filemap.c revision 29dbb3fc8020f025bc38b262ec494e19fd3eac02
1/*
2 *	linux/mm/filemap.c
3 *
4 * Copyright (C) 1994-1999  Linus Torvalds
5 */
6
7/*
8 * This file handles the generic file mmap semantics used by
9 * most "normal" filesystems (but you don't /have/ to use this:
10 * the NFS filesystem used to do this differently, for example)
11 */
12#include <linux/module.h>
13#include <linux/slab.h>
14#include <linux/compiler.h>
15#include <linux/fs.h>
16#include <linux/uaccess.h>
17#include <linux/aio.h>
18#include <linux/capability.h>
19#include <linux/kernel_stat.h>
20#include <linux/mm.h>
21#include <linux/swap.h>
22#include <linux/mman.h>
23#include <linux/pagemap.h>
24#include <linux/file.h>
25#include <linux/uio.h>
26#include <linux/hash.h>
27#include <linux/writeback.h>
28#include <linux/pagevec.h>
29#include <linux/blkdev.h>
30#include <linux/security.h>
31#include <linux/syscalls.h>
32#include <linux/cpuset.h>
33#include "filemap.h"
34#include "internal.h"
35
36/*
37 * FIXME: remove all knowledge of the buffer layer from the core VM
38 */
39#include <linux/buffer_head.h> /* for generic_osync_inode */
40
41#include <asm/mman.h>
42
43static ssize_t
44generic_file_direct_IO(int rw, struct kiocb *iocb, const struct iovec *iov,
45	loff_t offset, unsigned long nr_segs);
46
47/*
48 * Shared mappings implemented 30.11.1994. It's not fully working yet,
49 * though.
50 *
51 * Shared mappings now work. 15.8.1995  Bruno.
52 *
53 * finished 'unifying' the page and buffer cache and SMP-threaded the
54 * page-cache, 21.05.1999, Ingo Molnar <mingo@redhat.com>
55 *
56 * SMP-threaded pagemap-LRU 1999, Andrea Arcangeli <andrea@suse.de>
57 */
58
59/*
60 * Lock ordering:
61 *
62 *  ->i_mmap_lock		(vmtruncate)
63 *    ->private_lock		(__free_pte->__set_page_dirty_buffers)
64 *      ->swap_lock		(exclusive_swap_page, others)
65 *        ->mapping->tree_lock
66 *
67 *  ->i_mutex
68 *    ->i_mmap_lock		(truncate->unmap_mapping_range)
69 *
70 *  ->mmap_sem
71 *    ->i_mmap_lock
72 *      ->page_table_lock or pte_lock	(various, mainly in memory.c)
73 *        ->mapping->tree_lock	(arch-dependent flush_dcache_mmap_lock)
74 *
75 *  ->mmap_sem
76 *    ->lock_page		(access_process_vm)
77 *
78 *  ->i_mutex			(generic_file_buffered_write)
79 *    ->mmap_sem		(fault_in_pages_readable->do_page_fault)
80 *
81 *  ->i_mutex
82 *    ->i_alloc_sem             (various)
83 *
84 *  ->inode_lock
85 *    ->sb_lock			(fs/fs-writeback.c)
86 *    ->mapping->tree_lock	(__sync_single_inode)
87 *
88 *  ->i_mmap_lock
89 *    ->anon_vma.lock		(vma_adjust)
90 *
91 *  ->anon_vma.lock
92 *    ->page_table_lock or pte_lock	(anon_vma_prepare and various)
93 *
94 *  ->page_table_lock or pte_lock
95 *    ->swap_lock		(try_to_unmap_one)
96 *    ->private_lock		(try_to_unmap_one)
97 *    ->tree_lock		(try_to_unmap_one)
98 *    ->zone.lru_lock		(follow_page->mark_page_accessed)
99 *    ->zone.lru_lock		(check_pte_range->isolate_lru_page)
100 *    ->private_lock		(page_remove_rmap->set_page_dirty)
101 *    ->tree_lock		(page_remove_rmap->set_page_dirty)
102 *    ->inode_lock		(page_remove_rmap->set_page_dirty)
103 *    ->inode_lock		(zap_pte_range->set_page_dirty)
104 *    ->private_lock		(zap_pte_range->__set_page_dirty_buffers)
105 *
106 *  ->task->proc_lock
107 *    ->dcache_lock		(proc_pid_lookup)
108 */
109
110/*
111 * Remove a page from the page cache and free it. Caller has to make
112 * sure the page is locked and that nobody else uses it - or that usage
113 * is safe.  The caller must hold a write_lock on the mapping's tree_lock.
114 */
115void __remove_from_page_cache(struct page *page)
116{
117	struct address_space *mapping = page->mapping;
118
119	radix_tree_delete(&mapping->page_tree, page->index);
120	page->mapping = NULL;
121	mapping->nrpages--;
122	__dec_zone_page_state(page, NR_FILE_PAGES);
123}
124
125void remove_from_page_cache(struct page *page)
126{
127	struct address_space *mapping = page->mapping;
128
129	BUG_ON(!PageLocked(page));
130
131	write_lock_irq(&mapping->tree_lock);
132	__remove_from_page_cache(page);
133	write_unlock_irq(&mapping->tree_lock);
134}
135
136static int sync_page(void *word)
137{
138	struct address_space *mapping;
139	struct page *page;
140
141	page = container_of((unsigned long *)word, struct page, flags);
142
143	/*
144	 * page_mapping() is being called without PG_locked held.
145	 * Some knowledge of the state and use of the page is used to
146	 * reduce the requirements down to a memory barrier.
147	 * The danger here is of a stale page_mapping() return value
148	 * indicating a struct address_space different from the one it's
149	 * associated with when it is associated with one.
150	 * After smp_mb(), it's either the correct page_mapping() for
151	 * the page, or an old page_mapping() and the page's own
152	 * page_mapping() has gone NULL.
153	 * The ->sync_page() address_space operation must tolerate
154	 * page_mapping() going NULL. By an amazing coincidence,
155	 * this comes about because none of the users of the page
156	 * in the ->sync_page() methods make essential use of the
157	 * page_mapping(), merely passing the page down to the backing
158	 * device's unplug functions when it's non-NULL, which in turn
159	 * ignore it for all cases but swap, where only page_private(page) is
160	 * of interest. When page_mapping() does go NULL, the entire
161	 * call stack gracefully ignores the page and returns.
162	 * -- wli
163	 */
164	smp_mb();
165	mapping = page_mapping(page);
166	if (mapping && mapping->a_ops && mapping->a_ops->sync_page)
167		mapping->a_ops->sync_page(page);
168	io_schedule();
169	return 0;
170}
171
172/**
173 * __filemap_fdatawrite_range - start writeback on mapping dirty pages in range
174 * @mapping:	address space structure to write
175 * @start:	offset in bytes where the range starts
176 * @end:	offset in bytes where the range ends (inclusive)
177 * @sync_mode:	enable synchronous operation
178 *
179 * Start writeback against all of a mapping's dirty pages that lie
180 * within the byte offsets <start, end> inclusive.
181 *
182 * If sync_mode is WB_SYNC_ALL then this is a "data integrity" operation, as
183 * opposed to a regular memory cleansing writeback.  The difference between
184 * these two operations is that if a dirty page/buffer is encountered, it must
185 * be waited upon, and not just skipped over.
186 */
187int __filemap_fdatawrite_range(struct address_space *mapping, loff_t start,
188				loff_t end, int sync_mode)
189{
190	int ret;
191	struct writeback_control wbc = {
192		.sync_mode = sync_mode,
193		.nr_to_write = mapping->nrpages * 2,
194		.range_start = start,
195		.range_end = end,
196	};
197
198	if (!mapping_cap_writeback_dirty(mapping))
199		return 0;
200
201	ret = do_writepages(mapping, &wbc);
202	return ret;
203}
204
205static inline int __filemap_fdatawrite(struct address_space *mapping,
206	int sync_mode)
207{
208	return __filemap_fdatawrite_range(mapping, 0, LLONG_MAX, sync_mode);
209}
210
211int filemap_fdatawrite(struct address_space *mapping)
212{
213	return __filemap_fdatawrite(mapping, WB_SYNC_ALL);
214}
215EXPORT_SYMBOL(filemap_fdatawrite);
216
217static int filemap_fdatawrite_range(struct address_space *mapping, loff_t start,
218				loff_t end)
219{
220	return __filemap_fdatawrite_range(mapping, start, end, WB_SYNC_ALL);
221}
222
223/**
224 * filemap_flush - mostly a non-blocking flush
225 * @mapping:	target address_space
226 *
227 * This is a mostly non-blocking flush.  Not suitable for data-integrity
228 * purposes - I/O may not be started against all dirty pages.
229 */
230int filemap_flush(struct address_space *mapping)
231{
232	return __filemap_fdatawrite(mapping, WB_SYNC_NONE);
233}
234EXPORT_SYMBOL(filemap_flush);
235
236/**
237 * wait_on_page_writeback_range - wait for writeback to complete
238 * @mapping:	target address_space
239 * @start:	beginning page index
240 * @end:	ending page index
241 *
242 * Wait for writeback to complete against pages indexed by start->end
243 * inclusive
244 */
245int wait_on_page_writeback_range(struct address_space *mapping,
246				pgoff_t start, pgoff_t end)
247{
248	struct pagevec pvec;
249	int nr_pages;
250	int ret = 0;
251	pgoff_t index;
252
253	if (end < start)
254		return 0;
255
256	pagevec_init(&pvec, 0);
257	index = start;
258	while ((index <= end) &&
259			(nr_pages = pagevec_lookup_tag(&pvec, mapping, &index,
260			PAGECACHE_TAG_WRITEBACK,
261			min(end - index, (pgoff_t)PAGEVEC_SIZE-1) + 1)) != 0) {
262		unsigned i;
263
264		for (i = 0; i < nr_pages; i++) {
265			struct page *page = pvec.pages[i];
266
267			/* until radix tree lookup accepts end_index */
268			if (page->index > end)
269				continue;
270
271			wait_on_page_writeback(page);
272			if (PageError(page))
273				ret = -EIO;
274		}
275		pagevec_release(&pvec);
276		cond_resched();
277	}
278
279	/* Check for outstanding write errors */
280	if (test_and_clear_bit(AS_ENOSPC, &mapping->flags))
281		ret = -ENOSPC;
282	if (test_and_clear_bit(AS_EIO, &mapping->flags))
283		ret = -EIO;
284
285	return ret;
286}
287
288/**
289 * sync_page_range - write and wait on all pages in the passed range
290 * @inode:	target inode
291 * @mapping:	target address_space
292 * @pos:	beginning offset in pages to write
293 * @count:	number of bytes to write
294 *
295 * Write and wait upon all the pages in the passed range.  This is a "data
296 * integrity" operation.  It waits upon in-flight writeout before starting and
297 * waiting upon new writeout.  If there was an IO error, return it.
