1014find_page:
1015		page = find_get_page(mapping, index);
1016		if (!page) {
1017			page_cache_sync_readahead(mapping,
1018					ra, filp,
1019					index, last_index - index);
1020			page = find_get_page(mapping, index);
1021			if (unlikely(page == NULL))
1022				goto no_cached_page;
1023		}
1024		if (PageReadahead(page)) {
1025			page_cache_async_readahead(mapping,
1026					ra, filp, page,
1027					index, last_index - index);
1028		}
1029		if (!PageUptodate(page)) {
1030			if (inode->i_blkbits == PAGE_CACHE_SHIFT ||
1031					!mapping->a_ops->is_partially_uptodate)
1032				goto page_not_up_to_date;
1033			if (!trylock_page(page))
1034				goto page_not_up_to_date;
1035			/* Did it get truncated before we got the lock? */
1036			if (!page->mapping)
1037				goto page_not_up_to_date_locked;
1038			if (!mapping->a_ops->is_partially_uptodate(page,
1039								desc, offset))
1040				goto page_not_up_to_date_locked;
1041			unlock_page(page);
1042		}
1043page_ok:
1044		/*
1045		 * i_size must be checked after we know the page is Uptodate.
1046		 *
1047		 * Checking i_size after the check allows us to calculate
1048		 * the correct value for "nr", which means the zero-filled
1049		 * part of the page is not copied back to userspace (unless
1050		 * another truncate extends the file - this is desired though).
1051		 */
1052
1053		isize = i_size_read(inode);
1054		end_index = (isize - 1) >> PAGE_CACHE_SHIFT;
1055		if (unlikely(!isize || index > end_index)) {
1056			page_cache_release(page);
1057			goto out;
1058		}
1059
1060		/* nr is the maximum number of bytes to copy from this page */
1061		nr = PAGE_CACHE_SIZE;
1062		if (index == end_index) {
1063			nr = ((isize - 1) & ~PAGE_CACHE_MASK) + 1;
1064			if (nr <= offset) {
1065				page_cache_release(page);
1066				goto out;
1067			}
1068		}
1069		nr = nr - offset;
1070
1071		/* If users can be writing to this page using arbitrary
1072		 * virtual addresses, take care about potential aliasing
1073		 * before reading the page on the kernel side.
1074		 */
1075		if (mapping_writably_mapped(mapping))
1076			flush_dcache_page(page);
1077
1078		/*
1079		 * When a sequential read accesses a page several times,
1080		 * only mark it as accessed the first time.
1081		 */
1082		if (prev_index != index || offset != prev_offset)
1083			mark_page_accessed(page);
1084		prev_index = index;
1085
1086		/*
1087		 * Ok, we have the page, and it's up-to-date, so
1088		 * now we can copy it to user space...
1089		 *
1090		 * The actor routine returns how many bytes were actually used..
1091		 * NOTE! This may not be the same as how much of a user buffer
1092		 * we filled up (we may be padding etc), so we can only update
1093		 * "pos" here (the actor routine has to update the user buffer
1094		 * pointers and the remaining count).
1095		 */
1096		ret = actor(desc, page, offset, nr);
1097		offset += ret;
1098		index += offset >> PAGE_CACHE_SHIFT;
1099		offset &= ~PAGE_CACHE_MASK;
1100		prev_offset = offset;
1101
1102		page_cache_release(page);
1103		if (ret == nr && desc->count)
1104			continue;
1105		goto out;
1106
1107page_not_up_to_date:
1108		/* Get exclusive access to the page ... */
1109		error = lock_page_killable(page);
1110		if (unlikely(error))
1111			goto readpage_error;
1112
1113page_not_up_to_date_locked:
1114		/* Did it get truncated before we got the lock? */
1115		if (!page->mapping) {
1116			unlock_page(page);
1117			page_cache_release(page);
1118			continue;
1119		}
1120
1121		/* Did somebody else fill it already? */
1122		if (PageUptodate(page)) {
1123			unlock_page(page);
1124			goto page_ok;
1125		}
1126
1127readpage:
1128		/*
1129		 * A previous I/O error may have been due to temporary
1130		 * failures, eg. multipath errors.
1131		 * PG_error will be set again if readpage fails.
1132		 */
1133		ClearPageError(page);
1134		/* Start the actual read. The read will unlock the page. */
1135		error = mapping->a_ops->readpage(filp, page);
1136
1137		if (unlikely(error)) {
1138			if (error == AOP_TRUNCATED_PAGE) {
1139				page_cache_release(page);
1140				goto find_page;
1141			}
1142			goto readpage_error;
1143		}
1144
1145		if (!PageUptodate(page)) {
1146			error = lock_page_killable(page);
1147			if (unlikely(error))
1148				goto readpage_error;
1149			if (!PageUptodate(page)) {
1150				if (page->mapping == NULL) {
1151					/*
1152					 * invalidate_mapping_pages got it
1153					 */
1154					unlock_page(page);
1155					page_cache_release(page);
1156					goto find_page;
1157				}
1158				unlock_page(page);
1159				shrink_readahead_size_eio(filp, ra);
1160				error = -EIO;
1161				goto readpage_error;
1162			}
1163			unlock_page(page);
1164		}
1165
1166		goto page_ok;
1167
1168readpage_error:
1169		/* UHHUH! A synchronous read error occurred. Report it */
1170		desc->error = error;
1171		page_cache_release(page);
1172		goto out;
1173
1174no_cached_page:
1175		/*
1176		 * Ok, it wasn't cached, so we need to create a new
1177		 * page..
1178		 */
1179		page = page_cache_alloc_cold(mapping);
1180		if (!page) {
1181			desc->error = -ENOMEM;
1182			goto out;
1183		}
1184		error = add_to_page_cache_lru(page, mapping,
1185						index, GFP_KERNEL);
1186		if (error) {
1187			page_cache_release(page);
1188			if (error == -EEXIST)
1189				goto find_page;
1190			desc->error = error;
1191			goto out;
1192		}
1193		goto readpage;
1194	}
1195
1196out:
1197	ra->prev_pos = prev_index;
1198	ra->prev_pos <<= PAGE_CACHE_SHIFT;
1199	ra->prev_pos |= prev_offset;
1200
1201	*ppos = ((loff_t)index << PAGE_CACHE_SHIFT) + offset;
1202	file_accessed(filp);
1203}
1204
1205int file_read_actor(read_descriptor_t *desc, struct page *page,
1206			unsigned long offset, unsigned long size)
1207{
1208	char *kaddr;
1209	unsigned long left, count = desc->count;
1210
1211	if (size > count)
1212		size = count;
1213
1214	/*
1215	 * Faults on the destination of a read are common, so do it before
1216	 * taking the kmap.
