filemap.c revision 4a9e5ef1f4f15205e477817a5cefc34bd3f65f55
1/*
2 *	linux/mm/filemap.c
3 *
4 * Copyright (C) 1994-1999  Linus Torvalds
5 */
6
7/*
8 * This file handles the generic file mmap semantics used by
9 * most "normal" filesystems (but you don't /have/ to use this:
10 * the NFS filesystem used to do this differently, for example)
11 */
12#include <linux/module.h>
13#include <linux/slab.h>
14#include <linux/compiler.h>
15#include <linux/fs.h>
16#include <linux/uaccess.h>
17#include <linux/aio.h>
18#include <linux/capability.h>
19#include <linux/kernel_stat.h>
20#include <linux/mm.h>
21#include <linux/swap.h>
22#include <linux/mman.h>
23#include <linux/pagemap.h>
24#include <linux/file.h>
25#include <linux/uio.h>
26#include <linux/hash.h>
27#include <linux/writeback.h>
28#include <linux/pagevec.h>
29#include <linux/blkdev.h>
30#include <linux/security.h>
31#include <linux/syscalls.h>
32#include <linux/cpuset.h>
33#include "filemap.h"
34#include "internal.h"
35
36/*
37 * FIXME: remove all knowledge of the buffer layer from the core VM
38 */
39#include <linux/buffer_head.h> /* for generic_osync_inode */
40
41#include <asm/mman.h>
42
43static ssize_t
44generic_file_direct_IO(int rw, struct kiocb *iocb, const struct iovec *iov,
45	loff_t offset, unsigned long nr_segs);
46
47/*
48 * Shared mappings implemented 30.11.1994. It's not fully working yet,
49 * though.
50 *
51 * Shared mappings now work. 15.8.1995  Bruno.
52 *
53 * finished 'unifying' the page and buffer cache and SMP-threaded the
54 * page-cache, 21.05.1999, Ingo Molnar <mingo@redhat.com>
55 *
56 * SMP-threaded pagemap-LRU 1999, Andrea Arcangeli <andrea@suse.de>
57 */
58
59/*
60 * Lock ordering:
61 *
62 *  ->i_mmap_lock		(vmtruncate)
63 *    ->private_lock		(__free_pte->__set_page_dirty_buffers)
64 *      ->swap_lock		(exclusive_swap_page, others)
65 *        ->mapping->tree_lock
66 *
67 *  ->i_mutex
68 *    ->i_mmap_lock		(truncate->unmap_mapping_range)
69 *
70 *  ->mmap_sem
71 *    ->i_mmap_lock
72 *      ->page_table_lock or pte_lock	(various, mainly in memory.c)
73 *        ->mapping->tree_lock	(arch-dependent flush_dcache_mmap_lock)
74 *
75 *  ->mmap_sem
76 *    ->lock_page		(access_process_vm)
77 *
78 *  ->i_mutex			(generic_file_buffered_write)
79 *    ->mmap_sem		(fault_in_pages_readable->do_page_fault)
80 *
81 *  ->i_mutex
82 *    ->i_alloc_sem             (various)
83 *
84 *  ->inode_lock
85 *    ->sb_lock			(fs/fs-writeback.c)
86 *    ->mapping->tree_lock	(__sync_single_inode)
87 *
88 *  ->i_mmap_lock
89 *    ->anon_vma.lock		(vma_adjust)
90 *
91 *  ->anon_vma.lock
92 *    ->page_table_lock or pte_lock	(anon_vma_prepare and various)
93 *
94 *  ->page_table_lock or pte_lock
95 *    ->swap_lock		(try_to_unmap_one)
96 *    ->private_lock		(try_to_unmap_one)
97 *    ->tree_lock		(try_to_unmap_one)
98 *    ->zone.lru_lock		(follow_page->mark_page_accessed)
99 *    ->zone.lru_lock		(check_pte_range->isolate_lru_page)
100 *    ->private_lock		(page_remove_rmap->set_page_dirty)
101 *    ->tree_lock		(page_remove_rmap->set_page_dirty)
102 *    ->inode_lock		(page_remove_rmap->set_page_dirty)
103 *    ->inode_lock		(zap_pte_range->set_page_dirty)
104 *    ->private_lock		(zap_pte_range->__set_page_dirty_buffers)
105 *
106 *  ->task->proc_lock
107 *    ->dcache_lock		(proc_pid_lookup)
108 */
109
110/*
111 * Remove a page from the page cache and free it. Caller has to make
112 * sure the page is locked and that nobody else uses it - or that usage
113 * is safe.  The caller must hold a write_lock on the mapping's tree_lock.
114 */
115void __remove_from_page_cache(struct page *page)
116{
117	struct address_space *mapping = page->mapping;
118
119	radix_tree_delete(&mapping->page_tree, page->index);
120	page->mapping = NULL;
121	mapping->nrpages--;
122	__dec_zone_page_state(page, NR_FILE_PAGES);
123	BUG_ON(page_mapped(page));
124}
125
126void remove_from_page_cache(struct page *page)
127{
128	struct address_space *mapping = page->mapping;
129
130	BUG_ON(!PageLocked(page));
131
132	write_lock_irq(&mapping->tree_lock);
133	__remove_from_page_cache(page);
134	write_unlock_irq(&mapping->tree_lock);
135}
136
137static int sync_page(void *word)
138{
139	struct address_space *mapping;
140	struct page *page;
141
142	page = container_of((unsigned long *)word, struct page, flags);
143
144	/*
145	 * page_mapping() is being called without PG_locked held.
146	 * Some knowledge of the state and use of the page is used to
147	 * reduce the requirements down to a memory barrier.
148	 * The danger here is of a stale page_mapping() return value
149	 * indicating a struct address_space different from the one it's
150	 * associated with when it is associated with one.
151	 * After smp_mb(), it's either the correct page_mapping() for
152	 * the page, or an old page_mapping() and the page's own
153	 * page_mapping() has gone NULL.
154	 * The ->sync_page() address_space operation must tolerate
155	 * page_mapping() going NULL. By an amazing coincidence,
156	 * this comes about because none of the users of the page
157	 * in the ->sync_page() methods make essential use of the
158	 * page_mapping(), merely passing the page down to the backing
159	 * device's unplug functions when it's non-NULL, which in turn
160	 * ignore it for all cases but swap, where only page_private(page) is
161	 * of interest. When page_mapping() does go NULL, the entire
162	 * call stack gracefully ignores the page and returns.
163	 * -- wli
164	 */
165	smp_mb();
166	mapping = page_mapping(page);
167	if (mapping && mapping->a_ops && mapping->a_ops->sync_page)
168		mapping->a_ops->sync_page(page);
169	io_schedule();
170	return 0;
171}
172
173/**
174 * __filemap_fdatawrite_range - start writeback on mapping dirty pages in range
175 * @mapping:	address space structure to write
176 * @start:	offset in bytes where the range starts
177 * @end:	offset in bytes where the range ends (inclusive)
178 * @sync_mode:	enable synchronous operation
179 *
180 * Start writeback against all of a mapping's dirty pages that lie
181 * within the byte offsets <start, end> inclusive.
182 *
183 * If sync_mode is WB_SYNC_ALL then this is a "data integrity" operation, as
184 * opposed to a regular memory cleansing writeback.  The difference between
185 * these two operations is that if a dirty page/buffer is encountered, it must
186 * be waited upon, and not just skipped over.
187 */
188int __filemap_fdatawrite_range(struct address_space *mapping, loff_t start,
189				loff_t end, int sync_mode)
190{
191	int ret;
192	struct writeback_control wbc = {
193		.sync_mode = sync_mode,
194		.nr_to_write = mapping->nrpages * 2,
195		.range_start = start,
196		.range_end = end,
197	};
198
199	if (!mapping_cap_writeback_dirty(mapping))
200		return 0;
201
202	ret = do_writepages(mapping, &wbc);
203	return ret;
204}
205
206static inline int __filemap_fdatawrite(struct address_space *mapping,
207	int sync_mode)
208{
209	return __filemap_fdatawrite_range(mapping, 0, LLONG_MAX, sync_mode);
210}
211
212int filemap_fdatawrite(struct address_space *mapping)
213{
214	return __filemap_fdatawrite(mapping, WB_SYNC_ALL);
215}
216EXPORT_SYMBOL(filemap_fdatawrite);
217
218static int filemap_fdatawrite_range(struct address_space *mapping, loff_t start,
219				loff_t end)
220{
221	return __filemap_fdatawrite_range(mapping, start, end, WB_SYNC_ALL);
222}
223
224/**
225 * filemap_flush - mostly a non-blocking flush
226 * @mapping:	target address_space
227 *
228 * This is a mostly non-blocking flush.  Not suitable for data-integrity
229 * purposes - I/O may not be started against all dirty pages.