298 *
299 * We need to re-take i_mutex during the generic_osync_inode list walk because
300 * it is otherwise livelockable.
301 */
302int sync_page_range(struct inode *inode, struct address_space *mapping,
303			loff_t pos, loff_t count)
304{
305	pgoff_t start = pos >> PAGE_CACHE_SHIFT;
306	pgoff_t end = (pos + count - 1) >> PAGE_CACHE_SHIFT;
307	int ret;
308
309	if (!mapping_cap_writeback_dirty(mapping) || !count)
310		return 0;
311	ret = filemap_fdatawrite_range(mapping, pos, pos + count - 1);
312	if (ret == 0) {
313		mutex_lock(&inode->i_mutex);
314		ret = generic_osync_inode(inode, mapping, OSYNC_METADATA);
315		mutex_unlock(&inode->i_mutex);
316	}
317	if (ret == 0)
318		ret = wait_on_page_writeback_range(mapping, start, end);
319	return ret;
320}
321EXPORT_SYMBOL(sync_page_range);
322
323/**
324 * sync_page_range_nolock
325 * @inode:	target inode
326 * @mapping:	target address_space
327 * @pos:	beginning offset in pages to write
328 * @count:	number of bytes to write
329 *
330 * Note: Holding i_mutex across sync_page_range_nolock() is not a good idea
331 * as it forces O_SYNC writers to different parts of the same file
332 * to be serialised right until io completion.
333 */
334int sync_page_range_nolock(struct inode *inode, struct address_space *mapping,
335			   loff_t pos, loff_t count)
336{
337	pgoff_t start = pos >> PAGE_CACHE_SHIFT;
338	pgoff_t end = (pos + count - 1) >> PAGE_CACHE_SHIFT;
339	int ret;
340
341	if (!mapping_cap_writeback_dirty(mapping) || !count)
342		return 0;
343	ret = filemap_fdatawrite_range(mapping, pos, pos + count - 1);
344	if (ret == 0)
345		ret = generic_osync_inode(inode, mapping, OSYNC_METADATA);
346	if (ret == 0)
347		ret = wait_on_page_writeback_range(mapping, start, end);
348	return ret;
349}
350EXPORT_SYMBOL(sync_page_range_nolock);
351
352/**
353 * filemap_fdatawait - wait for all under-writeback pages to complete
354 * @mapping: address space structure to wait for
355 *
356 * Walk the list of under-writeback pages of the given address space
357 * and wait for all of them.
358 */
359int filemap_fdatawait(struct address_space *mapping)
360{
361	loff_t i_size = i_size_read(mapping->host);
362
363	if (i_size == 0)
364		return 0;
365
366	return wait_on_page_writeback_range(mapping, 0,
367				(i_size - 1) >> PAGE_CACHE_SHIFT);
368}
369EXPORT_SYMBOL(filemap_fdatawait);
370
371int filemap_write_and_wait(struct address_space *mapping)
372{
373	int err = 0;
374
375	if (mapping->nrpages) {
376		err = filemap_fdatawrite(mapping);
377		/*
378		 * Even if the above returned error, the pages may be
379		 * written partially (e.g. -ENOSPC), so we wait for it.
380		 * But the -EIO is special case, it may indicate the worst
381		 * thing (e.g. bug) happened, so we avoid waiting for it.
382		 */
383		if (err != -EIO) {
384			int err2 = filemap_fdatawait(mapping);
385			if (!err)
386				err = err2;
387		}
388	}
389	return err;
390}
391EXPORT_SYMBOL(filemap_write_and_wait);
392
393/**
394 * filemap_write_and_wait_range - write out & wait on a file range
395 * @mapping:	the address_space for the pages
396 * @lstart:	offset in bytes where the range starts
397 * @lend:	offset in bytes where the range ends (inclusive)
398 *
399 * Write out and wait upon file offsets lstart->lend, inclusive.
400 *
401 * Note that `lend' is inclusive (describes the last byte to be written) so
402 * that this function can be used to write to the very end-of-file (end = -1).
403 */
404int filemap_write_and_wait_range(struct address_space *mapping,
405				 loff_t lstart, loff_t lend)
406{
407	int err = 0;
408
409	if (mapping->nrpages) {
410		err = __filemap_fdatawrite_range(mapping, lstart, lend,
411						 WB_SYNC_ALL);
412		/* See comment of filemap_write_and_wait() */
413		if (err != -EIO) {
414			int err2 = wait_on_page_writeback_range(mapping,
415						lstart >> PAGE_CACHE_SHIFT,
416						lend >> PAGE_CACHE_SHIFT);
417			if (!err)
418				err = err2;
419		}
420	}
421	return err;
422}
423
424/**
425 * add_to_page_cache - add newly allocated pagecache pages
426 * @page:	page to add
427 * @mapping:	the page's address_space
428 * @offset:	page index
429 * @gfp_mask:	page allocation mode
430 *
431 * This function is used to add newly allocated pagecache pages;
432 * the page is new, so we can just run SetPageLocked() against it.
433 * The other page state flags were set by rmqueue().
434 *
435 * This function does not add the page to the LRU.  The caller must do that.
436 */
437int add_to_page_cache(struct page *page, struct address_space *mapping,
438		pgoff_t offset, gfp_t gfp_mask)
439{
440	int error = radix_tree_preload(gfp_mask & ~__GFP_HIGHMEM);
441
442	if (error == 0) {
443		write_lock_irq(&mapping->tree_lock);
444		error = radix_tree_insert(&mapping->page_tree, offset, page);
445		if (!error) {
446			page_cache_get(page);
447			SetPageLocked(page);
448			page->mapping = mapping;
449			page->index = offset;
450			mapping->nrpages++;
451			__inc_zone_page_state(page, NR_FILE_PAGES);
452		}
453		write_unlock_irq(&mapping->tree_lock);
454		radix_tree_preload_end();
455	}
456	return error;
457}
458EXPORT_SYMBOL(add_to_page_cache);
459
460int add_to_page_cache_lru(struct page *page, struct address_space *mapping,
461				pgoff_t offset, gfp_t gfp_mask)
462{
463	int ret = add_to_page_cache(page, mapping, offset, gfp_mask);
464	if (ret == 0)
465		lru_cache_add(page);
466	return ret;
467}
468
469#ifdef CONFIG_NUMA
470struct page *__page_cache_alloc(gfp_t gfp)
471{
472	if (cpuset_do_page_mem_spread()) {
473		int n = cpuset_mem_spread_node();
474		return alloc_pages_node(n, gfp, 0);
475	}
476	return alloc_pages(gfp, 0);
477}
478EXPORT_SYMBOL(__page_cache_alloc);
479#endif
480
481static int __sleep_on_page_lock(void *word)
482{
483	io_schedule();
484	return 0;
485}
486
487/*
488 * In order to wait for pages to become available there must be
489 * waitqueues associated with pages. By using a hash table of
490 * waitqueues where the bucket discipline is to maintain all
491 * waiters on the same queue and wake all when any of the pages
492 * become available, and for the woken contexts to check to be
493 * sure the appropriate page became available, this saves space
494 * at a cost of "thundering herd" phenomena during rare hash
495 * collisions.
496 */
497static wait_queue_head_t *page_waitqueue(struct page *page)
498{
499	const struct zone *zone = page_zone(page);
500
501	return &zone->wait_table[hash_ptr(page, zone->wait_table_bits)];
502}
503
504static inline void wake_up_page(struct page *page, int bit)
505{
506	__wake_up_bit(page_waitqueue(page), &page->flags, bit);
507}
508
509void fastcall wait_on_page_bit(struct page *page, int bit_nr)
510{
511	DEFINE_WAIT_BIT(wait, &page->flags, bit_nr);
512
513	if (test_bit(bit_nr, &page->flags))
514		__wait_on_bit(page_waitqueue(page), &wait, sync_page,
515							TASK_UNINTERRUPTIBLE);
516}
517EXPORT_SYMBOL(wait_on_page_bit);
518
519/**
520 * unlock_page - unlock a locked page
521 * @page: the page
522 *
523 * Unlocks the page and wakes up sleepers in ___wait_on_page_locked().
524 * Also wakes sleepers in wait_on_page_writeback() because the wakeup
525 * mechananism between PageLocked pages and PageWriteback pages is shared.
526 * But that's OK - sleepers in wait_on_page_writeback() just go back to sleep.
527 *
528 * The first mb is necessary to safely close the critical section opened by the
529 * TestSetPageLocked(), the second mb is necessary to enforce ordering between
530 * the clear_bit and the read of the waitqueue (to avoid SMP races with a
531 * parallel wait_on_page_locked()).
532 */
533void fastcall unlock_page(struct page *page)
534{
535	smp_mb__before_clear_bit();
536	if (!TestClearPageLocked(page))
537		BUG();
538	smp_mb__after_clear_bit();
539	wake_up_page(page, PG_locked);
540}
541EXPORT_SYMBOL(unlock_page);
542
543/**
544 * end_page_writeback - end writeback against a page
545 * @page: the page
546 */
547void end_page_writeback(struct page *page)
548{
549	if (!TestClearPageReclaim(page) || rotate_reclaimable_page(page)) {
550		if (!test_clear_page_writeback(page))
551			BUG();
552	}
553	smp_mb__after_clear_bit();
554	wake_up_page(page, PG_writeback);
555}
556EXPORT_SYMBOL(end_page_writeback);
557
558/**
559 * __lock_page - get a lock on the page, assuming we need to sleep to get it
560 * @page: the page to lock
561 *
562 * Ugly. Running sync_page() in state TASK_UNINTERRUPTIBLE is scary.  If some
563 * random driver's requestfn sets TASK_RUNNING, we could busywait.  However
564 * chances are that on the second loop, the block layer's plug list is empty,
565 * so sync_page() will then return in state TASK_UNINTERRUPTIBLE.
566 */
567void fastcall __lock_page(struct page *page)
568{
569	DEFINE_WAIT_BIT(wait, &page->flags, PG_locked);
570
571	__wait_on_bit_lock(page_waitqueue(page), &wait, sync_page,
572							TASK_UNINTERRUPTIBLE);
573}
574EXPORT_SYMBOL(__lock_page);
575
576/*
577 * Variant of lock_page that does not require the caller to hold a reference
578 * on the page's mapping.
