filemap.c revision 2ed7c03ec17779afb4fcfa3b8c61df61bd4879ba
1/*
2 *	linux/mm/filemap.c
3 *
4 * Copyright (C) 1994-1999  Linus Torvalds
5 */
6
7/*
8 * This file handles the generic file mmap semantics used by
9 * most "normal" filesystems (but you don't /have/ to use this:
10 * the NFS filesystem used to do this differently, for example)
11 */
12#include <linux/module.h>
13#include <linux/slab.h>
14#include <linux/compiler.h>
15#include <linux/fs.h>
16#include <linux/uaccess.h>
17#include <linux/aio.h>
18#include <linux/capability.h>
19#include <linux/kernel_stat.h>
20#include <linux/mm.h>
21#include <linux/swap.h>
22#include <linux/mman.h>
23#include <linux/pagemap.h>
24#include <linux/file.h>
25#include <linux/uio.h>
26#include <linux/hash.h>
27#include <linux/writeback.h>
28#include <linux/backing-dev.h>
29#include <linux/pagevec.h>
30#include <linux/blkdev.h>
31#include <linux/security.h>
32#include <linux/syscalls.h>
33#include <linux/cpuset.h>
34#include <linux/hardirq.h> /* for BUG_ON(!in_atomic()) only */
35#include <linux/memcontrol.h>
36#include <linux/mm_inline.h> /* for page_is_file_cache() */
37#include "internal.h"
38
39/*
40 * FIXME: remove all knowledge of the buffer layer from the core VM
41 */
42#include <linux/buffer_head.h> /* for generic_osync_inode */
43
44#include <asm/mman.h>
45
46
47/*
48 * Shared mappings implemented 30.11.1994. It's not fully working yet,
49 * though.
50 *
51 * Shared mappings now work. 15.8.1995  Bruno.
52 *
53 * finished 'unifying' the page and buffer cache and SMP-threaded the
54 * page-cache, 21.05.1999, Ingo Molnar <mingo@redhat.com>
55 *
56 * SMP-threaded pagemap-LRU 1999, Andrea Arcangeli <andrea@suse.de>
57 */
58
59/*
60 * Lock ordering:
61 *
62 *  ->i_mmap_lock		(vmtruncate)
63 *    ->private_lock		(__free_pte->__set_page_dirty_buffers)
64 *      ->swap_lock		(exclusive_swap_page, others)
65 *        ->mapping->tree_lock
66 *
67 *  ->i_mutex
68 *    ->i_mmap_lock		(truncate->unmap_mapping_range)
69 *
70 *  ->mmap_sem
71 *    ->i_mmap_lock
72 *      ->page_table_lock or pte_lock	(various, mainly in memory.c)
73 *        ->mapping->tree_lock	(arch-dependent flush_dcache_mmap_lock)
74 *
75 *  ->mmap_sem
76 *    ->lock_page		(access_process_vm)
77 *
78 *  ->i_mutex			(generic_file_buffered_write)
79 *    ->mmap_sem		(fault_in_pages_readable->do_page_fault)
80 *
81 *  ->i_mutex
82 *    ->i_alloc_sem             (various)
83 *
84 *  ->inode_lock
85 *    ->sb_lock			(fs/fs-writeback.c)
86 *    ->mapping->tree_lock	(__sync_single_inode)
87 *
88 *  ->i_mmap_lock
89 *    ->anon_vma.lock		(vma_adjust)
90 *
91 *  ->anon_vma.lock
92 *    ->page_table_lock or pte_lock	(anon_vma_prepare and various)
93 *
94 *  ->page_table_lock or pte_lock
95 *    ->swap_lock		(try_to_unmap_one)
96 *    ->private_lock		(try_to_unmap_one)
97 *    ->tree_lock		(try_to_unmap_one)
98 *    ->zone.lru_lock		(follow_page->mark_page_accessed)
99 *    ->zone.lru_lock		(check_pte_range->isolate_lru_page)
100 *    ->private_lock		(page_remove_rmap->set_page_dirty)
101 *    ->tree_lock		(page_remove_rmap->set_page_dirty)
102 *    ->inode_lock		(page_remove_rmap->set_page_dirty)
103 *    ->inode_lock		(zap_pte_range->set_page_dirty)
104 *    ->private_lock		(zap_pte_range->__set_page_dirty_buffers)
105 *
106 *  ->task->proc_lock
107 *    ->dcache_lock		(proc_pid_lookup)
108 */
109
110/*
111 * Remove a page from the page cache and free it. Caller has to make
112 * sure the page is locked and that nobody else uses it - or that usage
113 * is safe.  The caller must hold the mapping's tree_lock.
114 */
115void __remove_from_page_cache(struct page *page)
116{
117	struct address_space *mapping = page->mapping;
118
119	radix_tree_delete(&mapping->page_tree, page->index);
120	page->mapping = NULL;
121	mapping->nrpages--;
122	__dec_zone_page_state(page, NR_FILE_PAGES);
123	BUG_ON(page_mapped(page));
124	mem_cgroup_uncharge_cache_page(page);
125
126	/*
127	 * Some filesystems seem to re-dirty the page even after
128	 * the VM has canceled the dirty bit (eg ext3 journaling).
129	 *
130	 * Fix it up by doing a final dirty accounting check after
131	 * having removed the page entirely.
132	 */
133	if (PageDirty(page) && mapping_cap_account_dirty(mapping)) {
134		dec_zone_page_state(page, NR_FILE_DIRTY);
135		dec_bdi_stat(mapping->backing_dev_info, BDI_RECLAIMABLE);
136	}
137}
138
139void remove_from_page_cache(struct page *page)
140{
141	struct address_space *mapping = page->mapping;
142
143	BUG_ON(!PageLocked(page));
144
145	spin_lock_irq(&mapping->tree_lock);
146	__remove_from_page_cache(page);
147	spin_unlock_irq(&mapping->tree_lock);
148}
149
150static int sync_page(void *word)
151{
152	struct address_space *mapping;
153	struct page *page;
154
155	page = container_of((unsigned long *)word, struct page, flags);
156
157	/*
158	 * page_mapping() is being called without PG_locked held.
159	 * Some knowledge of the state and use of the page is used to
160	 * reduce the requirements down to a memory barrier.
161	 * The danger here is of a stale page_mapping() return value
162	 * indicating a struct address_space different from the one it's
163	 * associated with when it is associated with one.
164	 * After smp_mb(), it's either the correct page_mapping() for
165	 * the page, or an old page_mapping() and the page's own
166	 * page_mapping() has gone NULL.
167	 * The ->sync_page() address_space operation must tolerate
168	 * page_mapping() going NULL. By an amazing coincidence,
169	 * this comes about because none of the users of the page
170	 * in the ->sync_page() methods make essential use of the
171	 * page_mapping(), merely passing the page down to the backing
172	 * device's unplug functions when it's non-NULL, which in turn
173	 * ignore it for all cases but swap, where only page_private(page) is
174	 * of interest. When page_mapping() does go NULL, the entire
175	 * call stack gracefully ignores the page and returns.
176	 * -- wli
177	 */
178	smp_mb();
179	mapping = page_mapping(page);
180	if (mapping && mapping->a_ops && mapping->a_ops->sync_page)
181		mapping->a_ops->sync_page(page);
182	io_schedule();
183	return 0;
184}
185
186static int sync_page_killable(void *word)
187{
188	sync_page(word);
189	return fatal_signal_pending(current) ? -EINTR : 0;
190}
191
192/**
193 * __filemap_fdatawrite_range - start writeback on mapping dirty pages in range
194 * @mapping:	address space structure to write
195 * @start:	offset in bytes where the range starts
196 * @end:	offset in bytes where the range ends (inclusive)
197 * @sync_mode:	enable synchronous operation
198 *
199 * Start writeback against all of a mapping's dirty pages that lie
200 * within the byte offsets <start, end> inclusive.
201 *
202 * If sync_mode is WB_SYNC_ALL then this is a "data integrity" operation, as
203 * opposed to a regular memory cleansing writeback.  The difference between
204 * these two operations is that if a dirty page/buffer is encountered, it must
205 * be waited upon, and not just skipped over.
206 */
207int __filemap_fdatawrite_range(struct address_space *mapping, loff_t start,
208				loff_t end, int sync_mode)
209{
210	int ret;
211	struct writeback_control wbc = {
212		.sync_mode = sync_mode,
213		.nr_to_write = LONG_MAX,
214		.range_start = start,
215		.range_end = end,
216	};
217
218	if (!mapping_cap_writeback_dirty(mapping))
219		return 0;
220
221	ret = do_writepages(mapping, &wbc);
222	return ret;
223}
224
225static inline int __filemap_fdatawrite(struct address_space *mapping,
226	int sync_mode)
227{
228	return __filemap_fdatawrite_range(mapping, 0, LLONG_MAX, sync_mode);
229}
230
231int filemap_fdatawrite(struct address_space *mapping)
232{
233	return __filemap_fdatawrite(mapping, WB_SYNC_ALL);
234}
235EXPORT_SYMBOL(filemap_fdatawrite);
236
237int filemap_fdatawrite_range(struct address_space *mapping, loff_t start,
238				loff_t end)
239{
240	return __filemap_fdatawrite_range(mapping, start, end, WB_SYNC_ALL);
241}
242EXPORT_SYMBOL(filemap_fdatawrite_range);
243
244/**
245 * filemap_flush - mostly a non-blocking flush
246 * @mapping:	target address_space
247 *
248 * This is a mostly non-blocking flush.  Not suitable for data-integrity
249 * purposes - I/O may not be started against all dirty pages.
250 */
251int filemap_flush(struct address_space *mapping)
252{
253	return __filemap_fdatawrite(mapping, WB_SYNC_NONE);
254}
255EXPORT_SYMBOL(filemap_flush);
256
257/**
258 * wait_on_page_writeback_range - wait for writeback to complete
259 * @mapping:	target address_space
260 * @start:	beginning page index
261 * @end:	ending page index
262 *
263 * Wait for writeback to complete against pages indexed by start->end
264 * inclusive
265 */
266int wait_on_page_writeback_range(struct address_space *mapping,
267				pgoff_t start, pgoff_t end)
268{
269	struct pagevec pvec;
270	int nr_pages;
271	int ret = 0;
272	pgoff_t index;
273
274	if (end < start)
275		return 0;
276
277	pagevec_init(&pvec, 0);
278	index = start;
279	while ((index <= end) &&
280			(nr_pages = pagevec_lookup_tag(&pvec, mapping, &index,
281			PAGECACHE_TAG_WRITEBACK,
282			min(end - index, (pgoff_t)PAGEVEC_SIZE-1) + 1)) != 0) {
283		unsigned i;
284
285		for (i = 0; i < nr_pages; i++) {
286			struct page *page = pvec.pages[i];
287
288			/* until radix tree lookup accepts end_index */
289			if (page->index > end)
290				continue;
291
292			wait_on_page_writeback(page);
293			if (PageError(page))
294				ret = -EIO;
295		}
296		pagevec_release(&pvec);
297		cond_resched();
298	}
299
300	/* Check for outstanding write errors */
301	if (test_and_clear_bit(AS_ENOSPC, &mapping->flags))
302		ret = -ENOSPC;
303	if (test_and_clear_bit(AS_EIO, &mapping->flags))
304		ret = -EIO;
305
306	return ret;
307}
308
309/**
310 * sync_page_range - write and wait on all pages in the passed range
311 * @inode:	target inode
312 * @mapping:	target address_space
313 * @pos:	beginning offset in pages to write
314 * @count:	number of bytes to write
315 *
316 * Write and wait upon all the pages in the passed range.  This is a "data
317 * integrity" operation.  It waits upon in-flight writeout before starting and
318 * waiting upon new writeout.  If there was an IO error, return it.