230 */
231int filemap_flush(struct address_space *mapping)
232{
233	return __filemap_fdatawrite(mapping, WB_SYNC_NONE);
234}
235EXPORT_SYMBOL(filemap_flush);
236
237/**
238 * wait_on_page_writeback_range - wait for writeback to complete
239 * @mapping:	target address_space
240 * @start:	beginning page index
241 * @end:	ending page index
242 *
243 * Wait for writeback to complete against pages indexed by start->end
244 * inclusive
245 */
246int wait_on_page_writeback_range(struct address_space *mapping,
247				pgoff_t start, pgoff_t end)
248{
249	struct pagevec pvec;
250	int nr_pages;
251	int ret = 0;
252	pgoff_t index;
253
254	if (end < start)
255		return 0;
256
257	pagevec_init(&pvec, 0);
258	index = start;
259	while ((index <= end) &&
260			(nr_pages = pagevec_lookup_tag(&pvec, mapping, &index,
261			PAGECACHE_TAG_WRITEBACK,
262			min(end - index, (pgoff_t)PAGEVEC_SIZE-1) + 1)) != 0) {
263		unsigned i;
264
265		for (i = 0; i < nr_pages; i++) {
266			struct page *page = pvec.pages[i];
267
268			/* until radix tree lookup accepts end_index */
269			if (page->index > end)
270				continue;
271
272			wait_on_page_writeback(page);
273			if (PageError(page))
274				ret = -EIO;
275		}
276		pagevec_release(&pvec);
277		cond_resched();
278	}
279
280	/* Check for outstanding write errors */
281	if (test_and_clear_bit(AS_ENOSPC, &mapping->flags))
282		ret = -ENOSPC;
283	if (test_and_clear_bit(AS_EIO, &mapping->flags))
284		ret = -EIO;
285
286	return ret;
287}
288
289/**
290 * sync_page_range - write and wait on all pages in the passed range
291 * @inode:	target inode
292 * @mapping:	target address_space
293 * @pos:	beginning offset in pages to write
294 * @count:	number of bytes to write
295 *
296 * Write and wait upon all the pages in the passed range.  This is a "data
297 * integrity" operation.  It waits upon in-flight writeout before starting and
298 * waiting upon new writeout.  If there was an IO error, return it.
299 *
300 * We need to re-take i_mutex during the generic_osync_inode list walk because
301 * it is otherwise livelockable.
302 */
303int sync_page_range(struct inode *inode, struct address_space *mapping,
304			loff_t pos, loff_t count)
305{
306	pgoff_t start = pos >> PAGE_CACHE_SHIFT;
307	pgoff_t end = (pos + count - 1) >> PAGE_CACHE_SHIFT;
308	int ret;
309
310	if (!mapping_cap_writeback_dirty(mapping) || !count)
311		return 0;
312	ret = filemap_fdatawrite_range(mapping, pos, pos + count - 1);
313	if (ret == 0) {
314		mutex_lock(&inode->i_mutex);
315		ret = generic_osync_inode(inode, mapping, OSYNC_METADATA);
316		mutex_unlock(&inode->i_mutex);
317	}
318	if (ret == 0)
319		ret = wait_on_page_writeback_range(mapping, start, end);
320	return ret;
321}
322EXPORT_SYMBOL(sync_page_range);
323
324/**
325 * sync_page_range_nolock
326 * @inode:	target inode
327 * @mapping:	target address_space
328 * @pos:	beginning offset in pages to write
329 * @count:	number of bytes to write
330 *
331 * Note: Holding i_mutex across sync_page_range_nolock() is not a good idea
332 * as it forces O_SYNC writers to different parts of the same file
333 * to be serialised right until io completion.
334 */
335int sync_page_range_nolock(struct inode *inode, struct address_space *mapping,
336			   loff_t pos, loff_t count)
337{
338	pgoff_t start = pos >> PAGE_CACHE_SHIFT;
339	pgoff_t end = (pos + count - 1) >> PAGE_CACHE_SHIFT;
340	int ret;
341
342	if (!mapping_cap_writeback_dirty(mapping) || !count)
343		return 0;
344	ret = filemap_fdatawrite_range(mapping, pos, pos + count - 1);
345	if (ret == 0)
346		ret = generic_osync_inode(inode, mapping, OSYNC_METADATA);
347	if (ret == 0)
348		ret = wait_on_page_writeback_range(mapping, start, end);
349	return ret;
350}
351EXPORT_SYMBOL(sync_page_range_nolock);
352
353/**
354 * filemap_fdatawait - wait for all under-writeback pages to complete
355 * @mapping: address space structure to wait for
356 *
357 * Walk the list of under-writeback pages of the given address space
358 * and wait for all of them.
359 */
360int filemap_fdatawait(struct address_space *mapping)
361{
362	loff_t i_size = i_size_read(mapping->host);
363
364	if (i_size == 0)
365		return 0;
366
367	return wait_on_page_writeback_range(mapping, 0,
368				(i_size - 1) >> PAGE_CACHE_SHIFT);
369}
370EXPORT_SYMBOL(filemap_fdatawait);
371
372int filemap_write_and_wait(struct address_space *mapping)
373{
374	int err = 0;
375
376	if (mapping->nrpages) {
377		err = filemap_fdatawrite(mapping);
378		/*
379		 * Even if the above returned error, the pages may be
380		 * written partially (e.g. -ENOSPC), so we wait for it.
381		 * But the -EIO is special case, it may indicate the worst
382		 * thing (e.g. bug) happened, so we avoid waiting for it.
383		 */
384		if (err != -EIO) {
385			int err2 = filemap_fdatawait(mapping);
386			if (!err)
387				err = err2;
388		}
389	}
390	return err;
391}
392EXPORT_SYMBOL(filemap_write_and_wait);
393
394/**
395 * filemap_write_and_wait_range - write out & wait on a file range
396 * @mapping:	the address_space for the pages
397 * @lstart:	offset in bytes where the range starts
398 * @lend:	offset in bytes where the range ends (inclusive)
399 *
400 * Write out and wait upon file offsets lstart->lend, inclusive.
401 *
402 * Note that `lend' is inclusive (describes the last byte to be written) so
403 * that this function can be used to write to the very end-of-file (end = -1).
404 */
405int filemap_write_and_wait_range(struct address_space *mapping,
406				 loff_t lstart, loff_t lend)
407{
408	int err = 0;
409
410	if (mapping->nrpages) {
411		err = __filemap_fdatawrite_range(mapping, lstart, lend,
412						 WB_SYNC_ALL);
413		/* See comment of filemap_write_and_wait() */
414		if (err != -EIO) {
415			int err2 = wait_on_page_writeback_range(mapping,
416						lstart >> PAGE_CACHE_SHIFT,
417						lend >> PAGE_CACHE_SHIFT);
418			if (!err)
419				err = err2;
420		}
421	}
422	return err;
423}
424
425/**
426 * add_to_page_cache - add newly allocated pagecache pages
427 * @page:	page to add
428 * @mapping:	the page's address_space
429 * @offset:	page index
430 * @gfp_mask:	page allocation mode
431 *
432 * This function is used to add newly allocated pagecache pages;
433 * the page is new, so we can just run SetPageLocked() against it.
434 * The other page state flags were set by rmqueue().
435 *
436 * This function does not add the page to the LRU.  The caller must do that.
437 */
438int add_to_page_cache(struct page *page, struct address_space *mapping,
439		pgoff_t offset, gfp_t gfp_mask)
440{
441	int error = radix_tree_preload(gfp_mask & ~__GFP_HIGHMEM);
442
443	if (error == 0) {
444		write_lock_irq(&mapping->tree_lock);
445		error = radix_tree_insert(&mapping->page_tree, offset, page);
446		if (!error) {
447			page_cache_get(page);
448			SetPageLocked(page);
449			page->mapping = mapping;
450			page->index = offset;
451			mapping->nrpages++;
452			__inc_zone_page_state(page, NR_FILE_PAGES);
453		}
454		write_unlock_irq(&mapping->tree_lock);
455		radix_tree_preload_end();
456	}
457	return error;
458}
459EXPORT_SYMBOL(add_to_page_cache);
460
461int add_to_page_cache_lru(struct page *page, struct address_space *mapping,
462				pgoff_t offset, gfp_t gfp_mask)
463{
464	int ret = add_to_page_cache(page, mapping, offset, gfp_mask);
465	if (ret == 0)
466		lru_cache_add(page);
467	return ret;
468}
469
470#ifdef CONFIG_NUMA
471struct page *__page_cache_alloc(gfp_t gfp)
472{
473	if (cpuset_do_page_mem_spread()) {
474		int n = cpuset_mem_spread_node();
475		return alloc_pages_node(n, gfp, 0);
476	}
477	return alloc_pages(gfp, 0);
478}
479EXPORT_SYMBOL(__page_cache_alloc);
480#endif
481
482static int __sleep_on_page_lock(void *word)
483{
484	io_schedule();
485	return 0;
486}
487
488/*
489 * In order to wait for pages to become available there must be
490 * waitqueues associated with pages. By using a hash table of
491 * waitqueues where the bucket discipline is to maintain all
492 * waiters on the same queue and wake all when any of the pages
493 * become available, and for the woken contexts to check to be
494 * sure the appropriate page became available, this saves space
495 * at a cost of "thundering herd" phenomena during rare hash
496 * collisions.
497 */
498static wait_queue_head_t *page_waitqueue(struct page *page)
499{
500	const struct zone *zone = page_zone(page);
501
502	return &zone->wait_table[hash_ptr(page, zone->wait_table_bits)];
503}
504
505static inline void wake_up_page(struct page *page, int bit)
506{
507	__wake_up_bit(page_waitqueue(page), &page->flags, bit);
508}
509
510void fastcall wait_on_page_bit(struct page *page, int bit_nr)
511{
512	DEFINE_WAIT_BIT(wait, &page->flags, bit_nr);
513
514	if (test_bit(bit_nr, &page->flags))
515		__wait_on_bit(page_waitqueue(page), &wait, sync_page,
516							TASK_UNINTERRUPTIBLE);
517}
518EXPORT_SYMBOL(wait_on_page_bit);
519
520/**
521 * unlock_page - unlock a locked page
522 * @page: the page
523 *
524 * Unlocks the page and wakes up sleepers in ___wait_on_page_locked().
525 * Also wakes sleepers in wait_on_page_writeback() because the wakeup
526 * mechananism between PageLocked pages and PageWriteback pages is shared.
527 * But that's OK - sleepers in wait_on_page_writeback() just go back to sleep.
