filemap.c revision 5307cc1aa53850f017c8053db034cf950b670ac9
1/*
2 *	linux/mm/filemap.c
3 *
4 * Copyright (C) 1994-1999  Linus Torvalds
5 */
6
7/*
8 * This file handles the generic file mmap semantics used by
9 * most "normal" filesystems (but you don't /have/ to use this:
10 * the NFS filesystem used to do this differently, for example)
11 */
12#include <linux/module.h>
13#include <linux/slab.h>
14#include <linux/compiler.h>
15#include <linux/fs.h>
16#include <linux/uaccess.h>
17#include <linux/aio.h>
18#include <linux/capability.h>
19#include <linux/kernel_stat.h>
20#include <linux/mm.h>
21#include <linux/swap.h>
22#include <linux/mman.h>
23#include <linux/pagemap.h>
24#include <linux/file.h>
25#include <linux/uio.h>
26#include <linux/hash.h>
27#include <linux/writeback.h>
28#include <linux/backing-dev.h>
29#include <linux/pagevec.h>
30#include <linux/blkdev.h>
31#include <linux/backing-dev.h>
32#include <linux/security.h>
33#include <linux/syscalls.h>
34#include <linux/cpuset.h>
35#include <linux/hardirq.h> /* for BUG_ON(!in_atomic()) only */
36#include "internal.h"
37
38/*
39 * FIXME: remove all knowledge of the buffer layer from the core VM
40 */
41#include <linux/buffer_head.h> /* for generic_osync_inode */
42
43#include <asm/mman.h>
44
45static ssize_t
46generic_file_direct_IO(int rw, struct kiocb *iocb, const struct iovec *iov,
47	loff_t offset, unsigned long nr_segs);
48
49/*
50 * Shared mappings implemented 30.11.1994. It's not fully working yet,
51 * though.
52 *
53 * Shared mappings now work. 15.8.1995  Bruno.
54 *
55 * finished 'unifying' the page and buffer cache and SMP-threaded the
56 * page-cache, 21.05.1999, Ingo Molnar <mingo@redhat.com>
57 *
58 * SMP-threaded pagemap-LRU 1999, Andrea Arcangeli <andrea@suse.de>
59 */
60
61/*
62 * Lock ordering:
63 *
64 *  ->i_mmap_lock		(vmtruncate)
65 *    ->private_lock		(__free_pte->__set_page_dirty_buffers)
66 *      ->swap_lock		(exclusive_swap_page, others)
67 *        ->mapping->tree_lock
68 *          ->zone.lock
69 *
70 *  ->i_mutex
71 *    ->i_mmap_lock		(truncate->unmap_mapping_range)
72 *
73 *  ->mmap_sem
74 *    ->i_mmap_lock
75 *      ->page_table_lock or pte_lock	(various, mainly in memory.c)
76 *        ->mapping->tree_lock	(arch-dependent flush_dcache_mmap_lock)
77 *
78 *  ->mmap_sem
79 *    ->lock_page		(access_process_vm)
80 *
81 *  ->i_mutex			(generic_file_buffered_write)
82 *    ->mmap_sem		(fault_in_pages_readable->do_page_fault)
83 *
84 *  ->i_mutex
85 *    ->i_alloc_sem             (various)
86 *
87 *  ->inode_lock
88 *    ->sb_lock			(fs/fs-writeback.c)
89 *    ->mapping->tree_lock	(__sync_single_inode)
90 *
91 *  ->i_mmap_lock
92 *    ->anon_vma.lock		(vma_adjust)
93 *
94 *  ->anon_vma.lock
95 *    ->page_table_lock or pte_lock	(anon_vma_prepare and various)
96 *
97 *  ->page_table_lock or pte_lock
98 *    ->swap_lock		(try_to_unmap_one)
99 *    ->private_lock		(try_to_unmap_one)
100 *    ->tree_lock		(try_to_unmap_one)
101 *    ->zone.lru_lock		(follow_page->mark_page_accessed)
102 *    ->zone.lru_lock		(check_pte_range->isolate_lru_page)
103 *    ->private_lock		(page_remove_rmap->set_page_dirty)
104 *    ->tree_lock		(page_remove_rmap->set_page_dirty)
105 *    ->inode_lock		(page_remove_rmap->set_page_dirty)
106 *    ->inode_lock		(zap_pte_range->set_page_dirty)
107 *    ->private_lock		(zap_pte_range->__set_page_dirty_buffers)
108 *
109 *  ->task->proc_lock
110 *    ->dcache_lock		(proc_pid_lookup)
111 */
112
113/*
114 * Remove a page from the page cache and free it. Caller has to make
115 * sure the page is locked and that nobody else uses it - or that usage
116 * is safe.  The caller must hold a write_lock on the mapping's tree_lock.
117 */
118void __remove_from_page_cache(struct page *page)
119{
120	struct address_space *mapping = page->mapping;
121
122	radix_tree_delete(&mapping->page_tree, page->index);
123	page->mapping = NULL;
124	mapping->nrpages--;
125	__dec_zone_page_state(page, NR_FILE_PAGES);
126	BUG_ON(page_mapped(page));
127}
128
129void remove_from_page_cache(struct page *page)
130{
131	struct address_space *mapping = page->mapping;
132
133	BUG_ON(!PageLocked(page));
134
135	write_lock_irq(&mapping->tree_lock);
136	__remove_from_page_cache(page);
137	write_unlock_irq(&mapping->tree_lock);
138}
139
140static int sync_page(void *word)
141{
142	struct address_space *mapping;
143	struct page *page;
144
145	page = container_of((unsigned long *)word, struct page, flags);
146
147	/*
148	 * page_mapping() is being called without PG_locked held.
149	 * Some knowledge of the state and use of the page is used to
150	 * reduce the requirements down to a memory barrier.
151	 * The danger here is of a stale page_mapping() return value
152	 * indicating a struct address_space different from the one it's
153	 * associated with when it is associated with one.
154	 * After smp_mb(), it's either the correct page_mapping() for
155	 * the page, or an old page_mapping() and the page's own
156	 * page_mapping() has gone NULL.
157	 * The ->sync_page() address_space operation must tolerate
158	 * page_mapping() going NULL. By an amazing coincidence,
159	 * this comes about because none of the users of the page
160	 * in the ->sync_page() methods make essential use of the
161	 * page_mapping(), merely passing the page down to the backing
162	 * device's unplug functions when it's non-NULL, which in turn
163	 * ignore it for all cases but swap, where only page_private(page) is
164	 * of interest. When page_mapping() does go NULL, the entire
165	 * call stack gracefully ignores the page and returns.
166	 * -- wli
167	 */
168	smp_mb();
169	mapping = page_mapping(page);
170	if (mapping && mapping->a_ops && mapping->a_ops->sync_page)
171		mapping->a_ops->sync_page(page);
172	io_schedule();
173	return 0;
174}
175
176/**
177 * __filemap_fdatawrite_range - start writeback on mapping dirty pages in range
178 * @mapping:	address space structure to write
179 * @start:	offset in bytes where the range starts
180 * @end:	offset in bytes where the range ends (inclusive)
181 * @sync_mode:	enable synchronous operation
182 *
183 * Start writeback against all of a mapping's dirty pages that lie
184 * within the byte offsets <start, end> inclusive.