319 *
320 * We need to re-take i_mutex during the generic_osync_inode list walk because
321 * it is otherwise livelockable.
322 */
323int sync_page_range(struct inode *inode, struct address_space *mapping,
324			loff_t pos, loff_t count)
325{
326	pgoff_t start = pos >> PAGE_CACHE_SHIFT;
327	pgoff_t end = (pos + count - 1) >> PAGE_CACHE_SHIFT;
328	int ret;
329
330	if (!mapping_cap_writeback_dirty(mapping) || !count)
331		return 0;
332	ret = filemap_fdatawrite_range(mapping, pos, pos + count - 1);
333	if (ret == 0) {
334		mutex_lock(&inode->i_mutex);
335		ret = generic_osync_inode(inode, mapping, OSYNC_METADATA);
336		mutex_unlock(&inode->i_mutex);
337	}
338	if (ret == 0)
339		ret = wait_on_page_writeback_range(mapping, start, end);
340	return ret;
341}
342EXPORT_SYMBOL(sync_page_range);
343
344/**
345 * sync_page_range_nolock - write & wait on all pages in the passed range without locking
346 * @inode:	target inode
347 * @mapping:	target address_space
348 * @pos:	beginning offset in pages to write
349 * @count:	number of bytes to write
350 *
351 * Note: Holding i_mutex across sync_page_range_nolock() is not a good idea
352 * as it forces O_SYNC writers to different parts of the same file
353 * to be serialised right until io completion.
354 */
355int sync_page_range_nolock(struct inode *inode, struct address_space *mapping,
356			   loff_t pos, loff_t count)
357{
358	pgoff_t start = pos >> PAGE_CACHE_SHIFT;
359	pgoff_t end = (pos + count - 1) >> PAGE_CACHE_SHIFT;
360	int ret;
361
362	if (!mapping_cap_writeback_dirty(mapping) || !count)
363		return 0;
364	ret = filemap_fdatawrite_range(mapping, pos, pos + count - 1);
365	if (ret == 0)
366		ret = generic_osync_inode(inode, mapping, OSYNC_METADATA);
367	if (ret == 0)
368		ret = wait_on_page_writeback_range(mapping, start, end);
369	return ret;
370}
371EXPORT_SYMBOL(sync_page_range_nolock);
372
373/**
374 * filemap_fdatawait - wait for all under-writeback pages to complete
375 * @mapping: address space structure to wait for
376 *
377 * Walk the list of under-writeback pages of the given address space
378 * and wait for all of them.
379 */
380int filemap_fdatawait(struct address_space *mapping)
381{
382	loff_t i_size = i_size_read(mapping->host);
383
384	if (i_size == 0)
385		return 0;
386
387	return wait_on_page_writeback_range(mapping, 0,
388				(i_size - 1) >> PAGE_CACHE_SHIFT);
389}
390EXPORT_SYMBOL(filemap_fdatawait);
391
392int filemap_write_and_wait(struct address_space *mapping)
393{
394	int err = 0;
395
396	if (mapping->nrpages) {
397		err = filemap_fdatawrite(mapping);
398		/*
399		 * Even if the above returned error, the pages may be
400		 * written partially (e.g. -ENOSPC), so we wait for it.
401		 * But the -EIO is special case, it may indicate the worst
402		 * thing (e.g. bug) happened, so we avoid waiting for it.
403		 */
404		if (err != -EIO) {
405			int err2 = filemap_fdatawait(mapping);
406			if (!err)
407				err = err2;
408		}
409	}
410	return err;
411}
412EXPORT_SYMBOL(filemap_write_and_wait);
413
414/**
415 * filemap_write_and_wait_range - write out & wait on a file range
416 * @mapping:	the address_space for the pages
417 * @lstart:	offset in bytes where the range starts
418 * @lend:	offset in bytes where the range ends (inclusive)
419 *
420 * Write out and wait upon file offsets lstart->lend, inclusive.
421 *
422 * Note that `lend' is inclusive (describes the last byte to be written) so
423 * that this function can be used to write to the very end-of-file (end = -1).
424 */
425int filemap_write_and_wait_range(struct address_space *mapping,
426				 loff_t lstart, loff_t lend)
427{
428	int err = 0;
429
430	if (mapping->nrpages) {
431		err = __filemap_fdatawrite_range(mapping, lstart, lend,
432						 WB_SYNC_ALL);
433		/* See comment of filemap_write_and_wait() */
434		if (err != -EIO) {
435			int err2 = wait_on_page_writeback_range(mapping,
436						lstart >> PAGE_CACHE_SHIFT,
437						lend >> PAGE_CACHE_SHIFT);
438			if (!err)
439				err = err2;
440		}
441	}
442	return err;
443}
444
445/**
446 * add_to_page_cache_locked - add a locked page to the pagecache
447 * @page:	page to add
448 * @mapping:	the page's address_space
449 * @offset:	page index
450 * @gfp_mask:	page allocation mode
451 *
452 * This function is used to add a page to the pagecache. It must be locked.
453 * This function does not add the page to the LRU.  The caller must do that.
454 */
455int add_to_page_cache_locked(struct page *page, struct address_space *mapping,
456		pgoff_t offset, gfp_t gfp_mask)
457{
458	int error;
459
460	VM_BUG_ON(!PageLocked(page));
461
462	error = mem_cgroup_cache_charge(page, current->mm,
463					gfp_mask & GFP_RECLAIM_MASK);
464	if (error)
465		goto out;
466
467	error = radix_tree_preload(gfp_mask & ~__GFP_HIGHMEM);
468	if (error == 0) {
469		page_cache_get(page);
470		page->mapping = mapping;
471		page->index = offset;
472
473		spin_lock_irq(&mapping->tree_lock);
474		error = radix_tree_insert(&mapping->page_tree, offset, page);
475		if (likely(!error)) {
476			mapping->nrpages++;
477			__inc_zone_page_state(page, NR_FILE_PAGES);
478		} else {
479			page->mapping = NULL;
480			mem_cgroup_uncharge_cache_page(page);
481			page_cache_release(page);
482		}
483
484		spin_unlock_irq(&mapping->tree_lock);
485		radix_tree_preload_end();
486	} else
487		mem_cgroup_uncharge_cache_page(page);
488out:
489	return error;
490}
491EXPORT_SYMBOL(add_to_page_cache_locked);
492
493int add_to_page_cache_lru(struct page *page, struct address_space *mapping,
494				pgoff_t offset, gfp_t gfp_mask)
495{
496	int ret;
497
498	/*
499	 * Splice_read and readahead add shmem/tmpfs pages into the page cache
500	 * before shmem_readpage has a chance to mark them as SwapBacked: they
501	 * need to go on the active_anon lru below, and mem_cgroup_cache_charge
502	 * (called in add_to_page_cache) needs to know where they're going too.
503	 */
504	if (mapping_cap_swap_backed(mapping))
505		SetPageSwapBacked(page);
506
507	ret = add_to_page_cache(page, mapping, offset, gfp_mask);
508	if (ret == 0) {
509		if (page_is_file_cache(page))
510			lru_cache_add_file(page);
511		else
512			lru_cache_add_active_anon(page);
513	}
514	return ret;
515}
516
517#ifdef CONFIG_NUMA
518struct page *__page_cache_alloc(gfp_t gfp)
519{
520	if (cpuset_do_page_mem_spread()) {
521		int n = cpuset_mem_spread_node();
522		return alloc_pages_node(n, gfp, 0);
523	}
524	return alloc_pages(gfp, 0);
525}
526EXPORT_SYMBOL(__page_cache_alloc);
527#endif
528
529static int __sleep_on_page_lock(void *word)
530{
531	io_schedule();
532	return 0;
533}
534
535/*
536 * In order to wait for pages to become available there must be
537 * waitqueues associated with pages. By using a hash table of
538 * waitqueues where the bucket discipline is to maintain all
539 * waiters on the same queue and wake all when any of the pages
540 * become available, and for the woken contexts to check to be
541 * sure the appropriate page became available, this saves space
542 * at a cost of "thundering herd" phenomena during rare hash
543 * collisions.
544 */
545static wait_queue_head_t *page_waitqueue(struct page *page)
546{
547	const struct zone *zone = page_zone(page);
548
549	return &zone->wait_table[hash_ptr(page, zone->wait_table_bits)];
550}
551
552static inline void wake_up_page(struct page *page, int bit)
553{
554	__wake_up_bit(page_waitqueue(page), &page->flags, bit);
555}
556
557void wait_on_page_bit(struct page *page, int bit_nr)
558{
559	DEFINE_WAIT_BIT(wait, &page->flags, bit_nr);
560
561	if (test_bit(bit_nr, &page->flags))
562		__wait_on_bit(page_waitqueue(page), &wait, sync_page,
563							TASK_UNINTERRUPTIBLE);
564}
565EXPORT_SYMBOL(wait_on_page_bit);
566
567/**
568 * unlock_page - unlock a locked page
569 * @page: the page
570 *
571 * Unlocks the page and wakes up sleepers in ___wait_on_page_locked().
572 * Also wakes sleepers in wait_on_page_writeback() because the wakeup
573 * mechananism between PageLocked pages and PageWriteback pages is shared.
574 * But that's OK - sleepers in wait_on_page_writeback() just go back to sleep.
575 *
576 * The mb is necessary to enforce ordering between the clear_bit and the read
577 * of the waitqueue (to avoid SMP races with a parallel wait_on_page_locked()).
578 */
579void unlock_page(struct page *page)
580{
581	VM_BUG_ON(!PageLocked(page));
582	clear_bit_unlock(PG_locked, &page->flags);
583	smp_mb__after_clear_bit();
584	wake_up_page(page, PG_locked);
585}
586EXPORT_SYMBOL(unlock_page);
587
588/**
589 * end_page_writeback - end writeback against a page
590 * @page: the page
591 */
592void end_page_writeback(struct page *page)
593{
594	if (TestClearPageReclaim(page))
595		rotate_reclaimable_page(page);
596
597	if (!test_clear_page_writeback(page))
598		BUG();
599
600	smp_mb__after_clear_bit();
601	wake_up_page(page, PG_writeback);
602}
603EXPORT_SYMBOL(end_page_writeback);
604
605/**
606 * __lock_page - get a lock on the page, assuming we need to sleep to get it
607 * @page: the page to lock
608 *
609 * Ugly. Running sync_page() in state TASK_UNINTERRUPTIBLE is scary.  If some
610 * random driver's requestfn sets TASK_RUNNING, we could busywait.  However
611 * chances are that on the second loop, the block layer's plug list is empty,
612 * so sync_page() will then return in state TASK_UNINTERRUPTIBLE.
