filemap.c revision 36e789144267105e0b3f2b9bca7db3184fce50dc
1/*
2 *	linux/mm/filemap.c
3 *
4 * Copyright (C) 1994-1999  Linus Torvalds
5 */
6
7/*
8 * This file handles the generic file mmap semantics used by
9 * most "normal" filesystems (but you don't /have/ to use this:
10 * the NFS filesystem used to do this differently, for example)
11 */
12#include <linux/module.h>
13#include <linux/slab.h>
14#include <linux/compiler.h>
15#include <linux/fs.h>
16#include <linux/uaccess.h>
17#include <linux/aio.h>
18#include <linux/capability.h>
19#include <linux/kernel_stat.h>
20#include <linux/mm.h>
21#include <linux/swap.h>
22#include <linux/mman.h>
23#include <linux/pagemap.h>
24#include <linux/file.h>
25#include <linux/uio.h>
26#include <linux/hash.h>
27#include <linux/writeback.h>
28#include <linux/backing-dev.h>
29#include <linux/pagevec.h>
30#include <linux/blkdev.h>
31#include <linux/backing-dev.h>
32#include <linux/security.h>
33#include <linux/syscalls.h>
34#include <linux/cpuset.h>
35#include <linux/hardirq.h> /* for BUG_ON(!in_atomic()) only */
36#include <linux/memcontrol.h>
37#include "internal.h"
38
39/*
40 * FIXME: remove all knowledge of the buffer layer from the core VM
41 */
42#include <linux/buffer_head.h> /* for generic_osync_inode */
43
44#include <asm/mman.h>
45
46static ssize_t
47generic_file_direct_IO(int rw, struct kiocb *iocb, const struct iovec *iov,
48	loff_t offset, unsigned long nr_segs);
49
50/*
51 * Shared mappings implemented 30.11.1994. It's not fully working yet,
52 * though.
53 *
54 * Shared mappings now work. 15.8.1995  Bruno.
55 *
56 * finished 'unifying' the page and buffer cache and SMP-threaded the
57 * page-cache, 21.05.1999, Ingo Molnar <mingo@redhat.com>
58 *
59 * SMP-threaded pagemap-LRU 1999, Andrea Arcangeli <andrea@suse.de>
60 */
61
62/*
63 * Lock ordering:
64 *
65 *  ->i_mmap_lock		(vmtruncate)
66 *    ->private_lock		(__free_pte->__set_page_dirty_buffers)
67 *      ->swap_lock		(exclusive_swap_page, others)
68 *        ->mapping->tree_lock
69 *
70 *  ->i_mutex
71 *    ->i_mmap_lock		(truncate->unmap_mapping_range)
72 *
73 *  ->mmap_sem
74 *    ->i_mmap_lock
75 *      ->page_table_lock or pte_lock	(various, mainly in memory.c)
76 *        ->mapping->tree_lock	(arch-dependent flush_dcache_mmap_lock)
77 *
78 *  ->mmap_sem
79 *    ->lock_page		(access_process_vm)
80 *
81 *  ->i_mutex			(generic_file_buffered_write)
82 *    ->mmap_sem		(fault_in_pages_readable->do_page_fault)
83 *
84 *  ->i_mutex
85 *    ->i_alloc_sem             (various)
86 *
87 *  ->inode_lock
88 *    ->sb_lock			(fs/fs-writeback.c)
89 *    ->mapping->tree_lock	(__sync_single_inode)
90 *
91 *  ->i_mmap_lock
92 *    ->anon_vma.lock		(vma_adjust)
93 *
94 *  ->anon_vma.lock
95 *    ->page_table_lock or pte_lock	(anon_vma_prepare and various)
96 *
97 *  ->page_table_lock or pte_lock
98 *    ->swap_lock		(try_to_unmap_one)
99 *    ->private_lock		(try_to_unmap_one)
100 *    ->tree_lock		(try_to_unmap_one)
101 *    ->zone.lru_lock		(follow_page->mark_page_accessed)
102 *    ->zone.lru_lock		(check_pte_range->isolate_lru_page)
103 *    ->private_lock		(page_remove_rmap->set_page_dirty)
104 *    ->tree_lock		(page_remove_rmap->set_page_dirty)
105 *    ->inode_lock		(page_remove_rmap->set_page_dirty)
106 *    ->inode_lock		(zap_pte_range->set_page_dirty)
107 *    ->private_lock		(zap_pte_range->__set_page_dirty_buffers)
108 *
109 *  ->task->proc_lock
110 *    ->dcache_lock		(proc_pid_lookup)
111 */
112
113/*
114 * Remove a page from the page cache and free it. Caller has to make
115 * sure the page is locked and that nobody else uses it - or that usage
116 * is safe.  The caller must hold a write_lock on the mapping's tree_lock.
117 */
118void __remove_from_page_cache(struct page *page)
119{
120	struct address_space *mapping = page->mapping;
121
122	mem_cgroup_uncharge_page(page);
123	radix_tree_delete(&mapping->page_tree, page->index);
124	page->mapping = NULL;
125	mapping->nrpages--;
126	__dec_zone_page_state(page, NR_FILE_PAGES);
127	BUG_ON(page_mapped(page));
128
129	/*
130	 * Some filesystems seem to re-dirty the page even after
131	 * the VM has canceled the dirty bit (eg ext3 journaling).
132	 *
133	 * Fix it up by doing a final dirty accounting check after
134	 * having removed the page entirely.
135	 */
136	if (PageDirty(page) && mapping_cap_account_dirty(mapping)) {
137		dec_zone_page_state(page, NR_FILE_DIRTY);
138		dec_bdi_stat(mapping->backing_dev_info, BDI_RECLAIMABLE);
139	}
140}
141
142void remove_from_page_cache(struct page *page)
143{
144	struct address_space *mapping = page->mapping;
145
146	BUG_ON(!PageLocked(page));
147
148	write_lock_irq(&mapping->tree_lock);
149	__remove_from_page_cache(page);
150	write_unlock_irq(&mapping->tree_lock);
151}
152
153static int sync_page(void *word)
154{
155	struct address_space *mapping;
156	struct page *page;
157
158	page = container_of((unsigned long *)word, struct page, flags);
159
160	/*
161	 * page_mapping() is being called without PG_locked held.
162	 * Some knowledge of the state and use of the page is used to
163	 * reduce the requirements down to a memory barrier.
164	 * The danger here is of a stale page_mapping() return value
165	 * indicating a struct address_space different from the one it's
166	 * associated with when it is associated with one.
167	 * After smp_mb(), it's either the correct page_mapping() for
168	 * the page, or an old page_mapping() and the page's own
169	 * page_mapping() has gone NULL.
170	 * The ->sync_page() address_space operation must tolerate
171	 * page_mapping() going NULL. By an amazing coincidence,
172	 * this comes about because none of the users of the page
173	 * in the ->sync_page() methods make essential use of the
174	 * page_mapping(), merely passing the page down to the backing
175	 * device's unplug functions when it's non-NULL, which in turn
176	 * ignore it for all cases but swap, where only page_private(page) is
177	 * of interest. When page_mapping() does go NULL, the entire
178	 * call stack gracefully ignores the page and returns.
179	 * -- wli
180	 */
181	smp_mb();
182	mapping = page_mapping(page);
183	if (mapping && mapping->a_ops && mapping->a_ops->sync_page)
184		mapping->a_ops->sync_page(page);
185	io_schedule();
186	return 0;
187}
188
189static int sync_page_killable(void *word)
190{
191	sync_page(word);
192	return fatal_signal_pending(current) ? -EINTR : 0;
193}
194
195/**
196 * __filemap_fdatawrite_range - start writeback on mapping dirty pages in range
197 * @mapping:	address space structure to write
198 * @start:	offset in bytes where the range starts
199 * @end:	offset in bytes where the range ends (inclusive)
200 * @sync_mode:	enable synchronous operation
201 *
202 * Start writeback against all of a mapping's dirty pages that lie
203 * within the byte offsets <start, end> inclusive.
204 *
205 * If sync_mode is WB_SYNC_ALL then this is a "data integrity" operation, as
206 * opposed to a regular memory cleansing writeback.  The difference between
207 * these two operations is that if a dirty page/buffer is encountered, it must
208 * be waited upon, and not just skipped over.
209 */
210int __filemap_fdatawrite_range(struct address_space *mapping, loff_t start,
211				loff_t end, int sync_mode)
212{
213	int ret;
214	struct writeback_control wbc = {
215		.sync_mode = sync_mode,
216		.nr_to_write = mapping->nrpages * 2,
217		.range_start = start,
218		.range_end = end,
219	};
220
221	if (!mapping_cap_writeback_dirty(mapping))
222		return 0;
223
224	ret = do_writepages(mapping, &wbc);
225	return ret;
226}
227
228static inline int __filemap_fdatawrite(struct address_space *mapping,
229	int sync_mode)
230{
231	return __filemap_fdatawrite_range(mapping, 0, LLONG_MAX, sync_mode);
232}
233
234int filemap_fdatawrite(struct address_space *mapping)
235{
236	return __filemap_fdatawrite(mapping, WB_SYNC_ALL);
237}
238EXPORT_SYMBOL(filemap_fdatawrite);
239
240static int filemap_fdatawrite_range(struct address_space *mapping, loff_t start,
241				loff_t end)
242{
243	return __filemap_fdatawrite_range(mapping, start, end, WB_SYNC_ALL);
244}
245
246/**
247 * filemap_flush - mostly a non-blocking flush
248 * @mapping:	target address_space
249 *
250 * This is a mostly non-blocking flush.  Not suitable for data-integrity
251 * purposes - I/O may not be started against all dirty pages.
252 */
253int filemap_flush(struct address_space *mapping)
254{
255	return __filemap_fdatawrite(mapping, WB_SYNC_NONE);
256}
257EXPORT_SYMBOL(filemap_flush);
258
259/**
260 * wait_on_page_writeback_range - wait for writeback to complete
261 * @mapping:	target address_space
262 * @start:	beginning page index
263 * @end:	ending page index
264 *
265 * Wait for writeback to complete against pages indexed by start->end
266 * inclusive
267 */
268int wait_on_page_writeback_range(struct address_space *mapping,
269				pgoff_t start, pgoff_t end)
270{
271	struct pagevec pvec;
272	int nr_pages;
273	int ret = 0;
274	pgoff_t index;
275
276	if (end < start)
277		return 0;
278
279	pagevec_init(&pvec, 0);
280	index = start;
281	while ((index <= end) &&
282			(nr_pages = pagevec_lookup_tag(&pvec, mapping, &index,
283			PAGECACHE_TAG_WRITEBACK,
284			min(end - index, (pgoff_t)PAGEVEC_SIZE-1) + 1)) != 0) {
285		unsigned i;
286
287		for (i = 0; i < nr_pages; i++) {
288			struct page *page = pvec.pages[i];
289
290			/* until radix tree lookup accepts end_index */
291			if (page->index > end)
292				continue;
293
294			wait_on_page_writeback(page);
295			if (PageError(page))
296				ret = -EIO;
297		}
298		pagevec_release(&pvec);
299		cond_resched();
300	}
301
302	/* Check for outstanding write errors */
303	if (test_and_clear_bit(AS_ENOSPC, &mapping->flags))
304		ret = -ENOSPC;
305	if (test_and_clear_bit(AS_EIO, &mapping->flags))
306		ret = -EIO;
307
308	return ret;
309}
310
311/**
312 * sync_page_range - write and wait on all pages in the passed range
313 * @inode:	target inode
314 * @mapping:	target address_space
315 * @pos:	beginning offset in pages to write
316 * @count:	number of bytes to write
317 *
318 * Write and wait upon all the pages in the passed range.  This is a "data
319 * integrity" operation.  It waits upon in-flight writeout before starting and
320 * waiting upon new writeout.  If there was an IO error, return it.