185 *
186 * If sync_mode is WB_SYNC_ALL then this is a "data integrity" operation, as
187 * opposed to a regular memory cleansing writeback.  The difference between
188 * these two operations is that if a dirty page/buffer is encountered, it must
189 * be waited upon, and not just skipped over.
190 */
191int __filemap_fdatawrite_range(struct address_space *mapping, loff_t start,
192				loff_t end, int sync_mode)
193{
194	int ret;
195	struct writeback_control wbc = {
196		.sync_mode = sync_mode,
197		.nr_to_write = mapping->nrpages * 2,
198		.range_start = start,
199		.range_end = end,
200	};
201
202	if (!mapping_cap_writeback_dirty(mapping))
203		return 0;
204
205	ret = do_writepages(mapping, &wbc);
206	return ret;
207}
208
209static inline int __filemap_fdatawrite(struct address_space *mapping,
210	int sync_mode)
211{
212	return __filemap_fdatawrite_range(mapping, 0, LLONG_MAX, sync_mode);
213}
214
215int filemap_fdatawrite(struct address_space *mapping)
216{
217	return __filemap_fdatawrite(mapping, WB_SYNC_ALL);
218}
219EXPORT_SYMBOL(filemap_fdatawrite);
220
221static int filemap_fdatawrite_range(struct address_space *mapping, loff_t start,
222				loff_t end)
223{
224	return __filemap_fdatawrite_range(mapping, start, end, WB_SYNC_ALL);
225}
226
227/**
228 * filemap_flush - mostly a non-blocking flush
229 * @mapping:	target address_space
230 *
231 * This is a mostly non-blocking flush.  Not suitable for data-integrity
232 * purposes - I/O may not be started against all dirty pages.
233 */
234int filemap_flush(struct address_space *mapping)
235{
236	return __filemap_fdatawrite(mapping, WB_SYNC_NONE);
237}
238EXPORT_SYMBOL(filemap_flush);
239
240/**
241 * wait_on_page_writeback_range - wait for writeback to complete
242 * @mapping:	target address_space
243 * @start:	beginning page index
244 * @end:	ending page index
245 *
246 * Wait for writeback to complete against pages indexed by start->end
247 * inclusive
248 */
249int wait_on_page_writeback_range(struct address_space *mapping,
250				pgoff_t start, pgoff_t end)
251{
252	struct pagevec pvec;
253	int nr_pages;
254	int ret = 0;
255	pgoff_t index;
256
257	if (end < start)
258		return 0;
259
260	pagevec_init(&pvec, 0);
261	index = start;
262	while ((index <= end) &&
263			(nr_pages = pagevec_lookup_tag(&pvec, mapping, &index,
264			PAGECACHE_TAG_WRITEBACK,
265			min(end - index, (pgoff_t)PAGEVEC_SIZE-1) + 1)) != 0) {
266		unsigned i;
267
268		for (i = 0; i < nr_pages; i++) {
269			struct page *page = pvec.pages[i];
270
271			/* until radix tree lookup accepts end_index */
272			if (page->index > end)
273				continue;
274
275			wait_on_page_writeback(page);
276			if (PageError(page))
277				ret = -EIO;
278		}
279		pagevec_release(&pvec);
280		cond_resched();
281	}
282
283	/* Check for outstanding write errors */
284	if (test_and_clear_bit(AS_ENOSPC, &mapping->flags))
285		ret = -ENOSPC;
286	if (test_and_clear_bit(AS_EIO, &mapping->flags))
287		ret = -EIO;
288
289	return ret;
290}
291
292/**
293 * sync_page_range - write and wait on all pages in the passed range
294 * @inode:	target inode
295 * @mapping:	target address_space
296 * @pos:	beginning offset in pages to write
297 * @count:	number of bytes to write
298 *
299 * Write and wait upon all the pages in the passed range.  This is a "data
300 * integrity" operation.  It waits upon in-flight writeout before starting and
301 * waiting upon new writeout.  If there was an IO error, return it.
302 *
303 * We need to re-take i_mutex during the generic_osync_inode list walk because
304 * it is otherwise livelockable.
305 */
306int sync_page_range(struct inode *inode, struct address_space *mapping,
307			loff_t pos, loff_t count)
308{
309	pgoff_t start = pos >> PAGE_CACHE_SHIFT;
310	pgoff_t end = (pos + count - 1) >> PAGE_CACHE_SHIFT;
311	int ret;
312
313	if (!mapping_cap_writeback_dirty(mapping) || !count)
314		return 0;
315	ret = filemap_fdatawrite_range(mapping, pos, pos + count - 1);
316	if (ret == 0) {
317		mutex_lock(&inode->i_mutex);
318		ret = generic_osync_inode(inode, mapping, OSYNC_METADATA);
319		mutex_unlock(&inode->i_mutex);
320	}
321	if (ret == 0)
322		ret = wait_on_page_writeback_range(mapping, start, end);
323	return ret;
324}
325EXPORT_SYMBOL(sync_page_range);
326
327/**
328 * sync_page_range_nolock
329 * @inode:	target inode
330 * @mapping:	target address_space
331 * @pos:	beginning offset in pages to write
332 * @count:	number of bytes to write
333 *
334 * Note: Holding i_mutex across sync_page_range_nolock() is not a good idea
335 * as it forces O_SYNC writers to different parts of the same file
336 * to be serialised right until io completion.
337 */
338int sync_page_range_nolock(struct inode *inode, struct address_space *mapping,
339			   loff_t pos, loff_t count)
340{
341	pgoff_t start = pos >> PAGE_CACHE_SHIFT;
342	pgoff_t end = (pos + count - 1) >> PAGE_CACHE_SHIFT;
343	int ret;
344
345	if (!mapping_cap_writeback_dirty(mapping) || !count)
346		return 0;
347	ret = filemap_fdatawrite_range(mapping, pos, pos + count - 1);
348	if (ret == 0)
349		ret = generic_osync_inode(inode, mapping, OSYNC_METADATA);
350	if (ret == 0)
351		ret = wait_on_page_writeback_range(mapping, start, end);
352	return ret;
353}
354EXPORT_SYMBOL(sync_page_range_nolock);
355
356/**
357 * filemap_fdatawait - wait for all under-writeback pages to complete
358 * @mapping: address space structure to wait for
359 *
360 * Walk the list of under-writeback pages of the given address space
361 * and wait for all of them.
362 */
363int filemap_fdatawait(struct address_space *mapping)
364{
365	loff_t i_size = i_size_read(mapping->host);
366
367	if (i_size == 0)
368		return 0;
369
370	return wait_on_page_writeback_range(mapping, 0,
371				(i_size - 1) >> PAGE_CACHE_SHIFT);
372}
373EXPORT_SYMBOL(filemap_fdatawait);
374
375int filemap_write_and_wait(struct address_space *mapping)
376{
377	int err = 0;
378
379	if (mapping->nrpages) {
380		err = filemap_fdatawrite(mapping);
381		/*
382		 * Even if the above returned error, the pages may be
383		 * written partially (e.g. -ENOSPC), so we wait for it.