613 */
614void __lock_page(struct page *page)
615{
616	DEFINE_WAIT_BIT(wait, &page->flags, PG_locked);
617
618	__wait_on_bit_lock(page_waitqueue(page), &wait, sync_page,
619							TASK_UNINTERRUPTIBLE);
620}
621EXPORT_SYMBOL(__lock_page);
622
623int __lock_page_killable(struct page *page)
624{
625	DEFINE_WAIT_BIT(wait, &page->flags, PG_locked);
626
627	return __wait_on_bit_lock(page_waitqueue(page), &wait,
628					sync_page_killable, TASK_KILLABLE);
629}
630
631/**
632 * __lock_page_nosync - get a lock on the page, without calling sync_page()
633 * @page: the page to lock
634 *
635 * Variant of lock_page that does not require the caller to hold a reference
636 * on the page's mapping.
637 */
638void __lock_page_nosync(struct page *page)
639{
640	DEFINE_WAIT_BIT(wait, &page->flags, PG_locked);
641	__wait_on_bit_lock(page_waitqueue(page), &wait, __sleep_on_page_lock,
642							TASK_UNINTERRUPTIBLE);
643}
644
645/**
646 * find_get_page - find and get a page reference
647 * @mapping: the address_space to search
648 * @offset: the page index
649 *
650 * Is there a pagecache struct page at the given (mapping, offset) tuple?
651 * If yes, increment its refcount and return it; if no, return NULL.
652 */
653struct page *find_get_page(struct address_space *mapping, pgoff_t offset)
654{
655	void **pagep;
656	struct page *page;
657
658	rcu_read_lock();
659repeat:
660	page = NULL;
661	pagep = radix_tree_lookup_slot(&mapping->page_tree, offset);
662	if (pagep) {
663		page = radix_tree_deref_slot(pagep);
664		if (unlikely(!page || page == RADIX_TREE_RETRY))
665			goto repeat;
666
667		if (!page_cache_get_speculative(page))
668			goto repeat;
669
670		/*
671		 * Has the page moved?
672		 * This is part of the lockless pagecache protocol. See
673		 * include/linux/pagemap.h for details.
674		 */
675		if (unlikely(page != *pagep)) {
676			page_cache_release(page);
677			goto repeat;
678		}
679	}
680	rcu_read_unlock();
681
682	return page;
683}
684EXPORT_SYMBOL(find_get_page);
685
686/**
687 * find_lock_page - locate, pin and lock a pagecache page
688 * @mapping: the address_space to search
689 * @offset: the page index
690 *
691 * Locates the desired pagecache page, locks it, increments its reference
692 * count and returns its address.
693 *
694 * Returns zero if the page was not present. find_lock_page() may sleep.
695 */
696struct page *find_lock_page(struct address_space *mapping, pgoff_t offset)
697{
698	struct page *page;
699
700repeat:
701	page = find_get_page(mapping, offset);
702	if (page) {
703		lock_page(page);
704		/* Has the page been truncated? */
705		if (unlikely(page->mapping != mapping)) {
706			unlock_page(page);
707			page_cache_release(page);
708			goto repeat;
709		}
710		VM_BUG_ON(page->index != offset);
711	}
712	return page;
713}
714EXPORT_SYMBOL(find_lock_page);
715
716/**
717 * find_or_create_page - locate or add a pagecache page
718 * @mapping: the page's address_space
719 * @index: the page's index into the mapping
720 * @gfp_mask: page allocation mode
721 *
722 * Locates a page in the pagecache.  If the page is not present, a new page
723 * is allocated using @gfp_mask and is added to the pagecache and to the VM's
724 * LRU list.  The returned page is locked and has its reference count
725 * incremented.
726 *
727 * find_or_create_page() may sleep, even if @gfp_flags specifies an atomic
728 * allocation!
729 *
730 * find_or_create_page() returns the desired page's address, or zero on
731 * memory exhaustion.
732 */
733struct page *find_or_create_page(struct address_space *mapping,
734		pgoff_t index, gfp_t gfp_mask)
735{
736	struct page *page;
737	int err;
738repeat:
739	page = find_lock_page(mapping, index);
740	if (!page) {
741		page = __page_cache_alloc(gfp_mask);
742		if (!page)
743			return NULL;
744		/*
745		 * We want a regular kernel memory (not highmem or DMA etc)
746		 * allocation for the radix tree nodes, but we need to honour
747		 * the context-specific requirements the caller has asked for.
748		 * GFP_RECLAIM_MASK collects those requirements.
749		 */
750		err = add_to_page_cache_lru(page, mapping, index,
751			(gfp_mask & GFP_RECLAIM_MASK));
752		if (unlikely(err)) {
753			page_cache_release(page);
754			page = NULL;
755			if (err == -EEXIST)
756				goto repeat;
757		}
758	}
759	return page;
760}
761EXPORT_SYMBOL(find_or_create_page);
762
763/**
764 * find_get_pages - gang pagecache lookup
765 * @mapping:	The address_space to search
766 * @start:	The starting page index
767 * @nr_pages:	The maximum number of pages
768 * @pages:	Where the resulting pages are placed
769 *
770 * find_get_pages() will search for and return a group of up to
771 * @nr_pages pages in the mapping.  The pages are placed at @pages.
772 * find_get_pages() takes a reference against the returned pages.
773 *
774 * The search returns a group of mapping-contiguous pages with ascending
775 * indexes.  There may be holes in the indices due to not-present pages.
776 *
777 * find_get_pages() returns the number of pages which were found.
778 */
779unsigned find_get_pages(struct address_space *mapping, pgoff_t start,
780			    unsigned int nr_pages, struct page **pages)
781{
782	unsigned int i;
783	unsigned int ret;
784	unsigned int nr_found;
785
786	rcu_read_lock();
787restart:
788	nr_found = radix_tree_gang_lookup_slot(&mapping->page_tree,
789				(void ***)pages, start, nr_pages);
790	ret = 0;
791	for (i = 0; i < nr_found; i++) {
792		struct page *page;
793repeat:
794		page = radix_tree_deref_slot((void **)pages[i]);
795		if (unlikely(!page))
796			continue;
797		/*
798		 * this can only trigger if nr_found == 1, making livelock
799		 * a non issue.
800		 */
801		if (unlikely(page == RADIX_TREE_RETRY))
802			goto restart;
803
804		if (!page_cache_get_speculative(page))
805			goto repeat;
806
807		/* Has the page moved? */
808		if (unlikely(page != *((void **)pages[i]))) {
809			page_cache_release(page);
810			goto repeat;
811		}
812
813		pages[ret] = page;
814		ret++;
815	}
816	rcu_read_unlock();
817	return ret;
818}
819
820/**
821 * find_get_pages_contig - gang contiguous pagecache lookup
822 * @mapping:	The address_space to search
823 * @index:	The starting page index
824 * @nr_pages:	The maximum number of pages
825 * @pages:	Where the resulting pages are placed
826 *
827 * find_get_pages_contig() works exactly like find_get_pages(), except
828 * that the returned number of pages are guaranteed to be contiguous.
829 *
830 * find_get_pages_contig() returns the number of pages which were found.
831 */
832unsigned find_get_pages_contig(struct address_space *mapping, pgoff_t index,
833			       unsigned int nr_pages, struct page **pages)
834{
835	unsigned int i;
836	unsigned int ret;
837	unsigned int nr_found;
838
839	rcu_read_lock();
840restart:
841	nr_found = radix_tree_gang_lookup_slot(&mapping->page_tree,
842				(void ***)pages, index, nr_pages);
843	ret = 0;
844	for (i = 0; i < nr_found; i++) {
845		struct page *page;
846repeat:
847		page = radix_tree_deref_slot((void **)pages[i]);
848		if (unlikely(!page))
849			continue;
850		/*
851		 * this can only trigger if nr_found == 1, making livelock
852		 * a non issue.
853		 */
854		if (unlikely(page == RADIX_TREE_RETRY))
855			goto restart;
856
857		if (page->mapping == NULL || page->index != index)
858			break;
859
860		if (!page_cache_get_speculative(page))
861			goto repeat;
862
863		/* Has the page moved? */
864		if (unlikely(page != *((void **)pages[i]))) {
865			page_cache_release(page);
866			goto repeat;
867		}
868
869		pages[ret] = page;
870		ret++;
871		index++;
872	}
873	rcu_read_unlock();
874	return ret;
875}
876EXPORT_SYMBOL(find_get_pages_contig);
877
878/**
879 * find_get_pages_tag - find and return pages that match @tag
880 * @mapping:	the address_space to search
881 * @index:	the starting page index
882 * @tag:	the tag index
883 * @nr_pages:	the maximum number of pages
884 * @pages:	where the resulting pages are placed
885 *
886 * Like find_get_pages, except we only return pages which are tagged with
887 * @tag.   We update @index to index the next page for the traversal.
888 */
889unsigned find_get_pages_tag(struct address_space *mapping, pgoff_t *index,
890			int tag, unsigned int nr_pages, struct page **pages)
891{
892	unsigned int i;
893	unsigned int ret;
894	unsigned int nr_found;
895
896	rcu_read_lock();
897restart:
898	nr_found = radix_tree_gang_lookup_tag_slot(&mapping->page_tree,
899				(void ***)pages, *index, nr_pages, tag);
900	ret = 0;
901	for (i = 0; i < nr_found; i++) {
902		struct page *page;
903repeat:
904		page = radix_tree_deref_slot((void **)pages[i]);
905		if (unlikely(!page))
906			continue;
907		/*
908		 * this can only trigger if nr_found == 1, making livelock
909		 * a non issue.
910		 */
911		if (unlikely(page == RADIX_TREE_RETRY))
912			goto restart;
913
914		if (!page_cache_get_speculative(page))
915			goto repeat;
916
917		/* Has the page moved? */
918		if (unlikely(page != *((void **)pages[i]))) {
919			page_cache_release(page);
920			goto repeat;
921		}
922
923		pages[ret] = page;
924		ret++;
925	}
926	rcu_read_unlock();
927
928	if (ret)
929		*index = pages[ret - 1]->index + 1;
930
931	return ret;
932}
933EXPORT_SYMBOL(find_get_pages_tag);
934
935/**
936 * grab_cache_page_nowait - returns locked page at given index in given cache
937 * @mapping: target address_space
938 * @index: the page index
939 *
940 * Same as grab_cache_page(), but do not wait if the page is unavailable.