528 *
529 * The first mb is necessary to safely close the critical section opened by the
530 * TestSetPageLocked(), the second mb is necessary to enforce ordering between
531 * the clear_bit and the read of the waitqueue (to avoid SMP races with a
532 * parallel wait_on_page_locked()).
533 */
534void fastcall unlock_page(struct page *page)
535{
536	smp_mb__before_clear_bit();
537	if (!TestClearPageLocked(page))
538		BUG();
539	smp_mb__after_clear_bit();
540	wake_up_page(page, PG_locked);
541}
542EXPORT_SYMBOL(unlock_page);
543
544/**
545 * end_page_writeback - end writeback against a page
546 * @page: the page
547 */
548void end_page_writeback(struct page *page)
549{
550	if (!TestClearPageReclaim(page) || rotate_reclaimable_page(page)) {
551		if (!test_clear_page_writeback(page))
552			BUG();
553	}
554	smp_mb__after_clear_bit();
555	wake_up_page(page, PG_writeback);
556}
557EXPORT_SYMBOL(end_page_writeback);
558
559/**
560 * __lock_page - get a lock on the page, assuming we need to sleep to get it
561 * @page: the page to lock
562 *
563 * Ugly. Running sync_page() in state TASK_UNINTERRUPTIBLE is scary.  If some
564 * random driver's requestfn sets TASK_RUNNING, we could busywait.  However
565 * chances are that on the second loop, the block layer's plug list is empty,
566 * so sync_page() will then return in state TASK_UNINTERRUPTIBLE.
567 */
568void fastcall __lock_page(struct page *page)
569{
570	DEFINE_WAIT_BIT(wait, &page->flags, PG_locked);
571
572	__wait_on_bit_lock(page_waitqueue(page), &wait, sync_page,
573							TASK_UNINTERRUPTIBLE);
574}
575EXPORT_SYMBOL(__lock_page);
576
577/*
578 * Variant of lock_page that does not require the caller to hold a reference
579 * on the page's mapping.
580 */
581void fastcall __lock_page_nosync(struct page *page)
582{
583	DEFINE_WAIT_BIT(wait, &page->flags, PG_locked);
584	__wait_on_bit_lock(page_waitqueue(page), &wait, __sleep_on_page_lock,
585							TASK_UNINTERRUPTIBLE);
586}
587
588/**
589 * find_get_page - find and get a page reference
590 * @mapping: the address_space to search
591 * @offset: the page index
592 *
593 * Is there a pagecache struct page at the given (mapping, offset) tuple?
594 * If yes, increment its refcount and return it; if no, return NULL.
595 */
596struct page * find_get_page(struct address_space *mapping, pgoff_t offset)
597{
598	struct page *page;
599
600	read_lock_irq(&mapping->tree_lock);
601	page = radix_tree_lookup(&mapping->page_tree, offset);
602	if (page)
603		page_cache_get(page);
604	read_unlock_irq(&mapping->tree_lock);
605	return page;
606}
607EXPORT_SYMBOL(find_get_page);
608
609/**
610 * find_lock_page - locate, pin and lock a pagecache page
611 * @mapping: the address_space to search
612 * @offset: the page index
613 *
614 * Locates the desired pagecache page, locks it, increments its reference
615 * count and returns its address.
616 *
617 * Returns zero if the page was not present. find_lock_page() may sleep.
618 */
619struct page *find_lock_page(struct address_space *mapping,
620				pgoff_t offset)
621{
622	struct page *page;
623
624repeat:
625	read_lock_irq(&mapping->tree_lock);
626	page = radix_tree_lookup(&mapping->page_tree, offset);
627	if (page) {
628		page_cache_get(page);
629		if (TestSetPageLocked(page)) {
630			read_unlock_irq(&mapping->tree_lock);
631			__lock_page(page);
632
633			/* Has the page been truncated while we slept? */
634			if (unlikely(page->mapping != mapping)) {
635				unlock_page(page);
636				page_cache_release(page);
637				goto repeat;
638			}
639			VM_BUG_ON(page->index != offset);
640			goto out;
641		}
642	}
643	read_unlock_irq(&mapping->tree_lock);
644out:
645	return page;
646}
647EXPORT_SYMBOL(find_lock_page);
648
649/**
650 * find_or_create_page - locate or add a pagecache page
651 * @mapping: the page's address_space
652 * @index: the page's index into the mapping
653 * @gfp_mask: page allocation mode
654 *
655 * Locates a page in the pagecache.  If the page is not present, a new page
656 * is allocated using @gfp_mask and is added to the pagecache and to the VM's
657 * LRU list.  The returned page is locked and has its reference count
658 * incremented.
659 *
660 * find_or_create_page() may sleep, even if @gfp_flags specifies an atomic
661 * allocation!
662 *
663 * find_or_create_page() returns the desired page's address, or zero on
664 * memory exhaustion.
665 */
666struct page *find_or_create_page(struct address_space *mapping,
667		pgoff_t index, gfp_t gfp_mask)
668{
669	struct page *page;
670	int err;
671repeat:
672	page = find_lock_page(mapping, index);
673	if (!page) {
674		page = __page_cache_alloc(gfp_mask);
675		if (!page)
676			return NULL;
677		err = add_to_page_cache_lru(page, mapping, index, gfp_mask);
678		if (unlikely(err)) {
679			page_cache_release(page);
680			page = NULL;
681			if (err == -EEXIST)
682				goto repeat;
683		}
684	}
685	return page;
686}
687EXPORT_SYMBOL(find_or_create_page);
688
689/**
690 * find_get_pages - gang pagecache lookup
691 * @mapping:	The address_space to search
692 * @start:	The starting page index
693 * @nr_pages:	The maximum number of pages
694 * @pages:	Where the resulting pages are placed
695 *
696 * find_get_pages() will search for and return a group of up to
697 * @nr_pages pages in the mapping.  The pages are placed at @pages.
698 * find_get_pages() takes a reference against the returned pages.
699 *
700 * The search returns a group of mapping-contiguous pages with ascending
701 * indexes.  There may be holes in the indices due to not-present pages.
702 *
703 * find_get_pages() returns the number of pages which were found.
704 */
705unsigned find_get_pages(struct address_space *mapping, pgoff_t start,
706			    unsigned int nr_pages, struct page **pages)
707{
708	unsigned int i;
709	unsigned int ret;
710
711	read_lock_irq(&mapping->tree_lock);
712	ret = radix_tree_gang_lookup(&mapping->page_tree,
713				(void **)pages, start, nr_pages);
714	for (i = 0; i < ret; i++)
715		page_cache_get(pages[i]);
716	read_unlock_irq(&mapping->tree_lock);
717	return ret;
718}
719
720/**
721 * find_get_pages_contig - gang contiguous pagecache lookup
722 * @mapping:	The address_space to search
723 * @index:	The starting page index
724 * @nr_pages:	The maximum number of pages
725 * @pages:	Where the resulting pages are placed
726 *
727 * find_get_pages_contig() works exactly like find_get_pages(), except
728 * that the returned number of pages are guaranteed to be contiguous.
729 *
730 * find_get_pages_contig() returns the number of pages which were found.
731 */
732unsigned find_get_pages_contig(struct address_space *mapping, pgoff_t index,
733			       unsigned int nr_pages, struct page **pages)
734{
735	unsigned int i;
736	unsigned int ret;
737
738	read_lock_irq(&mapping->tree_lock);
739	ret = radix_tree_gang_lookup(&mapping->page_tree,
740				(void **)pages, index, nr_pages);
741	for (i = 0; i < ret; i++) {
742		if (pages[i]->mapping == NULL || pages[i]->index != index)
743			break;
744
745		page_cache_get(pages[i]);
746		index++;
747	}
748	read_unlock_irq(&mapping->tree_lock);
749	return i;
750}
751EXPORT_SYMBOL(find_get_pages_contig);
752
753/**
754 * find_get_pages_tag - find and return pages that match @tag
755 * @mapping:	the address_space to search
756 * @index:	the starting page index
757 * @tag:	the tag index
758 * @nr_pages:	the maximum number of pages
759 * @pages:	where the resulting pages are placed
760 *
761 * Like find_get_pages, except we only return pages which are tagged with
762 * @tag.   We update @index to index the next page for the traversal.
763 */
764unsigned find_get_pages_tag(struct address_space *mapping, pgoff_t *index,
765			int tag, unsigned int nr_pages, struct page **pages)
766{
767	unsigned int i;
768	unsigned int ret;
769
770	read_lock_irq(&mapping->tree_lock);
771	ret = radix_tree_gang_lookup_tag(&mapping->page_tree,
772				(void **)pages, *index, nr_pages, tag);
773	for (i = 0; i < ret; i++)
774		page_cache_get(pages[i]);
775	if (ret)
776		*index = pages[ret - 1]->index + 1;
777	read_unlock_irq(&mapping->tree_lock);
778	return ret;
779}
780EXPORT_SYMBOL(find_get_pages_tag);
781
782/**
783 * grab_cache_page_nowait - returns locked page at given index in given cache
784 * @mapping: target address_space
785 * @index: the page index
786 *
787 * Same as grab_cache_page(), but do not wait if the page is unavailable.
788 * This is intended for speculative data generators, where the data can
789 * be regenerated if the page couldn't be grabbed.  This routine should
790 * be safe to call while holding the lock for another page.
791 *
792 * Clear __GFP_FS when allocating the page to avoid recursion into the fs
793 * and deadlock against the caller's locked page.