1217	 */
1218	if (!fault_in_pages_writeable(desc->arg.buf, size)) {
1219		kaddr = kmap_atomic(page, KM_USER0);
1220		left = __copy_to_user_inatomic(desc->arg.buf,
1221						kaddr + offset, size);
1222		kunmap_atomic(kaddr, KM_USER0);
1223		if (left == 0)
1224			goto success;
1225	}
1226
1227	/* Do it the slow way */
1228	kaddr = kmap(page);
1229	left = __copy_to_user(desc->arg.buf, kaddr + offset, size);
1230	kunmap(page);
1231
1232	if (left) {
1233		size -= left;
1234		desc->error = -EFAULT;
1235	}
1236success:
1237	desc->count = count - size;
1238	desc->written += size;
1239	desc->arg.buf += size;
1240	return size;
1241}
1242
1243/*
1244 * Performs necessary checks before doing a write
1245 * @iov:	io vector request
1246 * @nr_segs:	number of segments in the iovec
1247 * @count:	number of bytes to write
1248 * @access_flags: type of access: %VERIFY_READ or %VERIFY_WRITE
1249 *
1250 * Adjust number of segments and amount of bytes to write (nr_segs should be
1251 * properly initialized first). Returns appropriate error code that caller
1252 * should return or zero in case that write should be allowed.
1253 */
1254int generic_segment_checks(const struct iovec *iov,
1255			unsigned long *nr_segs, size_t *count, int access_flags)
1256{
1257	unsigned long   seg;
1258	size_t cnt = 0;
1259	for (seg = 0; seg < *nr_segs; seg++) {
1260		const struct iovec *iv = &iov[seg];
1261
1262		/*
1263		 * If any segment has a negative length, or the cumulative
1264		 * length ever wraps negative then return -EINVAL.
1265		 */
1266		cnt += iv->iov_len;
1267		if (unlikely((ssize_t)(cnt|iv->iov_len) < 0))
1268			return -EINVAL;
1269		if (access_ok(access_flags, iv->iov_base, iv->iov_len))
1270			continue;
1271		if (seg == 0)
1272			return -EFAULT;
1273		*nr_segs = seg;
1274		cnt -= iv->iov_len;	/* This segment is no good */
1275		break;
1276	}
1277	*count = cnt;
1278	return 0;
1279}
1280EXPORT_SYMBOL(generic_segment_checks);
1281
1282/**
1283 * generic_file_aio_read - generic filesystem read routine
1284 * @iocb:	kernel I/O control block
1285 * @iov:	io vector request
1286 * @nr_segs:	number of segments in the iovec
1287 * @pos:	current file position
1288 *
1289 * This is the "read()" routine for all filesystems
1290 * that can use the page cache directly.
1291 */
1292ssize_t
1293generic_file_aio_read(struct kiocb *iocb, const struct iovec *iov,
1294		unsigned long nr_segs, loff_t pos)
1295{
1296	struct file *filp = iocb->ki_filp;
1297	ssize_t retval;
1298	unsigned long seg = 0;
1299	size_t count;
1300	loff_t *ppos = &iocb->ki_pos;
1301
1302	count = 0;
1303	retval = generic_segment_checks(iov, &nr_segs, &count, VERIFY_WRITE);
1304	if (retval)
1305		return retval;
1306
1307	/* coalesce the iovecs and go direct-to-BIO for O_DIRECT */
1308	if (filp->f_flags & O_DIRECT) {
1309		loff_t size;
1310		struct address_space *mapping;
1311		struct inode *inode;
1312
1313		mapping = filp->f_mapping;
1314		inode = mapping->host;
1315		if (!count)
1316			goto out; /* skip atime */
1317		size = i_size_read(inode);
1318		if (pos < size) {
1319			retval = filemap_write_and_wait_range(mapping, pos,
1320					pos + iov_length(iov, nr_segs) - 1);
1321			if (!retval) {
1322				retval = mapping->a_ops->direct_IO(READ, iocb,
1323							iov, pos, nr_segs);
1324			}
1325			if (retval > 0) {
1326				*ppos = pos + retval;
1327				count -= retval;
1328			}
1329
1330			/*
1331			 * Btrfs can have a short DIO read if we encounter
1332			 * compressed extents, so if there was an error, or if
1333			 * we've already read everything we wanted to, or if
1334			 * there was a short read because we hit EOF, go ahead
1335			 * and return.  Otherwise fallthrough to buffered io for
1336			 * the rest of the read.
1337			 */
1338			if (retval < 0 || !count || *ppos >= size) {
1339				file_accessed(filp);
1340				goto out;
1341			}
1342		}
1343	}
1344
1345	count = retval;
1346	for (seg = 0; seg < nr_segs; seg++) {
1347		read_descriptor_t desc;
1348		loff_t offset = 0;
1349
1350		/*
1351		 * If we did a short DIO read we need to skip the section of the
1352		 * iov that we've already read data into.
1353		 */
1354		if (count) {
1355			if (count > iov[seg].iov_len) {
1356				count -= iov[seg].iov_len;
1357				continue;
1358			}
1359			offset = count;
1360			count = 0;
1361		}
1362
1363		desc.written = 0;
1364		desc.arg.buf = iov[seg].iov_base + offset;
1365		desc.count = iov[seg].iov_len - offset;
1366		if (desc.count == 0)
1367			continue;
1368		desc.error = 0;
1369		do_generic_file_read(filp, ppos, &desc, file_read_actor);
1370		retval += desc.written;
1371		if (desc.error) {
1372			retval = retval ?: desc.error;
1373			break;
1374		}
1375		if (desc.count > 0)
1376			break;
1377	}
1378out:
1379	return retval;
1380}
1381EXPORT_SYMBOL(generic_file_aio_read);
1382
1383static ssize_t
1384do_readahead(struct address_space *mapping, struct file *filp,
1385	     pgoff_t index, unsigned long nr)
1386{
1387	if (!mapping || !mapping->a_ops || !mapping->a_ops->readpage)
1388		return -EINVAL;
1389
1390	force_page_cache_readahead(mapping, filp, index, nr);
1391	return 0;
1392}
1393
1394SYSCALL_DEFINE(readahead)(int fd, loff_t offset, size_t count)
1395{
1396	ssize_t ret;
1397	struct file *file;
1398
1399	ret = -EBADF;
1400	file = fget(fd);
1401	if (file) {
1402		if (file->f_mode & FMODE_READ) {
1403			struct address_space *mapping = file->f_mapping;
1404			pgoff_t start = offset >> PAGE_CACHE_SHIFT;
1405			pgoff_t end = (offset + count - 1) >> PAGE_CACHE_SHIFT;
1406			unsigned long len = end - start + 1;
1407			ret = do_readahead(mapping, file, start, len);
1408		}
1409		fput(file);
1410	}
1411	return ret;
1412}
1413#ifdef CONFIG_HAVE_SYSCALL_WRAPPERS
1414asmlinkage long SyS_readahead(long fd, loff_t offset, long count)
1415{
1416	return SYSC_readahead((int) fd, offset, (size_t) count);
1417}
1418SYSCALL_ALIAS(sys_readahead, SyS_readahead);
1419#endif
1420
1421#ifdef CONFIG_MMU
1422/**
1423 * page_cache_read - adds requested page to the page cache if not already there
1424 * @file:	file to read
1425 * @offset:	page index
1426 *
1427 * This adds the requested page to the page cache if it isn't already there,
1428 * and schedules an I/O to read in its contents from disk.