941 * This is intended for speculative data generators, where the data can
942 * be regenerated if the page couldn't be grabbed.  This routine should
943 * be safe to call while holding the lock for another page.
944 *
945 * Clear __GFP_FS when allocating the page to avoid recursion into the fs
946 * and deadlock against the caller's locked page.
947 */
948struct page *
949grab_cache_page_nowait(struct address_space *mapping, pgoff_t index)
950{
951	struct page *page = find_get_page(mapping, index);
952
953	if (page) {
954		if (trylock_page(page))
955			return page;
956		page_cache_release(page);
957		return NULL;
958	}
959	page = __page_cache_alloc(mapping_gfp_mask(mapping) & ~__GFP_FS);
960	if (page && add_to_page_cache_lru(page, mapping, index, GFP_NOFS)) {
961		page_cache_release(page);
962		page = NULL;
963	}
964	return page;
965}
966EXPORT_SYMBOL(grab_cache_page_nowait);
967
968/*
969 * CD/DVDs are error prone. When a medium error occurs, the driver may fail
970 * a _large_ part of the i/o request. Imagine the worst scenario:
971 *
972 *      ---R__________________________________________B__________
973 *         ^ reading here                             ^ bad block(assume 4k)
974 *
975 * read(R) => miss => readahead(R...B) => media error => frustrating retries
976 * => failing the whole request => read(R) => read(R+1) =>
977 * readahead(R+1...B+1) => bang => read(R+2) => read(R+3) =>
978 * readahead(R+3...B+2) => bang => read(R+3) => read(R+4) =>
979 * readahead(R+4...B+3) => bang => read(R+4) => read(R+5) => ......
980 *
981 * It is going insane. Fix it by quickly scaling down the readahead size.
982 */
983static void shrink_readahead_size_eio(struct file *filp,
984					struct file_ra_state *ra)
985{
986	if (!ra->ra_pages)
987		return;
988
989	ra->ra_pages /= 4;
990}
991
992/**
993 * do_generic_file_read - generic file read routine
994 * @filp:	the file to read
995 * @ppos:	current file position
996 * @desc:	read_descriptor
997 * @actor:	read method
998 *
999 * This is a generic file read routine, and uses the
1000 * mapping->a_ops->readpage() function for the actual low-level stuff.
1001 *
1002 * This is really ugly. But the goto's actually try to clarify some
1003 * of the logic when it comes to error handling etc.
1004 */
1005static void do_generic_file_read(struct file *filp, loff_t *ppos,
1006		read_descriptor_t *desc, read_actor_t actor)
1007{
1008	struct address_space *mapping = filp->f_mapping;
1009	struct inode *inode = mapping->host;
1010	struct file_ra_state *ra = &filp->f_ra;
1011	pgoff_t index;
1012	pgoff_t last_index;
1013	pgoff_t prev_index;
1014	unsigned long offset;      /* offset into pagecache page */
1015	unsigned int prev_offset;
1016	int error;
1017
1018	index = *ppos >> PAGE_CACHE_SHIFT;
1019	prev_index = ra->prev_pos >> PAGE_CACHE_SHIFT;
1020	prev_offset = ra->prev_pos & (PAGE_CACHE_SIZE-1);
1021	last_index = (*ppos + desc->count + PAGE_CACHE_SIZE-1) >> PAGE_CACHE_SHIFT;
1022	offset = *ppos & ~PAGE_CACHE_MASK;
1023
1024	for (;;) {
1025		struct page *page;
1026		pgoff_t end_index;
1027		loff_t isize;
1028		unsigned long nr, ret;
1029
1030		cond_resched();
1031find_page:
1032		page = find_get_page(mapping, index);
1033		if (!page) {
1034			page_cache_sync_readahead(mapping,
1035					ra, filp,
1036					index, last_index - index);
1037			page = find_get_page(mapping, index);
1038			if (unlikely(page == NULL))
1039				goto no_cached_page;
1040		}
1041		if (PageReadahead(page)) {
1042			page_cache_async_readahead(mapping,
1043					ra, filp, page,
1044					index, last_index - index);
1045		}
1046		if (!PageUptodate(page)) {
1047			if (inode->i_blkbits == PAGE_CACHE_SHIFT ||
1048					!mapping->a_ops->is_partially_uptodate)
1049				goto page_not_up_to_date;
1050			if (!trylock_page(page))
1051				goto page_not_up_to_date;
1052			if (!mapping->a_ops->is_partially_uptodate(page,
1053								desc, offset))
1054				goto page_not_up_to_date_locked;
1055			unlock_page(page);
1056		}
1057page_ok:
1058		/*
1059		 * i_size must be checked after we know the page is Uptodate.
1060		 *
1061		 * Checking i_size after the check allows us to calculate
1062		 * the correct value for "nr", which means the zero-filled
1063		 * part of the page is not copied back to userspace (unless
1064		 * another truncate extends the file - this is desired though).
1065		 */
1066
1067		isize = i_size_read(inode);
1068		end_index = (isize - 1) >> PAGE_CACHE_SHIFT;
1069		if (unlikely(!isize || index > end_index)) {
1070			page_cache_release(page);
1071			goto out;
1072		}
1073
1074		/* nr is the maximum number of bytes to copy from this page */
1075		nr = PAGE_CACHE_SIZE;
1076		if (index == end_index) {
1077			nr = ((isize - 1) & ~PAGE_CACHE_MASK) + 1;
1078			if (nr <= offset) {
1079				page_cache_release(page);
1080				goto out;
1081			}
1082		}
1083		nr = nr - offset;
1084
1085		/* If users can be writing to this page using arbitrary
1086		 * virtual addresses, take care about potential aliasing
1087		 * before reading the page on the kernel side.
1088		 */
1089		if (mapping_writably_mapped(mapping))
1090			flush_dcache_page(page);
1091
1092		/*
1093		 * When a sequential read accesses a page several times,
1094		 * only mark it as accessed the first time.
1095		 */
1096		if (prev_index != index || offset != prev_offset)
1097			mark_page_accessed(page);
1098		prev_index = index;
1099
1100		/*
1101		 * Ok, we have the page, and it's up-to-date, so
1102		 * now we can copy it to user space...
1103		 *
1104		 * The actor routine returns how many bytes were actually used..
1105		 * NOTE! This may not be the same as how much of a user buffer
1106		 * we filled up (we may be padding etc), so we can only update
1107		 * "pos" here (the actor routine has to update the user buffer
1108		 * pointers and the remaining count).
1109		 */
1110		ret = actor(desc, page, offset, nr);
1111		offset += ret;
1112		index += offset >> PAGE_CACHE_SHIFT;
1113		offset &= ~PAGE_CACHE_MASK;
1114		prev_offset = offset;
1115
1116		page_cache_release(page);
1117		if (ret == nr && desc->count)
1118			continue;
1119		goto out;
1120
1121page_not_up_to_date:
1122		/* Get exclusive access to the page ... */
1123		error = lock_page_killable(page);
1124		if (unlikely(error))
1125			goto readpage_error;
1126
1127page_not_up_to_date_locked:
1128		/* Did it get truncated before we got the lock? */
1129		if (!page->mapping) {
1130			unlock_page(page);
1131			page_cache_release(page);
1132			continue;
1133		}
1134
1135		/* Did somebody else fill it already? */
1136		if (PageUptodate(page)) {
1137			unlock_page(page);
1138			goto page_ok;
1139		}
1140
1141readpage:
1142		/* Start the actual read. The read will unlock the page. */
1143		error = mapping->a_ops->readpage(filp, page);
1144
1145		if (unlikely(error)) {
1146			if (error == AOP_TRUNCATED_PAGE) {
1147				page_cache_release(page);
1148				goto find_page;
1149			}
1150			goto readpage_error;
1151		}
1152
1153		if (!PageUptodate(page)) {
1154			error = lock_page_killable(page);
1155			if (unlikely(error))
1156				goto readpage_error;
1157			if (!PageUptodate(page)) {
1158				if (page->mapping == NULL) {
1159					/*
1160					 * invalidate_inode_pages got it
1161					 */
1162					unlock_page(page);
1163					page_cache_release(page);
1164					goto find_page;
1165				}
1166				unlock_page(page);
1167				shrink_readahead_size_eio(filp, ra);
1168				error = -EIO;
1169				goto readpage_error;
1170			}
1171			unlock_page(page);
1172		}
1173
1174		goto page_ok;
1175
1176readpage_error:
1177		/* UHHUH! A synchronous read error occurred. Report it */
1178		desc->error = error;
1179		page_cache_release(page);
1180		goto out;
1181
1182no_cached_page:
1183		/*
1184		 * Ok, it wasn't cached, so we need to create a new
1185		 * page..
1186		 */
1187		page = page_cache_alloc_cold(mapping);
1188		if (!page) {
1189			desc->error = -ENOMEM;
1190			goto out;
1191		}
1192		error = add_to_page_cache_lru(page, mapping,
1193						index, GFP_KERNEL);
1194		if (error) {
1195			page_cache_release(page);
1196			if (error == -EEXIST)
1197				goto find_page;
1198			desc->error = error;
1199			goto out;
1200		}
1201		goto readpage;
1202	}
1203
1204out:
1205	ra->prev_pos = prev_index;
1206	ra->prev_pos <<= PAGE_CACHE_SHIFT;
1207	ra->prev_pos |= prev_offset;
1208
1209	*ppos = ((loff_t)index << PAGE_CACHE_SHIFT) + offset;
1210	file_accessed(filp);
1211}
1212
1213int file_read_actor(read_descriptor_t *desc, struct page *page,
1214			unsigned long offset, unsigned long size)
1215{
1216	char *kaddr;
1217	unsigned long left, count = desc->count;
1218
1219	if (size > count)
1220		size = count;
1221
1222	/*
1223	 * Faults on the destination of a read are common, so do it before
1224	 * taking the kmap.
1225	 */
1226	if (!fault_in_pages_writeable(desc->arg.buf, size)) {
1227		kaddr = kmap_atomic(page, KM_USER0);
1228		left = __copy_to_user_inatomic(desc->arg.buf,
1229						kaddr + offset, size);
1230		kunmap_atomic(kaddr, KM_USER0);
1231		if (left == 0)
1232			goto success;
1233	}
1234
1235	/* Do it the slow way */
1236	kaddr = kmap(page);
1237	left = __copy_to_user(desc->arg.buf, kaddr + offset, size);
1238	kunmap(page);
1239
1240	if (left) {
1241		size -= left;
1242		desc->error = -EFAULT;
1243	}
1244success:
1245	desc->count = count - size;
1246	desc->written += size;
1247	desc->arg.buf += size;
1248	return size;
1249}
1250
1251/*
1252 * Performs necessary checks before doing a write
1253 * @iov:	io vector request
1254 * @nr_segs:	number of segments in the iovec
1255 * @count:	number of bytes to write
1256 * @access_flags: type of access: %VERIFY_READ or %VERIFY_WRITE
1257 *
1258 * Adjust number of segments and amount of bytes to write (nr_segs should be
1259 * properly initialized first). Returns appropriate error code that caller
1260 * should return or zero in case that write should be allowed.