579 */
580void fastcall __lock_page_nosync(struct page *page)
581{
582	DEFINE_WAIT_BIT(wait, &page->flags, PG_locked);
583	__wait_on_bit_lock(page_waitqueue(page), &wait, __sleep_on_page_lock,
584							TASK_UNINTERRUPTIBLE);
585}
586
587/**
588 * find_get_page - find and get a page reference
589 * @mapping: the address_space to search
590 * @offset: the page index
591 *
592 * Is there a pagecache struct page at the given (mapping, offset) tuple?
593 * If yes, increment its refcount and return it; if no, return NULL.
594 */
595struct page * find_get_page(struct address_space *mapping, unsigned long offset)
596{
597	struct page *page;
598
599	read_lock_irq(&mapping->tree_lock);
600	page = radix_tree_lookup(&mapping->page_tree, offset);
601	if (page)
602		page_cache_get(page);
603	read_unlock_irq(&mapping->tree_lock);
604	return page;
605}
606EXPORT_SYMBOL(find_get_page);
607
608/**
609 * find_lock_page - locate, pin and lock a pagecache page
610 * @mapping: the address_space to search
611 * @offset: the page index
612 *
613 * Locates the desired pagecache page, locks it, increments its reference
614 * count and returns its address.
615 *
616 * Returns zero if the page was not present. find_lock_page() may sleep.
617 */
618struct page *find_lock_page(struct address_space *mapping,
619				unsigned long offset)
620{
621	struct page *page;
622
623	read_lock_irq(&mapping->tree_lock);
624repeat:
625	page = radix_tree_lookup(&mapping->page_tree, offset);
626	if (page) {
627		page_cache_get(page);
628		if (TestSetPageLocked(page)) {
629			read_unlock_irq(&mapping->tree_lock);
630			__lock_page(page);
631			read_lock_irq(&mapping->tree_lock);
632
633			/* Has the page been truncated while we slept? */
634			if (unlikely(page->mapping != mapping ||
635				     page->index != offset)) {
636				unlock_page(page);
637				page_cache_release(page);
638				goto repeat;
639			}
640		}
641	}
642	read_unlock_irq(&mapping->tree_lock);
643	return page;
644}
645EXPORT_SYMBOL(find_lock_page);
646
647/**
648 * find_or_create_page - locate or add a pagecache page
649 * @mapping: the page's address_space
650 * @index: the page's index into the mapping
651 * @gfp_mask: page allocation mode
652 *
653 * Locates a page in the pagecache.  If the page is not present, a new page
654 * is allocated using @gfp_mask and is added to the pagecache and to the VM's
655 * LRU list.  The returned page is locked and has its reference count
656 * incremented.
657 *
658 * find_or_create_page() may sleep, even if @gfp_flags specifies an atomic
659 * allocation!
660 *
661 * find_or_create_page() returns the desired page's address, or zero on
662 * memory exhaustion.
663 */
664struct page *find_or_create_page(struct address_space *mapping,
665		unsigned long index, gfp_t gfp_mask)
666{
667	struct page *page, *cached_page = NULL;
668	int err;
669repeat:
670	page = find_lock_page(mapping, index);
671	if (!page) {
672		if (!cached_page) {
673			cached_page = alloc_page(gfp_mask);
674			if (!cached_page)
675				return NULL;
676		}
677		err = add_to_page_cache_lru(cached_page, mapping,
678					index, gfp_mask);
679		if (!err) {
680			page = cached_page;
681			cached_page = NULL;
682		} else if (err == -EEXIST)
683			goto repeat;
684	}
685	if (cached_page)
686		page_cache_release(cached_page);
687	return page;
688}
689EXPORT_SYMBOL(find_or_create_page);
690
691/**
692 * find_get_pages - gang pagecache lookup
693 * @mapping:	The address_space to search
694 * @start:	The starting page index
695 * @nr_pages:	The maximum number of pages
696 * @pages:	Where the resulting pages are placed
697 *
698 * find_get_pages() will search for and return a group of up to
699 * @nr_pages pages in the mapping.  The pages are placed at @pages.
700 * find_get_pages() takes a reference against the returned pages.
701 *
702 * The search returns a group of mapping-contiguous pages with ascending
703 * indexes.  There may be holes in the indices due to not-present pages.
704 *
705 * find_get_pages() returns the number of pages which were found.
706 */
707unsigned find_get_pages(struct address_space *mapping, pgoff_t start,
708			    unsigned int nr_pages, struct page **pages)
709{
710	unsigned int i;
711	unsigned int ret;
712
713	read_lock_irq(&mapping->tree_lock);
714	ret = radix_tree_gang_lookup(&mapping->page_tree,
715				(void **)pages, start, nr_pages);
716	for (i = 0; i < ret; i++)
717		page_cache_get(pages[i]);
718	read_unlock_irq(&mapping->tree_lock);
719	return ret;
720}
721
722/**
723 * find_get_pages_contig - gang contiguous pagecache lookup
724 * @mapping:	The address_space to search
725 * @index:	The starting page index
726 * @nr_pages:	The maximum number of pages
727 * @pages:	Where the resulting pages are placed
728 *
729 * find_get_pages_contig() works exactly like find_get_pages(), except
730 * that the returned number of pages are guaranteed to be contiguous.
731 *
732 * find_get_pages_contig() returns the number of pages which were found.
733 */
734unsigned find_get_pages_contig(struct address_space *mapping, pgoff_t index,
735			       unsigned int nr_pages, struct page **pages)
736{
737	unsigned int i;
738	unsigned int ret;
739
740	read_lock_irq(&mapping->tree_lock);
741	ret = radix_tree_gang_lookup(&mapping->page_tree,
742				(void **)pages, index, nr_pages);
743	for (i = 0; i < ret; i++) {
744		if (pages[i]->mapping == NULL || pages[i]->index != index)
745			break;
746
747		page_cache_get(pages[i]);
748		index++;
749	}
750	read_unlock_irq(&mapping->tree_lock);
751	return i;
752}
753
754/**
755 * find_get_pages_tag - find and return pages that match @tag
756 * @mapping:	the address_space to search
757 * @index:	the starting page index
758 * @tag:	the tag index
759 * @nr_pages:	the maximum number of pages
760 * @pages:	where the resulting pages are placed
761 *
762 * Like find_get_pages, except we only return pages which are tagged with
763 * @tag.   We update @index to index the next page for the traversal.
764 */
765unsigned find_get_pages_tag(struct address_space *mapping, pgoff_t *index,
766			int tag, unsigned int nr_pages, struct page **pages)
767{
768	unsigned int i;
769	unsigned int ret;
770
771	read_lock_irq(&mapping->tree_lock);
772	ret = radix_tree_gang_lookup_tag(&mapping->page_tree,
773				(void **)pages, *index, nr_pages, tag);
774	for (i = 0; i < ret; i++)
775		page_cache_get(pages[i]);
776	if (ret)
777		*index = pages[ret - 1]->index + 1;
778	read_unlock_irq(&mapping->tree_lock);
779	return ret;
780}
781
782/**
783 * grab_cache_page_nowait - returns locked page at given index in given cache
784 * @mapping: target address_space
785 * @index: the page index
786 *
787 * Same as grab_cache_page(), but do not wait if the page is unavailable.
788 * This is intended for speculative data generators, where the data can
789 * be regenerated if the page couldn't be grabbed.  This routine should
790 * be safe to call while holding the lock for another page.
791 *
792 * Clear __GFP_FS when allocating the page to avoid recursion into the fs
793 * and deadlock against the caller's locked page.
794 */
795struct page *
796grab_cache_page_nowait(struct address_space *mapping, unsigned long index)
797{
798	struct page *page = find_get_page(mapping, index);
799
800	if (page) {
801		if (!TestSetPageLocked(page))
802			return page;
803		page_cache_release(page);
804		return NULL;
805	}
806	page = __page_cache_alloc(mapping_gfp_mask(mapping) & ~__GFP_FS);
807	if (page && add_to_page_cache_lru(page, mapping, index, GFP_KERNEL)) {
808		page_cache_release(page);
809		page = NULL;
810	}
811	return page;
812}
813EXPORT_SYMBOL(grab_cache_page_nowait);
814
815/*
816 * CD/DVDs are error prone. When a medium error occurs, the driver may fail
817 * a _large_ part of the i/o request. Imagine the worst scenario:
818 *
819 *      ---R__________________________________________B__________
820 *         ^ reading here                             ^ bad block(assume 4k)
821 *
822 * read(R) => miss => readahead(R...B) => media error => frustrating retries
823 * => failing the whole request => read(R) => read(R+1) =>
824 * readahead(R+1...B+1) => bang => read(R+2) => read(R+3) =>
825 * readahead(R+3...B+2) => bang => read(R+3) => read(R+4) =>
826 * readahead(R+4...B+3) => bang => read(R+4) => read(R+5) => ......
827 *
828 * It is going insane. Fix it by quickly scaling down the readahead size.
829 */
830static void shrink_readahead_size_eio(struct file *filp,
831					struct file_ra_state *ra)
832{
833	if (!ra->ra_pages)
834		return;
835
836	ra->ra_pages /= 4;
837}
838
839/**
840 * do_generic_mapping_read - generic file read routine
841 * @mapping:	address_space to be read
842 * @_ra:	file's readahead state
843 * @filp:	the file to read
844 * @ppos:	current file position
845 * @desc:	read_descriptor
846 * @actor:	read method
847 *
848 * This is a generic file read routine, and uses the
849 * mapping->a_ops->readpage() function for the actual low-level stuff.
850 *
851 * This is really ugly. But the goto's actually try to clarify some
852 * of the logic when it comes to error handling etc.
853 *
854 * Note the struct file* is only passed for the use of readpage.
855 * It may be NULL.