384		 * But the -EIO is special case, it may indicate the worst
385		 * thing (e.g. bug) happened, so we avoid waiting for it.
386		 */
387		if (err != -EIO) {
388			int err2 = filemap_fdatawait(mapping);
389			if (!err)
390				err = err2;
391		}
392	}
393	return err;
394}
395EXPORT_SYMBOL(filemap_write_and_wait);
396
397/**
398 * filemap_write_and_wait_range - write out & wait on a file range
399 * @mapping:	the address_space for the pages
400 * @lstart:	offset in bytes where the range starts
401 * @lend:	offset in bytes where the range ends (inclusive)
402 *
403 * Write out and wait upon file offsets lstart->lend, inclusive.
404 *
405 * Note that `lend' is inclusive (describes the last byte to be written) so
406 * that this function can be used to write to the very end-of-file (end = -1).
407 */
408int filemap_write_and_wait_range(struct address_space *mapping,
409				 loff_t lstart, loff_t lend)
410{
411	int err = 0;
412
413	if (mapping->nrpages) {
414		err = __filemap_fdatawrite_range(mapping, lstart, lend,
415						 WB_SYNC_ALL);
416		/* See comment of filemap_write_and_wait() */
417		if (err != -EIO) {
418			int err2 = wait_on_page_writeback_range(mapping,
419						lstart >> PAGE_CACHE_SHIFT,
420						lend >> PAGE_CACHE_SHIFT);
421			if (!err)
422				err = err2;
423		}
424	}
425	return err;
426}
427
428/**
429 * add_to_page_cache - add newly allocated pagecache pages
430 * @page:	page to add
431 * @mapping:	the page's address_space
432 * @offset:	page index
433 * @gfp_mask:	page allocation mode
434 *
435 * This function is used to add newly allocated pagecache pages;
436 * the page is new, so we can just run SetPageLocked() against it.
437 * The other page state flags were set by rmqueue().
438 *
439 * This function does not add the page to the LRU.  The caller must do that.
440 */
441int add_to_page_cache(struct page *page, struct address_space *mapping,
442		pgoff_t offset, gfp_t gfp_mask)
443{
444	int error = radix_tree_preload(gfp_mask & ~__GFP_HIGHMEM);
445
446	if (error == 0) {
447		write_lock_irq(&mapping->tree_lock);
448		error = radix_tree_insert(&mapping->page_tree, offset, page);
449		if (!error) {
450			page_cache_get(page);
451			SetPageLocked(page);
452			page->mapping = mapping;
453			page->index = offset;
454			mapping->nrpages++;
455			__inc_zone_page_state(page, NR_FILE_PAGES);
456		}
457		write_unlock_irq(&mapping->tree_lock);
458		radix_tree_preload_end();
459	}
460	return error;
461}
462EXPORT_SYMBOL(add_to_page_cache);
463
464int add_to_page_cache_lru(struct page *page, struct address_space *mapping,
465				pgoff_t offset, gfp_t gfp_mask)
466{
467	int ret = add_to_page_cache(page, mapping, offset, gfp_mask);
468	if (ret == 0)
469		lru_cache_add(page);
470	return ret;
471}
472
473#ifdef CONFIG_NUMA
474struct page *__page_cache_alloc(gfp_t gfp)
475{
476	if (cpuset_do_page_mem_spread()) {
477		int n = cpuset_mem_spread_node();
478		return alloc_pages_node(n, gfp, 0);
479	}
480	return alloc_pages(gfp, 0);
481}
482EXPORT_SYMBOL(__page_cache_alloc);
483#endif
484
485static int __sleep_on_page_lock(void *word)
486{
487	io_schedule();
488	return 0;
489}
490
491/*
492 * In order to wait for pages to become available there must be
493 * waitqueues associated with pages. By using a hash table of
494 * waitqueues where the bucket discipline is to maintain all
495 * waiters on the same queue and wake all when any of the pages
496 * become available, and for the woken contexts to check to be
497 * sure the appropriate page became available, this saves space
498 * at a cost of "thundering herd" phenomena during rare hash
499 * collisions.
500 */
501static wait_queue_head_t *page_waitqueue(struct page *page)
502{
503	const struct zone *zone = page_zone(page);
504
505	return &zone->wait_table[hash_ptr(page, zone->wait_table_bits)];
506}
507
508static inline void wake_up_page(struct page *page, int bit)
509{
510	__wake_up_bit(page_waitqueue(page), &page->flags, bit);
511}
512
513void fastcall wait_on_page_bit(struct page *page, int bit_nr)
514{
515	DEFINE_WAIT_BIT(wait, &page->flags, bit_nr);
516
517	if (test_bit(bit_nr, &page->flags))
518		__wait_on_bit(page_waitqueue(page), &wait, sync_page,
519							TASK_UNINTERRUPTIBLE);
520}
521EXPORT_SYMBOL(wait_on_page_bit);
522
523/**
524 * unlock_page - unlock a locked page
525 * @page: the page
526 *
527 * Unlocks the page and wakes up sleepers in ___wait_on_page_locked().
528 * Also wakes sleepers in wait_on_page_writeback() because the wakeup
529 * mechananism between PageLocked pages and PageWriteback pages is shared.
530 * But that's OK - sleepers in wait_on_page_writeback() just go back to sleep.
531 *
532 * The first mb is necessary to safely close the critical section opened by the
533 * TestSetPageLocked(), the second mb is necessary to enforce ordering between
534 * the clear_bit and the read of the waitqueue (to avoid SMP races with a
535 * parallel wait_on_page_locked()).
536 */
537void fastcall unlock_page(struct page *page)
538{
539	smp_mb__before_clear_bit();
540	if (!TestClearPageLocked(page))
541		BUG();
542	smp_mb__after_clear_bit();
543	wake_up_page(page, PG_locked);
544}
545EXPORT_SYMBOL(unlock_page);
546
547/**
548 * end_page_writeback - end writeback against a page
549 * @page: the page
550 */
551void end_page_writeback(struct page *page)
552{
553	if (!TestClearPageReclaim(page) || rotate_reclaimable_page(page)) {
554		if (!test_clear_page_writeback(page))
555			BUG();
556	}
557	smp_mb__after_clear_bit();
558	wake_up_page(page, PG_writeback);
559}
560EXPORT_SYMBOL(end_page_writeback);
561
562/**
563 * __lock_page - get a lock on the page, assuming we need to sleep to get it
564 * @page: the page to lock
565 *
566 * Ugly. Running sync_page() in state TASK_UNINTERRUPTIBLE is scary.  If some
567 * random driver's requestfn sets TASK_RUNNING, we could busywait.  However
568 * chances are that on the second loop, the block layer's plug list is empty,
569 * so sync_page() will then return in state TASK_UNINTERRUPTIBLE.
570 */
571void fastcall __lock_page(struct page *page)
572{
573	DEFINE_WAIT_BIT(wait, &page->flags, PG_locked);
574
575	__wait_on_bit_lock(page_waitqueue(page), &wait, sync_page,
576							TASK_UNINTERRUPTIBLE);
577}
578EXPORT_SYMBOL(__lock_page);
579
580/*
581 * Variant of lock_page that does not require the caller to hold a reference
582 * on the page's mapping.