794 */
795struct page *
796grab_cache_page_nowait(struct address_space *mapping, pgoff_t index)
797{
798	struct page *page = find_get_page(mapping, index);
799
800	if (page) {
801		if (!TestSetPageLocked(page))
802			return page;
803		page_cache_release(page);
804		return NULL;
805	}
806	page = __page_cache_alloc(mapping_gfp_mask(mapping) & ~__GFP_FS);
807	if (page && add_to_page_cache_lru(page, mapping, index, GFP_KERNEL)) {
808		page_cache_release(page);
809		page = NULL;
810	}
811	return page;
812}
813EXPORT_SYMBOL(grab_cache_page_nowait);
814
815/*
816 * CD/DVDs are error prone. When a medium error occurs, the driver may fail
817 * a _large_ part of the i/o request. Imagine the worst scenario:
818 *
819 *      ---R__________________________________________B__________
820 *         ^ reading here                             ^ bad block(assume 4k)
821 *
822 * read(R) => miss => readahead(R...B) => media error => frustrating retries
823 * => failing the whole request => read(R) => read(R+1) =>
824 * readahead(R+1...B+1) => bang => read(R+2) => read(R+3) =>
825 * readahead(R+3...B+2) => bang => read(R+3) => read(R+4) =>
826 * readahead(R+4...B+3) => bang => read(R+4) => read(R+5) => ......
827 *
828 * It is going insane. Fix it by quickly scaling down the readahead size.
829 */
830static void shrink_readahead_size_eio(struct file *filp,
831					struct file_ra_state *ra)
832{
833	if (!ra->ra_pages)
834		return;
835
836	ra->ra_pages /= 4;
837}
838
839/**
840 * do_generic_mapping_read - generic file read routine
841 * @mapping:	address_space to be read
842 * @_ra:	file's readahead state
843 * @filp:	the file to read
844 * @ppos:	current file position
845 * @desc:	read_descriptor
846 * @actor:	read method
847 *
848 * This is a generic file read routine, and uses the
849 * mapping->a_ops->readpage() function for the actual low-level stuff.
850 *
851 * This is really ugly. But the goto's actually try to clarify some
852 * of the logic when it comes to error handling etc.
853 *
854 * Note the struct file* is only passed for the use of readpage.
855 * It may be NULL.
856 */
857void do_generic_mapping_read(struct address_space *mapping,
858			     struct file_ra_state *ra,
859			     struct file *filp,
860			     loff_t *ppos,
861			     read_descriptor_t *desc,
862			     read_actor_t actor)
863{
864	struct inode *inode = mapping->host;
865	pgoff_t index;
866	pgoff_t last_index;
867	pgoff_t prev_index;
868	unsigned long offset;      /* offset into pagecache page */
869	unsigned int prev_offset;
870	int error;
871
872	index = *ppos >> PAGE_CACHE_SHIFT;
873	prev_index = ra->prev_pos >> PAGE_CACHE_SHIFT;
874	prev_offset = ra->prev_pos & (PAGE_CACHE_SIZE-1);
875	last_index = (*ppos + desc->count + PAGE_CACHE_SIZE-1) >> PAGE_CACHE_SHIFT;
876	offset = *ppos & ~PAGE_CACHE_MASK;
877
878	for (;;) {
879		struct page *page;
880		pgoff_t end_index;
881		loff_t isize;
882		unsigned long nr, ret;
883
884		cond_resched();
885find_page:
886		page = find_get_page(mapping, index);
887		if (!page) {
888			page_cache_sync_readahead(mapping,
889					ra, filp,
890					index, last_index - index);
891			page = find_get_page(mapping, index);
892			if (unlikely(page == NULL))
893				goto no_cached_page;
894		}
895		if (PageReadahead(page)) {
896			page_cache_async_readahead(mapping,
897					ra, filp, page,
898					index, last_index - index);
899		}
900		if (!PageUptodate(page))
901			goto page_not_up_to_date;
902page_ok:
903		/*
904		 * i_size must be checked after we know the page is Uptodate.
905		 *
906		 * Checking i_size after the check allows us to calculate
907		 * the correct value for "nr", which means the zero-filled
908		 * part of the page is not copied back to userspace (unless
909		 * another truncate extends the file - this is desired though).
910		 */
911
912		isize = i_size_read(inode);
913		end_index = (isize - 1) >> PAGE_CACHE_SHIFT;
914		if (unlikely(!isize || index > end_index)) {
915			page_cache_release(page);
916			goto out;
917		}
918
919		/* nr is the maximum number of bytes to copy from this page */
920		nr = PAGE_CACHE_SIZE;
921		if (index == end_index) {
922			nr = ((isize - 1) & ~PAGE_CACHE_MASK) + 1;
923			if (nr <= offset) {
924				page_cache_release(page);
925				goto out;
926			}
927		}
928		nr = nr - offset;
929
930		/* If users can be writing to this page using arbitrary
931		 * virtual addresses, take care about potential aliasing
932		 * before reading the page on the kernel side.
933		 */
934		if (mapping_writably_mapped(mapping))
935			flush_dcache_page(page);
936
937		/*
938		 * When a sequential read accesses a page several times,
939		 * only mark it as accessed the first time.
940		 */
941		if (prev_index != index || offset != prev_offset)
942			mark_page_accessed(page);
943		prev_index = index;
944
945		/*
946		 * Ok, we have the page, and it's up-to-date, so
947		 * now we can copy it to user space...
948		 *
949		 * The actor routine returns how many bytes were actually used..
950		 * NOTE! This may not be the same as how much of a user buffer
951		 * we filled up (we may be padding etc), so we can only update
952		 * "pos" here (the actor routine has to update the user buffer
953		 * pointers and the remaining count).
954		 */
955		ret = actor(desc, page, offset, nr);
956		offset += ret;
957		index += offset >> PAGE_CACHE_SHIFT;
958		offset &= ~PAGE_CACHE_MASK;
959		prev_offset = offset;
960
961		page_cache_release(page);
962		if (ret == nr && desc->count)
963			continue;
964		goto out;
965
966page_not_up_to_date:
967		/* Get exclusive access to the page ... */
968		lock_page(page);
969
970		/* Did it get truncated before we got the lock? */
971		if (!page->mapping) {
972			unlock_page(page);
973			page_cache_release(page);
974			continue;
975		}
976
977		/* Did somebody else fill it already? */
978		if (PageUptodate(page)) {
979			unlock_page(page);
980			goto page_ok;
981		}
982
983readpage:
984		/* Start the actual read. The read will unlock the page. */
985		error = mapping->a_ops->readpage(filp, page);
986
987		if (unlikely(error)) {
988			if (error == AOP_TRUNCATED_PAGE) {
989				page_cache_release(page);
990				goto find_page;
991			}
992			goto readpage_error;
993		}
994
995		if (!PageUptodate(page)) {
996			lock_page(page);
997			if (!PageUptodate(page)) {
998				if (page->mapping == NULL) {
999					/*
1000					 * invalidate_inode_pages got it
1001					 */
1002					unlock_page(page);
1003					page_cache_release(page);
1004					goto find_page;
1005				}
1006				unlock_page(page);
1007				error = -EIO;
1008				shrink_readahead_size_eio(filp, ra);
1009				goto readpage_error;
1010			}
1011			unlock_page(page);
1012		}
1013
1014		goto page_ok;
1015
1016readpage_error:
1017		/* UHHUH! A synchronous read error occurred. Report it */
1018		desc->error = error;
1019		page_cache_release(page);
1020		goto out;
1021
1022no_cached_page:
1023		/*
1024		 * Ok, it wasn't cached, so we need to create a new
1025		 * page..
1026		 */
1027		page = page_cache_alloc_cold(mapping);
1028		if (!page) {
1029			desc->error = -ENOMEM;
1030			goto out;
1031		}
1032		error = add_to_page_cache_lru(page, mapping,
1033						index, GFP_KERNEL);
1034		if (error) {
1035			page_cache_release(page);
1036			if (error == -EEXIST)
1037				goto find_page;
1038			desc->error = error;
1039			goto out;
1040		}
1041		goto readpage;
1042	}
1043
1044out:
1045	ra->prev_pos = prev_index;
1046	ra->prev_pos <<= PAGE_CACHE_SHIFT;
1047	ra->prev_pos |= prev_offset;
1048
1049	*ppos = ((loff_t)index << PAGE_CACHE_SHIFT) + offset;
1050	if (filp)
1051		file_accessed(filp);
1052}
1053EXPORT_SYMBOL(do_generic_mapping_read);
1054
1055int file_read_actor(read_descriptor_t *desc, struct page *page,
1056			unsigned long offset, unsigned long size)
1057{
1058	char *kaddr;
1059	unsigned long left, count = desc->count;
1060
1061	if (size > count)
1062		size = count;
1063
1064	/*
1065	 * Faults on the destination of a read are common, so do it before
1066	 * taking the kmap.
1067	 */
1068	if (!fault_in_pages_writeable(desc->arg.buf, size)) {
1069		kaddr = kmap_atomic(page, KM_USER0);
1070		left = __copy_to_user_inatomic(desc->arg.buf,
1071						kaddr + offset, size);
1072		kunmap_atomic(kaddr, KM_USER0);
1073		if (left == 0)
1074			goto success;
1075	}
1076
1077	/* Do it the slow way */
1078	kaddr = kmap(page);
1079	left = __copy_to_user(desc->arg.buf, kaddr + offset, size);
1080	kunmap(page);
1081
1082	if (left) {
1083		size -= left;
1084		desc->error = -EFAULT;
1085	}
1086success:
1087	desc->count = count - size;
1088	desc->written += size;
1089	desc->arg.buf += size;
1090	return size;
1091}
1092
1093/*
1094 * Performs necessary checks before doing a write
1095 * @iov:	io vector request
1096 * @nr_segs:	number of segments in the iovec
1097 * @count:	number of bytes to write
1098 * @access_flags: type of access: %VERIFY_READ or %VERIFY_WRITE
1099 *
1100 * Adjust number of segments and amount of bytes to write (nr_segs should be
1101 * properly initialized first). Returns appropriate error code that caller
1102 * should return or zero in case that write should be allowed.