856 */
857void do_generic_mapping_read(struct address_space *mapping,
858			     struct file_ra_state *_ra,
859			     struct file *filp,
860			     loff_t *ppos,
861			     read_descriptor_t *desc,
862			     read_actor_t actor)
863{
864	struct inode *inode = mapping->host;
865	unsigned long index;
866	unsigned long end_index;
867	unsigned long offset;
868	unsigned long last_index;
869	unsigned long next_index;
870	unsigned long prev_index;
871	loff_t isize;
872	struct page *cached_page;
873	int error;
874	struct file_ra_state ra = *_ra;
875
876	cached_page = NULL;
877	index = *ppos >> PAGE_CACHE_SHIFT;
878	next_index = index;
879	prev_index = ra.prev_page;
880	last_index = (*ppos + desc->count + PAGE_CACHE_SIZE-1) >> PAGE_CACHE_SHIFT;
881	offset = *ppos & ~PAGE_CACHE_MASK;
882
883	isize = i_size_read(inode);
884	if (!isize)
885		goto out;
886
887	end_index = (isize - 1) >> PAGE_CACHE_SHIFT;
888	for (;;) {
889		struct page *page;
890		unsigned long nr, ret;
891
892		/* nr is the maximum number of bytes to copy from this page */
893		nr = PAGE_CACHE_SIZE;
894		if (index >= end_index) {
895			if (index > end_index)
896				goto out;
897			nr = ((isize - 1) & ~PAGE_CACHE_MASK) + 1;
898			if (nr <= offset) {
899				goto out;
900			}
901		}
902		nr = nr - offset;
903
904		cond_resched();
905		if (index == next_index)
906			next_index = page_cache_readahead(mapping, &ra, filp,
907					index, last_index - index);
908
909find_page:
910		page = find_get_page(mapping, index);
911		if (unlikely(page == NULL)) {
912			handle_ra_miss(mapping, &ra, index);
913			goto no_cached_page;
914		}
915		if (!PageUptodate(page))
916			goto page_not_up_to_date;
917page_ok:
918
919		/* If users can be writing to this page using arbitrary
920		 * virtual addresses, take care about potential aliasing
921		 * before reading the page on the kernel side.
922		 */
923		if (mapping_writably_mapped(mapping))
924			flush_dcache_page(page);
925
926		/*
927		 * When (part of) the same page is read multiple times
928		 * in succession, only mark it as accessed the first time.
929		 */
930		if (prev_index != index)
931			mark_page_accessed(page);
932		prev_index = index;
933
934		/*
935		 * Ok, we have the page, and it's up-to-date, so
936		 * now we can copy it to user space...
937		 *
938		 * The actor routine returns how many bytes were actually used..
939		 * NOTE! This may not be the same as how much of a user buffer
940		 * we filled up (we may be padding etc), so we can only update
941		 * "pos" here (the actor routine has to update the user buffer
942		 * pointers and the remaining count).
943		 */
944		ret = actor(desc, page, offset, nr);
945		offset += ret;
946		index += offset >> PAGE_CACHE_SHIFT;
947		offset &= ~PAGE_CACHE_MASK;
948
949		page_cache_release(page);
950		if (ret == nr && desc->count)
951			continue;
952		goto out;
953
954page_not_up_to_date:
955		/* Get exclusive access to the page ... */
956		lock_page(page);
957
958		/* Did it get truncated before we got the lock? */
959		if (!page->mapping) {
960			unlock_page(page);
961			page_cache_release(page);
962			continue;
963		}
964
965		/* Did somebody else fill it already? */
966		if (PageUptodate(page)) {
967			unlock_page(page);
968			goto page_ok;
969		}
970
971readpage:
972		/* Start the actual read. The read will unlock the page. */
973		error = mapping->a_ops->readpage(filp, page);
974
975		if (unlikely(error)) {
976			if (error == AOP_TRUNCATED_PAGE) {
977				page_cache_release(page);
978				goto find_page;
979			}
980			goto readpage_error;
981		}
982
983		if (!PageUptodate(page)) {
984			lock_page(page);
985			if (!PageUptodate(page)) {
986				if (page->mapping == NULL) {
987					/*
988					 * invalidate_inode_pages got it
989					 */
990					unlock_page(page);
991					page_cache_release(page);
992					goto find_page;
993				}
994				unlock_page(page);
995				error = -EIO;
996				shrink_readahead_size_eio(filp, &ra);
997				goto readpage_error;
998			}
999			unlock_page(page);
1000		}
1001
1002		/*
1003		 * i_size must be checked after we have done ->readpage.
1004		 *
1005		 * Checking i_size after the readpage allows us to calculate
1006		 * the correct value for "nr", which means the zero-filled
1007		 * part of the page is not copied back to userspace (unless
1008		 * another truncate extends the file - this is desired though).
1009		 */
1010		isize = i_size_read(inode);
1011		end_index = (isize - 1) >> PAGE_CACHE_SHIFT;
1012		if (unlikely(!isize || index > end_index)) {
1013			page_cache_release(page);
1014			goto out;
1015		}
1016
1017		/* nr is the maximum number of bytes to copy from this page */
1018		nr = PAGE_CACHE_SIZE;
1019		if (index == end_index) {
1020			nr = ((isize - 1) & ~PAGE_CACHE_MASK) + 1;
1021			if (nr <= offset) {
1022				page_cache_release(page);
1023				goto out;
1024			}
1025		}
1026		nr = nr - offset;
1027		goto page_ok;
1028
1029readpage_error:
1030		/* UHHUH! A synchronous read error occurred. Report it */
1031		desc->error = error;
1032		page_cache_release(page);
1033		goto out;
1034
1035no_cached_page:
1036		/*
1037		 * Ok, it wasn't cached, so we need to create a new
1038		 * page..
1039		 */
1040		if (!cached_page) {
1041			cached_page = page_cache_alloc_cold(mapping);
1042			if (!cached_page) {
1043				desc->error = -ENOMEM;
1044				goto out;
1045			}
1046		}
1047		error = add_to_page_cache_lru(cached_page, mapping,
1048						index, GFP_KERNEL);
1049		if (error) {
1050			if (error == -EEXIST)
1051				goto find_page;
1052			desc->error = error;
1053			goto out;
1054		}
1055		page = cached_page;
1056		cached_page = NULL;
1057		goto readpage;
1058	}
1059
1060out:
1061	*_ra = ra;
1062
1063	*ppos = ((loff_t) index << PAGE_CACHE_SHIFT) + offset;
1064	if (cached_page)
1065		page_cache_release(cached_page);
1066	if (filp)
1067		file_accessed(filp);
1068}
1069EXPORT_SYMBOL(do_generic_mapping_read);
1070
1071int file_read_actor(read_descriptor_t *desc, struct page *page,
1072			unsigned long offset, unsigned long size)
1073{
1074	char *kaddr;
1075	unsigned long left, count = desc->count;
1076
1077	if (size > count)
1078		size = count;
1079
1080	/*
1081	 * Faults on the destination of a read are common, so do it before
1082	 * taking the kmap.
1083	 */
1084	if (!fault_in_pages_writeable(desc->arg.buf, size)) {
1085		kaddr = kmap_atomic(page, KM_USER0);
1086		left = __copy_to_user_inatomic(desc->arg.buf,
1087						kaddr + offset, size);
1088		kunmap_atomic(kaddr, KM_USER0);
1089		if (left == 0)
1090			goto success;
1091	}
1092
1093	/* Do it the slow way */
1094	kaddr = kmap(page);
1095	left = __copy_to_user(desc->arg.buf, kaddr + offset, size);
1096	kunmap(page);
1097
1098	if (left) {
1099		size -= left;
1100		desc->error = -EFAULT;
1101	}
1102success:
1103	desc->count = count - size;
1104	desc->written += size;
1105	desc->arg.buf += size;
1106	return size;
1107}
1108
1109/**
1110 * generic_file_aio_read - generic filesystem read routine
1111 * @iocb:	kernel I/O control block
1112 * @iov:	io vector request
1113 * @nr_segs:	number of segments in the iovec
1114 * @pos:	current file position
1115 *
1116 * This is the "read()" routine for all filesystems
1117 * that can use the page cache directly.
1118 */
1119ssize_t
1120generic_file_aio_read(struct kiocb *iocb, const struct iovec *iov,
1121		unsigned long nr_segs, loff_t pos)
1122{
1123	struct file *filp = iocb->ki_filp;
1124	ssize_t retval;
1125	unsigned long seg;
1126	size_t count;
1127	loff_t *ppos = &iocb->ki_pos;
1128
1129	count = 0;
1130	for (seg = 0; seg < nr_segs; seg++) {
1131		const struct iovec *iv = &iov[seg];
1132
1133		/*
1134		 * If any segment has a negative length, or the cumulative
1135		 * length ever wraps negative then return -EINVAL.
1136		 */
1137		count += iv->iov_len;
1138		if (unlikely((ssize_t)(count|iv->iov_len) < 0))
1139			return -EINVAL;
1140		if (access_ok(VERIFY_WRITE, iv->iov_base, iv->iov_len))
1141			continue;
1142		if (seg == 0)
1143			return -EFAULT;
1144		nr_segs = seg;
1145		count -= iv->iov_len;	/* This segment is no good */
1146		break;
1147	}
1148
1149	/* coalesce the iovecs and go direct-to-BIO for O_DIRECT */
1150	if (filp->f_flags & O_DIRECT) {
1151		loff_t size;
1152		struct address_space *mapping;
1153		struct inode *inode;
1154
1155		mapping = filp->f_mapping;
1156		inode = mapping->host;
1157		retval = 0;
1158		if (!count)
1159			goto out; /* skip atime */
1160		size = i_size_read(inode);
1161		if (pos < size) {
1162			retval = generic_file_direct_IO(READ, iocb,
1163						iov, pos, nr_segs);
1164			if (retval > 0)
1165				*ppos = pos + retval;
1166		}
1167		if (likely(retval != 0)) {
1168			file_accessed(filp);
1169			goto out;
1170		}
1171	}
1172
1173	retval = 0;
1174	if (count) {
1175		for (seg = 0; seg < nr_segs; seg++) {
1176			read_descriptor_t desc;
1177
1178			desc.written = 0;
1179			desc.arg.buf = iov[seg].iov_base;
1180			desc.count = iov[seg].iov_len;
1181			if (desc.count == 0)
1182				continue;
1183			desc.error = 0;
1184			do_generic_file_read(filp,ppos,&desc,file_read_actor);
1185			retval += desc.written;
1186			if (desc.error) {
1187				retval = retval ?: desc.error;
1188				break;
1189			}
1190		}
1191	}
1192out:
1193	return retval;
1194}
1195EXPORT_SYMBOL(generic_file_aio_read);
1196
1197int file_send_actor(read_descriptor_t * desc, struct page *page, unsigned long offset, unsigned long size)
1198{
1199	ssize_t written;
1200	unsigned long count = desc->count;
1201	struct file *file = desc->arg.data;
1202
1203	if (size > count)
1204		size = count;
1205
1206	written = file->f_op->sendpage(file, page, offset,
1207				       size, &file->f_pos, size<count);
1208	if (written < 0) {
1209		desc->error = written;
1210		written = 0;
1211	}
1212	desc->count = count - written;
1213	desc->written += written;
1214	return written;
1215}
1216
1217ssize_t generic_file_sendfile(struct file *in_file, loff_t *ppos,
1218			 size_t count, read_actor_t actor, void *target)
1219{
1220	read_descriptor_t desc;
1221
1222	if (!count)
1223		return 0;
1224
1225	desc.written = 0;
1226	desc.count = count;
1227	desc.arg.data = target;
1228	desc.error = 0;
1229
1230	do_generic_file_read(in_file, ppos, &desc, actor);
1231	if (desc.written)
1232		return desc.written;
1233	return desc.error;
1234}
1235EXPORT_SYMBOL(generic_file_sendfile);
1236
1237static ssize_t
1238do_readahead(struct address_space *mapping, struct file *filp,
1239	     unsigned long index, unsigned long nr)
1240{
1241	if (!mapping || !mapping->a_ops || !mapping->a_ops->readpage)
1242		return -EINVAL;
1243
1244	force_page_cache_readahead(mapping, filp, index,
1245					max_sane_readahead(nr));
1246	return 0;
1247}
1248
1249asmlinkage ssize_t sys_readahead(int fd, loff_t offset, size_t count)
1250{
1251	ssize_t ret;
1252	struct file *file;
1253
1254	ret = -EBADF;
1255	file = fget(fd);
1256	if (file) {
1257		if (file->f_mode & FMODE_READ) {
1258			struct address_space *mapping = file->f_mapping;
1259			unsigned long start = offset >> PAGE_CACHE_SHIFT;
1260			unsigned long end = (offset + count - 1) >> PAGE_CACHE_SHIFT;
1261			unsigned long len = end - start + 1;
1262			ret = do_readahead(mapping, file, start, len);
1263		}
1264		fput(file);
1265	}
1266	return ret;
1267}
1268
1269#ifdef CONFIG_MMU
1270static int FASTCALL(page_cache_read(struct file * file, unsigned long offset));
1271/**
1272 * page_cache_read - adds requested page to the page cache if not already there
1273 * @file:	file to read
1274 * @offset:	page index
1275 *
1276 * This adds the requested page to the page cache if it isn't already there,
1277 * and schedules an I/O to read in its contents from disk.