1429 */
1430static int page_cache_read(struct file *file, pgoff_t offset)
1431{
1432	struct address_space *mapping = file->f_mapping;
1433	struct page *page;
1434	int ret;
1435
1436	do {
1437		page = page_cache_alloc_cold(mapping);
1438		if (!page)
1439			return -ENOMEM;
1440
1441		ret = add_to_page_cache_lru(page, mapping, offset, GFP_KERNEL);
1442		if (ret == 0)
1443			ret = mapping->a_ops->readpage(file, page);
1444		else if (ret == -EEXIST)
1445			ret = 0; /* losing race to add is OK */
1446
1447		page_cache_release(page);
1448
1449	} while (ret == AOP_TRUNCATED_PAGE);
1450
1451	return ret;
1452}
1453
1454#define MMAP_LOTSAMISS  (100)
1455
1456/*
1457 * Synchronous readahead happens when we don't even find
1458 * a page in the page cache at all.
1459 */
1460static void do_sync_mmap_readahead(struct vm_area_struct *vma,
1461				   struct file_ra_state *ra,
1462				   struct file *file,
1463				   pgoff_t offset)
1464{
1465	unsigned long ra_pages;
1466	struct address_space *mapping = file->f_mapping;
1467
1468	/* If we don't want any read-ahead, don't bother */
1469	if (VM_RandomReadHint(vma))
1470		return;
1471
1472	if (VM_SequentialReadHint(vma) ||
1473			offset - 1 == (ra->prev_pos >> PAGE_CACHE_SHIFT)) {
1474		page_cache_sync_readahead(mapping, ra, file, offset,
1475					  ra->ra_pages);
1476		return;
1477	}
1478
1479	if (ra->mmap_miss < INT_MAX)
1480		ra->mmap_miss++;
1481
1482	/*
1483	 * Do we miss much more than hit in this file? If so,
1484	 * stop bothering with read-ahead. It will only hurt.
1485	 */
1486	if (ra->mmap_miss > MMAP_LOTSAMISS)
1487		return;
1488
1489	/*
1490	 * mmap read-around
1491	 */
1492	ra_pages = max_sane_readahead(ra->ra_pages);
1493	if (ra_pages) {
1494		ra->start = max_t(long, 0, offset - ra_pages/2);
1495		ra->size = ra_pages;
1496		ra->async_size = 0;
1497		ra_submit(ra, mapping, file);
1498	}
1499}
1500
1501/*
1502 * Asynchronous readahead happens when we find the page and PG_readahead,
1503 * so we want to possibly extend the readahead further..
1504 */
1505static void do_async_mmap_readahead(struct vm_area_struct *vma,
1506				    struct file_ra_state *ra,
1507				    struct file *file,
1508				    struct page *page,
1509				    pgoff_t offset)
1510{
1511	struct address_space *mapping = file->f_mapping;
1512
1513	/* If we don't want any read-ahead, don't bother */
1514	if (VM_RandomReadHint(vma))
1515		return;
1516	if (ra->mmap_miss > 0)
1517		ra->mmap_miss--;
1518	if (PageReadahead(page))
1519		page_cache_async_readahead(mapping, ra, file,
1520					   page, offset, ra->ra_pages);
1521}
1522
1523/**
1524 * filemap_fault - read in file data for page fault handling
1525 * @vma:	vma in which the fault was taken
1526 * @vmf:	struct vm_fault containing details of the fault
1527 *
1528 * filemap_fault() is invoked via the vma operations vector for a
1529 * mapped memory region to read in file data during a page fault.
1530 *
1531 * The goto's are kind of ugly, but this streamlines the normal case of having
1532 * it in the page cache, and handles the special cases reasonably without
1533 * having a lot of duplicated code.
1534 */
1535int filemap_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
1536{
1537	int error;
1538	struct file *file = vma->vm_file;
1539	struct address_space *mapping = file->f_mapping;
1540	struct file_ra_state *ra = &file->f_ra;
1541	struct inode *inode = mapping->host;
1542	pgoff_t offset = vmf->pgoff;
1543	struct page *page;
1544	pgoff_t size;
1545	int ret = 0;
1546
1547	size = (i_size_read(inode) + PAGE_CACHE_SIZE - 1) >> PAGE_CACHE_SHIFT;
1548	if (offset >= size)
1549		return VM_FAULT_SIGBUS;
1550
1551	/*
1552	 * Do we have something in the page cache already?
1553	 */
1554	page = find_get_page(mapping, offset);
1555	if (likely(page)) {
1556		/*
1557		 * We found the page, so try async readahead before
1558		 * waiting for the lock.
1559		 */
1560		do_async_mmap_readahead(vma, ra, file, page, offset);
1561	} else {
1562		/* No page in the page cache at all */
1563		do_sync_mmap_readahead(vma, ra, file, offset);
1564		count_vm_event(PGMAJFAULT);
1565		ret = VM_FAULT_MAJOR;
1566retry_find:
1567		page = find_get_page(mapping, offset);
1568		if (!page)
1569			goto no_cached_page;
1570	}
1571
1572	if (!lock_page_or_retry(page, vma->vm_mm, vmf->flags)) {
1573		page_cache_release(page);
1574		return ret | VM_FAULT_RETRY;
1575	}
1576
1577	/* Did it get truncated? */
1578	if (unlikely(page->mapping != mapping)) {
1579		unlock_page(page);
1580		put_page(page);
1581		goto retry_find;
1582	}
1583	VM_BUG_ON(page->index != offset);
1584
1585	/*
1586	 * We have a locked page in the page cache, now we need to check
1587	 * that it's up-to-date. If not, it is going to be due to an error.
1588	 */
1589	if (unlikely(!PageUptodate(page)))
1590		goto page_not_uptodate;
1591
1592	/*
1593	 * Found the page and have a reference on it.
1594	 * We must recheck i_size under page lock.