321 *
322 * We need to re-take i_mutex during the generic_osync_inode list walk because
323 * it is otherwise livelockable.
324 */
325int sync_page_range(struct inode *inode, struct address_space *mapping,
326			loff_t pos, loff_t count)
327{
328	pgoff_t start = pos >> PAGE_CACHE_SHIFT;
329	pgoff_t end = (pos + count - 1) >> PAGE_CACHE_SHIFT;
330	int ret;
331
332	if (!mapping_cap_writeback_dirty(mapping) || !count)
333		return 0;
334	ret = filemap_fdatawrite_range(mapping, pos, pos + count - 1);
335	if (ret == 0) {
336		mutex_lock(&inode->i_mutex);
337		ret = generic_osync_inode(inode, mapping, OSYNC_METADATA);
338		mutex_unlock(&inode->i_mutex);
339	}
340	if (ret == 0)
341		ret = wait_on_page_writeback_range(mapping, start, end);
342	return ret;
343}
344EXPORT_SYMBOL(sync_page_range);
345
346/**
347 * sync_page_range_nolock
348 * @inode:	target inode
349 * @mapping:	target address_space
350 * @pos:	beginning offset in pages to write
351 * @count:	number of bytes to write
352 *
353 * Note: Holding i_mutex across sync_page_range_nolock() is not a good idea
354 * as it forces O_SYNC writers to different parts of the same file
355 * to be serialised right until io completion.
356 */
357int sync_page_range_nolock(struct inode *inode, struct address_space *mapping,
358			   loff_t pos, loff_t count)
359{
360	pgoff_t start = pos >> PAGE_CACHE_SHIFT;
361	pgoff_t end = (pos + count - 1) >> PAGE_CACHE_SHIFT;
362	int ret;
363
364	if (!mapping_cap_writeback_dirty(mapping) || !count)
365		return 0;
366	ret = filemap_fdatawrite_range(mapping, pos, pos + count - 1);
367	if (ret == 0)
368		ret = generic_osync_inode(inode, mapping, OSYNC_METADATA);
369	if (ret == 0)
370		ret = wait_on_page_writeback_range(mapping, start, end);
371	return ret;
372}
373EXPORT_SYMBOL(sync_page_range_nolock);
374
375/**
376 * filemap_fdatawait - wait for all under-writeback pages to complete
377 * @mapping: address space structure to wait for
378 *
379 * Walk the list of under-writeback pages of the given address space
380 * and wait for all of them.
381 */
382int filemap_fdatawait(struct address_space *mapping)
383{
384	loff_t i_size = i_size_read(mapping->host);
385
386	if (i_size == 0)
387		return 0;
388
389	return wait_on_page_writeback_range(mapping, 0,
390				(i_size - 1) >> PAGE_CACHE_SHIFT);
391}
392EXPORT_SYMBOL(filemap_fdatawait);
393
394int filemap_write_and_wait(struct address_space *mapping)
395{
396	int err = 0;
397
398	if (mapping->nrpages) {
399		err = filemap_fdatawrite(mapping);
400		/*
401		 * Even if the above returned error, the pages may be
402		 * written partially (e.g. -ENOSPC), so we wait for it.
403		 * But the -EIO is special case, it may indicate the worst
404		 * thing (e.g. bug) happened, so we avoid waiting for it.
405		 */
406		if (err != -EIO) {
407			int err2 = filemap_fdatawait(mapping);
408			if (!err)
409				err = err2;
410		}
411	}
412	return err;
413}
414EXPORT_SYMBOL(filemap_write_and_wait);
415
416/**
417 * filemap_write_and_wait_range - write out & wait on a file range
418 * @mapping:	the address_space for the pages
419 * @lstart:	offset in bytes where the range starts
420 * @lend:	offset in bytes where the range ends (inclusive)
421 *
422 * Write out and wait upon file offsets lstart->lend, inclusive.
423 *
424 * Note that `lend' is inclusive (describes the last byte to be written) so
425 * that this function can be used to write to the very end-of-file (end = -1).
426 */
427int filemap_write_and_wait_range(struct address_space *mapping,
428				 loff_t lstart, loff_t lend)
429{
430	int err = 0;
431
432	if (mapping->nrpages) {
433		err = __filemap_fdatawrite_range(mapping, lstart, lend,
434						 WB_SYNC_ALL);
435		/* See comment of filemap_write_and_wait() */
436		if (err != -EIO) {
437			int err2 = wait_on_page_writeback_range(mapping,
438						lstart >> PAGE_CACHE_SHIFT,
439						lend >> PAGE_CACHE_SHIFT);
440			if (!err)
441				err = err2;
442		}
443	}
444	return err;
445}
446
447/**
448 * add_to_page_cache - add newly allocated pagecache pages
449 * @page:	page to add
450 * @mapping:	the page's address_space
451 * @offset:	page index
452 * @gfp_mask:	page allocation mode
453 *
454 * This function is used to add newly allocated pagecache pages;
455 * the page is new, so we can just run SetPageLocked() against it.
456 * The other page state flags were set by rmqueue().
457 *
458 * This function does not add the page to the LRU.  The caller must do that.
459 */
460int add_to_page_cache(struct page *page, struct address_space *mapping,
461		pgoff_t offset, gfp_t gfp_mask)
462{
463	int error = mem_cgroup_cache_charge(page, current->mm,
464					gfp_mask & ~__GFP_HIGHMEM);
465	if (error)
466		goto out;
467
468	error = radix_tree_preload(gfp_mask & ~__GFP_HIGHMEM);
469	if (error == 0) {
470		write_lock_irq(&mapping->tree_lock);
471		error = radix_tree_insert(&mapping->page_tree, offset, page);
472		if (!error) {
473			page_cache_get(page);
474			SetPageLocked(page);
475			page->mapping = mapping;
476			page->index = offset;
477			mapping->nrpages++;
478			__inc_zone_page_state(page, NR_FILE_PAGES);
479		} else
480			mem_cgroup_uncharge_page(page);
481
482		write_unlock_irq(&mapping->tree_lock);
483		radix_tree_preload_end();
484	} else
485		mem_cgroup_uncharge_page(page);
486out:
487	return error;
488}
489EXPORT_SYMBOL(add_to_page_cache);
490
491int add_to_page_cache_lru(struct page *page, struct address_space *mapping,
492				pgoff_t offset, gfp_t gfp_mask)
493{
494	int ret = add_to_page_cache(page, mapping, offset, gfp_mask);
495	if (ret == 0)
496		lru_cache_add(page);
497	return ret;
498}
499
500#ifdef CONFIG_NUMA
501struct page *__page_cache_alloc(gfp_t gfp)
502{
503	if (cpuset_do_page_mem_spread()) {
504		int n = cpuset_mem_spread_node();
505		return alloc_pages_node(n, gfp, 0);
506	}
507	return alloc_pages(gfp, 0);
508}
509EXPORT_SYMBOL(__page_cache_alloc);
510#endif
511
512static int __sleep_on_page_lock(void *word)
513{
514	io_schedule();
515	return 0;
516}
517
518/*
519 * In order to wait for pages to become available there must be
520 * waitqueues associated with pages. By using a hash table of
521 * waitqueues where the bucket discipline is to maintain all
522 * waiters on the same queue and wake all when any of the pages
523 * become available, and for the woken contexts to check to be
524 * sure the appropriate page became available, this saves space
525 * at a cost of "thundering herd" phenomena during rare hash
526 * collisions.
527 */
528static wait_queue_head_t *page_waitqueue(struct page *page)
529{
530	const struct zone *zone = page_zone(page);
531
532	return &zone->wait_table[hash_ptr(page, zone->wait_table_bits)];
533}
534
535static inline void wake_up_page(struct page *page, int bit)
536{
537	__wake_up_bit(page_waitqueue(page), &page->flags, bit);
538}
539
540void wait_on_page_bit(struct page *page, int bit_nr)
541{
542	DEFINE_WAIT_BIT(wait, &page->flags, bit_nr);
543
544	if (test_bit(bit_nr, &page->flags))
545		__wait_on_bit(page_waitqueue(page), &wait, sync_page,
546							TASK_UNINTERRUPTIBLE);
547}
548EXPORT_SYMBOL(wait_on_page_bit);
549
550/**
551 * unlock_page - unlock a locked page
552 * @page: the page
553 *
554 * Unlocks the page and wakes up sleepers in ___wait_on_page_locked().
555 * Also wakes sleepers in wait_on_page_writeback() because the wakeup
556 * mechananism between PageLocked pages and PageWriteback pages is shared.
557 * But that's OK - sleepers in wait_on_page_writeback() just go back to sleep.
558 *
559 * The first mb is necessary to safely close the critical section opened by the
560 * TestSetPageLocked(), the second mb is necessary to enforce ordering between
561 * the clear_bit and the read of the waitqueue (to avoid SMP races with a
562 * parallel wait_on_page_locked()).
563 */
564void unlock_page(struct page *page)
565{
566	smp_mb__before_clear_bit();
567	if (!TestClearPageLocked(page))
568		BUG();
569	smp_mb__after_clear_bit();
570	wake_up_page(page, PG_locked);
571}
572EXPORT_SYMBOL(unlock_page);
573
574/**
575 * end_page_writeback - end writeback against a page
576 * @page: the page
577 */
578void end_page_writeback(struct page *page)
579{
580	if (!TestClearPageReclaim(page) || rotate_reclaimable_page(page)) {
581		if (!test_clear_page_writeback(page))
582			BUG();
583	}
584	smp_mb__after_clear_bit();
585	wake_up_page(page, PG_writeback);
586}
587EXPORT_SYMBOL(end_page_writeback);
588
589/**
590 * __lock_page - get a lock on the page, assuming we need to sleep to get it
591 * @page: the page to lock
592 *
593 * Ugly. Running sync_page() in state TASK_UNINTERRUPTIBLE is scary.  If some
594 * random driver's requestfn sets TASK_RUNNING, we could busywait.  However
595 * chances are that on the second loop, the block layer's plug list is empty,
596 * so sync_page() will then return in state TASK_UNINTERRUPTIBLE.
597 */
598void __lock_page(struct page *page)
599{
600	DEFINE_WAIT_BIT(wait, &page->flags, PG_locked);
601
602	__wait_on_bit_lock(page_waitqueue(page), &wait, sync_page,
603							TASK_UNINTERRUPTIBLE);
604}
605EXPORT_SYMBOL(__lock_page);
606
607int fastcall __lock_page_killable(struct page *page)
608{
609	DEFINE_WAIT_BIT(wait, &page->flags, PG_locked);
610
611	return __wait_on_bit_lock(page_waitqueue(page), &wait,
612					sync_page_killable, TASK_KILLABLE);
613}
614
615/*
616 * Variant of lock_page that does not require the caller to hold a reference
617 * on the page's mapping.
618 */
619void __lock_page_nosync(struct page *page)
620{
621	DEFINE_WAIT_BIT(wait, &page->flags, PG_locked);
622	__wait_on_bit_lock(page_waitqueue(page), &wait, __sleep_on_page_lock,
623							TASK_UNINTERRUPTIBLE);
624}
625
626/**
627 * find_get_page - find and get a page reference
628 * @mapping: the address_space to search
629 * @offset: the page index
630 *
631 * Is there a pagecache struct page at the given (mapping, offset) tuple?