1261 */
1262int generic_segment_checks(const struct iovec *iov,
1263			unsigned long *nr_segs, size_t *count, int access_flags)
1264{
1265	unsigned long   seg;
1266	size_t cnt = 0;
1267	for (seg = 0; seg < *nr_segs; seg++) {
1268		const struct iovec *iv = &iov[seg];
1269
1270		/*
1271		 * If any segment has a negative length, or the cumulative
1272		 * length ever wraps negative then return -EINVAL.
1273		 */
1274		cnt += iv->iov_len;
1275		if (unlikely((ssize_t)(cnt|iv->iov_len) < 0))
1276			return -EINVAL;
1277		if (access_ok(access_flags, iv->iov_base, iv->iov_len))
1278			continue;
1279		if (seg == 0)
1280			return -EFAULT;
1281		*nr_segs = seg;
1282		cnt -= iv->iov_len;	/* This segment is no good */
1283		break;
1284	}
1285	*count = cnt;
1286	return 0;
1287}
1288EXPORT_SYMBOL(generic_segment_checks);
1289
1290/**
1291 * generic_file_aio_read - generic filesystem read routine
1292 * @iocb:	kernel I/O control block
1293 * @iov:	io vector request
1294 * @nr_segs:	number of segments in the iovec
1295 * @pos:	current file position
1296 *
1297 * This is the "read()" routine for all filesystems
1298 * that can use the page cache directly.
1299 */
1300ssize_t
1301generic_file_aio_read(struct kiocb *iocb, const struct iovec *iov,
1302		unsigned long nr_segs, loff_t pos)
1303{
1304	struct file *filp = iocb->ki_filp;
1305	ssize_t retval;
1306	unsigned long seg;
1307	size_t count;
1308	loff_t *ppos = &iocb->ki_pos;
1309
1310	count = 0;
1311	retval = generic_segment_checks(iov, &nr_segs, &count, VERIFY_WRITE);
1312	if (retval)
1313		return retval;
1314
1315	/* coalesce the iovecs and go direct-to-BIO for O_DIRECT */
1316	if (filp->f_flags & O_DIRECT) {
1317		loff_t size;
1318		struct address_space *mapping;
1319		struct inode *inode;
1320
1321		mapping = filp->f_mapping;
1322		inode = mapping->host;
1323		if (!count)
1324			goto out; /* skip atime */
1325		size = i_size_read(inode);
1326		if (pos < size) {
1327			retval = filemap_write_and_wait_range(mapping, pos,
1328					pos + iov_length(iov, nr_segs) - 1);
1329			if (!retval) {
1330				retval = mapping->a_ops->direct_IO(READ, iocb,
1331							iov, pos, nr_segs);
1332			}
1333			if (retval > 0)
1334				*ppos = pos + retval;
1335			if (retval) {
1336				file_accessed(filp);
1337				goto out;
1338			}
1339		}
1340	}
1341
1342	for (seg = 0; seg < nr_segs; seg++) {
1343		read_descriptor_t desc;
1344
1345		desc.written = 0;
1346		desc.arg.buf = iov[seg].iov_base;
1347		desc.count = iov[seg].iov_len;
1348		if (desc.count == 0)
1349			continue;
1350		desc.error = 0;
1351		do_generic_file_read(filp, ppos, &desc, file_read_actor);
1352		retval += desc.written;
1353		if (desc.error) {
1354			retval = retval ?: desc.error;
1355			break;
1356		}
1357		if (desc.count > 0)
1358			break;
1359	}
1360out:
1361	return retval;
1362}
1363EXPORT_SYMBOL(generic_file_aio_read);
1364
1365static ssize_t
1366do_readahead(struct address_space *mapping, struct file *filp,
1367	     pgoff_t index, unsigned long nr)
1368{
1369	if (!mapping || !mapping->a_ops || !mapping->a_ops->readpage)
1370		return -EINVAL;
1371
1372	force_page_cache_readahead(mapping, filp, index,
1373					max_sane_readahead(nr));
1374	return 0;
1375}
1376
1377asmlinkage long sys_readahead(int fd, loff_t offset, size_t count)
1378{
1379	ssize_t ret;
1380	struct file *file;
1381
1382	ret = -EBADF;
1383	file = fget(fd);
1384	if (file) {
1385		if (file->f_mode & FMODE_READ) {
1386			struct address_space *mapping = file->f_mapping;
1387			pgoff_t start = offset >> PAGE_CACHE_SHIFT;
1388			pgoff_t end = (offset + count - 1) >> PAGE_CACHE_SHIFT;
1389			unsigned long len = end - start + 1;
1390			ret = do_readahead(mapping, file, start, len);
1391		}
1392		fput(file);
1393	}
1394	return ret;
1395}
1396
1397#ifdef CONFIG_MMU
1398/**
1399 * page_cache_read - adds requested page to the page cache if not already there
1400 * @file:	file to read
1401 * @offset:	page index
1402 *
1403 * This adds the requested page to the page cache if it isn't already there,
1404 * and schedules an I/O to read in its contents from disk.
1405 */
1406static int page_cache_read(struct file *file, pgoff_t offset)
1407{
1408	struct address_space *mapping = file->f_mapping;
1409	struct page *page;
1410	int ret;
1411
1412	do {
1413		page = page_cache_alloc_cold(mapping);
1414		if (!page)
1415			return -ENOMEM;
1416
1417		ret = add_to_page_cache_lru(page, mapping, offset, GFP_KERNEL);
1418		if (ret == 0)
1419			ret = mapping->a_ops->readpage(file, page);
1420		else if (ret == -EEXIST)
1421			ret = 0; /* losing race to add is OK */
1422
1423		page_cache_release(page);
1424
1425	} while (ret == AOP_TRUNCATED_PAGE);
1426
1427	return ret;
1428}
1429
1430#define MMAP_LOTSAMISS  (100)
1431
1432/**
1433 * filemap_fault - read in file data for page fault handling
1434 * @vma:	vma in which the fault was taken
1435 * @vmf:	struct vm_fault containing details of the fault
1436 *
1437 * filemap_fault() is invoked via the vma operations vector for a
1438 * mapped memory region to read in file data during a page fault.
1439 *
1440 * The goto's are kind of ugly, but this streamlines the normal case of having
1441 * it in the page cache, and handles the special cases reasonably without
1442 * having a lot of duplicated code.
1443 */
1444int filemap_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
1445{
1446	int error;
1447	struct file *file = vma->vm_file;
1448	struct address_space *mapping = file->f_mapping;
1449	struct file_ra_state *ra = &file->f_ra;
1450	struct inode *inode = mapping->host;
1451	struct page *page;
1452	pgoff_t size;
1453	int did_readaround = 0;
1454	int ret = 0;
1455
1456	size = (i_size_read(inode) + PAGE_CACHE_SIZE - 1) >> PAGE_CACHE_SHIFT;
1457	if (vmf->pgoff >= size)
1458		return VM_FAULT_SIGBUS;
1459
1460	/* If we don't want any read-ahead, don't bother */
1461	if (VM_RandomReadHint(vma))
1462		goto no_cached_page;
1463
1464	/*
1465	 * Do we have something in the page cache already?
1466	 */
1467retry_find:
1468	page = find_lock_page(mapping, vmf->pgoff);
1469	/*
1470	 * For sequential accesses, we use the generic readahead logic.
1471	 */
1472	if (VM_SequentialReadHint(vma)) {
1473		if (!page) {
1474			page_cache_sync_readahead(mapping, ra, file,
1475							   vmf->pgoff, 1);
1476			page = find_lock_page(mapping, vmf->pgoff);
1477			if (!page)
1478				goto no_cached_page;
1479		}
1480		if (PageReadahead(page)) {
1481			page_cache_async_readahead(mapping, ra, file, page,
1482							   vmf->pgoff, 1);
1483		}
1484	}
1485
1486	if (!page) {
1487		unsigned long ra_pages;
1488
1489		ra->mmap_miss++;
1490
1491		/*
1492		 * Do we miss much more than hit in this file? If so,
1493		 * stop bothering with read-ahead. It will only hurt.
1494		 */
1495		if (ra->mmap_miss > MMAP_LOTSAMISS)
1496			goto no_cached_page;
1497
1498		/*
1499		 * To keep the pgmajfault counter straight, we need to
1500		 * check did_readaround, as this is an inner loop.
1501		 */
1502		if (!did_readaround) {
1503			ret = VM_FAULT_MAJOR;
1504			count_vm_event(PGMAJFAULT);
1505		}
1506		did_readaround = 1;
1507		ra_pages = max_sane_readahead(file->f_ra.ra_pages);
1508		if (ra_pages) {
1509			pgoff_t start = 0;
1510
1511			if (vmf->pgoff > ra_pages / 2)
1512				start = vmf->pgoff - ra_pages / 2;
1513			do_page_cache_readahead(mapping, file, start, ra_pages);
1514		}
1515		page = find_lock_page(mapping, vmf->pgoff);
1516		if (!page)
1517			goto no_cached_page;
1518	}
1519
1520	if (!did_readaround)
1521		ra->mmap_miss--;
1522
1523	/*
1524	 * We have a locked page in the page cache, now we need to check
1525	 * that it's up-to-date. If not, it is going to be due to an error.
1526	 */
1527	if (unlikely(!PageUptodate(page)))
1528		goto page_not_uptodate;
1529
1530	/* Must recheck i_size under page lock */
1531	size = (i_size_read(inode) + PAGE_CACHE_SIZE - 1) >> PAGE_CACHE_SHIFT;
1532	if (unlikely(vmf->pgoff >= size)) {
1533		unlock_page(page);
1534		page_cache_release(page);
1535		return VM_FAULT_SIGBUS;
1536	}
1537
1538	/*
1539	 * Found the page and have a reference on it.
1540	 */
1541	ra->prev_pos = (loff_t)page->index << PAGE_CACHE_SHIFT;
1542	vmf->page = page;
1543	return ret | VM_FAULT_LOCKED;
1544
1545no_cached_page:
1546	/*
1547	 * We're only likely to ever get here if MADV_RANDOM is in
1548	 * effect.
1549	 */
1550	error = page_cache_read(file, vmf->pgoff);
1551
1552	/*
1553	 * The page we want has now been added to the page cache.
1554	 * In the unlikely event that someone removed it in the
1555	 * meantime, we'll just come back here and read it again.
1556	 */
1557	if (error >= 0)
1558		goto retry_find;
1559
1560	/*
1561	 * An error return from page_cache_read can result if the
1562	 * system is low on memory, or a problem occurs while trying
1563	 * to schedule I/O.