1278 */
1279static int fastcall page_cache_read(struct file * file, unsigned long offset)
1280{
1281	struct address_space *mapping = file->f_mapping;
1282	struct page *page;
1283	int ret;
1284
1285	do {
1286		page = page_cache_alloc_cold(mapping);
1287		if (!page)
1288			return -ENOMEM;
1289
1290		ret = add_to_page_cache_lru(page, mapping, offset, GFP_KERNEL);
1291		if (ret == 0)
1292			ret = mapping->a_ops->readpage(file, page);
1293		else if (ret == -EEXIST)
1294			ret = 0; /* losing race to add is OK */
1295
1296		page_cache_release(page);
1297
1298	} while (ret == AOP_TRUNCATED_PAGE);
1299
1300	return ret;
1301}
1302
1303#define MMAP_LOTSAMISS  (100)
1304
1305/**
1306 * filemap_nopage - read in file data for page fault handling
1307 * @area:	the applicable vm_area
1308 * @address:	target address to read in
1309 * @type:	returned with VM_FAULT_{MINOR,MAJOR} if not %NULL
1310 *
1311 * filemap_nopage() is invoked via the vma operations vector for a
1312 * mapped memory region to read in file data during a page fault.
1313 *
1314 * The goto's are kind of ugly, but this streamlines the normal case of having
1315 * it in the page cache, and handles the special cases reasonably without
1316 * having a lot of duplicated code.
1317 */
1318struct page *filemap_nopage(struct vm_area_struct *area,
1319				unsigned long address, int *type)
1320{
1321	int error;
1322	struct file *file = area->vm_file;
1323	struct address_space *mapping = file->f_mapping;
1324	struct file_ra_state *ra = &file->f_ra;
1325	struct inode *inode = mapping->host;
1326	struct page *page;
1327	unsigned long size, pgoff;
1328	int did_readaround = 0, majmin = VM_FAULT_MINOR;
1329
1330	pgoff = ((address-area->vm_start) >> PAGE_CACHE_SHIFT) + area->vm_pgoff;
1331
1332retry_all:
1333	size = (i_size_read(inode) + PAGE_CACHE_SIZE - 1) >> PAGE_CACHE_SHIFT;
1334	if (pgoff >= size)
1335		goto outside_data_content;
1336
1337	/* If we don't want any read-ahead, don't bother */
1338	if (VM_RandomReadHint(area))
1339		goto no_cached_page;
1340
1341	/*
1342	 * The readahead code wants to be told about each and every page
1343	 * so it can build and shrink its windows appropriately
1344	 *
1345	 * For sequential accesses, we use the generic readahead logic.
1346	 */
1347	if (VM_SequentialReadHint(area))
1348		page_cache_readahead(mapping, ra, file, pgoff, 1);
1349
1350	/*
1351	 * Do we have something in the page cache already?
1352	 */
1353retry_find:
1354	page = find_get_page(mapping, pgoff);
1355	if (!page) {
1356		unsigned long ra_pages;
1357
1358		if (VM_SequentialReadHint(area)) {
1359			handle_ra_miss(mapping, ra, pgoff);
1360			goto no_cached_page;
1361		}
1362		ra->mmap_miss++;
1363
1364		/*
1365		 * Do we miss much more than hit in this file? If so,
1366		 * stop bothering with read-ahead. It will only hurt.
1367		 */
1368		if (ra->mmap_miss > ra->mmap_hit + MMAP_LOTSAMISS)
1369			goto no_cached_page;
1370
1371		/*
1372		 * To keep the pgmajfault counter straight, we need to
1373		 * check did_readaround, as this is an inner loop.
1374		 */
1375		if (!did_readaround) {
1376			majmin = VM_FAULT_MAJOR;
1377			count_vm_event(PGMAJFAULT);
1378		}
1379		did_readaround = 1;
1380		ra_pages = max_sane_readahead(file->f_ra.ra_pages);
1381		if (ra_pages) {
1382			pgoff_t start = 0;
1383
1384			if (pgoff > ra_pages / 2)
1385				start = pgoff - ra_pages / 2;
1386			do_page_cache_readahead(mapping, file, start, ra_pages);
1387		}
1388		page = find_get_page(mapping, pgoff);
1389		if (!page)
1390			goto no_cached_page;
1391	}
1392
1393	if (!did_readaround)
1394		ra->mmap_hit++;
1395
1396	/*
1397	 * Ok, found a page in the page cache, now we need to check
1398	 * that it's up-to-date.
1399	 */
1400	if (!PageUptodate(page))
1401		goto page_not_uptodate;
1402
1403success:
1404	/*
1405	 * Found the page and have a reference on it.
1406	 */
1407	mark_page_accessed(page);
1408	if (type)
1409		*type = majmin;
1410	return page;
1411
1412outside_data_content:
1413	/*
1414	 * An external ptracer can access pages that normally aren't
1415	 * accessible..
1416	 */
1417	if (area->vm_mm == current->mm)
1418		return NOPAGE_SIGBUS;
1419	/* Fall through to the non-read-ahead case */
1420no_cached_page:
1421	/*
1422	 * We're only likely to ever get here if MADV_RANDOM is in
1423	 * effect.
1424	 */
1425	error = page_cache_read(file, pgoff);
1426
1427	/*
1428	 * The page we want has now been added to the page cache.
1429	 * In the unlikely event that someone removed it in the
1430	 * meantime, we'll just come back here and read it again.
1431	 */
1432	if (error >= 0)
1433		goto retry_find;
1434
1435	/*
1436	 * An error return from page_cache_read can result if the
1437	 * system is low on memory, or a problem occurs while trying
1438	 * to schedule I/O.
1439	 */
1440	if (error == -ENOMEM)
1441		return NOPAGE_OOM;
1442	return NOPAGE_SIGBUS;
1443
1444page_not_uptodate:
1445	if (!did_readaround) {
1446		majmin = VM_FAULT_MAJOR;
1447		count_vm_event(PGMAJFAULT);
1448	}
1449	lock_page(page);
1450
1451	/* Did it get unhashed while we waited for it? */
1452	if (!page->mapping) {
1453		unlock_page(page);
1454		page_cache_release(page);
1455		goto retry_all;
1456	}
1457
1458	/* Did somebody else get it up-to-date? */
1459	if (PageUptodate(page)) {
1460		unlock_page(page);
1461		goto success;
1462	}
1463
1464	error = mapping->a_ops->readpage(file, page);
1465	if (!error) {
1466		wait_on_page_locked(page);
1467		if (PageUptodate(page))
1468			goto success;
1469	} else if (error == AOP_TRUNCATED_PAGE) {
1470		page_cache_release(page);
1471		goto retry_find;
1472	}
1473
1474	/*
1475	 * Umm, take care of errors if the page isn't up-to-date.
1476	 * Try to re-read it _once_. We do this synchronously,
1477	 * because there really aren't any performance issues here
1478	 * and we need to check for errors.
1479	 */
1480	lock_page(page);
1481
1482	/* Somebody truncated the page on us? */
1483	if (!page->mapping) {
1484		unlock_page(page);
1485		page_cache_release(page);
1486		goto retry_all;
1487	}
1488
1489	/* Somebody else successfully read it in? */
1490	if (PageUptodate(page)) {
1491		unlock_page(page);
1492		goto success;
1493	}
1494	ClearPageError(page);
1495	error = mapping->a_ops->readpage(file, page);
1496	if (!error) {
1497		wait_on_page_locked(page);
1498		if (PageUptodate(page))
1499			goto success;
1500	} else if (error == AOP_TRUNCATED_PAGE) {
1501		page_cache_release(page);
1502		goto retry_find;
1503	}
1504
1505	/*
1506	 * Things didn't work out. Return zero to tell the
1507	 * mm layer so, possibly freeing the page cache page first.
1508	 */
1509	shrink_readahead_size_eio(file, ra);
1510	page_cache_release(page);
1511	return NOPAGE_SIGBUS;
1512}
1513EXPORT_SYMBOL(filemap_nopage);
1514
1515static struct page * filemap_getpage(struct file *file, unsigned long pgoff,
1516					int nonblock)
1517{
1518	struct address_space *mapping = file->f_mapping;
1519	struct page *page;
1520	int error;
1521
1522	/*
1523	 * Do we have something in the page cache already?
1524	 */
1525retry_find:
1526	page = find_get_page(mapping, pgoff);
1527	if (!page) {
1528		if (nonblock)
1529			return NULL;
1530		goto no_cached_page;
1531	}
1532
1533	/*
1534	 * Ok, found a page in the page cache, now we need to check
1535	 * that it's up-to-date.