632 * If yes, increment its refcount and return it; if no, return NULL.
633 */
634struct page * find_get_page(struct address_space *mapping, pgoff_t offset)
635{
636	struct page *page;
637
638	read_lock_irq(&mapping->tree_lock);
639	page = radix_tree_lookup(&mapping->page_tree, offset);
640	if (page)
641		page_cache_get(page);
642	read_unlock_irq(&mapping->tree_lock);
643	return page;
644}
645EXPORT_SYMBOL(find_get_page);
646
647/**
648 * find_lock_page - locate, pin and lock a pagecache page
649 * @mapping: the address_space to search
650 * @offset: the page index
651 *
652 * Locates the desired pagecache page, locks it, increments its reference
653 * count and returns its address.
654 *
655 * Returns zero if the page was not present. find_lock_page() may sleep.
656 */
657struct page *find_lock_page(struct address_space *mapping,
658				pgoff_t offset)
659{
660	struct page *page;
661
662repeat:
663	read_lock_irq(&mapping->tree_lock);
664	page = radix_tree_lookup(&mapping->page_tree, offset);
665	if (page) {
666		page_cache_get(page);
667		if (TestSetPageLocked(page)) {
668			read_unlock_irq(&mapping->tree_lock);
669			__lock_page(page);
670
671			/* Has the page been truncated while we slept? */
672			if (unlikely(page->mapping != mapping)) {
673				unlock_page(page);
674				page_cache_release(page);
675				goto repeat;
676			}
677			VM_BUG_ON(page->index != offset);
678			goto out;
679		}
680	}
681	read_unlock_irq(&mapping->tree_lock);
682out:
683	return page;
684}
685EXPORT_SYMBOL(find_lock_page);
686
687/**
688 * find_or_create_page - locate or add a pagecache page
689 * @mapping: the page's address_space
690 * @index: the page's index into the mapping
691 * @gfp_mask: page allocation mode
692 *
693 * Locates a page in the pagecache.  If the page is not present, a new page
694 * is allocated using @gfp_mask and is added to the pagecache and to the VM's
695 * LRU list.  The returned page is locked and has its reference count
696 * incremented.
697 *
698 * find_or_create_page() may sleep, even if @gfp_flags specifies an atomic
699 * allocation!
700 *
701 * find_or_create_page() returns the desired page's address, or zero on
702 * memory exhaustion.
703 */
704struct page *find_or_create_page(struct address_space *mapping,
705		pgoff_t index, gfp_t gfp_mask)
706{
707	struct page *page;
708	int err;
709repeat:
710	page = find_lock_page(mapping, index);
711	if (!page) {
712		page = __page_cache_alloc(gfp_mask);
713		if (!page)
714			return NULL;
715		err = add_to_page_cache_lru(page, mapping, index, gfp_mask);
716		if (unlikely(err)) {
717			page_cache_release(page);
718			page = NULL;
719			if (err == -EEXIST)
720				goto repeat;
721		}
722	}
723	return page;
724}
725EXPORT_SYMBOL(find_or_create_page);
726
727/**
728 * find_get_pages - gang pagecache lookup
729 * @mapping:	The address_space to search
730 * @start:	The starting page index
731 * @nr_pages:	The maximum number of pages
732 * @pages:	Where the resulting pages are placed
733 *
734 * find_get_pages() will search for and return a group of up to
735 * @nr_pages pages in the mapping.  The pages are placed at @pages.
736 * find_get_pages() takes a reference against the returned pages.
737 *
738 * The search returns a group of mapping-contiguous pages with ascending
739 * indexes.  There may be holes in the indices due to not-present pages.
740 *
741 * find_get_pages() returns the number of pages which were found.
742 */
743unsigned find_get_pages(struct address_space *mapping, pgoff_t start,
744			    unsigned int nr_pages, struct page **pages)
745{
746	unsigned int i;
747	unsigned int ret;
748
749	read_lock_irq(&mapping->tree_lock);
750	ret = radix_tree_gang_lookup(&mapping->page_tree,
751				(void **)pages, start, nr_pages);
752	for (i = 0; i < ret; i++)
753		page_cache_get(pages[i]);
754	read_unlock_irq(&mapping->tree_lock);
755	return ret;
756}
757
758/**
759 * find_get_pages_contig - gang contiguous pagecache lookup
760 * @mapping:	The address_space to search
761 * @index:	The starting page index
762 * @nr_pages:	The maximum number of pages
763 * @pages:	Where the resulting pages are placed
764 *
765 * find_get_pages_contig() works exactly like find_get_pages(), except
766 * that the returned number of pages are guaranteed to be contiguous.
767 *
768 * find_get_pages_contig() returns the number of pages which were found.
769 */
770unsigned find_get_pages_contig(struct address_space *mapping, pgoff_t index,
771			       unsigned int nr_pages, struct page **pages)
772{
773	unsigned int i;
774	unsigned int ret;
775
776	read_lock_irq(&mapping->tree_lock);
777	ret = radix_tree_gang_lookup(&mapping->page_tree,
778				(void **)pages, index, nr_pages);
779	for (i = 0; i < ret; i++) {
780		if (pages[i]->mapping == NULL || pages[i]->index != index)
781			break;
782
783		page_cache_get(pages[i]);
784		index++;
785	}
786	read_unlock_irq(&mapping->tree_lock);
787	return i;
788}
789EXPORT_SYMBOL(find_get_pages_contig);
790
791/**
792 * find_get_pages_tag - find and return pages that match @tag
793 * @mapping:	the address_space to search
794 * @index:	the starting page index
795 * @tag:	the tag index
796 * @nr_pages:	the maximum number of pages
797 * @pages:	where the resulting pages are placed
798 *
799 * Like find_get_pages, except we only return pages which are tagged with
800 * @tag.   We update @index to index the next page for the traversal.
801 */
802unsigned find_get_pages_tag(struct address_space *mapping, pgoff_t *index,
803			int tag, unsigned int nr_pages, struct page **pages)
804{
805	unsigned int i;
806	unsigned int ret;
807
808	read_lock_irq(&mapping->tree_lock);
809	ret = radix_tree_gang_lookup_tag(&mapping->page_tree,
810				(void **)pages, *index, nr_pages, tag);
811	for (i = 0; i < ret; i++)
812		page_cache_get(pages[i]);
813	if (ret)
814		*index = pages[ret - 1]->index + 1;
815	read_unlock_irq(&mapping->tree_lock);
816	return ret;
817}
818EXPORT_SYMBOL(find_get_pages_tag);
819
820/**
821 * grab_cache_page_nowait - returns locked page at given index in given cache
822 * @mapping: target address_space
823 * @index: the page index
824 *
825 * Same as grab_cache_page(), but do not wait if the page is unavailable.
826 * This is intended for speculative data generators, where the data can
827 * be regenerated if the page couldn't be grabbed.  This routine should
828 * be safe to call while holding the lock for another page.
829 *
830 * Clear __GFP_FS when allocating the page to avoid recursion into the fs
831 * and deadlock against the caller's locked page.
832 */
833struct page *
834grab_cache_page_nowait(struct address_space *mapping, pgoff_t index)
835{
836	struct page *page = find_get_page(mapping, index);
837
838	if (page) {
839		if (!TestSetPageLocked(page))
840			return page;
841		page_cache_release(page);
842		return NULL;
843	}
844	page = __page_cache_alloc(mapping_gfp_mask(mapping) & ~__GFP_FS);
845	if (page && add_to_page_cache_lru(page, mapping, index, GFP_KERNEL)) {
846		page_cache_release(page);
847		page = NULL;
848	}
849	return page;
850}
851EXPORT_SYMBOL(grab_cache_page_nowait);
852
853/*
854 * CD/DVDs are error prone. When a medium error occurs, the driver may fail
855 * a _large_ part of the i/o request. Imagine the worst scenario:
856 *
857 *      ---R__________________________________________B__________
858 *         ^ reading here                             ^ bad block(assume 4k)
859 *
860 * read(R) => miss => readahead(R...B) => media error => frustrating retries
861 * => failing the whole request => read(R) => read(R+1) =>
862 * readahead(R+1...B+1) => bang => read(R+2) => read(R+3) =>
863 * readahead(R+3...B+2) => bang => read(R+3) => read(R+4) =>
864 * readahead(R+4...B+3) => bang => read(R+4) => read(R+5) => ......
865 *
866 * It is going insane. Fix it by quickly scaling down the readahead size.
867 */
868static void shrink_readahead_size_eio(struct file *filp,
869					struct file_ra_state *ra)
870{
871	if (!ra->ra_pages)
872		return;
873
874	ra->ra_pages /= 4;
875}
876
877/**
878 * do_generic_file_read - generic file read routine
879 * @filp:	the file to read
880 * @ppos:	current file position
881 * @desc:	read_descriptor
882 * @actor:	read method
883 *
884 * This is a generic file read routine, and uses the
885 * mapping->a_ops->readpage() function for the actual low-level stuff.
886 *
887 * This is really ugly. But the goto's actually try to clarify some
888 * of the logic when it comes to error handling etc.
889 */
890static void do_generic_file_read(struct file *filp, loff_t *ppos,
891		read_descriptor_t *desc, read_actor_t actor)
892{
893	struct address_space *mapping = filp->f_mapping;
894	struct inode *inode = mapping->host;
895	struct file_ra_state *ra = &filp->f_ra;
896	pgoff_t index;
897	pgoff_t last_index;
898	pgoff_t prev_index;
899	unsigned long offset;      /* offset into pagecache page */
900	unsigned int prev_offset;
901	int error;
902
903	index = *ppos >> PAGE_CACHE_SHIFT;
904	prev_index = ra->prev_pos >> PAGE_CACHE_SHIFT;
905	prev_offset = ra->prev_pos & (PAGE_CACHE_SIZE-1);
906	last_index = (*ppos + desc->count + PAGE_CACHE_SIZE-1) >> PAGE_CACHE_SHIFT;
907	offset = *ppos & ~PAGE_CACHE_MASK;
908
909	for (;;) {
910		struct page *page;
911		pgoff_t end_index;
912		loff_t isize;
913		unsigned long nr, ret;
914
915		cond_resched();
916find_page:
917		page = find_get_page(mapping, index);
918		if (!page) {
919			page_cache_sync_readahead(mapping,
920					ra, filp,
921					index, last_index - index);
922			page = find_get_page(mapping, index);
923			if (unlikely(page == NULL))
924				goto no_cached_page;
925		}
926		if (PageReadahead(page)) {
927			page_cache_async_readahead(mapping,
928					ra, filp, page,
929					index, last_index - index);
930		}
931		if (!PageUptodate(page))
932			goto page_not_up_to_date;
933page_ok:
934		/*
935		 * i_size must be checked after we know the page is Uptodate.
936		 *
937		 * Checking i_size after the check allows us to calculate
938		 * the correct value for "nr", which means the zero-filled
939		 * part of the page is not copied back to userspace (unless
940		 * another truncate extends the file - this is desired though).