1103 */
1104int generic_segment_checks(const struct iovec *iov,
1105			unsigned long *nr_segs, size_t *count, int access_flags)
1106{
1107	unsigned long   seg;
1108	size_t cnt = 0;
1109	for (seg = 0; seg < *nr_segs; seg++) {
1110		const struct iovec *iv = &iov[seg];
1111
1112		/*
1113		 * If any segment has a negative length, or the cumulative
1114		 * length ever wraps negative then return -EINVAL.
1115		 */
1116		cnt += iv->iov_len;
1117		if (unlikely((ssize_t)(cnt|iv->iov_len) < 0))
1118			return -EINVAL;
1119		if (access_ok(access_flags, iv->iov_base, iv->iov_len))
1120			continue;
1121		if (seg == 0)
1122			return -EFAULT;
1123		*nr_segs = seg;
1124		cnt -= iv->iov_len;	/* This segment is no good */
1125		break;
1126	}
1127	*count = cnt;
1128	return 0;
1129}
1130EXPORT_SYMBOL(generic_segment_checks);
1131
1132/**
1133 * generic_file_aio_read - generic filesystem read routine
1134 * @iocb:	kernel I/O control block
1135 * @iov:	io vector request
1136 * @nr_segs:	number of segments in the iovec
1137 * @pos:	current file position
1138 *
1139 * This is the "read()" routine for all filesystems
1140 * that can use the page cache directly.
1141 */
1142ssize_t
1143generic_file_aio_read(struct kiocb *iocb, const struct iovec *iov,
1144		unsigned long nr_segs, loff_t pos)
1145{
1146	struct file *filp = iocb->ki_filp;
1147	ssize_t retval;
1148	unsigned long seg;
1149	size_t count;
1150	loff_t *ppos = &iocb->ki_pos;
1151
1152	count = 0;
1153	retval = generic_segment_checks(iov, &nr_segs, &count, VERIFY_WRITE);
1154	if (retval)
1155		return retval;
1156
1157	/* coalesce the iovecs and go direct-to-BIO for O_DIRECT */
1158	if (filp->f_flags & O_DIRECT) {
1159		loff_t size;
1160		struct address_space *mapping;
1161		struct inode *inode;
1162
1163		mapping = filp->f_mapping;
1164		inode = mapping->host;
1165		retval = 0;
1166		if (!count)
1167			goto out; /* skip atime */
1168		size = i_size_read(inode);
1169		if (pos < size) {
1170			retval = generic_file_direct_IO(READ, iocb,
1171						iov, pos, nr_segs);
1172			if (retval > 0)
1173				*ppos = pos + retval;
1174		}
1175		if (likely(retval != 0)) {
1176			file_accessed(filp);
1177			goto out;
1178		}
1179	}
1180
1181	retval = 0;
1182	if (count) {
1183		for (seg = 0; seg < nr_segs; seg++) {
1184			read_descriptor_t desc;
1185
1186			desc.written = 0;
1187			desc.arg.buf = iov[seg].iov_base;
1188			desc.count = iov[seg].iov_len;
1189			if (desc.count == 0)
1190				continue;
1191			desc.error = 0;
1192			do_generic_file_read(filp,ppos,&desc,file_read_actor);
1193			retval += desc.written;
1194			if (desc.error) {
1195				retval = retval ?: desc.error;
1196				break;
1197			}
1198			if (desc.count > 0)
1199				break;
1200		}
1201	}
1202out:
1203	return retval;
1204}
1205EXPORT_SYMBOL(generic_file_aio_read);
1206
1207static ssize_t
1208do_readahead(struct address_space *mapping, struct file *filp,
1209	     pgoff_t index, unsigned long nr)
1210{
1211	if (!mapping || !mapping->a_ops || !mapping->a_ops->readpage)
1212		return -EINVAL;
1213
1214	force_page_cache_readahead(mapping, filp, index,
1215					max_sane_readahead(nr));
1216	return 0;
1217}
1218
1219asmlinkage ssize_t sys_readahead(int fd, loff_t offset, size_t count)
1220{
1221	ssize_t ret;
1222	struct file *file;
1223
1224	ret = -EBADF;
1225	file = fget(fd);
1226	if (file) {
1227		if (file->f_mode & FMODE_READ) {
1228			struct address_space *mapping = file->f_mapping;
1229			pgoff_t start = offset >> PAGE_CACHE_SHIFT;
1230			pgoff_t end = (offset + count - 1) >> PAGE_CACHE_SHIFT;
1231			unsigned long len = end - start + 1;
1232			ret = do_readahead(mapping, file, start, len);
1233		}
1234		fput(file);
1235	}
1236	return ret;
1237}
1238
1239#ifdef CONFIG_MMU
1240/**
1241 * page_cache_read - adds requested page to the page cache if not already there
1242 * @file:	file to read
1243 * @offset:	page index
1244 *
1245 * This adds the requested page to the page cache if it isn't already there,
1246 * and schedules an I/O to read in its contents from disk.
1247 */
1248static int fastcall page_cache_read(struct file * file, pgoff_t offset)
1249{
1250	struct address_space *mapping = file->f_mapping;
1251	struct page *page;
1252	int ret;
1253
1254	do {
1255		page = page_cache_alloc_cold(mapping);
1256		if (!page)
1257			return -ENOMEM;
1258
1259		ret = add_to_page_cache_lru(page, mapping, offset, GFP_KERNEL);
1260		if (ret == 0)
1261			ret = mapping->a_ops->readpage(file, page);
1262		else if (ret == -EEXIST)
1263			ret = 0; /* losing race to add is OK */
1264
1265		page_cache_release(page);
1266
1267	} while (ret == AOP_TRUNCATED_PAGE);
1268
1269	return ret;
1270}
1271
1272#define MMAP_LOTSAMISS  (100)
1273
1274/**
1275 * filemap_fault - read in file data for page fault handling
1276 * @vma:	vma in which the fault was taken
1277 * @vmf:	struct vm_fault containing details of the fault
1278 *
1279 * filemap_fault() is invoked via the vma operations vector for a
1280 * mapped memory region to read in file data during a page fault.
1281 *
1282 * The goto's are kind of ugly, but this streamlines the normal case of having
1283 * it in the page cache, and handles the special cases reasonably without
1284 * having a lot of duplicated code.
1285 */
1286int filemap_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
1287{
1288	int error;
1289	struct file *file = vma->vm_file;
1290	struct address_space *mapping = file->f_mapping;
1291	struct file_ra_state *ra = &file->f_ra;
1292	struct inode *inode = mapping->host;
1293	struct page *page;
1294	unsigned long size;
1295	int did_readaround = 0;
1296	int ret = 0;
1297
1298	size = (i_size_read(inode) + PAGE_CACHE_SIZE - 1) >> PAGE_CACHE_SHIFT;
1299	if (vmf->pgoff >= size)
1300		goto outside_data_content;
1301
1302	/* If we don't want any read-ahead, don't bother */
1303	if (VM_RandomReadHint(vma))
1304		goto no_cached_page;
1305
1306	/*
1307	 * Do we have something in the page cache already?
1308	 */
1309retry_find:
1310	page = find_lock_page(mapping, vmf->pgoff);
1311	/*
1312	 * For sequential accesses, we use the generic readahead logic.
1313	 */
1314	if (VM_SequentialReadHint(vma)) {
1315		if (!page) {
1316			page_cache_sync_readahead(mapping, ra, file,
1317							   vmf->pgoff, 1);
1318			page = find_lock_page(mapping, vmf->pgoff);
1319			if (!page)
1320				goto no_cached_page;
1321		}
1322		if (PageReadahead(page)) {
1323			page_cache_async_readahead(mapping, ra, file, page,
1324							   vmf->pgoff, 1);
1325		}
1326	}
1327
1328	if (!page) {
1329		unsigned long ra_pages;
1330
1331		ra->mmap_miss++;
1332
1333		/*
1334		 * Do we miss much more than hit in this file? If so,
1335		 * stop bothering with read-ahead. It will only hurt.
1336		 */
1337		if (ra->mmap_miss > MMAP_LOTSAMISS)
1338			goto no_cached_page;
1339
1340		/*
1341		 * To keep the pgmajfault counter straight, we need to
1342		 * check did_readaround, as this is an inner loop.
1343		 */
1344		if (!did_readaround) {
1345			ret = VM_FAULT_MAJOR;
1346			count_vm_event(PGMAJFAULT);
1347		}
1348		did_readaround = 1;
1349		ra_pages = max_sane_readahead(file->f_ra.ra_pages);
1350		if (ra_pages) {
1351			pgoff_t start = 0;
1352
1353			if (vmf->pgoff > ra_pages / 2)
1354				start = vmf->pgoff - ra_pages / 2;
1355			do_page_cache_readahead(mapping, file, start, ra_pages);
1356		}
1357		page = find_lock_page(mapping, vmf->pgoff);
1358		if (!page)
1359			goto no_cached_page;
1360	}
1361
1362	if (!did_readaround)
1363		ra->mmap_miss--;
1364
1365	/*
1366	 * We have a locked page in the page cache, now we need to check
1367	 * that it's up-to-date. If not, it is going to be due to an error.