1564	 */
1565	if (error == -ENOMEM)
1566		return VM_FAULT_OOM;
1567	return VM_FAULT_SIGBUS;
1568
1569page_not_uptodate:
1570	/* IO error path */
1571	if (!did_readaround) {
1572		ret = VM_FAULT_MAJOR;
1573		count_vm_event(PGMAJFAULT);
1574	}
1575
1576	/*
1577	 * Umm, take care of errors if the page isn't up-to-date.
1578	 * Try to re-read it _once_. We do this synchronously,
1579	 * because there really aren't any performance issues here
1580	 * and we need to check for errors.
1581	 */
1582	ClearPageError(page);
1583	error = mapping->a_ops->readpage(file, page);
1584	if (!error) {
1585		wait_on_page_locked(page);
1586		if (!PageUptodate(page))
1587			error = -EIO;
1588	}
1589	page_cache_release(page);
1590
1591	if (!error || error == AOP_TRUNCATED_PAGE)
1592		goto retry_find;
1593
1594	/* Things didn't work out. Return zero to tell the mm layer so. */
1595	shrink_readahead_size_eio(file, ra);
1596	return VM_FAULT_SIGBUS;
1597}
1598EXPORT_SYMBOL(filemap_fault);
1599
1600struct vm_operations_struct generic_file_vm_ops = {
1601	.fault		= filemap_fault,
1602};
1603
1604/* This is used for a general mmap of a disk file */
1605
1606int generic_file_mmap(struct file * file, struct vm_area_struct * vma)
1607{
1608	struct address_space *mapping = file->f_mapping;
1609
1610	if (!mapping->a_ops->readpage)
1611		return -ENOEXEC;
1612	file_accessed(file);
1613	vma->vm_ops = &generic_file_vm_ops;
1614	vma->vm_flags |= VM_CAN_NONLINEAR;
1615	return 0;
1616}
1617
1618/*
1619 * This is for filesystems which do not implement ->writepage.
1620 */
1621int generic_file_readonly_mmap(struct file *file, struct vm_area_struct *vma)
1622{
1623	if ((vma->vm_flags & VM_SHARED) && (vma->vm_flags & VM_MAYWRITE))
1624		return -EINVAL;
1625	return generic_file_mmap(file, vma);
1626}
1627#else
1628int generic_file_mmap(struct file * file, struct vm_area_struct * vma)
1629{
1630	return -ENOSYS;
1631}
1632int generic_file_readonly_mmap(struct file * file, struct vm_area_struct * vma)
1633{
1634	return -ENOSYS;
1635}
1636#endif /* CONFIG_MMU */
1637
1638EXPORT_SYMBOL(generic_file_mmap);
1639EXPORT_SYMBOL(generic_file_readonly_mmap);
1640
1641static struct page *__read_cache_page(struct address_space *mapping,
1642				pgoff_t index,
1643				int (*filler)(void *,struct page*),
1644				void *data)
1645{
1646	struct page *page;
1647	int err;
1648repeat:
1649	page = find_get_page(mapping, index);
1650	if (!page) {
1651		page = page_cache_alloc_cold(mapping);
1652		if (!page)
1653			return ERR_PTR(-ENOMEM);
1654		err = add_to_page_cache_lru(page, mapping, index, GFP_KERNEL);
1655		if (unlikely(err)) {
1656			page_cache_release(page);
1657			if (err == -EEXIST)
1658				goto repeat;
1659			/* Presumably ENOMEM for radix tree node */
1660			return ERR_PTR(err);
1661		}
1662		err = filler(data, page);
1663		if (err < 0) {
1664			page_cache_release(page);
1665			page = ERR_PTR(err);
1666		}
1667	}
1668	return page;
1669}
1670
1671/**
1672 * read_cache_page_async - read into page cache, fill it if needed
1673 * @mapping:	the page's address_space
1674 * @index:	the page index
1675 * @filler:	function to perform the read
1676 * @data:	destination for read data
1677 *
1678 * Same as read_cache_page, but don't wait for page to become unlocked
1679 * after submitting it to the filler.
1680 *
1681 * Read into the page cache. If a page already exists, and PageUptodate() is
1682 * not set, try to fill the page but don't wait for it to become unlocked.
1683 *
1684 * If the page does not get brought uptodate, return -EIO.
1685 */
1686struct page *read_cache_page_async(struct address_space *mapping,
1687				pgoff_t index,
1688				int (*filler)(void *,struct page*),
1689				void *data)
1690{
1691	struct page *page;
1692	int err;
1693
1694retry:
1695	page = __read_cache_page(mapping, index, filler, data);
1696	if (IS_ERR(page))
1697		return page;
1698	if (PageUptodate(page))
1699		goto out;
1700
1701	lock_page(page);
1702	if (!page->mapping) {
1703		unlock_page(page);
1704		page_cache_release(page);
1705		goto retry;
1706	}
1707	if (PageUptodate(page)) {
1708		unlock_page(page);
1709		goto out;
1710	}
1711	err = filler(data, page);
1712	if (err < 0) {
1713		page_cache_release(page);
1714		return ERR_PTR(err);
1715	}
1716out:
1717	mark_page_accessed(page);
1718	return page;
1719}
1720EXPORT_SYMBOL(read_cache_page_async);
1721
1722/**
1723 * read_cache_page - read into page cache, fill it if needed
1724 * @mapping:	the page's address_space
1725 * @index:	the page index
1726 * @filler:	function to perform the read
1727 * @data:	destination for read data
1728 *
1729 * Read into the page cache. If a page already exists, and PageUptodate() is
1730 * not set, try to fill the page then wait for it to become unlocked.
1731 *
1732 * If the page does not get brought uptodate, return -EIO.
1733 */
1734struct page *read_cache_page(struct address_space *mapping,
1735				pgoff_t index,
1736				int (*filler)(void *,struct page*),
1737				void *data)
1738{
1739	struct page *page;
1740
1741	page = read_cache_page_async(mapping, index, filler, data);
1742	if (IS_ERR(page))
1743		goto out;
1744	wait_on_page_locked(page);
1745	if (!PageUptodate(page)) {
1746		page_cache_release(page);
1747		page = ERR_PTR(-EIO);
1748	}
1749 out:
1750	return page;
1751}
1752EXPORT_SYMBOL(read_cache_page);
1753
1754/*
1755 * The logic we want is
1756 *
1757 *	if suid or (sgid and xgrp)
1758 *		remove privs
1759 */
1760int should_remove_suid(struct dentry *dentry)
1761{
1762	mode_t mode = dentry->d_inode->i_mode;
1763	int kill = 0;
1764
1765	/* suid always must be killed */
1766	if (unlikely(mode & S_ISUID))
1767		kill = ATTR_KILL_SUID;
1768
1769	/*
1770	 * sgid without any exec bits is just a mandatory locking mark; leave
1771	 * it alone.  If some exec bits are set, it's a real sgid; kill it.
1772	 */
1773	if (unlikely((mode & S_ISGID) && (mode & S_IXGRP)))
1774		kill |= ATTR_KILL_SGID;
1775
1776	if (unlikely(kill && !capable(CAP_FSETID) && S_ISREG(mode)))
1777		return kill;
1778
1779	return 0;
1780}
1781EXPORT_SYMBOL(should_remove_suid);
1782
1783static int __remove_suid(struct dentry *dentry, int kill)
1784{
1785	struct iattr newattrs;
1786
1787	newattrs.ia_valid = ATTR_FORCE | kill;
1788	return notify_change(dentry, &newattrs);
1789}
1790
1791int file_remove_suid(struct file *file)
1792{
1793	struct dentry *dentry = file->f_path.dentry;
1794	int killsuid = should_remove_suid(dentry);
1795	int killpriv = security_inode_need_killpriv(dentry);
1796	int error = 0;
1797
1798	if (killpriv < 0)
1799		return killpriv;
1800	if (killpriv)
1801		error = security_inode_killpriv(dentry);
1802	if (!error && killsuid)
1803		error = __remove_suid(dentry, killsuid);
1804
1805	return error;
1806}
1807EXPORT_SYMBOL(file_remove_suid);
1808
1809static size_t __iovec_copy_from_user_inatomic(char *vaddr,
1810			const struct iovec *iov, size_t base, size_t bytes)
1811{
1812	size_t copied = 0, left = 0;
1813
1814	while (bytes) {
1815		char __user *buf = iov->iov_base + base;
1816		int copy = min(bytes, iov->iov_len - base);
1817
1818		base = 0;
1819		left = __copy_from_user_inatomic_nocache(vaddr, buf, copy);
1820		copied += copy;
1821		bytes -= copy;
1822		vaddr += copy;
1823		iov++;
1824
1825		if (unlikely(left))
1826			break;
1827	}
1828	return copied - left;
1829}
1830
1831/*
1832 * Copy as much as we can into the page and return the number of bytes which
1833 * were sucessfully copied.  If a fault is encountered then return the number of
1834 * bytes which were copied.
1835 */
1836size_t iov_iter_copy_from_user_atomic(struct page *page,
1837		struct iov_iter *i, unsigned long offset, size_t bytes)
1838{
1839	char *kaddr;
1840	size_t copied;
1841
1842	BUG_ON(!in_atomic());
1843	kaddr = kmap_atomic(page, KM_USER0);
1844	if (likely(i->nr_segs == 1)) {
1845		int left;
1846		char __user *buf = i->iov->iov_base + i->iov_offset;
1847		left = __copy_from_user_inatomic_nocache(kaddr + offset,
1848							buf, bytes);
1849		copied = bytes - left;
1850	} else {
1851		copied = __iovec_copy_from_user_inatomic(kaddr + offset,
1852						i->iov, i->iov_offset, bytes);
1853	}
1854	kunmap_atomic(kaddr, KM_USER0);
1855
1856	return copied;
1857}
1858EXPORT_SYMBOL(iov_iter_copy_from_user_atomic);
1859
1860/*
1861 * This has the same sideeffects and return value as
1862 * iov_iter_copy_from_user_atomic().
1863 * The difference is that it attempts to resolve faults.
1864 * Page must not be locked.
1865 */
1866size_t iov_iter_copy_from_user(struct page *page,
1867		struct iov_iter *i, unsigned long offset, size_t bytes)
1868{
1869	char *kaddr;
1870	size_t copied;
1871
1872	kaddr = kmap(page);
1873	if (likely(i->nr_segs == 1)) {
1874		int left;
1875		char __user *buf = i->iov->iov_base + i->iov_offset;
1876		left = __copy_from_user_nocache(kaddr + offset, buf, bytes);
1877		copied = bytes - left;
1878	} else {
1879		copied = __iovec_copy_from_user_inatomic(kaddr + offset,
1880						i->iov, i->iov_offset, bytes);
1881	}
1882	kunmap(page);
1883	return copied;
1884}
1885EXPORT_SYMBOL(iov_iter_copy_from_user);
1886
1887void iov_iter_advance(struct iov_iter *i, size_t bytes)
1888{
1889	BUG_ON(i->count < bytes);
1890
1891	if (likely(i->nr_segs == 1)) {
1892		i->iov_offset += bytes;
1893		i->count -= bytes;
1894	} else {
1895		const struct iovec *iov = i->iov;
1896		size_t base = i->iov_offset;
1897
1898		/*
1899		 * The !iov->iov_len check ensures we skip over unlikely
1900		 * zero-length segments (without overruning the iovec).