1595	 */
1596	size = (i_size_read(inode) + PAGE_CACHE_SIZE - 1) >> PAGE_CACHE_SHIFT;
1597	if (unlikely(offset >= size)) {
1598		unlock_page(page);
1599		page_cache_release(page);
1600		return VM_FAULT_SIGBUS;
1601	}
1602
1603	ra->prev_pos = (loff_t)offset << PAGE_CACHE_SHIFT;
1604	vmf->page = page;
1605	return ret | VM_FAULT_LOCKED;
1606
1607no_cached_page:
1608	/*
1609	 * We're only likely to ever get here if MADV_RANDOM is in
1610	 * effect.
1611	 */
1612	error = page_cache_read(file, offset);
1613
1614	/*
1615	 * The page we want has now been added to the page cache.
1616	 * In the unlikely event that someone removed it in the
1617	 * meantime, we'll just come back here and read it again.
1618	 */
1619	if (error >= 0)
1620		goto retry_find;
1621
1622	/*
1623	 * An error return from page_cache_read can result if the
1624	 * system is low on memory, or a problem occurs while trying
1625	 * to schedule I/O.
1626	 */
1627	if (error == -ENOMEM)
1628		return VM_FAULT_OOM;
1629	return VM_FAULT_SIGBUS;
1630
1631page_not_uptodate:
1632	/*
1633	 * Umm, take care of errors if the page isn't up-to-date.
1634	 * Try to re-read it _once_. We do this synchronously,
1635	 * because there really aren't any performance issues here
1636	 * and we need to check for errors.
1637	 */
1638	ClearPageError(page);
1639	error = mapping->a_ops->readpage(file, page);
1640	if (!error) {
1641		wait_on_page_locked(page);
1642		if (!PageUptodate(page))
1643			error = -EIO;
1644	}
1645	page_cache_release(page);
1646
1647	if (!error || error == AOP_TRUNCATED_PAGE)
1648		goto retry_find;
1649
1650	/* Things didn't work out. Return zero to tell the mm layer so. */
1651	shrink_readahead_size_eio(file, ra);
1652	return VM_FAULT_SIGBUS;
1653}
1654EXPORT_SYMBOL(filemap_fault);
1655
1656const struct vm_operations_struct generic_file_vm_ops = {
1657	.fault		= filemap_fault,
1658};
1659
1660/* This is used for a general mmap of a disk file */
1661
1662int generic_file_mmap(struct file * file, struct vm_area_struct * vma)
1663{
1664	struct address_space *mapping = file->f_mapping;
1665
1666	if (!mapping->a_ops->readpage)
1667		return -ENOEXEC;
1668	file_accessed(file);
1669	vma->vm_ops = &generic_file_vm_ops;
1670	vma->vm_flags |= VM_CAN_NONLINEAR;
1671	return 0;
1672}
1673
1674/*
1675 * This is for filesystems which do not implement ->writepage.
1676 */
1677int generic_file_readonly_mmap(struct file *file, struct vm_area_struct *vma)
1678{
1679	if ((vma->vm_flags & VM_SHARED) && (vma->vm_flags & VM_MAYWRITE))
1680		return -EINVAL;
1681	return generic_file_mmap(file, vma);
1682}
1683#else
1684int generic_file_mmap(struct file * file, struct vm_area_struct * vma)
1685{
1686	return -ENOSYS;
1687}
1688int generic_file_readonly_mmap(struct file * file, struct vm_area_struct * vma)
1689{
1690	return -ENOSYS;
1691}
1692#endif /* CONFIG_MMU */
1693
1694EXPORT_SYMBOL(generic_file_mmap);
1695EXPORT_SYMBOL(generic_file_readonly_mmap);
1696
1697static struct page *__read_cache_page(struct address_space *mapping,
1698				pgoff_t index,
1699				int (*filler)(void *,struct page*),
1700				void *data,
1701				gfp_t gfp)
1702{
1703	struct page *page;
1704	int err;
1705repeat:
1706	page = find_get_page(mapping, index);
1707	if (!page) {
1708		page = __page_cache_alloc(gfp | __GFP_COLD);
1709		if (!page)
1710			return ERR_PTR(-ENOMEM);
1711		err = add_to_page_cache_lru(page, mapping, index, GFP_KERNEL);
1712		if (unlikely(err)) {
1713			page_cache_release(page);
1714			if (err == -EEXIST)
1715				goto repeat;
1716			/* Presumably ENOMEM for radix tree node */
1717			return ERR_PTR(err);
1718		}
1719		err = filler(data, page);
1720		if (err < 0) {
1721			page_cache_release(page);
1722			page = ERR_PTR(err);
1723		}
1724	}
1725	return page;
1726}
1727
1728static struct page *do_read_cache_page(struct address_space *mapping,
1729				pgoff_t index,
1730				int (*filler)(void *,struct page*),
1731				void *data,
1732				gfp_t gfp)
1733
1734{
1735	struct page *page;
1736	int err;
1737
1738retry:
1739	page = __read_cache_page(mapping, index, filler, data, gfp);
1740	if (IS_ERR(page))
1741		return page;
1742	if (PageUptodate(page))
1743		goto out;
1744
1745	lock_page(page);
1746	if (!page->mapping) {
1747		unlock_page(page);
1748		page_cache_release(page);
1749		goto retry;
1750	}
1751	if (PageUptodate(page)) {
1752		unlock_page(page);
1753		goto out;
1754	}
1755	err = filler(data, page);
1756	if (err < 0) {
1757		page_cache_release(page);
1758		return ERR_PTR(err);
1759	}
1760out:
1761	mark_page_accessed(page);
1762	return page;
1763}
1764
1765/**
1766 * read_cache_page_async - read into page cache, fill it if needed
1767 * @mapping:	the page's address_space
1768 * @index:	the page index
1769 * @filler:	function to perform the read
1770 * @data:	destination for read data
1771 *
1772 * Same as read_cache_page, but don't wait for page to become unlocked
1773 * after submitting it to the filler.
1774 *
1775 * Read into the page cache. If a page already exists, and PageUptodate() is
1776 * not set, try to fill the page but don't wait for it to become unlocked.
1777 *
1778 * If the page does not get brought uptodate, return -EIO.
1779 */
1780struct page *read_cache_page_async(struct address_space *mapping,
1781				pgoff_t index,
1782				int (*filler)(void *,struct page*),
1783				void *data)
1784{
1785	return do_read_cache_page(mapping, index, filler, data, mapping_gfp_mask(mapping));
1786}
1787EXPORT_SYMBOL(read_cache_page_async);
1788
1789static struct page *wait_on_page_read(struct page *page)
1790{
1791	if (!IS_ERR(page)) {
1792		wait_on_page_locked(page);
1793		if (!PageUptodate(page)) {
1794			page_cache_release(page);
1795			page = ERR_PTR(-EIO);
1796		}
1797	}
1798	return page;
1799}
1800
1801/**
1802 * read_cache_page_gfp - read into page cache, using specified page allocation flags.