1368	 */
1369	if (unlikely(!PageUptodate(page)))
1370		goto page_not_uptodate;
1371
1372	/* Must recheck i_size under page lock */
1373	size = (i_size_read(inode) + PAGE_CACHE_SIZE - 1) >> PAGE_CACHE_SHIFT;
1374	if (unlikely(vmf->pgoff >= size)) {
1375		unlock_page(page);
1376		page_cache_release(page);
1377		goto outside_data_content;
1378	}
1379
1380	/*
1381	 * Found the page and have a reference on it.
1382	 */
1383	mark_page_accessed(page);
1384	ra->prev_pos = (loff_t)page->index << PAGE_CACHE_SHIFT;
1385	vmf->page = page;
1386	return ret | VM_FAULT_LOCKED;
1387
1388outside_data_content:
1389	/*
1390	 * An external ptracer can access pages that normally aren't
1391	 * accessible..
1392	 */
1393	if (vma->vm_mm == current->mm)
1394		return VM_FAULT_SIGBUS;
1395
1396	/* Fall through to the non-read-ahead case */
1397no_cached_page:
1398	/*
1399	 * We're only likely to ever get here if MADV_RANDOM is in
1400	 * effect.
1401	 */
1402	error = page_cache_read(file, vmf->pgoff);
1403
1404	/*
1405	 * The page we want has now been added to the page cache.
1406	 * In the unlikely event that someone removed it in the
1407	 * meantime, we'll just come back here and read it again.
1408	 */
1409	if (error >= 0)
1410		goto retry_find;
1411
1412	/*
1413	 * An error return from page_cache_read can result if the
1414	 * system is low on memory, or a problem occurs while trying
1415	 * to schedule I/O.
1416	 */
1417	if (error == -ENOMEM)
1418		return VM_FAULT_OOM;
1419	return VM_FAULT_SIGBUS;
1420
1421page_not_uptodate:
1422	/* IO error path */
1423	if (!did_readaround) {
1424		ret = VM_FAULT_MAJOR;
1425		count_vm_event(PGMAJFAULT);
1426	}
1427
1428	/*
1429	 * Umm, take care of errors if the page isn't up-to-date.
1430	 * Try to re-read it _once_. We do this synchronously,
1431	 * because there really aren't any performance issues here
1432	 * and we need to check for errors.
1433	 */
1434	ClearPageError(page);
1435	error = mapping->a_ops->readpage(file, page);
1436	page_cache_release(page);
1437
1438	if (!error || error == AOP_TRUNCATED_PAGE)
1439		goto retry_find;
1440
1441	/* Things didn't work out. Return zero to tell the mm layer so. */
1442	shrink_readahead_size_eio(file, ra);
1443	return VM_FAULT_SIGBUS;
1444}
1445EXPORT_SYMBOL(filemap_fault);
1446
1447struct vm_operations_struct generic_file_vm_ops = {
1448	.fault		= filemap_fault,
1449};
1450
1451/* This is used for a general mmap of a disk file */
1452
1453int generic_file_mmap(struct file * file, struct vm_area_struct * vma)
1454{
1455	struct address_space *mapping = file->f_mapping;
1456
1457	if (!mapping->a_ops->readpage)
1458		return -ENOEXEC;
1459	file_accessed(file);
1460	vma->vm_ops = &generic_file_vm_ops;
1461	vma->vm_flags |= VM_CAN_NONLINEAR;
1462	return 0;
1463}
1464
1465/*
1466 * This is for filesystems which do not implement ->writepage.
1467 */
1468int generic_file_readonly_mmap(struct file *file, struct vm_area_struct *vma)
1469{
1470	if ((vma->vm_flags & VM_SHARED) && (vma->vm_flags & VM_MAYWRITE))
1471		return -EINVAL;
1472	return generic_file_mmap(file, vma);
1473}
1474#else
1475int generic_file_mmap(struct file * file, struct vm_area_struct * vma)
1476{
1477	return -ENOSYS;
1478}
1479int generic_file_readonly_mmap(struct file * file, struct vm_area_struct * vma)
1480{
1481	return -ENOSYS;
1482}
1483#endif /* CONFIG_MMU */
1484
1485EXPORT_SYMBOL(generic_file_mmap);
1486EXPORT_SYMBOL(generic_file_readonly_mmap);
1487
1488static struct page *__read_cache_page(struct address_space *mapping,
1489				pgoff_t index,
1490				int (*filler)(void *,struct page*),
1491				void *data)
1492{
1493	struct page *page;
1494	int err;
1495repeat:
1496	page = find_get_page(mapping, index);
1497	if (!page) {
1498		page = page_cache_alloc_cold(mapping);
1499		if (!page)
1500			return ERR_PTR(-ENOMEM);
1501		err = add_to_page_cache_lru(page, mapping, index, GFP_KERNEL);
1502		if (unlikely(err)) {
1503			page_cache_release(page);
1504			if (err == -EEXIST)
1505				goto repeat;
1506			/* Presumably ENOMEM for radix tree node */
1507			return ERR_PTR(err);
1508		}
1509		err = filler(data, page);
1510		if (err < 0) {
1511			page_cache_release(page);
1512			page = ERR_PTR(err);
1513		}
1514	}
1515	return page;
1516}
1517
1518/*
1519 * Same as read_cache_page, but don't wait for page to become unlocked
1520 * after submitting it to the filler.
1521 */
1522struct page *read_cache_page_async(struct address_space *mapping,
1523				pgoff_t index,
1524				int (*filler)(void *,struct page*),
1525				void *data)
1526{
1527	struct page *page;
1528	int err;
1529
1530retry:
1531	page = __read_cache_page(mapping, index, filler, data);
1532	if (IS_ERR(page))
1533		return page;
1534	if (PageUptodate(page))
1535		goto out;
1536
1537	lock_page(page);
1538	if (!page->mapping) {
1539		unlock_page(page);
1540		page_cache_release(page);
1541		goto retry;
1542	}
1543	if (PageUptodate(page)) {
1544		unlock_page(page);
1545		goto out;
1546	}
1547	err = filler(data, page);
1548	if (err < 0) {
1549		page_cache_release(page);
1550		return ERR_PTR(err);
1551	}
1552out:
1553	mark_page_accessed(page);
1554	return page;
1555}
1556EXPORT_SYMBOL(read_cache_page_async);
1557
1558/**
1559 * read_cache_page - read into page cache, fill it if needed
1560 * @mapping:	the page's address_space
1561 * @index:	the page index
1562 * @filler:	function to perform the read
1563 * @data:	destination for read data
1564 *
1565 * Read into the page cache. If a page already exists, and PageUptodate() is
1566 * not set, try to fill the page then wait for it to become unlocked.
1567 *
1568 * If the page does not get brought uptodate, return -EIO.
1569 */
1570struct page *read_cache_page(struct address_space *mapping,
1571				pgoff_t index,
1572				int (*filler)(void *,struct page*),
1573				void *data)
1574{
1575	struct page *page;
1576
1577	page = read_cache_page_async(mapping, index, filler, data);
1578	if (IS_ERR(page))
1579		goto out;
1580	wait_on_page_locked(page);
1581	if (!PageUptodate(page)) {
1582		page_cache_release(page);
1583		page = ERR_PTR(-EIO);
1584	}
1585 out:
1586	return page;
1587}
1588EXPORT_SYMBOL(read_cache_page);
1589
1590/*
1591 * The logic we want is
1592 *
1593 *	if suid or (sgid and xgrp)
1594 *		remove privs
1595 */
1596int should_remove_suid(struct dentry *dentry)
1597{
1598	mode_t mode = dentry->d_inode->i_mode;
1599	int kill = 0;
1600
1601	/* suid always must be killed */
1602	if (unlikely(mode & S_ISUID))
1603		kill = ATTR_KILL_SUID;
1604
1605	/*
1606	 * sgid without any exec bits is just a mandatory locking mark; leave
1607	 * it alone.  If some exec bits are set, it's a real sgid; kill it.
1608	 */
1609	if (unlikely((mode & S_ISGID) && (mode & S_IXGRP)))
1610		kill |= ATTR_KILL_SGID;
1611
1612	if (unlikely(kill && !capable(CAP_FSETID)))
1613		return kill;
1614
1615	return 0;
1616}
1617EXPORT_SYMBOL(should_remove_suid);
1618
1619int __remove_suid(struct dentry *dentry, int kill)
1620{
1621	struct iattr newattrs;
1622
1623	newattrs.ia_valid = ATTR_FORCE | kill;
1624	return notify_change(dentry, &newattrs);
1625}
1626
1627int remove_suid(struct dentry *dentry)
1628{
1629	int kill = should_remove_suid(dentry);
1630
1631	if (unlikely(kill))
1632		return __remove_suid(dentry, kill);
1633
1634	return 0;
1635}
1636EXPORT_SYMBOL(remove_suid);
1637
1638size_t
1639__filemap_copy_from_user_iovec_inatomic(char *vaddr,
1640			const struct iovec *iov, size_t base, size_t bytes)
1641{
1642	size_t copied = 0, left = 0;
1643
1644	while (bytes) {
1645		char __user *buf = iov->iov_base + base;
1646		int copy = min(bytes, iov->iov_len - base);
1647
1648		base = 0;
1649		left = __copy_from_user_inatomic_nocache(vaddr, buf, copy);
1650		copied += copy;
1651		bytes -= copy;
1652		vaddr += copy;
1653		iov++;
1654
1655		if (unlikely(left))
1656			break;
1657	}
1658	return copied - left;
1659}
1660
1661/*
1662 * Performs necessary checks before doing a write
1663 *
1664 * Can adjust writing position or amount of bytes to write.
1665 * Returns appropriate error code that caller should return or
1666 * zero in case that write should be allowed.