583 */
584void fastcall __lock_page_nosync(struct page *page)
585{
586	DEFINE_WAIT_BIT(wait, &page->flags, PG_locked);
587	__wait_on_bit_lock(page_waitqueue(page), &wait, __sleep_on_page_lock,
588							TASK_UNINTERRUPTIBLE);
589}
590
591/**
592 * find_get_page - find and get a page reference
593 * @mapping: the address_space to search
594 * @offset: the page index
595 *
596 * Is there a pagecache struct page at the given (mapping, offset) tuple?
597 * If yes, increment its refcount and return it; if no, return NULL.
598 */
599struct page * find_get_page(struct address_space *mapping, pgoff_t offset)
600{
601	struct page *page;
602
603	read_lock_irq(&mapping->tree_lock);
604	page = radix_tree_lookup(&mapping->page_tree, offset);
605	if (page)
606		page_cache_get(page);
607	read_unlock_irq(&mapping->tree_lock);
608	return page;
609}
610EXPORT_SYMBOL(find_get_page);
611
612/**
613 * find_lock_page - locate, pin and lock a pagecache page
614 * @mapping: the address_space to search
615 * @offset: the page index
616 *
617 * Locates the desired pagecache page, locks it, increments its reference
618 * count and returns its address.
619 *
620 * Returns zero if the page was not present. find_lock_page() may sleep.
621 */
622struct page *find_lock_page(struct address_space *mapping,
623				pgoff_t offset)
624{
625	struct page *page;
626
627repeat:
628	read_lock_irq(&mapping->tree_lock);
629	page = radix_tree_lookup(&mapping->page_tree, offset);
630	if (page) {
631		page_cache_get(page);
632		if (TestSetPageLocked(page)) {
633			read_unlock_irq(&mapping->tree_lock);
634			__lock_page(page);
635
636			/* Has the page been truncated while we slept? */
637			if (unlikely(page->mapping != mapping)) {
638				unlock_page(page);
639				page_cache_release(page);
640				goto repeat;
641			}
642			VM_BUG_ON(page->index != offset);
643			goto out;
644		}
645	}
646	read_unlock_irq(&mapping->tree_lock);
647out:
648	return page;
649}
650EXPORT_SYMBOL(find_lock_page);
651
652/**
653 * find_or_create_page - locate or add a pagecache page
654 * @mapping: the page's address_space
655 * @index: the page's index into the mapping
656 * @gfp_mask: page allocation mode
657 *
658 * Locates a page in the pagecache.  If the page is not present, a new page
659 * is allocated using @gfp_mask and is added to the pagecache and to the VM's
660 * LRU list.  The returned page is locked and has its reference count
661 * incremented.
662 *
663 * find_or_create_page() may sleep, even if @gfp_flags specifies an atomic
664 * allocation!
665 *
666 * find_or_create_page() returns the desired page's address, or zero on
667 * memory exhaustion.
668 */
669struct page *find_or_create_page(struct address_space *mapping,
670		pgoff_t index, gfp_t gfp_mask)
671{
672	struct page *page;
673	int err;
674repeat:
675	page = find_lock_page(mapping, index);
676	if (!page) {
677		page = __page_cache_alloc(gfp_mask);
678		if (!page)
679			return NULL;
680		err = add_to_page_cache_lru(page, mapping, index, gfp_mask);
681		if (unlikely(err)) {
682			page_cache_release(page);
683			page = NULL;
684			if (err == -EEXIST)
685				goto repeat;
686		}
687	}
688	return page;
689}
690EXPORT_SYMBOL(find_or_create_page);
691
692/**
693 * find_get_pages - gang pagecache lookup
694 * @mapping:	The address_space to search
695 * @start:	The starting page index
696 * @nr_pages:	The maximum number of pages
697 * @pages:	Where the resulting pages are placed
698 *
699 * find_get_pages() will search for and return a group of up to
700 * @nr_pages pages in the mapping.  The pages are placed at @pages.
701 * find_get_pages() takes a reference against the returned pages.
702 *
703 * The search returns a group of mapping-contiguous pages with ascending
704 * indexes.  There may be holes in the indices due to not-present pages.
705 *
706 * find_get_pages() returns the number of pages which were found.
707 */
708unsigned find_get_pages(struct address_space *mapping, pgoff_t start,
709			    unsigned int nr_pages, struct page **pages)
710{
711	unsigned int i;
712	unsigned int ret;
713
714	read_lock_irq(&mapping->tree_lock);
715	ret = radix_tree_gang_lookup(&mapping->page_tree,
716				(void **)pages, start, nr_pages);
717	for (i = 0; i < ret; i++)
718		page_cache_get(pages[i]);
719	read_unlock_irq(&mapping->tree_lock);
720	return ret;
721}
722
723/**
724 * find_get_pages_contig - gang contiguous pagecache lookup
725 * @mapping:	The address_space to search
726 * @index:	The starting page index
727 * @nr_pages:	The maximum number of pages
728 * @pages:	Where the resulting pages are placed
729 *
730 * find_get_pages_contig() works exactly like find_get_pages(), except
731 * that the returned number of pages are guaranteed to be contiguous.
732 *
733 * find_get_pages_contig() returns the number of pages which were found.
734 */
735unsigned find_get_pages_contig(struct address_space *mapping, pgoff_t index,
736			       unsigned int nr_pages, struct page **pages)
737{
738	unsigned int i;
739	unsigned int ret;
740
741	read_lock_irq(&mapping->tree_lock);
742	ret = radix_tree_gang_lookup(&mapping->page_tree,
743				(void **)pages, index, nr_pages);
744	for (i = 0; i < ret; i++) {
745		if (pages[i]->mapping == NULL || pages[i]->index != index)
746			break;
747
748		page_cache_get(pages[i]);
749		index++;
750	}
751	read_unlock_irq(&mapping->tree_lock);
752	return i;
753}
754EXPORT_SYMBOL(find_get_pages_contig);
755
756/**
757 * find_get_pages_tag - find and return pages that match @tag
758 * @mapping:	the address_space to search
759 * @index:	the starting page index
760 * @tag:	the tag index
761 * @nr_pages:	the maximum number of pages
762 * @pages:	where the resulting pages are placed
763 *
764 * Like find_get_pages, except we only return pages which are tagged with
765 * @tag.   We update @index to index the next page for the traversal.
766 */
767unsigned find_get_pages_tag(struct address_space *mapping, pgoff_t *index,
768			int tag, unsigned int nr_pages, struct page **pages)
769{
770	unsigned int i;
771	unsigned int ret;
772
773	read_lock_irq(&mapping->tree_lock);
774	ret = radix_tree_gang_lookup_tag(&mapping->page_tree,
775				(void **)pages, *index, nr_pages, tag);
776	for (i = 0; i < ret; i++)
777		page_cache_get(pages[i]);
778	if (ret)
779		*index = pages[ret - 1]->index + 1;
780	read_unlock_irq(&mapping->tree_lock);
781	return ret;
782}
783EXPORT_SYMBOL(find_get_pages_tag);
784
785/**
786 * grab_cache_page_nowait - returns locked page at given index in given cache
787 * @mapping: target address_space
788 * @index: the page index
789 *
790 * Same as grab_cache_page(), but do not wait if the page is unavailable.