1803 * @mapping:	the page's address_space
1804 * @index:	the page index
1805 * @gfp:	the page allocator flags to use if allocating
1806 *
1807 * This is the same as "read_mapping_page(mapping, index, NULL)", but with
1808 * any new page allocations done using the specified allocation flags. Note
1809 * that the Radix tree operations will still use GFP_KERNEL, so you can't
1810 * expect to do this atomically or anything like that - but you can pass in
1811 * other page requirements.
1812 *
1813 * If the page does not get brought uptodate, return -EIO.
1814 */
1815struct page *read_cache_page_gfp(struct address_space *mapping,
1816				pgoff_t index,
1817				gfp_t gfp)
1818{
1819	filler_t *filler = (filler_t *)mapping->a_ops->readpage;
1820
1821	return wait_on_page_read(do_read_cache_page(mapping, index, filler, NULL, gfp));
1822}
1823EXPORT_SYMBOL(read_cache_page_gfp);
1824
1825/**
1826 * read_cache_page - read into page cache, fill it if needed
1827 * @mapping:	the page's address_space
1828 * @index:	the page index
1829 * @filler:	function to perform the read
1830 * @data:	destination for read data
1831 *
1832 * Read into the page cache. If a page already exists, and PageUptodate() is
1833 * not set, try to fill the page then wait for it to become unlocked.
1834 *
1835 * If the page does not get brought uptodate, return -EIO.
1836 */
1837struct page *read_cache_page(struct address_space *mapping,
1838				pgoff_t index,
1839				int (*filler)(void *,struct page*),
1840				void *data)
1841{
1842	return wait_on_page_read(read_cache_page_async(mapping, index, filler, data));
1843}
1844EXPORT_SYMBOL(read_cache_page);
1845
1846/*
1847 * The logic we want is
1848 *
1849 *	if suid or (sgid and xgrp)
1850 *		remove privs
1851 */
1852int should_remove_suid(struct dentry *dentry)
1853{
1854	mode_t mode = dentry->d_inode->i_mode;
1855	int kill = 0;
1856
1857	/* suid always must be killed */
1858	if (unlikely(mode & S_ISUID))
1859		kill = ATTR_KILL_SUID;
1860
1861	/*
1862	 * sgid without any exec bits is just a mandatory locking mark; leave
1863	 * it alone.  If some exec bits are set, it's a real sgid; kill it.
1864	 */
1865	if (unlikely((mode & S_ISGID) && (mode & S_IXGRP)))
1866		kill |= ATTR_KILL_SGID;
1867
1868	if (unlikely(kill && !capable(CAP_FSETID) && S_ISREG(mode)))
1869		return kill;
1870
1871	return 0;
1872}
1873EXPORT_SYMBOL(should_remove_suid);
1874
1875static int __remove_suid(struct dentry *dentry, int kill)
1876{
1877	struct iattr newattrs;
1878
1879	newattrs.ia_valid = ATTR_FORCE | kill;
1880	return notify_change(dentry, &newattrs);
1881}
1882
1883int file_remove_suid(struct file *file)
1884{
1885	struct dentry *dentry = file->f_path.dentry;
1886	int killsuid = should_remove_suid(dentry);
1887	int killpriv = security_inode_need_killpriv(dentry);
1888	int error = 0;
1889
1890	if (killpriv < 0)
1891		return killpriv;
1892	if (killpriv)
1893		error = security_inode_killpriv(dentry);
1894	if (!error && killsuid)
1895		error = __remove_suid(dentry, killsuid);
1896
1897	return error;
1898}
1899EXPORT_SYMBOL(file_remove_suid);
1900
1901static size_t __iovec_copy_from_user_inatomic(char *vaddr,
1902			const struct iovec *iov, size_t base, size_t bytes)
1903{
1904	size_t copied = 0, left = 0;
1905
1906	while (bytes) {
1907		char __user *buf = iov->iov_base + base;
1908		int copy = min(bytes, iov->iov_len - base);
1909
1910		base = 0;
1911		left = __copy_from_user_inatomic(vaddr, buf, copy);
1912		copied += copy;
1913		bytes -= copy;
1914		vaddr += copy;
1915		iov++;
1916
1917		if (unlikely(left))
1918			break;
1919	}
1920	return copied - left;
1921}
1922
1923/*
1924 * Copy as much as we can into the page and return the number of bytes which
1925 * were successfully copied.  If a fault is encountered then return the number of
1926 * bytes which were copied.
1927 */
1928size_t iov_iter_copy_from_user_atomic(struct page *page,
1929		struct iov_iter *i, unsigned long offset, size_t bytes)
1930{
1931	char *kaddr;
1932	size_t copied;
1933
1934	BUG_ON(!in_atomic());
1935	kaddr = kmap_atomic(page, KM_USER0);
1936	if (likely(i->nr_segs == 1)) {
1937		int left;
1938		char __user *buf = i->iov->iov_base + i->iov_offset;
1939		left = __copy_from_user_inatomic(kaddr + offset, buf, bytes);
1940		copied = bytes - left;
1941	} else {
1942		copied = __iovec_copy_from_user_inatomic(kaddr + offset,
1943						i->iov, i->iov_offset, bytes);
1944	}
1945	kunmap_atomic(kaddr, KM_USER0);
1946
1947	return copied;
1948}
1949EXPORT_SYMBOL(iov_iter_copy_from_user_atomic);
1950
1951/*
1952 * This has the same sideeffects and return value as
1953 * iov_iter_copy_from_user_atomic().
1954 * The difference is that it attempts to resolve faults.
1955 * Page must not be locked.
1956 */
1957size_t iov_iter_copy_from_user(struct page *page,
1958		struct iov_iter *i, unsigned long offset, size_t bytes)
1959{
1960	char *kaddr;
1961	size_t copied;
1962
1963	kaddr = kmap(page);
1964	if (likely(i->nr_segs == 1)) {
1965		int left;
1966		char __user *buf = i->iov->iov_base + i->iov_offset;
1967		left = __copy_from_user(kaddr + offset, buf, bytes);
1968		copied = bytes - left;
1969	} else {
1970		copied = __iovec_copy_from_user_inatomic(kaddr + offset,
1971						i->iov, i->iov_offset, bytes);
1972	}
1973	kunmap(page);
1974	return copied;
1975}
1976EXPORT_SYMBOL(iov_iter_copy_from_user);
1977
1978void iov_iter_advance(struct iov_iter *i, size_t bytes)
1979{
1980	BUG_ON(i->count < bytes);
1981
1982	if (likely(i->nr_segs == 1)) {
1983		i->iov_offset += bytes;
1984		i->count -= bytes;
1985	} else {
1986		const struct iovec *iov = i->iov;
1987		size_t base = i->iov_offset;
1988
1989		/*
1990		 * The !iov->iov_len check ensures we skip over unlikely
1991		 * zero-length segments (without overruning the iovec).