941		 */
942
943		isize = i_size_read(inode);
944		end_index = (isize - 1) >> PAGE_CACHE_SHIFT;
945		if (unlikely(!isize || index > end_index)) {
946			page_cache_release(page);
947			goto out;
948		}
949
950		/* nr is the maximum number of bytes to copy from this page */
951		nr = PAGE_CACHE_SIZE;
952		if (index == end_index) {
953			nr = ((isize - 1) & ~PAGE_CACHE_MASK) + 1;
954			if (nr <= offset) {
955				page_cache_release(page);
956				goto out;
957			}
958		}
959		nr = nr - offset;
960
961		/* If users can be writing to this page using arbitrary
962		 * virtual addresses, take care about potential aliasing
963		 * before reading the page on the kernel side.
964		 */
965		if (mapping_writably_mapped(mapping))
966			flush_dcache_page(page);
967
968		/*
969		 * When a sequential read accesses a page several times,
970		 * only mark it as accessed the first time.
971		 */
972		if (prev_index != index || offset != prev_offset)
973			mark_page_accessed(page);
974		prev_index = index;
975
976		/*
977		 * Ok, we have the page, and it's up-to-date, so
978		 * now we can copy it to user space...
979		 *
980		 * The actor routine returns how many bytes were actually used..
981		 * NOTE! This may not be the same as how much of a user buffer
982		 * we filled up (we may be padding etc), so we can only update
983		 * "pos" here (the actor routine has to update the user buffer
984		 * pointers and the remaining count).
985		 */
986		ret = actor(desc, page, offset, nr);
987		offset += ret;
988		index += offset >> PAGE_CACHE_SHIFT;
989		offset &= ~PAGE_CACHE_MASK;
990		prev_offset = offset;
991
992		page_cache_release(page);
993		if (ret == nr && desc->count)
994			continue;
995		goto out;
996
997page_not_up_to_date:
998		/* Get exclusive access to the page ... */
999		if (lock_page_killable(page))
1000			goto readpage_eio;
1001
1002		/* Did it get truncated before we got the lock? */
1003		if (!page->mapping) {
1004			unlock_page(page);
1005			page_cache_release(page);
1006			continue;
1007		}
1008
1009		/* Did somebody else fill it already? */
1010		if (PageUptodate(page)) {
1011			unlock_page(page);
1012			goto page_ok;
1013		}
1014
1015readpage:
1016		/* Start the actual read. The read will unlock the page. */
1017		error = mapping->a_ops->readpage(filp, page);
1018
1019		if (unlikely(error)) {
1020			if (error == AOP_TRUNCATED_PAGE) {
1021				page_cache_release(page);
1022				goto find_page;
1023			}
1024			goto readpage_error;
1025		}
1026
1027		if (!PageUptodate(page)) {
1028			if (lock_page_killable(page))
1029				goto readpage_eio;
1030			if (!PageUptodate(page)) {
1031				if (page->mapping == NULL) {
1032					/*
1033					 * invalidate_inode_pages got it
1034					 */
1035					unlock_page(page);
1036					page_cache_release(page);
1037					goto find_page;
1038				}
1039				unlock_page(page);
1040				shrink_readahead_size_eio(filp, ra);
1041				goto readpage_eio;
1042			}
1043			unlock_page(page);
1044		}
1045
1046		goto page_ok;
1047
1048readpage_eio:
1049		error = -EIO;
1050readpage_error:
1051		/* UHHUH! A synchronous read error occurred. Report it */
1052		desc->error = error;
1053		page_cache_release(page);
1054		goto out;
1055
1056no_cached_page:
1057		/*
1058		 * Ok, it wasn't cached, so we need to create a new
1059		 * page..
1060		 */
1061		page = page_cache_alloc_cold(mapping);
1062		if (!page) {
1063			desc->error = -ENOMEM;
1064			goto out;
1065		}
1066		error = add_to_page_cache_lru(page, mapping,
1067						index, GFP_KERNEL);
1068		if (error) {
1069			page_cache_release(page);
1070			if (error == -EEXIST)
1071				goto find_page;
1072			desc->error = error;
1073			goto out;
1074		}
1075		goto readpage;
1076	}
1077
1078out:
1079	ra->prev_pos = prev_index;
1080	ra->prev_pos <<= PAGE_CACHE_SHIFT;
1081	ra->prev_pos |= prev_offset;
1082
1083	*ppos = ((loff_t)index << PAGE_CACHE_SHIFT) + offset;
1084	if (filp)
1085		file_accessed(filp);
1086}
1087
1088int file_read_actor(read_descriptor_t *desc, struct page *page,
1089			unsigned long offset, unsigned long size)
1090{
1091	char *kaddr;
1092	unsigned long left, count = desc->count;
1093
1094	if (size > count)
1095		size = count;
1096
1097	/*
1098	 * Faults on the destination of a read are common, so do it before
1099	 * taking the kmap.
1100	 */
1101	if (!fault_in_pages_writeable(desc->arg.buf, size)) {
1102		kaddr = kmap_atomic(page, KM_USER0);
1103		left = __copy_to_user_inatomic(desc->arg.buf,
1104						kaddr + offset, size);
1105		kunmap_atomic(kaddr, KM_USER0);
1106		if (left == 0)
1107			goto success;
1108	}
1109
1110	/* Do it the slow way */
1111	kaddr = kmap(page);
1112	left = __copy_to_user(desc->arg.buf, kaddr + offset, size);
1113	kunmap(page);
1114
1115	if (left) {
1116		size -= left;
1117		desc->error = -EFAULT;
1118	}
1119success:
1120	desc->count = count - size;
1121	desc->written += size;
1122	desc->arg.buf += size;
1123	return size;
1124}
1125
1126/*
1127 * Performs necessary checks before doing a write
1128 * @iov:	io vector request
1129 * @nr_segs:	number of segments in the iovec
1130 * @count:	number of bytes to write
1131 * @access_flags: type of access: %VERIFY_READ or %VERIFY_WRITE
1132 *
1133 * Adjust number of segments and amount of bytes to write (nr_segs should be
1134 * properly initialized first). Returns appropriate error code that caller
1135 * should return or zero in case that write should be allowed.
1136 */
1137int generic_segment_checks(const struct iovec *iov,
1138			unsigned long *nr_segs, size_t *count, int access_flags)
1139{
1140	unsigned long   seg;
1141	size_t cnt = 0;
1142	for (seg = 0; seg < *nr_segs; seg++) {
1143		const struct iovec *iv = &iov[seg];
1144
1145		/*
1146		 * If any segment has a negative length, or the cumulative
1147		 * length ever wraps negative then return -EINVAL.
1148		 */
1149		cnt += iv->iov_len;
1150		if (unlikely((ssize_t)(cnt|iv->iov_len) < 0))
1151			return -EINVAL;
1152		if (access_ok(access_flags, iv->iov_base, iv->iov_len))
1153			continue;
1154		if (seg == 0)
1155			return -EFAULT;
1156		*nr_segs = seg;
1157		cnt -= iv->iov_len;	/* This segment is no good */
1158		break;
1159	}
1160	*count = cnt;
1161	return 0;
1162}
1163EXPORT_SYMBOL(generic_segment_checks);
1164
1165/**
1166 * generic_file_aio_read - generic filesystem read routine
1167 * @iocb:	kernel I/O control block
1168 * @iov:	io vector request
1169 * @nr_segs:	number of segments in the iovec
1170 * @pos:	current file position
1171 *
1172 * This is the "read()" routine for all filesystems
1173 * that can use the page cache directly.
1174 */
1175ssize_t
1176generic_file_aio_read(struct kiocb *iocb, const struct iovec *iov,
1177		unsigned long nr_segs, loff_t pos)
1178{
1179	struct file *filp = iocb->ki_filp;
1180	ssize_t retval;
1181	unsigned long seg;
1182	size_t count;
1183	loff_t *ppos = &iocb->ki_pos;
1184
1185	count = 0;
1186	retval = generic_segment_checks(iov, &nr_segs, &count, VERIFY_WRITE);
1187	if (retval)
1188		return retval;
1189
1190	/* coalesce the iovecs and go direct-to-BIO for O_DIRECT */
1191	if (filp->f_flags & O_DIRECT) {
1192		loff_t size;
1193		struct address_space *mapping;
1194		struct inode *inode;
1195
1196		mapping = filp->f_mapping;
1197		inode = mapping->host;
1198		retval = 0;
1199		if (!count)
1200			goto out; /* skip atime */
1201		size = i_size_read(inode);
1202		if (pos < size) {
1203			retval = generic_file_direct_IO(READ, iocb,
1204						iov, pos, nr_segs);
1205			if (retval > 0)
1206				*ppos = pos + retval;
1207		}
1208		if (likely(retval != 0)) {
1209			file_accessed(filp);
1210			goto out;
1211		}
1212	}
1213
1214	retval = 0;
1215	if (count) {
1216		for (seg = 0; seg < nr_segs; seg++) {
1217			read_descriptor_t desc;
1218
1219			desc.written = 0;
1220			desc.arg.buf = iov[seg].iov_base;
1221			desc.count = iov[seg].iov_len;
1222			if (desc.count == 0)
1223				continue;
1224			desc.error = 0;
1225			do_generic_file_read(filp,ppos,&desc,file_read_actor);
1226			retval += desc.written;
1227			if (desc.error) {
1228				retval = retval ?: desc.error;
1229				break;
1230			}
1231			if (desc.count > 0)
1232				break;
1233		}
1234	}
1235out:
1236	return retval;
1237}
1238EXPORT_SYMBOL(generic_file_aio_read);
1239
1240static ssize_t
1241do_readahead(struct address_space *mapping, struct file *filp,
1242	     pgoff_t index, unsigned long nr)
1243{
1244	if (!mapping || !mapping->a_ops || !mapping->a_ops->readpage)
1245		return -EINVAL;
1246
1247	force_page_cache_readahead(mapping, filp, index,
1248					max_sane_readahead(nr));
1249	return 0;
1250}
1251
1252asmlinkage ssize_t sys_readahead(int fd, loff_t offset, size_t count)
1253{
1254	ssize_t ret;
1255	struct file *file;
1256
1257	ret = -EBADF;
1258	file = fget(fd);
1259	if (file) {
1260		if (file->f_mode & FMODE_READ) {
1261			struct address_space *mapping = file->f_mapping;
1262			pgoff_t start = offset >> PAGE_CACHE_SHIFT;
1263			pgoff_t end = (offset + count - 1) >> PAGE_CACHE_SHIFT;
1264			unsigned long len = end - start + 1;
1265			ret = do_readahead(mapping, file, start, len);
1266		}
1267		fput(file);
1268	}
1269	return ret;
1270}
1271
1272#ifdef CONFIG_MMU
1273/**
1274 * page_cache_read - adds requested page to the page cache if not already there
1275 * @file:	file to read
1276 * @offset:	page index
1277 *
1278 * This adds the requested page to the page cache if it isn't already there,
1279 * and schedules an I/O to read in its contents from disk.
1280 */
1281static int page_cache_read(struct file *file, pgoff_t offset)
1282{
1283	struct address_space *mapping = file->f_mapping;
1284	struct page *page;
1285	int ret;
1286
1287	do {
1288		page = page_cache_alloc_cold(mapping);
1289		if (!page)
1290			return -ENOMEM;
1291
1292		ret = add_to_page_cache_lru(page, mapping, offset, GFP_KERNEL);
1293		if (ret == 0)
1294			ret = mapping->a_ops->readpage(file, page);
1295		else if (ret == -EEXIST)
1296			ret = 0; /* losing race to add is OK */
1297
1298		page_cache_release(page);
1299
1300	} while (ret == AOP_TRUNCATED_PAGE);
1301
1302	return ret;
1303}
1304
1305#define MMAP_LOTSAMISS  (100)
1306
1307/**
1308 * filemap_fault - read in file data for page fault handling
1309 * @vma:	vma in which the fault was taken
1310 * @vmf:	struct vm_fault containing details of the fault
1311 *
1312 * filemap_fault() is invoked via the vma operations vector for a
1313 * mapped memory region to read in file data during a page fault.