791 * This is intended for speculative data generators, where the data can
792 * be regenerated if the page couldn't be grabbed.  This routine should
793 * be safe to call while holding the lock for another page.
794 *
795 * Clear __GFP_FS when allocating the page to avoid recursion into the fs
796 * and deadlock against the caller's locked page.
797 */
798struct page *
799grab_cache_page_nowait(struct address_space *mapping, pgoff_t index)
800{
801	struct page *page = find_get_page(mapping, index);
802
803	if (page) {
804		if (!TestSetPageLocked(page))
805			return page;
806		page_cache_release(page);
807		return NULL;
808	}
809	page = __page_cache_alloc(mapping_gfp_mask(mapping) & ~__GFP_FS);
810	if (page && add_to_page_cache_lru(page, mapping, index, GFP_KERNEL)) {
811		page_cache_release(page);
812		page = NULL;
813	}
814	return page;
815}
816EXPORT_SYMBOL(grab_cache_page_nowait);
817
818/*
819 * CD/DVDs are error prone. When a medium error occurs, the driver may fail
820 * a _large_ part of the i/o request. Imagine the worst scenario:
821 *
822 *      ---R__________________________________________B__________
823 *         ^ reading here                             ^ bad block(assume 4k)
824 *
825 * read(R) => miss => readahead(R...B) => media error => frustrating retries
826 * => failing the whole request => read(R) => read(R+1) =>
827 * readahead(R+1...B+1) => bang => read(R+2) => read(R+3) =>
828 * readahead(R+3...B+2) => bang => read(R+3) => read(R+4) =>
829 * readahead(R+4...B+3) => bang => read(R+4) => read(R+5) => ......
830 *
831 * It is going insane. Fix it by quickly scaling down the readahead size.
832 */
833static void shrink_readahead_size_eio(struct file *filp,
834					struct file_ra_state *ra)
835{
836	if (!ra->ra_pages)
837		return;
838
839	ra->ra_pages /= 4;
840}
841
842/**
843 * do_generic_mapping_read - generic file read routine
844 * @mapping:	address_space to be read
845 * @ra:		file's readahead state
846 * @filp:	the file to read
847 * @ppos:	current file position
848 * @desc:	read_descriptor
849 * @actor:	read method
850 *
851 * This is a generic file read routine, and uses the
852 * mapping->a_ops->readpage() function for the actual low-level stuff.
853 *
854 * This is really ugly. But the goto's actually try to clarify some
855 * of the logic when it comes to error handling etc.
856 *
857 * Note the struct file* is only passed for the use of readpage.
858 * It may be NULL.
859 */
860void do_generic_mapping_read(struct address_space *mapping,
861			     struct file_ra_state *ra,
862			     struct file *filp,
863			     loff_t *ppos,
864			     read_descriptor_t *desc,
865			     read_actor_t actor)
866{
867	struct inode *inode = mapping->host;
868	pgoff_t index;
869	pgoff_t last_index;
870	pgoff_t prev_index;
871	unsigned long offset;      /* offset into pagecache page */
872	unsigned int prev_offset;
873	int error;
874
875	index = *ppos >> PAGE_CACHE_SHIFT;
876	prev_index = ra->prev_pos >> PAGE_CACHE_SHIFT;
877	prev_offset = ra->prev_pos & (PAGE_CACHE_SIZE-1);
878	last_index = (*ppos + desc->count + PAGE_CACHE_SIZE-1) >> PAGE_CACHE_SHIFT;
879	offset = *ppos & ~PAGE_CACHE_MASK;
880
881	for (;;) {
882		struct page *page;
883		pgoff_t end_index;
884		loff_t isize;
885		unsigned long nr, ret;
886
887		cond_resched();
888find_page:
889		page = find_get_page(mapping, index);
890		if (!page) {
891			page_cache_sync_readahead(mapping,
892					ra, filp,
893					index, last_index - index);
894			page = find_get_page(mapping, index);
895			if (unlikely(page == NULL))
896				goto no_cached_page;
897		}
898		if (PageReadahead(page)) {
899			page_cache_async_readahead(mapping,
900					ra, filp, page,
901					index, last_index - index);
902		}
903		if (!PageUptodate(page))
904			goto page_not_up_to_date;
905page_ok:
906		/*
907		 * i_size must be checked after we know the page is Uptodate.
908		 *
909		 * Checking i_size after the check allows us to calculate
910		 * the correct value for "nr", which means the zero-filled
911		 * part of the page is not copied back to userspace (unless
912		 * another truncate extends the file - this is desired though).
913		 */
914
915		isize = i_size_read(inode);
916		end_index = (isize - 1) >> PAGE_CACHE_SHIFT;
917		if (unlikely(!isize || index > end_index)) {
918			page_cache_release(page);
919			goto out;
920		}
921
922		/* nr is the maximum number of bytes to copy from this page */
923		nr = PAGE_CACHE_SIZE;
924		if (index == end_index) {
925			nr = ((isize - 1) & ~PAGE_CACHE_MASK) + 1;
926			if (nr <= offset) {
927				page_cache_release(page);
928				goto out;
929			}
930		}
931		nr = nr - offset;
932
933		/* If users can be writing to this page using arbitrary
934		 * virtual addresses, take care about potential aliasing
935		 * before reading the page on the kernel side.
936		 */
937		if (mapping_writably_mapped(mapping))
938			flush_dcache_page(page);
939
940		/*
941		 * When a sequential read accesses a page several times,
942		 * only mark it as accessed the first time.
943		 */
944		if (prev_index != index || offset != prev_offset)
945			mark_page_accessed(page);
946		prev_index = index;
947
948		/*
949		 * Ok, we have the page, and it's up-to-date, so
950		 * now we can copy it to user space...
951		 *
952		 * The actor routine returns how many bytes were actually used..
953		 * NOTE! This may not be the same as how much of a user buffer
954		 * we filled up (we may be padding etc), so we can only update
955		 * "pos" here (the actor routine has to update the user buffer
956		 * pointers and the remaining count).