1992		 */
1993		while (bytes || unlikely(i->count && !iov->iov_len)) {
1994			int copy;
1995
1996			copy = min(bytes, iov->iov_len - base);
1997			BUG_ON(!i->count || i->count < copy);
1998			i->count -= copy;
1999			bytes -= copy;
2000			base += copy;
2001			if (iov->iov_len == base) {
2002				iov++;
2003				base = 0;
2004			}
2005		}
2006		i->iov = iov;
2007		i->iov_offset = base;
2008	}
2009}
2010EXPORT_SYMBOL(iov_iter_advance);
2011
2012/*
2013 * Fault in the first iovec of the given iov_iter, to a maximum length
2014 * of bytes. Returns 0 on success, or non-zero if the memory could not be
2015 * accessed (ie. because it is an invalid address).
2016 *
2017 * writev-intensive code may want this to prefault several iovecs -- that
2018 * would be possible (callers must not rely on the fact that _only_ the
2019 * first iovec will be faulted with the current implementation).
2020 */
2021int iov_iter_fault_in_readable(struct iov_iter *i, size_t bytes)
2022{
2023	char __user *buf = i->iov->iov_base + i->iov_offset;
2024	bytes = min(bytes, i->iov->iov_len - i->iov_offset);
2025	return fault_in_pages_readable(buf, bytes);
2026}
2027EXPORT_SYMBOL(iov_iter_fault_in_readable);
2028
2029/*
2030 * Return the count of just the current iov_iter segment.
2031 */
2032size_t iov_iter_single_seg_count(struct iov_iter *i)
2033{
2034	const struct iovec *iov = i->iov;
2035	if (i->nr_segs == 1)
2036		return i->count;
2037	else
2038		return min(i->count, iov->iov_len - i->iov_offset);
2039}
2040EXPORT_SYMBOL(iov_iter_single_seg_count);
2041
2042/*
2043 * Performs necessary checks before doing a write
2044 *
2045 * Can adjust writing position or amount of bytes to write.
2046 * Returns appropriate error code that caller should return or
2047 * zero in case that write should be allowed.
2048 */
2049inline int generic_write_checks(struct file *file, loff_t *pos, size_t *count, int isblk)
2050{
2051	struct inode *inode = file->f_mapping->host;
2052	unsigned long limit = rlimit(RLIMIT_FSIZE);
2053
2054        if (unlikely(*pos < 0))
2055                return -EINVAL;
2056
2057	if (!isblk) {
2058		/* FIXME: this is for backwards compatibility with 2.4 */
2059		if (file->f_flags & O_APPEND)
2060                        *pos = i_size_read(inode);
2061
2062		if (limit != RLIM_INFINITY) {
2063			if (*pos >= limit) {
2064				send_sig(SIGXFSZ, current, 0);
2065				return -EFBIG;
2066			}
2067			if (*count > limit - (typeof(limit))*pos) {
2068				*count = limit - (typeof(limit))*pos;
2069			}
2070		}
2071	}
2072
2073	/*
2074	 * LFS rule
2075	 */
2076	if (unlikely(*pos + *count > MAX_NON_LFS &&
2077				!(file->f_flags & O_LARGEFILE))) {
2078		if (*pos >= MAX_NON_LFS) {
2079			return -EFBIG;
2080		}
2081		if (*count > MAX_NON_LFS - (unsigned long)*pos) {
2082			*count = MAX_NON_LFS - (unsigned long)*pos;
2083		}
2084	}
2085
2086	/*
2087	 * Are we about to exceed the fs block limit ?
2088	 *
2089	 * If we have written data it becomes a short write.  If we have
2090	 * exceeded without writing data we send a signal and return EFBIG.
2091	 * Linus frestrict idea will clean these up nicely..
2092	 */
2093	if (likely(!isblk)) {
2094		if (unlikely(*pos >= inode->i_sb->s_maxbytes)) {
2095			if (*count || *pos > inode->i_sb->s_maxbytes) {
2096				return -EFBIG;
2097			}
2098			/* zero-length writes at ->s_maxbytes are OK */
2099		}
2100
2101		if (unlikely(*pos + *count > inode->i_sb->s_maxbytes))
2102			*count = inode->i_sb->s_maxbytes - *pos;
2103	} else {
2104#ifdef CONFIG_BLOCK
2105		loff_t isize;
2106		if (bdev_read_only(I_BDEV(inode)))
2107			return -EPERM;
2108		isize = i_size_read(inode);
2109		if (*pos >= isize) {
2110			if (*count || *pos > isize)
2111				return -ENOSPC;
2112		}
2113
2114		if (*pos + *count > isize)
2115			*count = isize - *pos;
2116#else
2117		return -EPERM;
2118#endif
2119	}
2120	return 0;
2121}
2122EXPORT_SYMBOL(generic_write_checks);
2123
2124int pagecache_write_begin(struct file *file, struct address_space *mapping,
2125				loff_t pos, unsigned len, unsigned flags,
2126				struct page **pagep, void **fsdata)
2127{
2128	const struct address_space_operations *aops = mapping->a_ops;
2129
2130	return aops->write_begin(file, mapping, pos, len, flags,
2131							pagep, fsdata);
2132}
2133EXPORT_SYMBOL(pagecache_write_begin);
2134
2135int pagecache_write_end(struct file *file, struct address_space *mapping,
2136				loff_t pos, unsigned len, unsigned copied,
2137				struct page *page, void *fsdata)
2138{
2139	const struct address_space_operations *aops = mapping->a_ops;
2140
2141	mark_page_accessed(page);
2142	return aops->write_end(file, mapping, pos, len, copied, page, fsdata);
2143}
2144EXPORT_SYMBOL(pagecache_write_end);
2145
2146ssize_t
2147generic_file_direct_write(struct kiocb *iocb, const struct iovec *iov,
2148		unsigned long *nr_segs, loff_t pos, loff_t *ppos,
2149		size_t count, size_t ocount)
2150{
2151	struct file	*file = iocb->ki_filp;
2152	struct address_space *mapping = file->f_mapping;
2153	struct inode	*inode = mapping->host;
2154	ssize_t		written;
2155	size_t		write_len;
2156	pgoff_t		end;
2157
2158	if (count != ocount)
2159		*nr_segs = iov_shorten((struct iovec *)iov, *nr_segs, count);
2160
2161	write_len = iov_length(iov, *nr_segs);
2162	end = (pos + write_len - 1) >> PAGE_CACHE_SHIFT;
2163
2164	written = filemap_write_and_wait_range(mapping, pos, pos + write_len - 1);
2165	if (written)
2166		goto out;
2167
2168	/*
2169	 * After a write we want buffered reads to be sure to go to disk to get
2170	 * the new data.  We invalidate clean cached page from the region we're
2171	 * about to write.  We do this *before* the write so that we can return
2172	 * without clobbering -EIOCBQUEUED from ->direct_IO().