1536	 */
1537	if (!PageUptodate(page)) {
1538		if (nonblock) {
1539			page_cache_release(page);
1540			return NULL;
1541		}
1542		goto page_not_uptodate;
1543	}
1544
1545success:
1546	/*
1547	 * Found the page and have a reference on it.
1548	 */
1549	mark_page_accessed(page);
1550	return page;
1551
1552no_cached_page:
1553	error = page_cache_read(file, pgoff);
1554
1555	/*
1556	 * The page we want has now been added to the page cache.
1557	 * In the unlikely event that someone removed it in the
1558	 * meantime, we'll just come back here and read it again.
1559	 */
1560	if (error >= 0)
1561		goto retry_find;
1562
1563	/*
1564	 * An error return from page_cache_read can result if the
1565	 * system is low on memory, or a problem occurs while trying
1566	 * to schedule I/O.
1567	 */
1568	return NULL;
1569
1570page_not_uptodate:
1571	lock_page(page);
1572
1573	/* Did it get truncated while we waited for it? */
1574	if (!page->mapping) {
1575		unlock_page(page);
1576		goto err;
1577	}
1578
1579	/* Did somebody else get it up-to-date? */
1580	if (PageUptodate(page)) {
1581		unlock_page(page);
1582		goto success;
1583	}
1584
1585	error = mapping->a_ops->readpage(file, page);
1586	if (!error) {
1587		wait_on_page_locked(page);
1588		if (PageUptodate(page))
1589			goto success;
1590	} else if (error == AOP_TRUNCATED_PAGE) {
1591		page_cache_release(page);
1592		goto retry_find;
1593	}
1594
1595	/*
1596	 * Umm, take care of errors if the page isn't up-to-date.
1597	 * Try to re-read it _once_. We do this synchronously,
1598	 * because there really aren't any performance issues here
1599	 * and we need to check for errors.
1600	 */
1601	lock_page(page);
1602
1603	/* Somebody truncated the page on us? */
1604	if (!page->mapping) {
1605		unlock_page(page);
1606		goto err;
1607	}
1608	/* Somebody else successfully read it in? */
1609	if (PageUptodate(page)) {
1610		unlock_page(page);
1611		goto success;
1612	}
1613
1614	ClearPageError(page);
1615	error = mapping->a_ops->readpage(file, page);
1616	if (!error) {
1617		wait_on_page_locked(page);
1618		if (PageUptodate(page))
1619			goto success;
1620	} else if (error == AOP_TRUNCATED_PAGE) {
1621		page_cache_release(page);
1622		goto retry_find;
1623	}
1624
1625	/*
1626	 * Things didn't work out. Return zero to tell the
1627	 * mm layer so, possibly freeing the page cache page first.
1628	 */
1629err:
1630	page_cache_release(page);
1631
1632	return NULL;
1633}
1634
1635int filemap_populate(struct vm_area_struct *vma, unsigned long addr,
1636		unsigned long len, pgprot_t prot, unsigned long pgoff,
1637		int nonblock)
1638{
1639	struct file *file = vma->vm_file;
1640	struct address_space *mapping = file->f_mapping;
1641	struct inode *inode = mapping->host;
1642	unsigned long size;
1643	struct mm_struct *mm = vma->vm_mm;
1644	struct page *page;
1645	int err;
1646
1647	if (!nonblock)
1648		force_page_cache_readahead(mapping, vma->vm_file,
1649					pgoff, len >> PAGE_CACHE_SHIFT);
1650
1651repeat:
1652	size = (i_size_read(inode) + PAGE_CACHE_SIZE - 1) >> PAGE_CACHE_SHIFT;
1653	if (pgoff + (len >> PAGE_CACHE_SHIFT) > size)
1654		return -EINVAL;
1655
1656	page = filemap_getpage(file, pgoff, nonblock);
1657
1658	/* XXX: This is wrong, a filesystem I/O error may have happened. Fix that as
1659	 * done in shmem_populate calling shmem_getpage */
1660	if (!page && !nonblock)
1661		return -ENOMEM;
1662
1663	if (page) {
1664		err = install_page(mm, vma, addr, page, prot);
1665		if (err) {
1666			page_cache_release(page);
1667			return err;
1668		}
1669	} else if (vma->vm_flags & VM_NONLINEAR) {
1670		/* No page was found just because we can't read it in now (being
1671		 * here implies nonblock != 0), but the page may exist, so set
1672		 * the PTE to fault it in later. */
1673		err = install_file_pte(mm, vma, addr, pgoff, prot);
1674		if (err)
1675			return err;
1676	}
1677
1678	len -= PAGE_SIZE;
1679	addr += PAGE_SIZE;
1680	pgoff++;
1681	if (len)
1682		goto repeat;
1683
1684	return 0;
1685}
1686EXPORT_SYMBOL(filemap_populate);
1687
1688struct vm_operations_struct generic_file_vm_ops = {
1689	.nopage		= filemap_nopage,
1690	.populate	= filemap_populate,
1691};
1692
1693/* This is used for a general mmap of a disk file */
1694
1695int generic_file_mmap(struct file * file, struct vm_area_struct * vma)
1696{
1697	struct address_space *mapping = file->f_mapping;
1698
1699	if (!mapping->a_ops->readpage)
1700		return -ENOEXEC;
1701	file_accessed(file);
1702	vma->vm_ops = &generic_file_vm_ops;
1703	return 0;
1704}
1705
1706/*
1707 * This is for filesystems which do not implement ->writepage.
1708 */
1709int generic_file_readonly_mmap(struct file *file, struct vm_area_struct *vma)
1710{
1711	if ((vma->vm_flags & VM_SHARED) && (vma->vm_flags & VM_MAYWRITE))
1712		return -EINVAL;
1713	return generic_file_mmap(file, vma);
1714}
1715#else
1716int generic_file_mmap(struct file * file, struct vm_area_struct * vma)
1717{
1718	return -ENOSYS;
1719}
1720int generic_file_readonly_mmap(struct file * file, struct vm_area_struct * vma)
1721{
1722	return -ENOSYS;
1723}
1724#endif /* CONFIG_MMU */
1725
1726EXPORT_SYMBOL(generic_file_mmap);
1727EXPORT_SYMBOL(generic_file_readonly_mmap);
1728
1729static inline struct page *__read_cache_page(struct address_space *mapping,
1730				unsigned long index,
1731				int (*filler)(void *,struct page*),
1732				void *data)
1733{
1734	struct page *page, *cached_page = NULL;
1735	int err;
1736repeat:
1737	page = find_get_page(mapping, index);
1738	if (!page) {
1739		if (!cached_page) {
1740			cached_page = page_cache_alloc_cold(mapping);
1741			if (!cached_page)
1742				return ERR_PTR(-ENOMEM);
1743		}
1744		err = add_to_page_cache_lru(cached_page, mapping,
1745					index, GFP_KERNEL);
1746		if (err == -EEXIST)
1747			goto repeat;
1748		if (err < 0) {
1749			/* Presumably ENOMEM for radix tree node */
1750			page_cache_release(cached_page);
1751			return ERR_PTR(err);
1752		}
1753		page = cached_page;
1754		cached_page = NULL;
1755		err = filler(data, page);
1756		if (err < 0) {
1757			page_cache_release(page);
1758			page = ERR_PTR(err);
1759		}
1760	}
1761	if (cached_page)
1762		page_cache_release(cached_page);
1763	return page;
1764}
1765
1766/**
1767 * read_cache_page - read into page cache, fill it if needed
1768 * @mapping:	the page's address_space
1769 * @index:	the page index
1770 * @filler:	function to perform the read
1771 * @data:	destination for read data
1772 *
1773 * Read into the page cache. If a page already exists,
1774 * and PageUptodate() is not set, try to fill the page.
1775 */
1776struct page *read_cache_page(struct address_space *mapping,
1777				unsigned long index,
1778				int (*filler)(void *,struct page*),
1779				void *data)
1780{
1781	struct page *page;
1782	int err;
1783
1784retry:
1785	page = __read_cache_page(mapping, index, filler, data);
1786	if (IS_ERR(page))
1787		goto out;
1788	mark_page_accessed(page);
1789	if (PageUptodate(page))
1790		goto out;
1791
1792	lock_page(page);
1793	if (!page->mapping) {
1794		unlock_page(page);
1795		page_cache_release(page);
1796		goto retry;
1797	}
1798	if (PageUptodate(page)) {
1799		unlock_page(page);
1800		goto out;
1801	}
1802	err = filler(data, page);
1803	if (err < 0) {
1804		page_cache_release(page);
1805		page = ERR_PTR(err);
1806	}
1807 out:
1808	return page;
1809}
1810EXPORT_SYMBOL(read_cache_page);
1811
1812/*
1813 * If the page was newly created, increment its refcount and add it to the
1814 * caller's lru-buffering pagevec.  This function is specifically for
1815 * generic_file_write().
1816 */
1817static inline struct page *
1818__grab_cache_page(struct address_space *mapping, unsigned long index,
1819			struct page **cached_page, struct pagevec *lru_pvec)
1820{
1821	int err;
1822	struct page *page;
1823repeat:
1824	page = find_lock_page(mapping, index);
1825	if (!page) {
1826		if (!*cached_page) {
1827			*cached_page = page_cache_alloc(mapping);
1828			if (!*cached_page)
1829				return NULL;
1830		}
1831		err = add_to_page_cache(*cached_page, mapping,
1832					index, GFP_KERNEL);
1833		if (err == -EEXIST)
1834			goto repeat;
1835		if (err == 0) {
1836			page = *cached_page;
1837			page_cache_get(page);
1838			if (!pagevec_add(lru_pvec, page))
1839				__pagevec_lru_add(lru_pvec);
1840			*cached_page = NULL;
1841		}
1842	}
1843	return page;
1844}
1845
1846/*
1847 * The logic we want is
1848 *
1849 *	if suid or (sgid and xgrp)
1850 *		remove privs
1851 */
1852int should_remove_suid(struct dentry *dentry)
1853{
1854	mode_t mode = dentry->d_inode->i_mode;
1855	int kill = 0;
1856
1857	/* suid always must be killed */
1858	if (unlikely(mode & S_ISUID))
1859		kill = ATTR_KILL_SUID;
1860
1861	/*
1862	 * sgid without any exec bits is just a mandatory locking mark; leave
1863	 * it alone.  If some exec bits are set, it's a real sgid; kill it.