957		 */
958		ret = actor(desc, page, offset, nr);
959		offset += ret;
960		index += offset >> PAGE_CACHE_SHIFT;
961		offset &= ~PAGE_CACHE_MASK;
962		prev_offset = offset;
963
964		page_cache_release(page);
965		if (ret == nr && desc->count)
966			continue;
967		goto out;
968
969page_not_up_to_date:
970		/* Get exclusive access to the page ... */
971		lock_page(page);
972
973		/* Did it get truncated before we got the lock? */
974		if (!page->mapping) {
975			unlock_page(page);
976			page_cache_release(page);
977			continue;
978		}
979
980		/* Did somebody else fill it already? */
981		if (PageUptodate(page)) {
982			unlock_page(page);
983			goto page_ok;
984		}
985
986readpage:
987		/* Start the actual read. The read will unlock the page. */
988		error = mapping->a_ops->readpage(filp, page);
989
990		if (unlikely(error)) {
991			if (error == AOP_TRUNCATED_PAGE) {
992				page_cache_release(page);
993				goto find_page;
994			}
995			goto readpage_error;
996		}
997
998		if (!PageUptodate(page)) {
999			lock_page(page);
1000			if (!PageUptodate(page)) {
1001				if (page->mapping == NULL) {
1002					/*
1003					 * invalidate_inode_pages got it
1004					 */
1005					unlock_page(page);
1006					page_cache_release(page);
1007					goto find_page;
1008				}
1009				unlock_page(page);
1010				error = -EIO;
1011				shrink_readahead_size_eio(filp, ra);
1012				goto readpage_error;
1013			}
1014			unlock_page(page);
1015		}
1016
1017		goto page_ok;
1018
1019readpage_error:
1020		/* UHHUH! A synchronous read error occurred. Report it */
1021		desc->error = error;
1022		page_cache_release(page);
1023		goto out;
1024
1025no_cached_page:
1026		/*
1027		 * Ok, it wasn't cached, so we need to create a new
1028		 * page..
1029		 */
1030		page = page_cache_alloc_cold(mapping);
1031		if (!page) {
1032			desc->error = -ENOMEM;
1033			goto out;
1034		}
1035		error = add_to_page_cache_lru(page, mapping,
1036						index, GFP_KERNEL);
1037		if (error) {
1038			page_cache_release(page);
1039			if (error == -EEXIST)
1040				goto find_page;
1041			desc->error = error;
1042			goto out;
1043		}
1044		goto readpage;
1045	}
1046
1047out:
1048	ra->prev_pos = prev_index;
1049	ra->prev_pos <<= PAGE_CACHE_SHIFT;
1050	ra->prev_pos |= prev_offset;
1051
1052	*ppos = ((loff_t)index << PAGE_CACHE_SHIFT) + offset;
1053	if (filp)
1054		file_accessed(filp);
1055}
1056EXPORT_SYMBOL(do_generic_mapping_read);
1057
1058int file_read_actor(read_descriptor_t *desc, struct page *page,
1059			unsigned long offset, unsigned long size)
1060{
1061	char *kaddr;
1062	unsigned long left, count = desc->count;
1063
1064	if (size > count)
1065		size = count;
1066
1067	/*
1068	 * Faults on the destination of a read are common, so do it before
1069	 * taking the kmap.
1070	 */
1071	if (!fault_in_pages_writeable(desc->arg.buf, size)) {
1072		kaddr = kmap_atomic(page, KM_USER0);
1073		left = __copy_to_user_inatomic(desc->arg.buf,
1074						kaddr + offset, size);
1075		kunmap_atomic(kaddr, KM_USER0);
1076		if (left == 0)
1077			goto success;
1078	}
1079
1080	/* Do it the slow way */
1081	kaddr = kmap(page);
1082	left = __copy_to_user(desc->arg.buf, kaddr + offset, size);
1083	kunmap(page);
1084
1085	if (left) {
1086		size -= left;
1087		desc->error = -EFAULT;
1088	}
1089success:
1090	desc->count = count - size;
1091	desc->written += size;
1092	desc->arg.buf += size;
1093	return size;
1094}
1095
1096/*
1097 * Performs necessary checks before doing a write
1098 * @iov:	io vector request
1099 * @nr_segs:	number of segments in the iovec
1100 * @count:	number of bytes to write
1101 * @access_flags: type of access: %VERIFY_READ or %VERIFY_WRITE
1102 *
1103 * Adjust number of segments and amount of bytes to write (nr_segs should be
1104 * properly initialized first). Returns appropriate error code that caller
1105 * should return or zero in case that write should be allowed.
1106 */
1107int generic_segment_checks(const struct iovec *iov,
1108			unsigned long *nr_segs, size_t *count, int access_flags)
1109{
1110	unsigned long   seg;
1111	size_t cnt = 0;
1112	for (seg = 0; seg < *nr_segs; seg++) {
1113		const struct iovec *iv = &iov[seg];
1114
1115		/*
1116		 * If any segment has a negative length, or the cumulative
1117		 * length ever wraps negative then return -EINVAL.
1118		 */
1119		cnt += iv->iov_len;
1120		if (unlikely((ssize_t)(cnt|iv->iov_len) < 0))
1121			return -EINVAL;
1122		if (access_ok(access_flags, iv->iov_base, iv->iov_len))
1123			continue;
1124		if (seg == 0)
1125			return -EFAULT;
1126		*nr_segs = seg;
1127		cnt -= iv->iov_len;	/* This segment is no good */
1128		break;
1129	}
1130	*count = cnt;
1131	return 0;
1132}
1133EXPORT_SYMBOL(generic_segment_checks);
1134
1135/**
1136 * generic_file_aio_read - generic filesystem read routine
1137 * @iocb:	kernel I/O control block
1138 * @iov:	io vector request
1139 * @nr_segs:	number of segments in the iovec
1140 * @pos:	current file position
1141 *
1142 * This is the "read()" routine for all filesystems
1143 * that can use the page cache directly.
1144 */
1145ssize_t
1146generic_file_aio_read(struct kiocb *iocb, const struct iovec *iov,
1147		unsigned long nr_segs, loff_t pos)
1148{
1149	struct file *filp = iocb->ki_filp;
1150	ssize_t retval;
1151	unsigned long seg;
1152	size_t count;
1153	loff_t *ppos = &iocb->ki_pos;
1154
1155	count = 0;
1156	retval = generic_segment_checks(iov, &nr_segs, &count, VERIFY_WRITE);
1157	if (retval)
1158		return retval;
1159
1160	/* coalesce the iovecs and go direct-to-BIO for O_DIRECT */
1161	if (filp->f_flags & O_DIRECT) {
1162		loff_t size;
1163		struct address_space *mapping;
1164		struct inode *inode;
1165
1166		mapping = filp->f_mapping;
1167		inode = mapping->host;
1168		retval = 0;
1169		if (!count)
1170			goto out; /* skip atime */
1171		size = i_size_read(inode);
1172		if (pos < size) {
1173			retval = generic_file_direct_IO(READ, iocb,
1174						iov, pos, nr_segs);
1175			if (retval > 0)
1176				*ppos = pos + retval;
1177		}
1178		if (likely(retval != 0)) {
1179			file_accessed(filp);
1180			goto out;
1181		}
1182	}
1183
1184	retval = 0;
1185	if (count) {
1186		for (seg = 0; seg < nr_segs; seg++) {
1187			read_descriptor_t desc;
1188
1189			desc.written = 0;
1190			desc.arg.buf = iov[seg].iov_base;
1191			desc.count = iov[seg].iov_len;
1192			if (desc.count == 0)
1193				continue;
1194			desc.error = 0;
1195			do_generic_file_read(filp,ppos,&desc,file_read_actor);
1196			retval += desc.written;
1197			if (desc.error) {
1198				retval = retval ?: desc.error;
1199				break;
1200			}
1201			if (desc.count > 0)
1202				break;
1203		}
1204	}
1205out:
1206	return retval;
1207}
1208EXPORT_SYMBOL(generic_file_aio_read);
1209
1210static ssize_t
1211do_readahead(struct address_space *mapping, struct file *filp,
1212	     pgoff_t index, unsigned long nr)
1213{
1214	if (!mapping || !mapping->a_ops || !mapping->a_ops->readpage)
1215		return -EINVAL;
1216
1217	force_page_cache_readahead(mapping, filp, index,
1218					max_sane_readahead(nr));
1219	return 0;
1220}
1221
1222asmlinkage ssize_t sys_readahead(int fd, loff_t offset, size_t count)
1223{
1224	ssize_t ret;
1225	struct file *file;
1226
1227	ret = -EBADF;
1228	file = fget(fd);
1229	if (file) {
1230		if (file->f_mode & FMODE_READ) {
1231			struct address_space *mapping = file->f_mapping;
1232			pgoff_t start = offset >> PAGE_CACHE_SHIFT;
1233			pgoff_t end = (offset + count - 1) >> PAGE_CACHE_SHIFT;
1234			unsigned long len = end - start + 1;
1235			ret = do_readahead(mapping, file, start, len);
1236		}
1237		fput(file);
1238	}
1239	return ret;
1240}
1241
1242#ifdef CONFIG_MMU
1243/**
1244 * page_cache_read - adds requested page to the page cache if not already there
1245 * @file:	file to read
1246 * @offset:	page index
1247 *
1248 * This adds the requested page to the page cache if it isn't already there,
1249 * and schedules an I/O to read in its contents from disk.