2173	 */
2174	if (mapping->nrpages) {
2175		written = invalidate_inode_pages2_range(mapping,
2176					pos >> PAGE_CACHE_SHIFT, end);
2177		/*
2178		 * If a page can not be invalidated, return 0 to fall back
2179		 * to buffered write.
2180		 */
2181		if (written) {
2182			if (written == -EBUSY)
2183				return 0;
2184			goto out;
2185		}
2186	}
2187
2188	written = mapping->a_ops->direct_IO(WRITE, iocb, iov, pos, *nr_segs);
2189
2190	/*
2191	 * Finally, try again to invalidate clean pages which might have been
2192	 * cached by non-direct readahead, or faulted in by get_user_pages()
2193	 * if the source of the write was an mmap'ed region of the file
2194	 * we're writing.  Either one is a pretty crazy thing to do,
2195	 * so we don't support it 100%.  If this invalidation
2196	 * fails, tough, the write still worked...
2197	 */
2198	if (mapping->nrpages) {
2199		invalidate_inode_pages2_range(mapping,
2200					      pos >> PAGE_CACHE_SHIFT, end);
2201	}
2202
2203	if (written > 0) {
2204		pos += written;
2205		if (pos > i_size_read(inode) && !S_ISBLK(inode->i_mode)) {
2206			i_size_write(inode, pos);
2207			mark_inode_dirty(inode);
2208		}
2209		*ppos = pos;
2210	}
2211out:
2212	return written;
2213}
2214EXPORT_SYMBOL(generic_file_direct_write);
2215
2216/*
2217 * Find or create a page at the given pagecache position. Return the locked
2218 * page. This function is specifically for buffered writes.
2219 */
2220struct page *grab_cache_page_write_begin(struct address_space *mapping,
2221					pgoff_t index, unsigned flags)
2222{
2223	int status;
2224	struct page *page;
2225	gfp_t gfp_notmask = 0;
2226	if (flags & AOP_FLAG_NOFS)
2227		gfp_notmask = __GFP_FS;
2228repeat:
2229	page = find_lock_page(mapping, index);
2230	if (likely(page))
2231		return page;
2232
2233	page = __page_cache_alloc(mapping_gfp_mask(mapping) & ~gfp_notmask);
2234	if (!page)
2235		return NULL;
2236	status = add_to_page_cache_lru(page, mapping, index,
2237						GFP_KERNEL & ~gfp_notmask);
2238	if (unlikely(status)) {
2239		page_cache_release(page);
2240		if (status == -EEXIST)
2241			goto repeat;
2242		return NULL;
2243	}
2244	return page;
2245}
2246EXPORT_SYMBOL(grab_cache_page_write_begin);
2247
2248static ssize_t generic_perform_write(struct file *file,
2249				struct iov_iter *i, loff_t pos)
2250{
2251	struct address_space *mapping = file->f_mapping;
2252	const struct address_space_operations *a_ops = mapping->a_ops;
2253	long status = 0;
2254	ssize_t written = 0;
2255	unsigned int flags = 0;
2256
2257	/*
2258	 * Copies from kernel address space cannot fail (NFSD is a big user).
2259	 */
2260	if (segment_eq(get_fs(), KERNEL_DS))
2261		flags |= AOP_FLAG_UNINTERRUPTIBLE;
2262
2263	do {
2264		struct page *page;
2265		unsigned long offset;	/* Offset into pagecache page */
2266		unsigned long bytes;	/* Bytes to write to page */
2267		size_t copied;		/* Bytes copied from user */
2268		void *fsdata;
2269
2270		offset = (pos & (PAGE_CACHE_SIZE - 1));
2271		bytes = min_t(unsigned long, PAGE_CACHE_SIZE - offset,
2272						iov_iter_count(i));
2273
2274again:
2275
2276		/*
2277		 * Bring in the user page that we will copy from _first_.
2278		 * Otherwise there's a nasty deadlock on copying from the
2279		 * same page as we're writing to, without it being marked
2280		 * up-to-date.
2281		 *
2282		 * Not only is this an optimisation, but it is also required
2283		 * to check that the address is actually valid, when atomic
2284		 * usercopies are used, below.
2285		 */
2286		if (unlikely(iov_iter_fault_in_readable(i, bytes))) {
2287			status = -EFAULT;
2288			break;
2289		}
2290
2291		status = a_ops->write_begin(file, mapping, pos, bytes, flags,
2292						&page, &fsdata);
2293		if (unlikely(status))
2294			break;
2295
2296		if (mapping_writably_mapped(mapping))
2297			flush_dcache_page(page);
2298
2299		pagefault_disable();
2300		copied = iov_iter_copy_from_user_atomic(page, i, offset, bytes);
2301		pagefault_enable();
2302		flush_dcache_page(page);
2303
2304		mark_page_accessed(page);
2305		status = a_ops->write_end(file, mapping, pos, bytes, copied,
2306						page, fsdata);
2307		if (unlikely(status < 0))
2308			break;
2309		copied = status;
2310
2311		cond_resched();
2312
2313		iov_iter_advance(i, copied);
2314		if (unlikely(copied == 0)) {
2315			/*
2316			 * If we were unable to copy any data at all, we must
2317			 * fall back to a single segment length write.
2318			 *
2319			 * If we didn't fallback here, we could livelock
2320			 * because not all segments in the iov can be copied at
2321			 * once without a pagefault.
2322			 */
2323			bytes = min_t(unsigned long, PAGE_CACHE_SIZE - offset,
2324						iov_iter_single_seg_count(i));
2325			goto again;
2326		}
2327		pos += copied;
2328		written += copied;
2329
2330		balance_dirty_pages_ratelimited(mapping);
2331
2332	} while (iov_iter_count(i));
2333
2334	return written ? written : status;
2335}
2336
2337ssize_t
2338generic_file_buffered_write(struct kiocb *iocb, const struct iovec *iov,
2339		unsigned long nr_segs, loff_t pos, loff_t *ppos,
2340		size_t count, ssize_t written)
2341{
2342	struct file *file = iocb->ki_filp;
2343	ssize_t status;
2344	struct iov_iter i;
2345
2346	iov_iter_init(&i, iov, nr_segs, count, written);
2347	status = generic_perform_write(file, &i, pos);
2348
2349	if (likely(status >= 0)) {
2350		written += status;
2351		*ppos = pos + status;
2352  	}
2353
2354	return written ? written : status;
2355}
2356EXPORT_SYMBOL(generic_file_buffered_write);
2357
2358/**
2359 * __generic_file_aio_write - write data to a file
2360 * @iocb:	IO state structure (file, offset, etc.)