1667 */
1668inline int generic_write_checks(struct file *file, loff_t *pos, size_t *count, int isblk)
1669{
1670	struct inode *inode = file->f_mapping->host;
1671	unsigned long limit = current->signal->rlim[RLIMIT_FSIZE].rlim_cur;
1672
1673        if (unlikely(*pos < 0))
1674                return -EINVAL;
1675
1676	if (!isblk) {
1677		/* FIXME: this is for backwards compatibility with 2.4 */
1678		if (file->f_flags & O_APPEND)
1679                        *pos = i_size_read(inode);
1680
1681		if (limit != RLIM_INFINITY) {
1682			if (*pos >= limit) {
1683				send_sig(SIGXFSZ, current, 0);
1684				return -EFBIG;
1685			}
1686			if (*count > limit - (typeof(limit))*pos) {
1687				*count = limit - (typeof(limit))*pos;
1688			}
1689		}
1690	}
1691
1692	/*
1693	 * LFS rule
1694	 */
1695	if (unlikely(*pos + *count > MAX_NON_LFS &&
1696				!(file->f_flags & O_LARGEFILE))) {
1697		if (*pos >= MAX_NON_LFS) {
1698			return -EFBIG;
1699		}
1700		if (*count > MAX_NON_LFS - (unsigned long)*pos) {
1701			*count = MAX_NON_LFS - (unsigned long)*pos;
1702		}
1703	}
1704
1705	/*
1706	 * Are we about to exceed the fs block limit ?
1707	 *
1708	 * If we have written data it becomes a short write.  If we have
1709	 * exceeded without writing data we send a signal and return EFBIG.
1710	 * Linus frestrict idea will clean these up nicely..
1711	 */
1712	if (likely(!isblk)) {
1713		if (unlikely(*pos >= inode->i_sb->s_maxbytes)) {
1714			if (*count || *pos > inode->i_sb->s_maxbytes) {
1715				return -EFBIG;
1716			}
1717			/* zero-length writes at ->s_maxbytes are OK */
1718		}
1719
1720		if (unlikely(*pos + *count > inode->i_sb->s_maxbytes))
1721			*count = inode->i_sb->s_maxbytes - *pos;
1722	} else {
1723#ifdef CONFIG_BLOCK
1724		loff_t isize;
1725		if (bdev_read_only(I_BDEV(inode)))
1726			return -EPERM;
1727		isize = i_size_read(inode);
1728		if (*pos >= isize) {
1729			if (*count || *pos > isize)
1730				return -ENOSPC;
1731		}
1732
1733		if (*pos + *count > isize)
1734			*count = isize - *pos;
1735#else
1736		return -EPERM;
1737#endif
1738	}
1739	return 0;
1740}
1741EXPORT_SYMBOL(generic_write_checks);
1742
1743ssize_t
1744generic_file_direct_write(struct kiocb *iocb, const struct iovec *iov,
1745		unsigned long *nr_segs, loff_t pos, loff_t *ppos,
1746		size_t count, size_t ocount)
1747{
1748	struct file	*file = iocb->ki_filp;
1749	struct address_space *mapping = file->f_mapping;
1750	struct inode	*inode = mapping->host;
1751	ssize_t		written;
1752
1753	if (count != ocount)
1754		*nr_segs = iov_shorten((struct iovec *)iov, *nr_segs, count);
1755
1756	written = generic_file_direct_IO(WRITE, iocb, iov, pos, *nr_segs);
1757	if (written > 0) {
1758		loff_t end = pos + written;
1759		if (end > i_size_read(inode) && !S_ISBLK(inode->i_mode)) {
1760			i_size_write(inode,  end);
1761			mark_inode_dirty(inode);
1762		}
1763		*ppos = end;
1764	}
1765
1766	/*
1767	 * Sync the fs metadata but not the minor inode changes and
1768	 * of course not the data as we did direct DMA for the IO.
1769	 * i_mutex is held, which protects generic_osync_inode() from
1770	 * livelocking.  AIO O_DIRECT ops attempt to sync metadata here.
1771	 */
1772	if ((written >= 0 || written == -EIOCBQUEUED) &&
1773	    ((file->f_flags & O_SYNC) || IS_SYNC(inode))) {
1774		int err = generic_osync_inode(inode, mapping, OSYNC_METADATA);
1775		if (err < 0)
1776			written = err;
1777	}
1778	return written;
1779}
1780EXPORT_SYMBOL(generic_file_direct_write);
1781
1782/*
1783 * Find or create a page at the given pagecache position. Return the locked
1784 * page. This function is specifically for buffered writes.
1785 */
1786static struct page *__grab_cache_page(struct address_space *mapping,
1787							pgoff_t index)
1788{
1789	int status;
1790	struct page *page;
1791repeat:
1792	page = find_lock_page(mapping, index);
1793	if (likely(page))
1794		return page;
1795
1796	page = page_cache_alloc(mapping);
1797	if (!page)
1798		return NULL;
1799	status = add_to_page_cache_lru(page, mapping, index, GFP_KERNEL);
1800	if (unlikely(status)) {
1801		page_cache_release(page);
1802		if (status == -EEXIST)
1803			goto repeat;
1804		return NULL;
1805	}
1806	return page;
1807}
1808
1809ssize_t
1810generic_file_buffered_write(struct kiocb *iocb, const struct iovec *iov,
1811		unsigned long nr_segs, loff_t pos, loff_t *ppos,
1812		size_t count, ssize_t written)
1813{
1814	struct file *file = iocb->ki_filp;
1815	struct address_space *mapping = file->f_mapping;
1816	const struct address_space_operations *a_ops = mapping->a_ops;
1817	struct inode 	*inode = mapping->host;
1818	long		status = 0;
1819	const struct iovec *cur_iov = iov; /* current iovec */
1820	size_t		iov_offset = 0;	   /* offset in the current iovec */
1821	char __user	*buf;
1822
1823	/*
1824	 * handle partial DIO write.  Adjust cur_iov if needed.
1825	 */
1826	filemap_set_next_iovec(&cur_iov, nr_segs, &iov_offset, written);
1827
1828	do {
1829		struct page *page;
1830		pgoff_t index;		/* Pagecache index for current page */
1831		unsigned long offset;	/* Offset into pagecache page */
1832		unsigned long maxlen;	/* Bytes remaining in current iovec */
1833		size_t bytes;		/* Bytes to write to page */
1834		size_t copied;		/* Bytes copied from user */
1835
1836		buf = cur_iov->iov_base + iov_offset;
1837		offset = (pos & (PAGE_CACHE_SIZE - 1));
1838		index = pos >> PAGE_CACHE_SHIFT;
1839		bytes = PAGE_CACHE_SIZE - offset;
1840		if (bytes > count)
1841			bytes = count;
1842
1843		maxlen = cur_iov->iov_len - iov_offset;
1844		if (maxlen > bytes)
1845			maxlen = bytes;
1846
1847#ifndef CONFIG_DEBUG_VM
1848		/*
1849		 * Bring in the user page that we will copy from _first_.
1850		 * Otherwise there's a nasty deadlock on copying from the
1851		 * same page as we're writing to, without it being marked
1852		 * up-to-date.
1853		 */
1854		fault_in_pages_readable(buf, maxlen);
1855#endif
1856
1857
1858		page = __grab_cache_page(mapping, index);
1859		if (!page) {
1860			status = -ENOMEM;
1861			break;
1862		}
1863
1864		status = a_ops->prepare_write(file, page, offset, offset+bytes);
1865		if (unlikely(status))
1866			goto fs_write_aop_error;
1867
1868		copied = filemap_copy_from_user(page, offset,
1869					cur_iov, nr_segs, iov_offset, bytes);
1870		flush_dcache_page(page);
1871
1872		status = a_ops->commit_write(file, page, offset, offset+bytes);
1873		if (unlikely(status < 0 || status == AOP_TRUNCATED_PAGE))
1874			goto fs_write_aop_error;
1875		if (unlikely(copied != bytes)) {
1876			status = -EFAULT;
1877			goto fs_write_aop_error;
1878		}
1879		if (unlikely(status > 0)) /* filesystem did partial write */
1880			copied = status;
1881
1882		written += copied;
1883		count -= copied;
1884		pos += copied;
1885		filemap_set_next_iovec(&cur_iov, nr_segs, &iov_offset, copied);
1886
1887		unlock_page(page);
1888		mark_page_accessed(page);
1889		page_cache_release(page);
1890		balance_dirty_pages_ratelimited(mapping);
1891		cond_resched();
1892		continue;
1893
1894fs_write_aop_error:
1895		if (status != AOP_TRUNCATED_PAGE)
1896			unlock_page(page);
1897		page_cache_release(page);
1898
1899		/*
1900		 * prepare_write() may have instantiated a few blocks
1901		 * outside i_size.  Trim these off again. Don't need
1902		 * i_size_read because we hold i_mutex.
1903		 */
1904		if (pos + bytes > inode->i_size)
1905			vmtruncate(inode, inode->i_size);
1906		if (status == AOP_TRUNCATED_PAGE)
1907			continue;
1908		else
1909			break;
1910
1911	} while (count);
1912	*ppos = pos;
1913
1914	/*
1915	 * For now, when the user asks for O_SYNC, we'll actually give O_DSYNC
1916	 */
1917	if (likely(status >= 0)) {
1918		if (unlikely((file->f_flags & O_SYNC) || IS_SYNC(inode))) {
1919			if (!a_ops->writepage || !is_sync_kiocb(iocb))
1920				status = generic_osync_inode(inode, mapping,
1921						OSYNC_METADATA|OSYNC_DATA);
1922		}
1923  	}
1924
1925	/*
1926	 * If we get here for O_DIRECT writes then we must have fallen through
1927	 * to buffered writes (block instantiation inside i_size).  So we sync
1928	 * the file data here, to try to honour O_DIRECT expectations.