1250 */
1251static int fastcall page_cache_read(struct file * file, pgoff_t offset)
1252{
1253	struct address_space *mapping = file->f_mapping;
1254	struct page *page;
1255	int ret;
1256
1257	do {
1258		page = page_cache_alloc_cold(mapping);
1259		if (!page)
1260			return -ENOMEM;
1261
1262		ret = add_to_page_cache_lru(page, mapping, offset, GFP_KERNEL);
1263		if (ret == 0)
1264			ret = mapping->a_ops->readpage(file, page);
1265		else if (ret == -EEXIST)
1266			ret = 0; /* losing race to add is OK */
1267
1268		page_cache_release(page);
1269
1270	} while (ret == AOP_TRUNCATED_PAGE);
1271
1272	return ret;
1273}
1274
1275#define MMAP_LOTSAMISS  (100)
1276
1277/**
1278 * filemap_fault - read in file data for page fault handling
1279 * @vma:	vma in which the fault was taken
1280 * @vmf:	struct vm_fault containing details of the fault
1281 *
1282 * filemap_fault() is invoked via the vma operations vector for a
1283 * mapped memory region to read in file data during a page fault.
1284 *
1285 * The goto's are kind of ugly, but this streamlines the normal case of having
1286 * it in the page cache, and handles the special cases reasonably without
1287 * having a lot of duplicated code.
1288 */
1289int filemap_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
1290{
1291	int error;
1292	struct file *file = vma->vm_file;
1293	struct address_space *mapping = file->f_mapping;
1294	struct file_ra_state *ra = &file->f_ra;
1295	struct inode *inode = mapping->host;
1296	struct page *page;
1297	unsigned long size;
1298	int did_readaround = 0;
1299	int ret = 0;
1300
1301	size = (i_size_read(inode) + PAGE_CACHE_SIZE - 1) >> PAGE_CACHE_SHIFT;
1302	if (vmf->pgoff >= size)
1303		return VM_FAULT_SIGBUS;
1304
1305	/* If we don't want any read-ahead, don't bother */
1306	if (VM_RandomReadHint(vma))
1307		goto no_cached_page;
1308
1309	/*
1310	 * Do we have something in the page cache already?
1311	 */
1312retry_find:
1313	page = find_lock_page(mapping, vmf->pgoff);
1314	/*
1315	 * For sequential accesses, we use the generic readahead logic.
1316	 */
1317	if (VM_SequentialReadHint(vma)) {
1318		if (!page) {
1319			page_cache_sync_readahead(mapping, ra, file,
1320							   vmf->pgoff, 1);
1321			page = find_lock_page(mapping, vmf->pgoff);
1322			if (!page)
1323				goto no_cached_page;
1324		}
1325		if (PageReadahead(page)) {
1326			page_cache_async_readahead(mapping, ra, file, page,
1327							   vmf->pgoff, 1);
1328		}
1329	}
1330
1331	if (!page) {
1332		unsigned long ra_pages;
1333
1334		ra->mmap_miss++;
1335
1336		/*
1337		 * Do we miss much more than hit in this file? If so,
1338		 * stop bothering with read-ahead. It will only hurt.
1339		 */
1340		if (ra->mmap_miss > MMAP_LOTSAMISS)
1341			goto no_cached_page;
1342
1343		/*
1344		 * To keep the pgmajfault counter straight, we need to
1345		 * check did_readaround, as this is an inner loop.
1346		 */
1347		if (!did_readaround) {
1348			ret = VM_FAULT_MAJOR;
1349			count_vm_event(PGMAJFAULT);
1350		}
1351		did_readaround = 1;
1352		ra_pages = max_sane_readahead(file->f_ra.ra_pages);
1353		if (ra_pages) {
1354			pgoff_t start = 0;
1355
1356			if (vmf->pgoff > ra_pages / 2)
1357				start = vmf->pgoff - ra_pages / 2;
1358			do_page_cache_readahead(mapping, file, start, ra_pages);
1359		}
1360		page = find_lock_page(mapping, vmf->pgoff);
1361		if (!page)
1362			goto no_cached_page;
1363	}
1364
1365	if (!did_readaround)
1366		ra->mmap_miss--;
1367
1368	/*
1369	 * We have a locked page in the page cache, now we need to check
1370	 * that it's up-to-date. If not, it is going to be due to an error.
1371	 */
1372	if (unlikely(!PageUptodate(page)))
1373		goto page_not_uptodate;
1374
1375	/* Must recheck i_size under page lock */
1376	size = (i_size_read(inode) + PAGE_CACHE_SIZE - 1) >> PAGE_CACHE_SHIFT;
1377	if (unlikely(vmf->pgoff >= size)) {
1378		unlock_page(page);
1379		page_cache_release(page);
1380		return VM_FAULT_SIGBUS;
1381	}
1382
1383	/*
1384	 * Found the page and have a reference on it.
1385	 */
1386	mark_page_accessed(page);
1387	ra->prev_pos = (loff_t)page->index << PAGE_CACHE_SHIFT;
1388	vmf->page = page;
1389	return ret | VM_FAULT_LOCKED;
1390
1391no_cached_page:
1392	/*
1393	 * We're only likely to ever get here if MADV_RANDOM is in
1394	 * effect.
1395	 */
1396	error = page_cache_read(file, vmf->pgoff);
1397
1398	/*
1399	 * The page we want has now been added to the page cache.
1400	 * In the unlikely event that someone removed it in the
1401	 * meantime, we'll just come back here and read it again.
1402	 */
1403	if (error >= 0)
1404		goto retry_find;
1405
1406	/*
1407	 * An error return from page_cache_read can result if the
1408	 * system is low on memory, or a problem occurs while trying
1409	 * to schedule I/O.