1864	 */
1865	if (unlikely((mode & S_ISGID) && (mode & S_IXGRP)))
1866		kill |= ATTR_KILL_SGID;
1867
1868	if (unlikely(kill && !capable(CAP_FSETID)))
1869		return kill;
1870
1871	return 0;
1872}
1873EXPORT_SYMBOL(should_remove_suid);
1874
1875int __remove_suid(struct dentry *dentry, int kill)
1876{
1877	struct iattr newattrs;
1878
1879	newattrs.ia_valid = ATTR_FORCE | kill;
1880	return notify_change(dentry, &newattrs);
1881}
1882
1883int remove_suid(struct dentry *dentry)
1884{
1885	int kill = should_remove_suid(dentry);
1886
1887	if (unlikely(kill))
1888		return __remove_suid(dentry, kill);
1889
1890	return 0;
1891}
1892EXPORT_SYMBOL(remove_suid);
1893
1894size_t
1895__filemap_copy_from_user_iovec_inatomic(char *vaddr,
1896			const struct iovec *iov, size_t base, size_t bytes)
1897{
1898	size_t copied = 0, left = 0;
1899
1900	while (bytes) {
1901		char __user *buf = iov->iov_base + base;
1902		int copy = min(bytes, iov->iov_len - base);
1903
1904		base = 0;
1905		left = __copy_from_user_inatomic_nocache(vaddr, buf, copy);
1906		copied += copy;
1907		bytes -= copy;
1908		vaddr += copy;
1909		iov++;
1910
1911		if (unlikely(left))
1912			break;
1913	}
1914	return copied - left;
1915}
1916
1917/*
1918 * Performs necessary checks before doing a write
1919 *
1920 * Can adjust writing position or amount of bytes to write.
1921 * Returns appropriate error code that caller should return or
1922 * zero in case that write should be allowed.
1923 */
1924inline int generic_write_checks(struct file *file, loff_t *pos, size_t *count, int isblk)
1925{
1926	struct inode *inode = file->f_mapping->host;
1927	unsigned long limit = current->signal->rlim[RLIMIT_FSIZE].rlim_cur;
1928
1929        if (unlikely(*pos < 0))
1930                return -EINVAL;
1931
1932	if (!isblk) {
1933		/* FIXME: this is for backwards compatibility with 2.4 */
1934		if (file->f_flags & O_APPEND)
1935                        *pos = i_size_read(inode);
1936
1937		if (limit != RLIM_INFINITY) {
1938			if (*pos >= limit) {
1939				send_sig(SIGXFSZ, current, 0);
1940				return -EFBIG;
1941			}
1942			if (*count > limit - (typeof(limit))*pos) {
1943				*count = limit - (typeof(limit))*pos;
1944			}
1945		}
1946	}
1947
1948	/*
1949	 * LFS rule
1950	 */
1951	if (unlikely(*pos + *count > MAX_NON_LFS &&
1952				!(file->f_flags & O_LARGEFILE))) {
1953		if (*pos >= MAX_NON_LFS) {
1954			send_sig(SIGXFSZ, current, 0);
1955			return -EFBIG;
1956		}
1957		if (*count > MAX_NON_LFS - (unsigned long)*pos) {
1958			*count = MAX_NON_LFS - (unsigned long)*pos;
1959		}
1960	}
1961
1962	/*
1963	 * Are we about to exceed the fs block limit ?
1964	 *
1965	 * If we have written data it becomes a short write.  If we have
1966	 * exceeded without writing data we send a signal and return EFBIG.
1967	 * Linus frestrict idea will clean these up nicely..
1968	 */
1969	if (likely(!isblk)) {
1970		if (unlikely(*pos >= inode->i_sb->s_maxbytes)) {
1971			if (*count || *pos > inode->i_sb->s_maxbytes) {
1972				send_sig(SIGXFSZ, current, 0);
1973				return -EFBIG;
1974			}
1975			/* zero-length writes at ->s_maxbytes are OK */
1976		}
1977
1978		if (unlikely(*pos + *count > inode->i_sb->s_maxbytes))
1979			*count = inode->i_sb->s_maxbytes - *pos;
1980	} else {
1981#ifdef CONFIG_BLOCK
1982		loff_t isize;
1983		if (bdev_read_only(I_BDEV(inode)))
1984			return -EPERM;
1985		isize = i_size_read(inode);
1986		if (*pos >= isize) {
1987			if (*count || *pos > isize)
1988				return -ENOSPC;
1989		}
1990
1991		if (*pos + *count > isize)
1992			*count = isize - *pos;
1993#else
1994		return -EPERM;
1995#endif
1996	}
1997	return 0;
1998}
1999EXPORT_SYMBOL(generic_write_checks);
2000
2001ssize_t
2002generic_file_direct_write(struct kiocb *iocb, const struct iovec *iov,
2003		unsigned long *nr_segs, loff_t pos, loff_t *ppos,
2004		size_t count, size_t ocount)
2005{
2006	struct file	*file = iocb->ki_filp;
2007	struct address_space *mapping = file->f_mapping;
2008	struct inode	*inode = mapping->host;
2009	ssize_t		written;
2010
2011	if (count != ocount)
2012		*nr_segs = iov_shorten((struct iovec *)iov, *nr_segs, count);
2013
2014	written = generic_file_direct_IO(WRITE, iocb, iov, pos, *nr_segs);
2015	if (written > 0) {
2016		loff_t end = pos + written;
2017		if (end > i_size_read(inode) && !S_ISBLK(inode->i_mode)) {
2018			i_size_write(inode,  end);
2019			mark_inode_dirty(inode);
2020		}
2021		*ppos = end;
2022	}
2023
2024	/*
2025	 * Sync the fs metadata but not the minor inode changes and
2026	 * of course not the data as we did direct DMA for the IO.
2027	 * i_mutex is held, which protects generic_osync_inode() from
2028	 * livelocking.  AIO O_DIRECT ops attempt to sync metadata here.
2029	 */
2030	if ((written >= 0 || written == -EIOCBQUEUED) &&
2031	    ((file->f_flags & O_SYNC) || IS_SYNC(inode))) {
2032		int err = generic_osync_inode(inode, mapping, OSYNC_METADATA);
2033		if (err < 0)
2034			written = err;
2035	}
2036	return written;
2037}
2038EXPORT_SYMBOL(generic_file_direct_write);
2039
2040ssize_t
2041generic_file_buffered_write(struct kiocb *iocb, const struct iovec *iov,
2042		unsigned long nr_segs, loff_t pos, loff_t *ppos,
2043		size_t count, ssize_t written)
2044{
2045	struct file *file = iocb->ki_filp;
2046	struct address_space * mapping = file->f_mapping;
2047	const struct address_space_operations *a_ops = mapping->a_ops;
2048	struct inode 	*inode = mapping->host;
2049	long		status = 0;
2050	struct page	*page;
2051	struct page	*cached_page = NULL;
2052	size_t		bytes;
2053	struct pagevec	lru_pvec;
2054	const struct iovec *cur_iov = iov; /* current iovec */
2055	size_t		iov_base = 0;	   /* offset in the current iovec */
2056	char __user	*buf;
2057
2058	pagevec_init(&lru_pvec, 0);
2059
2060	/*
2061	 * handle partial DIO write.  Adjust cur_iov if needed.
2062	 */
2063	if (likely(nr_segs == 1))
2064		buf = iov->iov_base + written;
2065	else {
2066		filemap_set_next_iovec(&cur_iov, &iov_base, written);
2067		buf = cur_iov->iov_base + iov_base;
2068	}
2069
2070	do {
2071		unsigned long index;
2072		unsigned long offset;
2073		size_t copied;
2074
2075		offset = (pos & (PAGE_CACHE_SIZE -1)); /* Within page */
2076		index = pos >> PAGE_CACHE_SHIFT;
2077		bytes = PAGE_CACHE_SIZE - offset;
2078
2079		/* Limit the size of the copy to the caller's write size */
2080		bytes = min(bytes, count);
2081
2082		/* We only need to worry about prefaulting when writes are from
2083		 * user-space.  NFSd uses vfs_writev with several non-aligned
2084		 * segments in the vector, and limiting to one segment a time is
2085		 * a noticeable performance for re-write
2086		 */
2087		if (!segment_eq(get_fs(), KERNEL_DS)) {
2088			/*
2089			 * Limit the size of the copy to that of the current
2090			 * segment, because fault_in_pages_readable() doesn't
2091			 * know how to walk segments.
2092			 */
2093			bytes = min(bytes, cur_iov->iov_len - iov_base);
2094
2095			/*
2096			 * Bring in the user page that we will copy from
2097			 * _first_.  Otherwise there's a nasty deadlock on
2098			 * copying from the same page as we're writing to,
2099			 * without it being marked up-to-date.
2100			 */
2101			fault_in_pages_readable(buf, bytes);
2102		}
2103		page = __grab_cache_page(mapping,index,&cached_page,&lru_pvec);
2104		if (!page) {
2105			status = -ENOMEM;
2106			break;
2107		}
2108
2109		if (unlikely(bytes == 0)) {
2110			status = 0;
2111			copied = 0;
2112			goto zero_length_segment;
2113		}
2114
2115		status = a_ops->prepare_write(file, page, offset, offset+bytes);
2116		if (unlikely(status)) {
2117			loff_t isize = i_size_read(inode);
2118
2119			if (status != AOP_TRUNCATED_PAGE)
2120				unlock_page(page);
2121			page_cache_release(page);
2122			if (status == AOP_TRUNCATED_PAGE)
2123				continue;
2124			/*
2125			 * prepare_write() may have instantiated a few blocks
2126			 * outside i_size.  Trim these off again.