1901		 */
1902		while (bytes || unlikely(i->count && !iov->iov_len)) {
1903			int copy;
1904
1905			copy = min(bytes, iov->iov_len - base);
1906			BUG_ON(!i->count || i->count < copy);
1907			i->count -= copy;
1908			bytes -= copy;
1909			base += copy;
1910			if (iov->iov_len == base) {
1911				iov++;
1912				base = 0;
1913			}
1914		}
1915		i->iov = iov;
1916		i->iov_offset = base;
1917	}
1918}
1919EXPORT_SYMBOL(iov_iter_advance);
1920
1921/*
1922 * Fault in the first iovec of the given iov_iter, to a maximum length
1923 * of bytes. Returns 0 on success, or non-zero if the memory could not be
1924 * accessed (ie. because it is an invalid address).
1925 *
1926 * writev-intensive code may want this to prefault several iovecs -- that
1927 * would be possible (callers must not rely on the fact that _only_ the
1928 * first iovec will be faulted with the current implementation).
1929 */
1930int iov_iter_fault_in_readable(struct iov_iter *i, size_t bytes)
1931{
1932	char __user *buf = i->iov->iov_base + i->iov_offset;
1933	bytes = min(bytes, i->iov->iov_len - i->iov_offset);
1934	return fault_in_pages_readable(buf, bytes);
1935}
1936EXPORT_SYMBOL(iov_iter_fault_in_readable);
1937
1938/*
1939 * Return the count of just the current iov_iter segment.
1940 */
1941size_t iov_iter_single_seg_count(struct iov_iter *i)
1942{
1943	const struct iovec *iov = i->iov;
1944	if (i->nr_segs == 1)
1945		return i->count;
1946	else
1947		return min(i->count, iov->iov_len - i->iov_offset);
1948}
1949EXPORT_SYMBOL(iov_iter_single_seg_count);
1950
1951/*
1952 * Performs necessary checks before doing a write
1953 *
1954 * Can adjust writing position or amount of bytes to write.
1955 * Returns appropriate error code that caller should return or
1956 * zero in case that write should be allowed.
1957 */
1958inline int generic_write_checks(struct file *file, loff_t *pos, size_t *count, int isblk)
1959{
1960	struct inode *inode = file->f_mapping->host;
1961	unsigned long limit = current->signal->rlim[RLIMIT_FSIZE].rlim_cur;
1962
1963        if (unlikely(*pos < 0))
1964                return -EINVAL;
1965
1966	if (!isblk) {
1967		/* FIXME: this is for backwards compatibility with 2.4 */
1968		if (file->f_flags & O_APPEND)
1969                        *pos = i_size_read(inode);
1970
1971		if (limit != RLIM_INFINITY) {
1972			if (*pos >= limit) {
1973				send_sig(SIGXFSZ, current, 0);
1974				return -EFBIG;
1975			}
1976			if (*count > limit - (typeof(limit))*pos) {
1977				*count = limit - (typeof(limit))*pos;
1978			}
1979		}
1980	}
1981
1982	/*
1983	 * LFS rule
1984	 */
1985	if (unlikely(*pos + *count > MAX_NON_LFS &&
1986				!(file->f_flags & O_LARGEFILE))) {
1987		if (*pos >= MAX_NON_LFS) {
1988			return -EFBIG;
1989		}
1990		if (*count > MAX_NON_LFS - (unsigned long)*pos) {
1991			*count = MAX_NON_LFS - (unsigned long)*pos;
1992		}
1993	}
1994
1995	/*
1996	 * Are we about to exceed the fs block limit ?
1997	 *
1998	 * If we have written data it becomes a short write.  If we have
1999	 * exceeded without writing data we send a signal and return EFBIG.
2000	 * Linus frestrict idea will clean these up nicely..
2001	 */
2002	if (likely(!isblk)) {
2003		if (unlikely(*pos >= inode->i_sb->s_maxbytes)) {
2004			if (*count || *pos > inode->i_sb->s_maxbytes) {
2005				return -EFBIG;
2006			}
2007			/* zero-length writes at ->s_maxbytes are OK */
2008		}
2009
2010		if (unlikely(*pos + *count > inode->i_sb->s_maxbytes))
2011			*count = inode->i_sb->s_maxbytes - *pos;
2012	} else {
2013#ifdef CONFIG_BLOCK
2014		loff_t isize;
2015		if (bdev_read_only(I_BDEV(inode)))
2016			return -EPERM;
2017		isize = i_size_read(inode);
2018		if (*pos >= isize) {
2019			if (*count || *pos > isize)
2020				return -ENOSPC;
2021		}
2022
2023		if (*pos + *count > isize)
2024			*count = isize - *pos;
2025#else
2026		return -EPERM;
2027#endif
2028	}
2029	return 0;
2030}
2031EXPORT_SYMBOL(generic_write_checks);
2032
2033int pagecache_write_begin(struct file *file, struct address_space *mapping,
2034				loff_t pos, unsigned len, unsigned flags,
2035				struct page **pagep, void **fsdata)
2036{
2037	const struct address_space_operations *aops = mapping->a_ops;
2038
2039	return aops->write_begin(file, mapping, pos, len, flags,
2040							pagep, fsdata);
2041}
2042EXPORT_SYMBOL(pagecache_write_begin);
2043
2044int pagecache_write_end(struct file *file, struct address_space *mapping,
2045				loff_t pos, unsigned len, unsigned copied,
2046				struct page *page, void *fsdata)
2047{
2048	const struct address_space_operations *aops = mapping->a_ops;
2049
2050	mark_page_accessed(page);
2051	return aops->write_end(file, mapping, pos, len, copied, page, fsdata);
2052}
2053EXPORT_SYMBOL(pagecache_write_end);
2054
2055ssize_t
2056generic_file_direct_write(struct kiocb *iocb, const struct iovec *iov,
2057		unsigned long *nr_segs, loff_t pos, loff_t *ppos,
2058		size_t count, size_t ocount)
2059{
2060	struct file	*file = iocb->ki_filp;
2061	struct address_space *mapping = file->f_mapping;
2062	struct inode	*inode = mapping->host;
2063	ssize_t		written;
2064	size_t		write_len;
2065	pgoff_t		end;
2066
2067	if (count != ocount)
2068		*nr_segs = iov_shorten((struct iovec *)iov, *nr_segs, count);
2069
2070	write_len = iov_length(iov, *nr_segs);
2071	end = (pos + write_len - 1) >> PAGE_CACHE_SHIFT;
2072
2073	written = filemap_write_and_wait_range(mapping, pos, pos + write_len - 1);
2074	if (written)
2075		goto out;
2076
2077	/*
2078	 * After a write we want buffered reads to be sure to go to disk to get
2079	 * the new data.  We invalidate clean cached page from the region we're
2080	 * about to write.  We do this *before* the write so that we can return
2081	 * without clobbering -EIOCBQUEUED from ->direct_IO().
2082	 */
2083	if (mapping->nrpages) {
2084		written = invalidate_inode_pages2_range(mapping,
2085					pos >> PAGE_CACHE_SHIFT, end);
2086		/*
2087		 * If a page can not be invalidated, return 0 to fall back
2088		 * to buffered write.
2089		 */
2090		if (written) {
2091			if (written == -EBUSY)
2092				return 0;
2093			goto out;
2094		}
2095	}
2096
2097	written = mapping->a_ops->direct_IO(WRITE, iocb, iov, pos, *nr_segs);
2098
2099	/*
2100	 * Finally, try again to invalidate clean pages which might have been
2101	 * cached by non-direct readahead, or faulted in by get_user_pages()
2102	 * if the source of the write was an mmap'ed region of the file
2103	 * we're writing.  Either one is a pretty crazy thing to do,
2104	 * so we don't support it 100%.  If this invalidation
2105	 * fails, tough, the write still worked...
2106	 */
2107	if (mapping->nrpages) {
2108		invalidate_inode_pages2_range(mapping,
2109					      pos >> PAGE_CACHE_SHIFT, end);
2110	}
2111
2112	if (written > 0) {
2113		loff_t end = pos + written;
2114		if (end > i_size_read(inode) && !S_ISBLK(inode->i_mode)) {
2115			i_size_write(inode,  end);
2116			mark_inode_dirty(inode);
2117		}
2118		*ppos = end;
2119	}
2120
2121	/*
2122	 * Sync the fs metadata but not the minor inode changes and
2123	 * of course not the data as we did direct DMA for the IO.
2124	 * i_mutex is held, which protects generic_osync_inode() from
2125	 * livelocking.  AIO O_DIRECT ops attempt to sync metadata here.
2126	 */
2127out:
2128	if ((written >= 0 || written == -EIOCBQUEUED) &&
2129	    ((file->f_flags & O_SYNC) || IS_SYNC(inode))) {
2130		int err = generic_osync_inode(inode, mapping, OSYNC_METADATA);
2131		if (err < 0)
2132			written = err;
2133	}
2134	return written;
2135}
2136EXPORT_SYMBOL(generic_file_direct_write);
2137
2138/*
2139 * Find or create a page at the given pagecache position. Return the locked
2140 * page. This function is specifically for buffered writes.
2141 */
2142struct page *grab_cache_page_write_begin(struct address_space *mapping,
2143					pgoff_t index, unsigned flags)
2144{
2145	int status;
2146	struct page *page;
2147	gfp_t gfp_notmask = 0;
2148	if (flags & AOP_FLAG_NOFS)
2149		gfp_notmask = __GFP_FS;
2150repeat:
2151	page = find_lock_page(mapping, index);
2152	if (likely(page))
2153		return page;
2154
2155	page = __page_cache_alloc(mapping_gfp_mask(mapping) & ~gfp_notmask);
2156	if (!page)
2157		return NULL;
2158	status = add_to_page_cache_lru(page, mapping, index,
2159						GFP_KERNEL & ~gfp_notmask);
2160	if (unlikely(status)) {
2161		page_cache_release(page);
2162		if (status == -EEXIST)
2163			goto repeat;
2164		return NULL;
2165	}
2166	return page;
2167}
2168EXPORT_SYMBOL(grab_cache_page_write_begin);
2169
2170static ssize_t generic_perform_write(struct file *file,
2171				struct iov_iter *i, loff_t pos)
2172{
2173	struct address_space *mapping = file->f_mapping;
2174	const struct address_space_operations *a_ops = mapping->a_ops;
2175	long status = 0;
2176	ssize_t written = 0;
2177	unsigned int flags = 0;
2178
2179	/*
2180	 * Copies from kernel address space cannot fail (NFSD is a big user).