1314 *
1315 * The goto's are kind of ugly, but this streamlines the normal case of having
1316 * it in the page cache, and handles the special cases reasonably without
1317 * having a lot of duplicated code.
1318 */
1319int filemap_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
1320{
1321	int error;
1322	struct file *file = vma->vm_file;
1323	struct address_space *mapping = file->f_mapping;
1324	struct file_ra_state *ra = &file->f_ra;
1325	struct inode *inode = mapping->host;
1326	struct page *page;
1327	pgoff_t size;
1328	int did_readaround = 0;
1329	int ret = 0;
1330
1331	size = (i_size_read(inode) + PAGE_CACHE_SIZE - 1) >> PAGE_CACHE_SHIFT;
1332	if (vmf->pgoff >= size)
1333		return VM_FAULT_SIGBUS;
1334
1335	/* If we don't want any read-ahead, don't bother */
1336	if (VM_RandomReadHint(vma))
1337		goto no_cached_page;
1338
1339	/*
1340	 * Do we have something in the page cache already?
1341	 */
1342retry_find:
1343	page = find_lock_page(mapping, vmf->pgoff);
1344	/*
1345	 * For sequential accesses, we use the generic readahead logic.
1346	 */
1347	if (VM_SequentialReadHint(vma)) {
1348		if (!page) {
1349			page_cache_sync_readahead(mapping, ra, file,
1350							   vmf->pgoff, 1);
1351			page = find_lock_page(mapping, vmf->pgoff);
1352			if (!page)
1353				goto no_cached_page;
1354		}
1355		if (PageReadahead(page)) {
1356			page_cache_async_readahead(mapping, ra, file, page,
1357							   vmf->pgoff, 1);
1358		}
1359	}
1360
1361	if (!page) {
1362		unsigned long ra_pages;
1363
1364		ra->mmap_miss++;
1365
1366		/*
1367		 * Do we miss much more than hit in this file? If so,
1368		 * stop bothering with read-ahead. It will only hurt.
1369		 */
1370		if (ra->mmap_miss > MMAP_LOTSAMISS)
1371			goto no_cached_page;
1372
1373		/*
1374		 * To keep the pgmajfault counter straight, we need to
1375		 * check did_readaround, as this is an inner loop.
1376		 */
1377		if (!did_readaround) {
1378			ret = VM_FAULT_MAJOR;
1379			count_vm_event(PGMAJFAULT);
1380		}
1381		did_readaround = 1;
1382		ra_pages = max_sane_readahead(file->f_ra.ra_pages);
1383		if (ra_pages) {
1384			pgoff_t start = 0;
1385
1386			if (vmf->pgoff > ra_pages / 2)
1387				start = vmf->pgoff - ra_pages / 2;
1388			do_page_cache_readahead(mapping, file, start, ra_pages);
1389		}
1390		page = find_lock_page(mapping, vmf->pgoff);
1391		if (!page)
1392			goto no_cached_page;
1393	}
1394
1395	if (!did_readaround)
1396		ra->mmap_miss--;
1397
1398	/*
1399	 * We have a locked page in the page cache, now we need to check
1400	 * that it's up-to-date. If not, it is going to be due to an error.
1401	 */
1402	if (unlikely(!PageUptodate(page)))
1403		goto page_not_uptodate;
1404
1405	/* Must recheck i_size under page lock */
1406	size = (i_size_read(inode) + PAGE_CACHE_SIZE - 1) >> PAGE_CACHE_SHIFT;
1407	if (unlikely(vmf->pgoff >= size)) {
1408		unlock_page(page);
1409		page_cache_release(page);
1410		return VM_FAULT_SIGBUS;
1411	}
1412
1413	/*
1414	 * Found the page and have a reference on it.
1415	 */
1416	mark_page_accessed(page);
1417	ra->prev_pos = (loff_t)page->index << PAGE_CACHE_SHIFT;
1418	vmf->page = page;
1419	return ret | VM_FAULT_LOCKED;
1420
1421no_cached_page:
1422	/*
1423	 * We're only likely to ever get here if MADV_RANDOM is in
1424	 * effect.
1425	 */
1426	error = page_cache_read(file, vmf->pgoff);
1427
1428	/*
1429	 * The page we want has now been added to the page cache.
1430	 * In the unlikely event that someone removed it in the
1431	 * meantime, we'll just come back here and read it again.
1432	 */
1433	if (error >= 0)
1434		goto retry_find;
1435
1436	/*
1437	 * An error return from page_cache_read can result if the
1438	 * system is low on memory, or a problem occurs while trying
1439	 * to schedule I/O.
1440	 */
1441	if (error == -ENOMEM)
1442		return VM_FAULT_OOM;
1443	return VM_FAULT_SIGBUS;
1444
1445page_not_uptodate:
1446	/* IO error path */
1447	if (!did_readaround) {
1448		ret = VM_FAULT_MAJOR;
1449		count_vm_event(PGMAJFAULT);
1450	}
1451
1452	/*
1453	 * Umm, take care of errors if the page isn't up-to-date.
1454	 * Try to re-read it _once_. We do this synchronously,
1455	 * because there really aren't any performance issues here
1456	 * and we need to check for errors.
1457	 */
1458	ClearPageError(page);
1459	error = mapping->a_ops->readpage(file, page);
1460	page_cache_release(page);
1461
1462	if (!error || error == AOP_TRUNCATED_PAGE)
1463		goto retry_find;
1464
1465	/* Things didn't work out. Return zero to tell the mm layer so. */
1466	shrink_readahead_size_eio(file, ra);
1467	return VM_FAULT_SIGBUS;
1468}
1469EXPORT_SYMBOL(filemap_fault);
1470
1471struct vm_operations_struct generic_file_vm_ops = {
1472	.fault		= filemap_fault,
1473};
1474
1475/* This is used for a general mmap of a disk file */
1476
1477int generic_file_mmap(struct file * file, struct vm_area_struct * vma)
1478{
1479	struct address_space *mapping = file->f_mapping;
1480
1481	if (!mapping->a_ops->readpage)
1482		return -ENOEXEC;
1483	file_accessed(file);
1484	vma->vm_ops = &generic_file_vm_ops;
1485	vma->vm_flags |= VM_CAN_NONLINEAR;
1486	return 0;
1487}
1488
1489/*
1490 * This is for filesystems which do not implement ->writepage.
1491 */
1492int generic_file_readonly_mmap(struct file *file, struct vm_area_struct *vma)
1493{
1494	if ((vma->vm_flags & VM_SHARED) && (vma->vm_flags & VM_MAYWRITE))
1495		return -EINVAL;
1496	return generic_file_mmap(file, vma);
1497}
1498#else
1499int generic_file_mmap(struct file * file, struct vm_area_struct * vma)
1500{
1501	return -ENOSYS;
1502}
1503int generic_file_readonly_mmap(struct file * file, struct vm_area_struct * vma)
1504{
1505	return -ENOSYS;
1506}
1507#endif /* CONFIG_MMU */
1508
1509EXPORT_SYMBOL(generic_file_mmap);
1510EXPORT_SYMBOL(generic_file_readonly_mmap);
1511
1512static struct page *__read_cache_page(struct address_space *mapping,
1513				pgoff_t index,
1514				int (*filler)(void *,struct page*),
1515				void *data)
1516{
1517	struct page *page;
1518	int err;
1519repeat:
1520	page = find_get_page(mapping, index);
1521	if (!page) {
1522		page = page_cache_alloc_cold(mapping);
1523		if (!page)
1524			return ERR_PTR(-ENOMEM);
1525		err = add_to_page_cache_lru(page, mapping, index, GFP_KERNEL);
1526		if (unlikely(err)) {
1527			page_cache_release(page);
1528			if (err == -EEXIST)
1529				goto repeat;
1530			/* Presumably ENOMEM for radix tree node */
1531			return ERR_PTR(err);
1532		}
1533		err = filler(data, page);
1534		if (err < 0) {
1535			page_cache_release(page);
1536			page = ERR_PTR(err);
1537		}
1538	}
1539	return page;
1540}
1541
1542/*
1543 * Same as read_cache_page, but don't wait for page to become unlocked
1544 * after submitting it to the filler.
1545 */
1546struct page *read_cache_page_async(struct address_space *mapping,
1547				pgoff_t index,
1548				int (*filler)(void *,struct page*),
1549				void *data)
1550{
1551	struct page *page;
1552	int err;
1553
1554retry:
1555	page = __read_cache_page(mapping, index, filler, data);
1556	if (IS_ERR(page))
1557		return page;
1558	if (PageUptodate(page))
1559		goto out;
1560
1561	lock_page(page);
1562	if (!page->mapping) {
1563		unlock_page(page);
1564		page_cache_release(page);
1565		goto retry;
1566	}
1567	if (PageUptodate(page)) {
1568		unlock_page(page);
1569		goto out;
1570	}
1571	err = filler(data, page);
1572	if (err < 0) {
1573		page_cache_release(page);
1574		return ERR_PTR(err);
1575	}
1576out:
1577	mark_page_accessed(page);
1578	return page;
1579}
1580EXPORT_SYMBOL(read_cache_page_async);
1581
1582/**
1583 * read_cache_page - read into page cache, fill it if needed
1584 * @mapping:	the page's address_space
1585 * @index:	the page index
1586 * @filler:	function to perform the read
1587 * @data:	destination for read data
1588 *
1589 * Read into the page cache. If a page already exists, and PageUptodate() is
1590 * not set, try to fill the page then wait for it to become unlocked.
1591 *
1592 * If the page does not get brought uptodate, return -EIO.
1593 */
1594struct page *read_cache_page(struct address_space *mapping,
1595				pgoff_t index,
1596				int (*filler)(void *,struct page*),
1597				void *data)
1598{
1599	struct page *page;
1600
1601	page = read_cache_page_async(mapping, index, filler, data);
1602	if (IS_ERR(page))
1603		goto out;
1604	wait_on_page_locked(page);
1605	if (!PageUptodate(page)) {
1606		page_cache_release(page);
1607		page = ERR_PTR(-EIO);
1608	}
1609 out:
1610	return page;
1611}
1612EXPORT_SYMBOL(read_cache_page);
1613
1614/*
1615 * The logic we want is
1616 *
1617 *	if suid or (sgid and xgrp)
1618 *		remove privs
1619 */
1620int should_remove_suid(struct dentry *dentry)
1621{
1622	mode_t mode = dentry->d_inode->i_mode;
1623	int kill = 0;
1624
1625	/* suid always must be killed */
1626	if (unlikely(mode & S_ISUID))
1627		kill = ATTR_KILL_SUID;
1628
1629	/*
1630	 * sgid without any exec bits is just a mandatory locking mark; leave
1631	 * it alone.  If some exec bits are set, it's a real sgid; kill it.