1929	 */
1930	if (unlikely(file->f_flags & O_DIRECT) && written)
1931		status = filemap_write_and_wait(mapping);
1932
1933	return written ? written : status;
1934}
1935EXPORT_SYMBOL(generic_file_buffered_write);
1936
1937static ssize_t
1938__generic_file_aio_write_nolock(struct kiocb *iocb, const struct iovec *iov,
1939				unsigned long nr_segs, loff_t *ppos)
1940{
1941	struct file *file = iocb->ki_filp;
1942	struct address_space * mapping = file->f_mapping;
1943	size_t ocount;		/* original count */
1944	size_t count;		/* after file limit checks */
1945	struct inode 	*inode = mapping->host;
1946	loff_t		pos;
1947	ssize_t		written;
1948	ssize_t		err;
1949
1950	ocount = 0;
1951	err = generic_segment_checks(iov, &nr_segs, &ocount, VERIFY_READ);
1952	if (err)
1953		return err;
1954
1955	count = ocount;
1956	pos = *ppos;
1957
1958	vfs_check_frozen(inode->i_sb, SB_FREEZE_WRITE);
1959
1960	/* We can write back this queue in page reclaim */
1961	current->backing_dev_info = mapping->backing_dev_info;
1962	written = 0;
1963
1964	err = generic_write_checks(file, &pos, &count, S_ISBLK(inode->i_mode));
1965	if (err)
1966		goto out;
1967
1968	if (count == 0)
1969		goto out;
1970
1971	err = remove_suid(file->f_path.dentry);
1972	if (err)
1973		goto out;
1974
1975	file_update_time(file);
1976
1977	/* coalesce the iovecs and go direct-to-BIO for O_DIRECT */
1978	if (unlikely(file->f_flags & O_DIRECT)) {
1979		loff_t endbyte;
1980		ssize_t written_buffered;
1981
1982		written = generic_file_direct_write(iocb, iov, &nr_segs, pos,
1983							ppos, count, ocount);
1984		if (written < 0 || written == count)
1985			goto out;
1986		/*
1987		 * direct-io write to a hole: fall through to buffered I/O
1988		 * for completing the rest of the request.
1989		 */
1990		pos += written;
1991		count -= written;
1992		written_buffered = generic_file_buffered_write(iocb, iov,
1993						nr_segs, pos, ppos, count,
1994						written);
1995		/*
1996		 * If generic_file_buffered_write() retuned a synchronous error
1997		 * then we want to return the number of bytes which were
1998		 * direct-written, or the error code if that was zero.  Note
1999		 * that this differs from normal direct-io semantics, which
2000		 * will return -EFOO even if some bytes were written.
2001		 */
2002		if (written_buffered < 0) {
2003			err = written_buffered;
2004			goto out;
2005		}
2006
2007		/*
2008		 * We need to ensure that the page cache pages are written to
2009		 * disk and invalidated to preserve the expected O_DIRECT
2010		 * semantics.
2011		 */
2012		endbyte = pos + written_buffered - written - 1;
2013		err = do_sync_mapping_range(file->f_mapping, pos, endbyte,
2014					    SYNC_FILE_RANGE_WAIT_BEFORE|
2015					    SYNC_FILE_RANGE_WRITE|
2016					    SYNC_FILE_RANGE_WAIT_AFTER);
2017		if (err == 0) {
2018			written = written_buffered;
2019			invalidate_mapping_pages(mapping,
2020						 pos >> PAGE_CACHE_SHIFT,
2021						 endbyte >> PAGE_CACHE_SHIFT);
2022		} else {
2023			/*
2024			 * We don't know how much we wrote, so just return
2025			 * the number of bytes which were direct-written
2026			 */
2027		}
2028	} else {
2029		written = generic_file_buffered_write(iocb, iov, nr_segs,
2030				pos, ppos, count, written);
2031	}
2032out:
2033	current->backing_dev_info = NULL;
2034	return written ? written : err;
2035}
2036
2037ssize_t generic_file_aio_write_nolock(struct kiocb *iocb,
2038		const struct iovec *iov, unsigned long nr_segs, loff_t pos)
2039{
2040	struct file *file = iocb->ki_filp;
2041	struct address_space *mapping = file->f_mapping;
2042	struct inode *inode = mapping->host;
2043	ssize_t ret;
2044
2045	BUG_ON(iocb->ki_pos != pos);
2046
2047	ret = __generic_file_aio_write_nolock(iocb, iov, nr_segs,
2048			&iocb->ki_pos);
2049
2050	if (ret > 0 && ((file->f_flags & O_SYNC) || IS_SYNC(inode))) {
2051		ssize_t err;
2052
2053		err = sync_page_range_nolock(inode, mapping, pos, ret);
2054		if (err < 0)
2055			ret = err;
2056	}
2057	return ret;
2058}
2059EXPORT_SYMBOL(generic_file_aio_write_nolock);
2060
2061ssize_t generic_file_aio_write(struct kiocb *iocb, const struct iovec *iov,
2062		unsigned long nr_segs, loff_t pos)
2063{
2064	struct file *file = iocb->ki_filp;
2065	struct address_space *mapping = file->f_mapping;
2066	struct inode *inode = mapping->host;
2067	ssize_t ret;
2068
2069	BUG_ON(iocb->ki_pos != pos);
2070
2071	mutex_lock(&inode->i_mutex);
2072	ret = __generic_file_aio_write_nolock(iocb, iov, nr_segs,
2073			&iocb->ki_pos);
2074	mutex_unlock(&inode->i_mutex);
2075
2076	if (ret > 0 && ((file->f_flags & O_SYNC) || IS_SYNC(inode))) {
2077		ssize_t err;
2078
2079		err = sync_page_range(inode, mapping, pos, ret);
2080		if (err < 0)
2081			ret = err;
2082	}
2083	return ret;
2084}
2085EXPORT_SYMBOL(generic_file_aio_write);
2086
2087/*
2088 * Called under i_mutex for writes to S_ISREG files.   Returns -EIO if something
2089 * went wrong during pagecache shootdown.
2090 */
2091static ssize_t
2092generic_file_direct_IO(int rw, struct kiocb *iocb, const struct iovec *iov,
2093	loff_t offset, unsigned long nr_segs)
2094{
2095	struct file *file = iocb->ki_filp;
2096	struct address_space *mapping = file->f_mapping;
2097	ssize_t retval;
2098	size_t write_len;
2099	pgoff_t end = 0; /* silence gcc */
2100
2101	/*
2102	 * If it's a write, unmap all mmappings of the file up-front.  This
2103	 * will cause any pte dirty bits to be propagated into the pageframes
2104	 * for the subsequent filemap_write_and_wait().
2105	 */
2106	if (rw == WRITE) {
2107		write_len = iov_length(iov, nr_segs);
2108		end = (offset + write_len - 1) >> PAGE_CACHE_SHIFT;
2109	       	if (mapping_mapped(mapping))
2110			unmap_mapping_range(mapping, offset, write_len, 0);
2111	}
2112
2113	retval = filemap_write_and_wait(mapping);
2114	if (retval)
2115		goto out;
2116
2117	/*
2118	 * After a write we want buffered reads to be sure to go to disk to get
2119	 * the new data.  We invalidate clean cached page from the region we're
2120	 * about to write.  We do this *before* the write so that we can return
2121	 * -EIO without clobbering -EIOCBQUEUED from ->direct_IO().
2122	 */
2123	if (rw == WRITE && mapping->nrpages) {
2124		retval = invalidate_inode_pages2_range(mapping,
2125					offset >> PAGE_CACHE_SHIFT, end);
2126		if (retval)
2127			goto out;
2128	}
2129
2130	retval = mapping->a_ops->direct_IO(rw, iocb, iov, offset, nr_segs);
2131	if (retval)
2132		goto out;
2133
2134	/*
2135	 * Finally, try again to invalidate clean pages which might have been
2136	 * faulted in by get_user_pages() if the source of the write was an
2137	 * mmap()ed region of the file we're writing.  That's a pretty crazy
2138	 * thing to do, so we don't support it 100%.  If this invalidation
2139	 * fails and we have -EIOCBQUEUED we ignore the failure.
2140	 */
2141	if (rw == WRITE && mapping->nrpages) {
2142		int err = invalidate_inode_pages2_range(mapping,
2143					      offset >> PAGE_CACHE_SHIFT, end);
2144		if (err && retval >= 0)
2145			retval = err;
2146	}
2147out:
2148	return retval;
2149}
2150
2151/**
2152 * try_to_release_page() - release old fs-specific metadata on a page
2153 *
2154 * @page: the page which the kernel is trying to free
2155 * @gfp_mask: memory allocation flags (and I/O mode)
2156 *
2157 * The address_space is to try to release any data against the page
2158 * (presumably at page->private).  If the release was successful, return `1'.
2159 * Otherwise return zero.
2160 *
2161 * The @gfp_mask argument specifies whether I/O may be performed to release
2162 * this page (__GFP_IO), and whether the call may block (__GFP_WAIT).
2163 *
2164 * NOTE: @gfp_mask may go away, and this function may become non-blocking.
2165 */
2166int try_to_release_page(struct page *page, gfp_t gfp_mask)
2167{
2168	struct address_space * const mapping = page->mapping;
2169
2170	BUG_ON(!PageLocked(page));
2171	if (PageWriteback(page))
2172		return 0;
2173
2174	if (mapping && mapping->a_ops->releasepage)
2175		return mapping->a_ops->releasepage(page, gfp_mask);
2176	return try_to_free_buffers(page);
2177}
2178
2179EXPORT_SYMBOL(try_to_release_page);
2180