2127			 */
2128			if (pos + bytes > isize)
2129				vmtruncate(inode, isize);
2130			break;
2131		}
2132		if (likely(nr_segs == 1))
2133			copied = filemap_copy_from_user(page, offset,
2134							buf, bytes);
2135		else
2136			copied = filemap_copy_from_user_iovec(page, offset,
2137						cur_iov, iov_base, bytes);
2138		flush_dcache_page(page);
2139		status = a_ops->commit_write(file, page, offset, offset+bytes);
2140		if (status == AOP_TRUNCATED_PAGE) {
2141			page_cache_release(page);
2142			continue;
2143		}
2144zero_length_segment:
2145		if (likely(copied >= 0)) {
2146			if (!status)
2147				status = copied;
2148
2149			if (status >= 0) {
2150				written += status;
2151				count -= status;
2152				pos += status;
2153				buf += status;
2154				if (unlikely(nr_segs > 1)) {
2155					filemap_set_next_iovec(&cur_iov,
2156							&iov_base, status);
2157					if (count)
2158						buf = cur_iov->iov_base +
2159							iov_base;
2160				} else {
2161					iov_base += status;
2162				}
2163			}
2164		}
2165		if (unlikely(copied != bytes))
2166			if (status >= 0)
2167				status = -EFAULT;
2168		unlock_page(page);
2169		mark_page_accessed(page);
2170		page_cache_release(page);
2171		if (status < 0)
2172			break;
2173		balance_dirty_pages_ratelimited(mapping);
2174		cond_resched();
2175	} while (count);
2176	*ppos = pos;
2177
2178	if (cached_page)
2179		page_cache_release(cached_page);
2180
2181	/*
2182	 * For now, when the user asks for O_SYNC, we'll actually give O_DSYNC
2183	 */
2184	if (likely(status >= 0)) {
2185		if (unlikely((file->f_flags & O_SYNC) || IS_SYNC(inode))) {
2186			if (!a_ops->writepage || !is_sync_kiocb(iocb))
2187				status = generic_osync_inode(inode, mapping,
2188						OSYNC_METADATA|OSYNC_DATA);
2189		}
2190  	}
2191
2192	/*
2193	 * If we get here for O_DIRECT writes then we must have fallen through
2194	 * to buffered writes (block instantiation inside i_size).  So we sync
2195	 * the file data here, to try to honour O_DIRECT expectations.
2196	 */
2197	if (unlikely(file->f_flags & O_DIRECT) && written)
2198		status = filemap_write_and_wait(mapping);
2199
2200	pagevec_lru_add(&lru_pvec);
2201	return written ? written : status;
2202}
2203EXPORT_SYMBOL(generic_file_buffered_write);
2204
2205static ssize_t
2206__generic_file_aio_write_nolock(struct kiocb *iocb, const struct iovec *iov,
2207				unsigned long nr_segs, loff_t *ppos)
2208{
2209	struct file *file = iocb->ki_filp;
2210	struct address_space * mapping = file->f_mapping;
2211	size_t ocount;		/* original count */
2212	size_t count;		/* after file limit checks */
2213	struct inode 	*inode = mapping->host;
2214	unsigned long	seg;
2215	loff_t		pos;
2216	ssize_t		written;
2217	ssize_t		err;
2218
2219	ocount = 0;
2220	for (seg = 0; seg < nr_segs; seg++) {
2221		const struct iovec *iv = &iov[seg];
2222
2223		/*
2224		 * If any segment has a negative length, or the cumulative
2225		 * length ever wraps negative then return -EINVAL.
2226		 */
2227		ocount += iv->iov_len;
2228		if (unlikely((ssize_t)(ocount|iv->iov_len) < 0))
2229			return -EINVAL;
2230		if (access_ok(VERIFY_READ, iv->iov_base, iv->iov_len))
2231			continue;
2232		if (seg == 0)
2233			return -EFAULT;
2234		nr_segs = seg;
2235		ocount -= iv->iov_len;	/* This segment is no good */
2236		break;
2237	}
2238
2239	count = ocount;
2240	pos = *ppos;
2241
2242	vfs_check_frozen(inode->i_sb, SB_FREEZE_WRITE);
2243
2244	/* We can write back this queue in page reclaim */
2245	current->backing_dev_info = mapping->backing_dev_info;
2246	written = 0;
2247
2248	err = generic_write_checks(file, &pos, &count, S_ISBLK(inode->i_mode));
2249	if (err)
2250		goto out;
2251
2252	if (count == 0)
2253		goto out;
2254
2255	err = remove_suid(file->f_path.dentry);
2256	if (err)
2257		goto out;
2258
2259	file_update_time(file);
2260
2261	/* coalesce the iovecs and go direct-to-BIO for O_DIRECT */
2262	if (unlikely(file->f_flags & O_DIRECT)) {
2263		loff_t endbyte;
2264		ssize_t written_buffered;
2265
2266		written = generic_file_direct_write(iocb, iov, &nr_segs, pos,
2267							ppos, count, ocount);
2268		if (written < 0 || written == count)
2269			goto out;
2270		/*
2271		 * direct-io write to a hole: fall through to buffered I/O
2272		 * for completing the rest of the request.
2273		 */
2274		pos += written;
2275		count -= written;
2276		written_buffered = generic_file_buffered_write(iocb, iov,
2277						nr_segs, pos, ppos, count,
2278						written);
2279		/*
2280		 * If generic_file_buffered_write() retuned a synchronous error
2281		 * then we want to return the number of bytes which were
2282		 * direct-written, or the error code if that was zero.  Note
2283		 * that this differs from normal direct-io semantics, which
2284		 * will return -EFOO even if some bytes were written.
2285		 */
2286		if (written_buffered < 0) {
2287			err = written_buffered;
2288			goto out;
2289		}
2290
2291		/*
2292		 * We need to ensure that the page cache pages are written to
2293		 * disk and invalidated to preserve the expected O_DIRECT
2294		 * semantics.
2295		 */
2296		endbyte = pos + written_buffered - written - 1;
2297		err = do_sync_file_range(file, pos, endbyte,
2298					 SYNC_FILE_RANGE_WAIT_BEFORE|
2299					 SYNC_FILE_RANGE_WRITE|
2300					 SYNC_FILE_RANGE_WAIT_AFTER);
2301		if (err == 0) {
2302			written = written_buffered;
2303			invalidate_mapping_pages(mapping,
2304						 pos >> PAGE_CACHE_SHIFT,
2305						 endbyte >> PAGE_CACHE_SHIFT);
2306		} else {
2307			/*
2308			 * We don't know how much we wrote, so just return
2309			 * the number of bytes which were direct-written
2310			 */
2311		}
2312	} else {
2313		written = generic_file_buffered_write(iocb, iov, nr_segs,
2314				pos, ppos, count, written);
2315	}
2316out:
2317	current->backing_dev_info = NULL;
2318	return written ? written : err;
2319}
2320
2321ssize_t generic_file_aio_write_nolock(struct kiocb *iocb,
2322		const struct iovec *iov, unsigned long nr_segs, loff_t pos)
2323{
2324	struct file *file = iocb->ki_filp;
2325	struct address_space *mapping = file->f_mapping;
2326	struct inode *inode = mapping->host;
2327	ssize_t ret;
2328
2329	BUG_ON(iocb->ki_pos != pos);
2330
2331	ret = __generic_file_aio_write_nolock(iocb, iov, nr_segs,
2332			&iocb->ki_pos);
2333
2334	if (ret > 0 && ((file->f_flags & O_SYNC) || IS_SYNC(inode))) {
2335		ssize_t err;
2336
2337		err = sync_page_range_nolock(inode, mapping, pos, ret);
2338		if (err < 0)
2339			ret = err;
2340	}
2341	return ret;
2342}
2343EXPORT_SYMBOL(generic_file_aio_write_nolock);
2344
2345ssize_t generic_file_aio_write(struct kiocb *iocb, const struct iovec *iov,
2346		unsigned long nr_segs, loff_t pos)
2347{
2348	struct file *file = iocb->ki_filp;
2349	struct address_space *mapping = file->f_mapping;
2350	struct inode *inode = mapping->host;
2351	ssize_t ret;
2352
2353	BUG_ON(iocb->ki_pos != pos);
2354
2355	mutex_lock(&inode->i_mutex);
2356	ret = __generic_file_aio_write_nolock(iocb, iov, nr_segs,
2357			&iocb->ki_pos);
2358	mutex_unlock(&inode->i_mutex);
2359
2360	if (ret > 0 && ((file->f_flags & O_SYNC) || IS_SYNC(inode))) {
2361		ssize_t err;
2362
2363		err = sync_page_range(inode, mapping, pos, ret);
2364		if (err < 0)
2365			ret = err;
2366	}
2367	return ret;
2368}
2369EXPORT_SYMBOL(generic_file_aio_write);
2370
2371/*
2372 * Called under i_mutex for writes to S_ISREG files.   Returns -EIO if something
2373 * went wrong during pagecache shootdown.
2374 */
2375static ssize_t
2376generic_file_direct_IO(int rw, struct kiocb *iocb, const struct iovec *iov,
2377	loff_t offset, unsigned long nr_segs)
2378{
2379	struct file *file = iocb->ki_filp;
2380	struct address_space *mapping = file->f_mapping;
2381	ssize_t retval;
2382	size_t write_len = 0;
2383
2384	/*
2385	 * If it's a write, unmap all mmappings of the file up-front.  This
2386	 * will cause any pte dirty bits to be propagated into the pageframes
2387	 * for the subsequent filemap_write_and_wait().
2388	 */
2389	if (rw == WRITE) {
2390		write_len = iov_length(iov, nr_segs);
2391	       	if (mapping_mapped(mapping))
2392			unmap_mapping_range(mapping, offset, write_len, 0);
2393	}
2394
2395	retval = filemap_write_and_wait(mapping);
2396	if (retval == 0) {
2397		retval = mapping->a_ops->direct_IO(rw, iocb, iov,
2398						offset, nr_segs);
2399		if (rw == WRITE && mapping->nrpages) {
2400			pgoff_t end = (offset + write_len - 1)
2401						>> PAGE_CACHE_SHIFT;
2402			int err = invalidate_inode_pages2_range(mapping,
2403					offset >> PAGE_CACHE_SHIFT, end);
2404			if (err)
2405				retval = err;
2406		}
2407	}
2408	return retval;
2409}
2410
2411/**
2412 * try_to_release_page() - release old fs-specific metadata on a page
2413 *
2414 * @page: the page which the kernel is trying to free
2415 * @gfp_mask: memory allocation flags (and I/O mode)
2416 *
2417 * The address_space is to try to release any data against the page
2418 * (presumably at page->private).  If the release was successful, return `1'.
2419 * Otherwise return zero.
2420 *
2421 * The @gfp_mask argument specifies whether I/O may be performed to release
2422 * this page (__GFP_IO), and whether the call may block (__GFP_WAIT).
2423 *
2424 * NOTE: @gfp_mask may go away, and this function may become non-blocking.
2425 */
2426int try_to_release_page(struct page *page, gfp_t gfp_mask)
2427{
2428	struct address_space * const mapping = page->mapping;
2429
2430	BUG_ON(!PageLocked(page));
2431	if (PageWriteback(page))
2432		return 0;
2433
2434	if (mapping && mapping->a_ops->releasepage)
2435		return mapping->a_ops->releasepage(page, gfp_mask);
2436	return try_to_free_buffers(page);
2437}
2438
2439EXPORT_SYMBOL(try_to_release_page);
2440