2361 * @iov:	vector with data to write
2362 * @nr_segs:	number of segments in the vector
2363 * @ppos:	position where to write
2364 *
2365 * This function does all the work needed for actually writing data to a
2366 * file. It does all basic checks, removes SUID from the file, updates
2367 * modification times and calls proper subroutines depending on whether we
2368 * do direct IO or a standard buffered write.
2369 *
2370 * It expects i_mutex to be grabbed unless we work on a block device or similar
2371 * object which does not need locking at all.
2372 *
2373 * This function does *not* take care of syncing data in case of O_SYNC write.
2374 * A caller has to handle it. This is mainly due to the fact that we want to
2375 * avoid syncing under i_mutex.
2376 */
2377ssize_t __generic_file_aio_write(struct kiocb *iocb, const struct iovec *iov,
2378				 unsigned long nr_segs, loff_t *ppos)
2379{
2380	struct file *file = iocb->ki_filp;
2381	struct address_space * mapping = file->f_mapping;
2382	size_t ocount;		/* original count */
2383	size_t count;		/* after file limit checks */
2384	struct inode 	*inode = mapping->host;
2385	loff_t		pos;
2386	ssize_t		written;
2387	ssize_t		err;
2388
2389	ocount = 0;
2390	err = generic_segment_checks(iov, &nr_segs, &ocount, VERIFY_READ);
2391	if (err)
2392		return err;
2393
2394	count = ocount;
2395	pos = *ppos;
2396
2397	vfs_check_frozen(inode->i_sb, SB_FREEZE_WRITE);
2398
2399	/* We can write back this queue in page reclaim */
2400	current->backing_dev_info = mapping->backing_dev_info;
2401	written = 0;
2402
2403	err = generic_write_checks(file, &pos, &count, S_ISBLK(inode->i_mode));
2404	if (err)
2405		goto out;
2406
2407	if (count == 0)
2408		goto out;
2409
2410	err = file_remove_suid(file);
2411	if (err)
2412		goto out;
2413
2414	file_update_time(file);
2415
2416	/* coalesce the iovecs and go direct-to-BIO for O_DIRECT */
2417	if (unlikely(file->f_flags & O_DIRECT)) {
2418		loff_t endbyte;
2419		ssize_t written_buffered;
2420
2421		written = generic_file_direct_write(iocb, iov, &nr_segs, pos,
2422							ppos, count, ocount);
2423		if (written < 0 || written == count)
2424			goto out;
2425		/*
2426		 * direct-io write to a hole: fall through to buffered I/O
2427		 * for completing the rest of the request.
2428		 */
2429		pos += written;
2430		count -= written;
2431		written_buffered = generic_file_buffered_write(iocb, iov,
2432						nr_segs, pos, ppos, count,
2433						written);
2434		/*
2435		 * If generic_file_buffered_write() retuned a synchronous error
2436		 * then we want to return the number of bytes which were
2437		 * direct-written, or the error code if that was zero.  Note
2438		 * that this differs from normal direct-io semantics, which
2439		 * will return -EFOO even if some bytes were written.
2440		 */
2441		if (written_buffered < 0) {
2442			err = written_buffered;
2443			goto out;
2444		}
2445
2446		/*
2447		 * We need to ensure that the page cache pages are written to
2448		 * disk and invalidated to preserve the expected O_DIRECT
2449		 * semantics.
2450		 */
2451		endbyte = pos + written_buffered - written - 1;
2452		err = filemap_write_and_wait_range(file->f_mapping, pos, endbyte);
2453		if (err == 0) {
2454			written = written_buffered;
2455			invalidate_mapping_pages(mapping,
2456						 pos >> PAGE_CACHE_SHIFT,
2457						 endbyte >> PAGE_CACHE_SHIFT);
2458		} else {
2459			/*
2460			 * We don't know how much we wrote, so just return
2461			 * the number of bytes which were direct-written
2462			 */
2463		}
2464	} else {
2465		written = generic_file_buffered_write(iocb, iov, nr_segs,
2466				pos, ppos, count, written);
2467	}
2468out:
2469	current->backing_dev_info = NULL;
2470	return written ? written : err;
2471}
2472EXPORT_SYMBOL(__generic_file_aio_write);
2473
2474/**
2475 * generic_file_aio_write - write data to a file
2476 * @iocb:	IO state structure
2477 * @iov:	vector with data to write
2478 * @nr_segs:	number of segments in the vector
2479 * @pos:	position in file where to write
2480 *
2481 * This is a wrapper around __generic_file_aio_write() to be used by most
2482 * filesystems. It takes care of syncing the file in case of O_SYNC file
2483 * and acquires i_mutex as needed.
2484 */
2485ssize_t generic_file_aio_write(struct kiocb *iocb, const struct iovec *iov,
2486		unsigned long nr_segs, loff_t pos)
2487{
2488	struct file *file = iocb->ki_filp;
2489	struct inode *inode = file->f_mapping->host;
2490	ssize_t ret;
2491
2492	BUG_ON(iocb->ki_pos != pos);
2493
2494	mutex_lock(&inode->i_mutex);
2495	ret = __generic_file_aio_write(iocb, iov, nr_segs, &iocb->ki_pos);
2496	mutex_unlock(&inode->i_mutex);
2497
2498	if (ret > 0 || ret == -EIOCBQUEUED) {
2499		ssize_t err;
2500
2501		err = generic_write_sync(file, pos, ret);
2502		if (err < 0 && ret > 0)
2503			ret = err;
2504	}
2505	return ret;
2506}
2507EXPORT_SYMBOL(generic_file_aio_write);
2508
2509/**
2510 * try_to_release_page() - release old fs-specific metadata on a page
2511 *
2512 * @page: the page which the kernel is trying to free
2513 * @gfp_mask: memory allocation flags (and I/O mode)
2514 *
2515 * The address_space is to try to release any data against the page
2516 * (presumably at page->private).  If the release was successful, return `1'.
2517 * Otherwise return zero.
2518 *
2519 * This may also be called if PG_fscache is set on a page, indicating that the
2520 * page is known to the local caching routines.
2521 *
2522 * The @gfp_mask argument specifies whether I/O may be performed to release
2523 * this page (__GFP_IO), and whether the call may block (__GFP_WAIT & __GFP_FS).
2524 *
2525 */
2526int try_to_release_page(struct page *page, gfp_t gfp_mask)
2527{
2528	struct address_space * const mapping = page->mapping;
2529
2530	BUG_ON(!PageLocked(page));
2531	if (PageWriteback(page))
2532		return 0;
2533
2534	if (mapping && mapping->a_ops->releasepage)
2535		return mapping->a_ops->releasepage(page, gfp_mask);
2536	return try_to_free_buffers(page);
2537}
2538
2539EXPORT_SYMBOL(try_to_release_page);
2540