1632	 */
1633	if (unlikely((mode & S_ISGID) && (mode & S_IXGRP)))
1634		kill |= ATTR_KILL_SGID;
1635
1636	if (unlikely(kill && !capable(CAP_FSETID)))
1637		return kill;
1638
1639	return 0;
1640}
1641EXPORT_SYMBOL(should_remove_suid);
1642
1643int __remove_suid(struct dentry *dentry, int kill)
1644{
1645	struct iattr newattrs;
1646
1647	newattrs.ia_valid = ATTR_FORCE | kill;
1648	return notify_change(dentry, &newattrs);
1649}
1650
1651int remove_suid(struct dentry *dentry)
1652{
1653	int killsuid = should_remove_suid(dentry);
1654	int killpriv = security_inode_need_killpriv(dentry);
1655	int error = 0;
1656
1657	if (killpriv < 0)
1658		return killpriv;
1659	if (killpriv)
1660		error = security_inode_killpriv(dentry);
1661	if (!error && killsuid)
1662		error = __remove_suid(dentry, killsuid);
1663
1664	return error;
1665}
1666EXPORT_SYMBOL(remove_suid);
1667
1668static size_t __iovec_copy_from_user_inatomic(char *vaddr,
1669			const struct iovec *iov, size_t base, size_t bytes)
1670{
1671	size_t copied = 0, left = 0;
1672
1673	while (bytes) {
1674		char __user *buf = iov->iov_base + base;
1675		int copy = min(bytes, iov->iov_len - base);
1676
1677		base = 0;
1678		left = __copy_from_user_inatomic_nocache(vaddr, buf, copy);
1679		copied += copy;
1680		bytes -= copy;
1681		vaddr += copy;
1682		iov++;
1683
1684		if (unlikely(left))
1685			break;
1686	}
1687	return copied - left;
1688}
1689
1690/*
1691 * Copy as much as we can into the page and return the number of bytes which
1692 * were sucessfully copied.  If a fault is encountered then return the number of
1693 * bytes which were copied.
1694 */
1695size_t iov_iter_copy_from_user_atomic(struct page *page,
1696		struct iov_iter *i, unsigned long offset, size_t bytes)
1697{
1698	char *kaddr;
1699	size_t copied;
1700
1701	BUG_ON(!in_atomic());
1702	kaddr = kmap_atomic(page, KM_USER0);
1703	if (likely(i->nr_segs == 1)) {
1704		int left;
1705		char __user *buf = i->iov->iov_base + i->iov_offset;
1706		left = __copy_from_user_inatomic_nocache(kaddr + offset,
1707							buf, bytes);
1708		copied = bytes - left;
1709	} else {
1710		copied = __iovec_copy_from_user_inatomic(kaddr + offset,
1711						i->iov, i->iov_offset, bytes);
1712	}
1713	kunmap_atomic(kaddr, KM_USER0);
1714
1715	return copied;
1716}
1717EXPORT_SYMBOL(iov_iter_copy_from_user_atomic);
1718
1719/*
1720 * This has the same sideeffects and return value as
1721 * iov_iter_copy_from_user_atomic().
1722 * The difference is that it attempts to resolve faults.
1723 * Page must not be locked.
1724 */
1725size_t iov_iter_copy_from_user(struct page *page,
1726		struct iov_iter *i, unsigned long offset, size_t bytes)
1727{
1728	char *kaddr;
1729	size_t copied;
1730
1731	kaddr = kmap(page);
1732	if (likely(i->nr_segs == 1)) {
1733		int left;
1734		char __user *buf = i->iov->iov_base + i->iov_offset;
1735		left = __copy_from_user_nocache(kaddr + offset, buf, bytes);
1736		copied = bytes - left;
1737	} else {
1738		copied = __iovec_copy_from_user_inatomic(kaddr + offset,
1739						i->iov, i->iov_offset, bytes);
1740	}
1741	kunmap(page);
1742	return copied;
1743}
1744EXPORT_SYMBOL(iov_iter_copy_from_user);
1745
1746static void __iov_iter_advance_iov(struct iov_iter *i, size_t bytes)
1747{
1748	if (likely(i->nr_segs == 1)) {
1749		i->iov_offset += bytes;
1750	} else {
1751		const struct iovec *iov = i->iov;
1752		size_t base = i->iov_offset;
1753
1754		/*
1755		 * The !iov->iov_len check ensures we skip over unlikely
1756		 * zero-length segments.
1757		 */
1758		while (bytes || !iov->iov_len) {
1759			int copy = min(bytes, iov->iov_len - base);
1760
1761			bytes -= copy;
1762			base += copy;
1763			if (iov->iov_len == base) {
1764				iov++;
1765				base = 0;
1766			}
1767		}
1768		i->iov = iov;
1769		i->iov_offset = base;
1770	}
1771}
1772
1773void iov_iter_advance(struct iov_iter *i, size_t bytes)
1774{
1775	BUG_ON(i->count < bytes);
1776
1777	__iov_iter_advance_iov(i, bytes);
1778	i->count -= bytes;
1779}
1780EXPORT_SYMBOL(iov_iter_advance);
1781
1782/*
1783 * Fault in the first iovec of the given iov_iter, to a maximum length
1784 * of bytes. Returns 0 on success, or non-zero if the memory could not be
1785 * accessed (ie. because it is an invalid address).
1786 *
1787 * writev-intensive code may want this to prefault several iovecs -- that
1788 * would be possible (callers must not rely on the fact that _only_ the
1789 * first iovec will be faulted with the current implementation).
1790 */
1791int iov_iter_fault_in_readable(struct iov_iter *i, size_t bytes)
1792{
1793	char __user *buf = i->iov->iov_base + i->iov_offset;
1794	bytes = min(bytes, i->iov->iov_len - i->iov_offset);
1795	return fault_in_pages_readable(buf, bytes);
1796}
1797EXPORT_SYMBOL(iov_iter_fault_in_readable);
1798
1799/*
1800 * Return the count of just the current iov_iter segment.
1801 */
1802size_t iov_iter_single_seg_count(struct iov_iter *i)
1803{
1804	const struct iovec *iov = i->iov;
1805	if (i->nr_segs == 1)
1806		return i->count;
1807	else
1808		return min(i->count, iov->iov_len - i->iov_offset);
1809}
1810EXPORT_SYMBOL(iov_iter_single_seg_count);
1811
1812/*
1813 * Performs necessary checks before doing a write
1814 *
1815 * Can adjust writing position or amount of bytes to write.
1816 * Returns appropriate error code that caller should return or
1817 * zero in case that write should be allowed.
1818 */
1819inline int generic_write_checks(struct file *file, loff_t *pos, size_t *count, int isblk)
1820{
1821	struct inode *inode = file->f_mapping->host;
1822	unsigned long limit = current->signal->rlim[RLIMIT_FSIZE].rlim_cur;
1823
1824        if (unlikely(*pos < 0))
1825                return -EINVAL;
1826
1827	if (!isblk) {
1828		/* FIXME: this is for backwards compatibility with 2.4 */
1829		if (file->f_flags & O_APPEND)
1830                        *pos = i_size_read(inode);
1831
1832		if (limit != RLIM_INFINITY) {
1833			if (*pos >= limit) {
1834				send_sig(SIGXFSZ, current, 0);
1835				return -EFBIG;
1836			}
1837			if (*count > limit - (typeof(limit))*pos) {
1838				*count = limit - (typeof(limit))*pos;
1839			}
1840		}
1841	}
1842
1843	/*
1844	 * LFS rule
1845	 */
1846	if (unlikely(*pos + *count > MAX_NON_LFS &&
1847				!(file->f_flags & O_LARGEFILE))) {
1848		if (*pos >= MAX_NON_LFS) {
1849			return -EFBIG;
1850		}
1851		if (*count > MAX_NON_LFS - (unsigned long)*pos) {
1852			*count = MAX_NON_LFS - (unsigned long)*pos;
1853		}
1854	}
1855
1856	/*
1857	 * Are we about to exceed the fs block limit ?
1858	 *
1859	 * If we have written data it becomes a short write.  If we have
1860	 * exceeded without writing data we send a signal and return EFBIG.
1861	 * Linus frestrict idea will clean these up nicely..
1862	 */
1863	if (likely(!isblk)) {
1864		if (unlikely(*pos >= inode->i_sb->s_maxbytes)) {
1865			if (*count || *pos > inode->i_sb->s_maxbytes) {
1866				return -EFBIG;
1867			}
1868			/* zero-length writes at ->s_maxbytes are OK */
1869		}
1870
1871		if (unlikely(*pos + *count > inode->i_sb->s_maxbytes))
1872			*count = inode->i_sb->s_maxbytes - *pos;
1873	} else {
1874#ifdef CONFIG_BLOCK
1875		loff_t isize;
1876		if (bdev_read_only(I_BDEV(inode)))
1877			return -EPERM;
1878		isize = i_size_read(inode);
1879		if (*pos >= isize) {
1880			if (*count || *pos > isize)
1881				return -ENOSPC;
1882		}
1883
1884		if (*pos + *count > isize)
1885			*count = isize - *pos;
1886#else
1887		return -EPERM;
1888#endif
1889	}
1890	return 0;
1891}
1892EXPORT_SYMBOL(generic_write_checks);
1893
1894int pagecache_write_begin(struct file *file, struct address_space *mapping,
1895				loff_t pos, unsigned len, unsigned flags,
1896				struct page **pagep, void **fsdata)
1897{
1898	const struct address_space_operations *aops = mapping->a_ops;
1899
1900	if (aops->write_begin) {
1901		return aops->write_begin(file, mapping, pos, len, flags,
1902							pagep, fsdata);
1903	} else {
1904		int ret;
1905		pgoff_t index = pos >> PAGE_CACHE_SHIFT;
1906		unsigned offset = pos & (PAGE_CACHE_SIZE - 1);
1907		struct inode *inode = mapping->host;
1908		struct page *page;
1909again:
1910		page = __grab_cache_page(mapping, index);
1911		*pagep = page;
1912		if (!page)
1913			return -ENOMEM;
1914
1915		if (flags & AOP_FLAG_UNINTERRUPTIBLE && !PageUptodate(page)) {
1916			/*
1917			 * There is no way to resolve a short write situation
1918			 * for a !Uptodate page (except by double copying in
1919			 * the caller done by generic_perform_write_2copy).
1920			 *
1921			 * Instead, we have to bring it uptodate here.