2181	 */
2182	if (segment_eq(get_fs(), KERNEL_DS))
2183		flags |= AOP_FLAG_UNINTERRUPTIBLE;
2184
2185	do {
2186		struct page *page;
2187		pgoff_t index;		/* Pagecache index for current page */
2188		unsigned long offset;	/* Offset into pagecache page */
2189		unsigned long bytes;	/* Bytes to write to page */
2190		size_t copied;		/* Bytes copied from user */
2191		void *fsdata;
2192
2193		offset = (pos & (PAGE_CACHE_SIZE - 1));
2194		index = pos >> PAGE_CACHE_SHIFT;
2195		bytes = min_t(unsigned long, PAGE_CACHE_SIZE - offset,
2196						iov_iter_count(i));
2197
2198again:
2199
2200		/*
2201		 * Bring in the user page that we will copy from _first_.
2202		 * Otherwise there's a nasty deadlock on copying from the
2203		 * same page as we're writing to, without it being marked
2204		 * up-to-date.
2205		 *
2206		 * Not only is this an optimisation, but it is also required
2207		 * to check that the address is actually valid, when atomic
2208		 * usercopies are used, below.
2209		 */
2210		if (unlikely(iov_iter_fault_in_readable(i, bytes))) {
2211			status = -EFAULT;
2212			break;
2213		}
2214
2215		status = a_ops->write_begin(file, mapping, pos, bytes, flags,
2216						&page, &fsdata);
2217		if (unlikely(status))
2218			break;
2219
2220		pagefault_disable();
2221		copied = iov_iter_copy_from_user_atomic(page, i, offset, bytes);
2222		pagefault_enable();
2223		flush_dcache_page(page);
2224
2225		status = a_ops->write_end(file, mapping, pos, bytes, copied,
2226						page, fsdata);
2227		if (unlikely(status < 0))
2228			break;
2229		copied = status;
2230
2231		cond_resched();
2232
2233		iov_iter_advance(i, copied);
2234		if (unlikely(copied == 0)) {
2235			/*
2236			 * If we were unable to copy any data at all, we must
2237			 * fall back to a single segment length write.
2238			 *
2239			 * If we didn't fallback here, we could livelock
2240			 * because not all segments in the iov can be copied at
2241			 * once without a pagefault.
2242			 */
2243			bytes = min_t(unsigned long, PAGE_CACHE_SIZE - offset,
2244						iov_iter_single_seg_count(i));
2245			goto again;
2246		}
2247		pos += copied;
2248		written += copied;
2249
2250		balance_dirty_pages_ratelimited(mapping);
2251
2252	} while (iov_iter_count(i));
2253
2254	return written ? written : status;
2255}
2256
2257ssize_t
2258generic_file_buffered_write(struct kiocb *iocb, const struct iovec *iov,
2259		unsigned long nr_segs, loff_t pos, loff_t *ppos,
2260		size_t count, ssize_t written)
2261{
2262	struct file *file = iocb->ki_filp;
2263	struct address_space *mapping = file->f_mapping;
2264	const struct address_space_operations *a_ops = mapping->a_ops;
2265	struct inode *inode = mapping->host;
2266	ssize_t status;
2267	struct iov_iter i;
2268
2269	iov_iter_init(&i, iov, nr_segs, count, written);
2270	status = generic_perform_write(file, &i, pos);
2271
2272	if (likely(status >= 0)) {
2273		written += status;
2274		*ppos = pos + status;
2275
2276		/*
2277		 * For now, when the user asks for O_SYNC, we'll actually give
2278		 * O_DSYNC
2279		 */
2280		if (unlikely((file->f_flags & O_SYNC) || IS_SYNC(inode))) {
2281			if (!a_ops->writepage || !is_sync_kiocb(iocb))
2282				status = generic_osync_inode(inode, mapping,
2283						OSYNC_METADATA|OSYNC_DATA);
2284		}
2285  	}
2286
2287	/*
2288	 * If we get here for O_DIRECT writes then we must have fallen through
2289	 * to buffered writes (block instantiation inside i_size).  So we sync
2290	 * the file data here, to try to honour O_DIRECT expectations.
2291	 */
2292	if (unlikely(file->f_flags & O_DIRECT) && written)
2293		status = filemap_write_and_wait_range(mapping,
2294					pos, pos + written - 1);
2295
2296	return written ? written : status;
2297}
2298EXPORT_SYMBOL(generic_file_buffered_write);
2299
2300static ssize_t
2301__generic_file_aio_write_nolock(struct kiocb *iocb, const struct iovec *iov,
2302				unsigned long nr_segs, loff_t *ppos)
2303{
2304	struct file *file = iocb->ki_filp;
2305	struct address_space * mapping = file->f_mapping;
2306	size_t ocount;		/* original count */
2307	size_t count;		/* after file limit checks */
2308	struct inode 	*inode = mapping->host;
2309	loff_t		pos;
2310	ssize_t		written;
2311	ssize_t		err;
2312
2313	ocount = 0;
2314	err = generic_segment_checks(iov, &nr_segs, &ocount, VERIFY_READ);
2315	if (err)
2316		return err;
2317
2318	count = ocount;
2319	pos = *ppos;
2320
2321	vfs_check_frozen(inode->i_sb, SB_FREEZE_WRITE);
2322
2323	/* We can write back this queue in page reclaim */
2324	current->backing_dev_info = mapping->backing_dev_info;
2325	written = 0;
2326
2327	err = generic_write_checks(file, &pos, &count, S_ISBLK(inode->i_mode));
2328	if (err)
2329		goto out;
2330
2331	if (count == 0)
2332		goto out;
2333
2334	err = file_remove_suid(file);
2335	if (err)
2336		goto out;
2337
2338	file_update_time(file);
2339
2340	/* coalesce the iovecs and go direct-to-BIO for O_DIRECT */
2341	if (unlikely(file->f_flags & O_DIRECT)) {
2342		loff_t endbyte;
2343		ssize_t written_buffered;
2344
2345		written = generic_file_direct_write(iocb, iov, &nr_segs, pos,
2346							ppos, count, ocount);
2347		if (written < 0 || written == count)
2348			goto out;
2349		/*
2350		 * direct-io write to a hole: fall through to buffered I/O
2351		 * for completing the rest of the request.
2352		 */
2353		pos += written;
2354		count -= written;
2355		written_buffered = generic_file_buffered_write(iocb, iov,
2356						nr_segs, pos, ppos, count,
2357						written);
2358		/*
2359		 * If generic_file_buffered_write() retuned a synchronous error
2360		 * then we want to return the number of bytes which were
2361		 * direct-written, or the error code if that was zero.  Note
2362		 * that this differs from normal direct-io semantics, which
2363		 * will return -EFOO even if some bytes were written.
2364		 */
2365		if (written_buffered < 0) {
2366			err = written_buffered;
2367			goto out;
2368		}
2369
2370		/*
2371		 * We need to ensure that the page cache pages are written to
2372		 * disk and invalidated to preserve the expected O_DIRECT
2373		 * semantics.
2374		 */
2375		endbyte = pos + written_buffered - written - 1;
2376		err = do_sync_mapping_range(file->f_mapping, pos, endbyte,
2377					    SYNC_FILE_RANGE_WAIT_BEFORE|
2378					    SYNC_FILE_RANGE_WRITE|
2379					    SYNC_FILE_RANGE_WAIT_AFTER);
2380		if (err == 0) {
2381			written = written_buffered;
2382			invalidate_mapping_pages(mapping,
2383						 pos >> PAGE_CACHE_SHIFT,
2384						 endbyte >> PAGE_CACHE_SHIFT);
2385		} else {
2386			/*
2387			 * We don't know how much we wrote, so just return
2388			 * the number of bytes which were direct-written
2389			 */
2390		}
2391	} else {
2392		written = generic_file_buffered_write(iocb, iov, nr_segs,
2393				pos, ppos, count, written);
2394	}
2395out:
2396	current->backing_dev_info = NULL;
2397	return written ? written : err;
2398}
2399
2400ssize_t generic_file_aio_write_nolock(struct kiocb *iocb,
2401		const struct iovec *iov, unsigned long nr_segs, loff_t pos)
2402{
2403	struct file *file = iocb->ki_filp;
2404	struct address_space *mapping = file->f_mapping;
2405	struct inode *inode = mapping->host;
2406	ssize_t ret;
2407
2408	BUG_ON(iocb->ki_pos != pos);
2409
2410	ret = __generic_file_aio_write_nolock(iocb, iov, nr_segs,
2411			&iocb->ki_pos);
2412
2413	if (ret > 0 && ((file->f_flags & O_SYNC) || IS_SYNC(inode))) {
2414		ssize_t err;
2415
2416		err = sync_page_range_nolock(inode, mapping, pos, ret);
2417		if (err < 0)
2418			ret = err;
2419	}
2420	return ret;
2421}
2422EXPORT_SYMBOL(generic_file_aio_write_nolock);
2423
2424ssize_t generic_file_aio_write(struct kiocb *iocb, const struct iovec *iov,
2425		unsigned long nr_segs, loff_t pos)
2426{
2427	struct file *file = iocb->ki_filp;
2428	struct address_space *mapping = file->f_mapping;
2429	struct inode *inode = mapping->host;
2430	ssize_t ret;
2431
2432	BUG_ON(iocb->ki_pos != pos);
2433
2434	mutex_lock(&inode->i_mutex);
2435	ret = __generic_file_aio_write_nolock(iocb, iov, nr_segs,
2436			&iocb->ki_pos);
2437	mutex_unlock(&inode->i_mutex);
2438
2439	if (ret > 0 && ((file->f_flags & O_SYNC) || IS_SYNC(inode))) {
2440		ssize_t err;
2441
2442		err = sync_page_range(inode, mapping, pos, ret);
2443		if (err < 0)
2444			ret = err;
2445	}
2446	return ret;
2447}
2448EXPORT_SYMBOL(generic_file_aio_write);
2449
2450/**
2451 * try_to_release_page() - release old fs-specific metadata on a page
2452 *
2453 * @page: the page which the kernel is trying to free
2454 * @gfp_mask: memory allocation flags (and I/O mode)
2455 *
2456 * The address_space is to try to release any data against the page
2457 * (presumably at page->private).  If the release was successful, return `1'.
2458 * Otherwise return zero.
2459 *
2460 * The @gfp_mask argument specifies whether I/O may be performed to release
2461 * this page (__GFP_IO), and whether the call may block (__GFP_WAIT & __GFP_FS).
2462 *
2463 */
2464int try_to_release_page(struct page *page, gfp_t gfp_mask)
2465{
2466	struct address_space * const mapping = page->mapping;
2467
2468	BUG_ON(!PageLocked(page));
2469	if (PageWriteback(page))
2470		return 0;
2471
2472	if (mapping && mapping->a_ops->releasepage)
2473		return mapping->a_ops->releasepage(page, gfp_mask);
2474	return try_to_free_buffers(page);
2475}
2476
2477EXPORT_SYMBOL(try_to_release_page);
2478