1922			 */
1923			ret = aops->readpage(file, page);
1924			page_cache_release(page);
1925			if (ret) {
1926				if (ret == AOP_TRUNCATED_PAGE)
1927					goto again;
1928				return ret;
1929			}
1930			goto again;
1931		}
1932
1933		ret = aops->prepare_write(file, page, offset, offset+len);
1934		if (ret) {
1935			unlock_page(page);
1936			page_cache_release(page);
1937			if (pos + len > inode->i_size)
1938				vmtruncate(inode, inode->i_size);
1939		}
1940		return ret;
1941	}
1942}
1943EXPORT_SYMBOL(pagecache_write_begin);
1944
1945int pagecache_write_end(struct file *file, struct address_space *mapping,
1946				loff_t pos, unsigned len, unsigned copied,
1947				struct page *page, void *fsdata)
1948{
1949	const struct address_space_operations *aops = mapping->a_ops;
1950	int ret;
1951
1952	if (aops->write_end) {
1953		mark_page_accessed(page);
1954		ret = aops->write_end(file, mapping, pos, len, copied,
1955							page, fsdata);
1956	} else {
1957		unsigned offset = pos & (PAGE_CACHE_SIZE - 1);
1958		struct inode *inode = mapping->host;
1959
1960		flush_dcache_page(page);
1961		ret = aops->commit_write(file, page, offset, offset+len);
1962		unlock_page(page);
1963		mark_page_accessed(page);
1964		page_cache_release(page);
1965
1966		if (ret < 0) {
1967			if (pos + len > inode->i_size)
1968				vmtruncate(inode, inode->i_size);
1969		} else if (ret > 0)
1970			ret = min_t(size_t, copied, ret);
1971		else
1972			ret = copied;
1973	}
1974
1975	return ret;
1976}
1977EXPORT_SYMBOL(pagecache_write_end);
1978
1979ssize_t
1980generic_file_direct_write(struct kiocb *iocb, const struct iovec *iov,
1981		unsigned long *nr_segs, loff_t pos, loff_t *ppos,
1982		size_t count, size_t ocount)
1983{
1984	struct file	*file = iocb->ki_filp;
1985	struct address_space *mapping = file->f_mapping;
1986	struct inode	*inode = mapping->host;
1987	ssize_t		written;
1988
1989	if (count != ocount)
1990		*nr_segs = iov_shorten((struct iovec *)iov, *nr_segs, count);
1991
1992	written = generic_file_direct_IO(WRITE, iocb, iov, pos, *nr_segs);
1993	if (written > 0) {
1994		loff_t end = pos + written;
1995		if (end > i_size_read(inode) && !S_ISBLK(inode->i_mode)) {
1996			i_size_write(inode,  end);
1997			mark_inode_dirty(inode);
1998		}
1999		*ppos = end;
2000	}
2001
2002	/*
2003	 * Sync the fs metadata but not the minor inode changes and
2004	 * of course not the data as we did direct DMA for the IO.
2005	 * i_mutex is held, which protects generic_osync_inode() from
2006	 * livelocking.  AIO O_DIRECT ops attempt to sync metadata here.
2007	 */
2008	if ((written >= 0 || written == -EIOCBQUEUED) &&
2009	    ((file->f_flags & O_SYNC) || IS_SYNC(inode))) {
2010		int err = generic_osync_inode(inode, mapping, OSYNC_METADATA);
2011		if (err < 0)
2012			written = err;
2013	}
2014	return written;
2015}
2016EXPORT_SYMBOL(generic_file_direct_write);
2017
2018/*
2019 * Find or create a page at the given pagecache position. Return the locked
2020 * page. This function is specifically for buffered writes.
2021 */
2022struct page *__grab_cache_page(struct address_space *mapping, pgoff_t index)
2023{
2024	int status;
2025	struct page *page;
2026repeat:
2027	page = find_lock_page(mapping, index);
2028	if (likely(page))
2029		return page;
2030
2031	page = page_cache_alloc(mapping);
2032	if (!page)
2033		return NULL;
2034	status = add_to_page_cache_lru(page, mapping, index, GFP_KERNEL);
2035	if (unlikely(status)) {
2036		page_cache_release(page);
2037		if (status == -EEXIST)
2038			goto repeat;
2039		return NULL;
2040	}
2041	return page;
2042}
2043EXPORT_SYMBOL(__grab_cache_page);
2044
2045static ssize_t generic_perform_write_2copy(struct file *file,
2046				struct iov_iter *i, loff_t pos)
2047{
2048	struct address_space *mapping = file->f_mapping;
2049	const struct address_space_operations *a_ops = mapping->a_ops;
2050	struct inode *inode = mapping->host;
2051	long status = 0;
2052	ssize_t written = 0;
2053
2054	do {
2055		struct page *src_page;
2056		struct page *page;
2057		pgoff_t index;		/* Pagecache index for current page */
2058		unsigned long offset;	/* Offset into pagecache page */
2059		unsigned long bytes;	/* Bytes to write to page */
2060		size_t copied;		/* Bytes copied from user */
2061
2062		offset = (pos & (PAGE_CACHE_SIZE - 1));
2063		index = pos >> PAGE_CACHE_SHIFT;
2064		bytes = min_t(unsigned long, PAGE_CACHE_SIZE - offset,
2065						iov_iter_count(i));
2066
2067		/*
2068		 * a non-NULL src_page indicates that we're doing the
2069		 * copy via get_user_pages and kmap.
2070		 */
2071		src_page = NULL;
2072
2073		/*
2074		 * Bring in the user page that we will copy from _first_.
2075		 * Otherwise there's a nasty deadlock on copying from the
2076		 * same page as we're writing to, without it being marked
2077		 * up-to-date.
2078		 *
2079		 * Not only is this an optimisation, but it is also required
2080		 * to check that the address is actually valid, when atomic
2081		 * usercopies are used, below.
2082		 */
2083		if (unlikely(iov_iter_fault_in_readable(i, bytes))) {
2084			status = -EFAULT;
2085			break;
2086		}
2087
2088		page = __grab_cache_page(mapping, index);
2089		if (!page) {
2090			status = -ENOMEM;
2091			break;
2092		}
2093
2094		/*
2095		 * non-uptodate pages cannot cope with short copies, and we
2096		 * cannot take a pagefault with the destination page locked.
2097		 * So pin the source page to copy it.
2098		 */
2099		if (!PageUptodate(page) && !segment_eq(get_fs(), KERNEL_DS)) {
2100			unlock_page(page);
2101
2102			src_page = alloc_page(GFP_KERNEL);
2103			if (!src_page) {
2104				page_cache_release(page);
2105				status = -ENOMEM;
2106				break;
2107			}
2108
2109			/*
2110			 * Cannot get_user_pages with a page locked for the
2111			 * same reason as we can't take a page fault with a
2112			 * page locked (as explained below).
2113			 */
2114			copied = iov_iter_copy_from_user(src_page, i,
2115								offset, bytes);
2116			if (unlikely(copied == 0)) {
2117				status = -EFAULT;
2118				page_cache_release(page);
2119				page_cache_release(src_page);
2120				break;
2121			}
2122			bytes = copied;
2123
2124			lock_page(page);
2125			/*
2126			 * Can't handle the page going uptodate here, because
2127			 * that means we would use non-atomic usercopies, which
2128			 * zero out the tail of the page, which can cause
2129			 * zeroes to become transiently visible. We could just
2130			 * use a non-zeroing copy, but the APIs aren't too
2131			 * consistent.
2132			 */
2133			if (unlikely(!page->mapping || PageUptodate(page))) {
2134				unlock_page(page);
2135				page_cache_release(page);
2136				page_cache_release(src_page);
2137				continue;
2138			}
2139		}
2140
2141		status = a_ops->prepare_write(file, page, offset, offset+bytes);
2142		if (unlikely(status))
2143			goto fs_write_aop_error;
2144
2145		if (!src_page) {
2146			/*
2147			 * Must not enter the pagefault handler here, because
2148			 * we hold the page lock, so we might recursively
2149			 * deadlock on the same lock, or get an ABBA deadlock
2150			 * against a different lock, or against the mmap_sem
2151			 * (which nests outside the page lock).  So increment
2152			 * preempt count, and use _atomic usercopies.
2153			 *
2154			 * The page is uptodate so we are OK to encounter a
2155			 * short copy: if unmodified parts of the page are
2156			 * marked dirty and written out to disk, it doesn't
2157			 * really matter.
2158			 */
2159			pagefault_disable();
2160			copied = iov_iter_copy_from_user_atomic(page, i,
2161								offset, bytes);
2162			pagefault_enable();
2163		} else {
2164			void *src, *dst;
2165			src = kmap_atomic(src_page, KM_USER0);
2166			dst = kmap_atomic(page, KM_USER1);
2167			memcpy(dst + offset, src + offset, bytes);
2168			kunmap_atomic(dst, KM_USER1);
2169			kunmap_atomic(src, KM_USER0);
2170			copied = bytes;
2171		}
2172		flush_dcache_page(page);
2173
2174		status = a_ops->commit_write(file, page, offset, offset+bytes);
2175		if (unlikely(status < 0))
2176			goto fs_write_aop_error;
2177		if (unlikely(status > 0)) /* filesystem did partial write */
2178			copied = min_t(size_t, copied, status);
2179
2180		unlock_page(page);
2181		mark_page_accessed(page);
2182		page_cache_release(page);
2183		if (src_page)
2184			page_cache_release(src_page);
2185
2186		iov_iter_advance(i, copied);
2187		pos += copied;
2188		written += copied;
2189
2190		balance_dirty_pages_ratelimited(mapping);
2191		cond_resched();
2192		continue;
2193
2194fs_write_aop_error:
2195		unlock_page(page);
2196		page_cache_release(page);
2197		if (src_page)
2198			page_cache_release(src_page);
2199
2200		/*
2201		 * prepare_write() may have instantiated a few blocks
2202		 * outside i_size.  Trim these off again. Don't need
2203		 * i_size_read because we hold i_mutex.
2204		 */
2205		if (pos + bytes > inode->i_size)
2206			vmtruncate(inode, inode->i_size);
2207		break;
2208	} while (iov_iter_count(i));
2209
2210	return written ? written : status;
2211}
2212
2213static ssize_t generic_perform_write(struct file *file,
2214				struct iov_iter *i, loff_t pos)
2215{
2216	struct address_space *mapping = file->f_mapping;
2217	const struct address_space_operations *a_ops = mapping->a_ops;
2218	long status = 0;
2219	ssize_t written = 0;
2220	unsigned int flags = 0;
2221
2222	/*
2223	 * Copies from kernel address space cannot fail (NFSD is a big user).
2224	 */
2225	if (segment_eq(get_fs(), KERNEL_DS))
2226		flags |= AOP_FLAG_UNINTERRUPTIBLE;
2227
2228	do {
2229		struct page *page;
2230		pgoff_t index;		/* Pagecache index for current page */
2231		unsigned long offset;	/* Offset into pagecache page */
2232		unsigned long bytes;	/* Bytes to write to page */
2233		size_t copied;		/* Bytes copied from user */
2234		void *fsdata;
2235
2236		offset = (pos & (PAGE_CACHE_SIZE - 1));
2237		index = pos >> PAGE_CACHE_SHIFT;
2238		bytes = min_t(unsigned long, PAGE_CACHE_SIZE - offset,
2239						iov_iter_count(i));
2240
2241again:
2242
2243		/*
2244		 * Bring in the user page that we will copy from _first_.
2245		 * Otherwise there's a nasty deadlock on copying from the
2246		 * same page as we're writing to, without it being marked
2247		 * up-to-date.
2248		 *
2249		 * Not only is this an optimisation, but it is also required
2250		 * to check that the address is actually valid, when atomic
2251		 * usercopies are used, below.
2252		 */
2253		if (unlikely(iov_iter_fault_in_readable(i, bytes))) {
2254			status = -EFAULT;
2255			break;
2256		}
2257
2258		status = a_ops->write_begin(file, mapping, pos, bytes, flags,
2259						&page, &fsdata);
2260		if (unlikely(status))
2261			break;
2262
2263		pagefault_disable();
2264		copied = iov_iter_copy_from_user_atomic(page, i, offset, bytes);
2265		pagefault_enable();
2266		flush_dcache_page(page);
2267
2268		status = a_ops->write_end(file, mapping, pos, bytes, copied,
2269						page, fsdata);
2270		if (unlikely(status < 0))
2271			break;
2272		copied = status;
2273
2274		cond_resched();
2275
2276		iov_iter_advance(i, copied);
2277		if (unlikely(copied == 0)) {
2278			/*
2279			 * If we were unable to copy any data at all, we must
2280			 * fall back to a single segment length write.
2281			 *
2282			 * If we didn't fallback here, we could livelock
2283			 * because not all segments in the iov can be copied at
2284			 * once without a pagefault.
2285			 */
2286			bytes = min_t(unsigned long, PAGE_CACHE_SIZE - offset,
2287						iov_iter_single_seg_count(i));
2288			goto again;
2289		}
2290		pos += copied;
2291		written += copied;
2292
2293		balance_dirty_pages_ratelimited(mapping);
2294
2295	} while (iov_iter_count(i));
2296
2297	return written ? written : status;
2298}
2299
2300ssize_t
2301generic_file_buffered_write(struct kiocb *iocb, const struct iovec *iov,
2302		unsigned long nr_segs, loff_t pos, loff_t *ppos,
2303		size_t count, ssize_t written)
2304{
2305	struct file *file = iocb->ki_filp;
2306	struct address_space *mapping = file->f_mapping;
2307	const struct address_space_operations *a_ops = mapping->a_ops;
2308	struct inode *inode = mapping->host;
2309	ssize_t status;
2310	struct iov_iter i;
2311
2312	iov_iter_init(&i, iov, nr_segs, count, written);
2313	if (a_ops->write_begin)
2314		status = generic_perform_write(file, &i, pos);
2315	else
2316		status = generic_perform_write_2copy(file, &i, pos);
2317
2318	if (likely(status >= 0)) {
2319		written += status;
2320		*ppos = pos + status;
2321
2322		/*
2323		 * For now, when the user asks for O_SYNC, we'll actually give
2324		 * O_DSYNC
2325		 */
2326		if (unlikely((file->f_flags & O_SYNC) || IS_SYNC(inode))) {
2327			if (!a_ops->writepage || !is_sync_kiocb(iocb))
2328				status = generic_osync_inode(inode, mapping,
2329						OSYNC_METADATA|OSYNC_DATA);
2330		}
2331  	}
2332
2333	/*
2334	 * If we get here for O_DIRECT writes then we must have fallen through
2335	 * to buffered writes (block instantiation inside i_size).  So we sync
2336	 * the file data here, to try to honour O_DIRECT expectations.
2337	 */
2338	if (unlikely(file->f_flags & O_DIRECT) && written)
2339		status = filemap_write_and_wait(mapping);
2340
2341	return written ? written : status;
2342}
2343EXPORT_SYMBOL(generic_file_buffered_write);
2344
2345static ssize_t
2346__generic_file_aio_write_nolock(struct kiocb *iocb, const struct iovec *iov,
2347				unsigned long nr_segs, loff_t *ppos)
2348{
2349	struct file *file = iocb->ki_filp;
2350	struct address_space * mapping = file->f_mapping;
2351	size_t ocount;		/* original count */
2352	size_t count;		/* after file limit checks */
2353	struct inode 	*inode = mapping->host;
2354	loff_t		pos;
2355	ssize_t		written;
2356	ssize_t		err;
2357
2358	ocount = 0;
2359	err = generic_segment_checks(iov, &nr_segs, &ocount, VERIFY_READ);
2360	if (err)
2361		return err;
2362
2363	count = ocount;
2364	pos = *ppos;
2365
2366	vfs_check_frozen(inode->i_sb, SB_FREEZE_WRITE);
2367
2368	/* We can write back this queue in page reclaim */
2369	current->backing_dev_info = mapping->backing_dev_info;
2370	written = 0;
2371
2372	err = generic_write_checks(file, &pos, &count, S_ISBLK(inode->i_mode));
2373	if (err)
2374		goto out;
2375
2376	if (count == 0)
2377		goto out;
2378
2379	err = remove_suid(file->f_path.dentry);
2380	if (err)
2381		goto out;
2382
2383	file_update_time(file);
2384
2385	/* coalesce the iovecs and go direct-to-BIO for O_DIRECT */
2386	if (unlikely(file->f_flags & O_DIRECT)) {
2387		loff_t endbyte;
2388		ssize_t written_buffered;
2389
2390		written = generic_file_direct_write(iocb, iov, &nr_segs, pos,
2391							ppos, count, ocount);
2392		if (written < 0 || written == count)
2393			goto out;
2394		/*
2395		 * direct-io write to a hole: fall through to buffered I/O
2396		 * for completing the rest of the request.
2397		 */
2398		pos += written;
2399		count -= written;
2400		written_buffered = generic_file_buffered_write(iocb, iov,
2401						nr_segs, pos, ppos, count,
2402						written);
2403		/*
2404		 * If generic_file_buffered_write() retuned a synchronous error
2405		 * then we want to return the number of bytes which were
2406		 * direct-written, or the error code if that was zero.  Note
2407		 * that this differs from normal direct-io semantics, which
2408		 * will return -EFOO even if some bytes were written.
2409		 */
2410		if (written_buffered < 0) {
2411			err = written_buffered;
2412			goto out;
2413		}
2414
2415		/*
2416		 * We need to ensure that the page cache pages are written to
2417		 * disk and invalidated to preserve the expected O_DIRECT
2418		 * semantics.
2419		 */
2420		endbyte = pos + written_buffered - written - 1;
2421		err = do_sync_mapping_range(file->f_mapping, pos, endbyte,
2422					    SYNC_FILE_RANGE_WAIT_BEFORE|
2423					    SYNC_FILE_RANGE_WRITE|
2424					    SYNC_FILE_RANGE_WAIT_AFTER);
2425		if (err == 0) {
2426			written = written_buffered;
2427			invalidate_mapping_pages(mapping,
2428						 pos >> PAGE_CACHE_SHIFT,
2429						 endbyte >> PAGE_CACHE_SHIFT);
2430		} else {
2431			/*
2432			 * We don't know how much we wrote, so just return
2433			 * the number of bytes which were direct-written
2434			 */
2435		}
2436	} else {
2437		written = generic_file_buffered_write(iocb, iov, nr_segs,
2438				pos, ppos, count, written);
2439	}
2440out:
2441	current->backing_dev_info = NULL;
2442	return written ? written : err;
2443}
2444
2445ssize_t generic_file_aio_write_nolock(struct kiocb *iocb,
2446		const struct iovec *iov, unsigned long nr_segs, loff_t pos)
2447{
2448	struct file *file = iocb->ki_filp;
2449	struct address_space *mapping = file->f_mapping;
2450	struct inode *inode = mapping->host;
2451	ssize_t ret;
2452
2453	BUG_ON(iocb->ki_pos != pos);
2454
2455	ret = __generic_file_aio_write_nolock(iocb, iov, nr_segs,
2456			&iocb->ki_pos);
2457
2458	if (ret > 0 && ((file->f_flags & O_SYNC) || IS_SYNC(inode))) {
2459		ssize_t err;
2460
2461		err = sync_page_range_nolock(inode, mapping, pos, ret);
2462		if (err < 0)
2463			ret = err;
2464	}
2465	return ret;
2466}
2467EXPORT_SYMBOL(generic_file_aio_write_nolock);
2468
2469ssize_t generic_file_aio_write(struct kiocb *iocb, const struct iovec *iov,
2470		unsigned long nr_segs, loff_t pos)
2471{
2472	struct file *file = iocb->ki_filp;
2473	struct address_space *mapping = file->f_mapping;
2474	struct inode *inode = mapping->host;
2475	ssize_t ret;
2476
2477	BUG_ON(iocb->ki_pos != pos);
2478
2479	mutex_lock(&inode->i_mutex);
2480	ret = __generic_file_aio_write_nolock(iocb, iov, nr_segs,
2481			&iocb->ki_pos);
2482	mutex_unlock(&inode->i_mutex);
2483
2484	if (ret > 0 && ((file->f_flags & O_SYNC) || IS_SYNC(inode))) {
2485		ssize_t err;
2486
2487		err = sync_page_range(inode, mapping, pos, ret);
2488		if (err < 0)
2489			ret = err;
2490	}
2491	return ret;
2492}
2493EXPORT_SYMBOL(generic_file_aio_write);
2494
2495/*
2496 * Called under i_mutex for writes to S_ISREG files.   Returns -EIO if something
2497 * went wrong during pagecache shootdown.
2498 */
2499static ssize_t
2500generic_file_direct_IO(int rw, struct kiocb *iocb, const struct iovec *iov,
2501	loff_t offset, unsigned long nr_segs)
2502{
2503	struct file *file = iocb->ki_filp;
2504	struct address_space *mapping = file->f_mapping;
2505	ssize_t retval;
2506	size_t write_len;
2507	pgoff_t end = 0; /* silence gcc */
2508
2509	/*
2510	 * If it's a write, unmap all mmappings of the file up-front.  This
2511	 * will cause any pte dirty bits to be propagated into the pageframes
2512	 * for the subsequent filemap_write_and_wait().
2513	 */
2514	if (rw == WRITE) {
2515		write_len = iov_length(iov, nr_segs);
2516		end = (offset + write_len - 1) >> PAGE_CACHE_SHIFT;
2517	       	if (mapping_mapped(mapping))
2518			unmap_mapping_range(mapping, offset, write_len, 0);
2519	}
2520
2521	retval = filemap_write_and_wait(mapping);
2522	if (retval)
2523		goto out;
2524
2525	/*
2526	 * After a write we want buffered reads to be sure to go to disk to get
2527	 * the new data.  We invalidate clean cached page from the region we're
2528	 * about to write.  We do this *before* the write so that we can return
2529	 * -EIO without clobbering -EIOCBQUEUED from ->direct_IO().
2530	 */
2531	if (rw == WRITE && mapping->nrpages) {
2532		retval = invalidate_inode_pages2_range(mapping,
2533					offset >> PAGE_CACHE_SHIFT, end);
2534		if (retval)
2535			goto out;
2536	}
2537
2538	retval = mapping->a_ops->direct_IO(rw, iocb, iov, offset, nr_segs);
2539
2540	/*
2541	 * Finally, try again to invalidate clean pages which might have been
2542	 * cached by non-direct readahead, or faulted in by get_user_pages()
2543	 * if the source of the write was an mmap'ed region of the file
2544	 * we're writing.  Either one is a pretty crazy thing to do,
2545	 * so we don't support it 100%.  If this invalidation
2546	 * fails, tough, the write still worked...
2547	 */
2548	if (rw == WRITE && mapping->nrpages) {
2549		invalidate_inode_pages2_range(mapping, offset >> PAGE_CACHE_SHIFT, end);
2550	}
2551out:
2552	return retval;
2553}
2554
2555/**
2556 * try_to_release_page() - release old fs-specific metadata on a page
2557 *
2558 * @page: the page which the kernel is trying to free
2559 * @gfp_mask: memory allocation flags (and I/O mode)
2560 *
2561 * The address_space is to try to release any data against the page
2562 * (presumably at page->private).  If the release was successful, return `1'.
2563 * Otherwise return zero.
2564 *
2565 * The @gfp_mask argument specifies whether I/O may be performed to release
2566 * this page (__GFP_IO), and whether the call may block (__GFP_WAIT).
2567 *
2568 * NOTE: @gfp_mask may go away, and this function may become non-blocking.
2569 */
2570int try_to_release_page(struct page *page, gfp_t gfp_mask)
2571{
2572	struct address_space * const mapping = page->mapping;
2573
2574	BUG_ON(!PageLocked(page));
2575	if (PageWriteback(page))
2576		return 0;
2577
2578	if (mapping && mapping->a_ops->releasepage)
2579		return mapping->a_ops->releasepage(page, gfp_mask);
2580	return try_to_free_buffers(page);
2581}
2582
2583EXPORT_SYMBOL(try_to_release_page);
2584