1410	 */
1411	if (error == -ENOMEM)
1412		return VM_FAULT_OOM;
1413	return VM_FAULT_SIGBUS;
1414
1415page_not_uptodate:
1416	/* IO error path */
1417	if (!did_readaround) {
1418		ret = VM_FAULT_MAJOR;
1419		count_vm_event(PGMAJFAULT);
1420	}
1421
1422	/*
1423	 * Umm, take care of errors if the page isn't up-to-date.
1424	 * Try to re-read it _once_. We do this synchronously,
1425	 * because there really aren't any performance issues here
1426	 * and we need to check for errors.
1427	 */
1428	ClearPageError(page);
1429	error = mapping->a_ops->readpage(file, page);
1430	page_cache_release(page);
1431
1432	if (!error || error == AOP_TRUNCATED_PAGE)
1433		goto retry_find;
1434
1435	/* Things didn't work out. Return zero to tell the mm layer so. */
1436	shrink_readahead_size_eio(file, ra);
1437	return VM_FAULT_SIGBUS;
1438}
1439EXPORT_SYMBOL(filemap_fault);
1440
1441struct vm_operations_struct generic_file_vm_ops = {
1442	.fault		= filemap_fault,
1443};
1444
1445/* This is used for a general mmap of a disk file */
1446
1447int generic_file_mmap(struct file * file, struct vm_area_struct * vma)
1448{
1449	struct address_space *mapping = file->f_mapping;
1450
1451	if (!mapping->a_ops->readpage)
1452		return -ENOEXEC;
1453	file_accessed(file);
1454	vma->vm_ops = &generic_file_vm_ops;
1455	vma->vm_flags |= VM_CAN_NONLINEAR;
1456	return 0;
1457}
1458
1459/*
1460 * This is for filesystems which do not implement ->writepage.
1461 */
1462int generic_file_readonly_mmap(struct file *file, struct vm_area_struct *vma)
1463{
1464	if ((vma->vm_flags & VM_SHARED) && (vma->vm_flags & VM_MAYWRITE))
1465		return -EINVAL;
1466	return generic_file_mmap(file, vma);
1467}
1468#else
1469int generic_file_mmap(struct file * file, struct vm_area_struct * vma)
1470{
1471	return -ENOSYS;
1472}
1473int generic_file_readonly_mmap(struct file * file, struct vm_area_struct * vma)
1474{
1475	return -ENOSYS;
1476}
1477#endif /* CONFIG_MMU */
1478
1479EXPORT_SYMBOL(generic_file_mmap);
1480EXPORT_SYMBOL(generic_file_readonly_mmap);
1481
1482static struct page *__read_cache_page(struct address_space *mapping,
1483				pgoff_t index,
1484				int (*filler)(void *,struct page*),
1485				void *data)
1486{
1487	struct page *page;
1488	int err;
1489repeat:
1490	page = find_get_page(mapping, index);
1491	if (!page) {
1492		page = page_cache_alloc_cold(mapping);
1493		if (!page)
1494			return ERR_PTR(-ENOMEM);
1495		err = add_to_page_cache_lru(page, mapping, index, GFP_KERNEL);
1496		if (unlikely(err)) {
1497			page_cache_release(page);
1498			if (err == -EEXIST)
1499				goto repeat;
1500			/* Presumably ENOMEM for radix tree node */
1501			return ERR_PTR(err);
1502		}
1503		err = filler(data, page);
1504		if (err < 0) {
1505			page_cache_release(page);
1506			page = ERR_PTR(err);
1507		}
1508	}
1509	return page;
1510}
1511
1512/*
1513 * Same as read_cache_page, but don't wait for page to become unlocked
1514 * after submitting it to the filler.
1515 */
1516struct page *read_cache_page_async(struct address_space *mapping,
1517				pgoff_t index,
1518				int (*filler)(void *,struct page*),
1519				void *data)
1520{
1521	struct page *page;
1522	int err;
1523
1524retry:
1525	page = __read_cache_page(mapping, index, filler, data);
1526	if (IS_ERR(page))
1527		return page;
1528	if (PageUptodate(page))
1529		goto out;
1530
1531	lock_page(page);
1532	if (!page->mapping) {
1533		unlock_page(page);
1534		page_cache_release(page);
1535		goto retry;
1536	}
1537	if (PageUptodate(page)) {
1538		unlock_page(page);
1539		goto out;
1540	}
1541	err = filler(data, page);
1542	if (err < 0) {
1543		page_cache_release(page);
1544		return ERR_PTR(err);
1545	}
1546out:
1547	mark_page_accessed(page);
1548	return page;
1549}
1550EXPORT_SYMBOL(read_cache_page_async);
1551
1552/**
1553 * read_cache_page - read into page cache, fill it if needed
1554 * @mapping:	the page's address_space
1555 * @index:	the page index
1556 * @filler:	function to perform the read
1557 * @data:	destination for read data
1558 *
1559 * Read into the page cache. If a page already exists, and PageUptodate() is
1560 * not set, try to fill the page then wait for it to become unlocked.
1561 *
1562 * If the page does not get brought uptodate, return -EIO.
1563 */
1564struct page *read_cache_page(struct address_space *mapping,
1565				pgoff_t index,
1566				int (*filler)(void *,struct page*),
1567				void *data)
1568{
1569	struct page *page;
1570
1571	page = read_cache_page_async(mapping, index, filler, data);
1572	if (IS_ERR(page))
1573		goto out;
1574	wait_on_page_locked(page);
1575	if (!PageUptodate(page)) {
1576		page_cache_release(page);
1577		page = ERR_PTR(-EIO);
1578	}
1579 out:
1580	return page;
1581}
1582EXPORT_SYMBOL(read_cache_page);
1583
1584/*
1585 * The logic we want is
1586 *
1587 *	if suid or (sgid and xgrp)
1588 *		remove privs
1589 */
1590int should_remove_suid(struct dentry *dentry)
1591{
1592	mode_t mode = dentry->d_inode->i_mode;
1593	int kill = 0;
1594
1595	/* suid always must be killed */
1596	if (unlikely(mode & S_ISUID))
1597		kill = ATTR_KILL_SUID;
1598
1599	/*
1600	 * sgid without any exec bits is just a mandatory locking mark; leave
1601	 * it alone.  If some exec bits are set, it's a real sgid; kill it.
1602	 */
1603	if (unlikely((mode & S_ISGID) && (mode & S_IXGRP)))
1604		kill |= ATTR_KILL_SGID;
1605
1606	if (unlikely(kill && !capable(CAP_FSETID)))
1607		return kill;
1608
1609	return 0;
1610}
1611EXPORT_SYMBOL(should_remove_suid);
1612
1613int __remove_suid(struct dentry *dentry, int kill)
1614{
1615	struct iattr newattrs;
1616
1617	newattrs.ia_valid = ATTR_FORCE | kill;
1618	return notify_change(dentry, &newattrs);
1619}
1620
1621int remove_suid(struct dentry *dentry)
1622{
1623	int killsuid = should_remove_suid(dentry);
1624	int killpriv = security_inode_need_killpriv(dentry);
1625	int error = 0;
1626
1627	if (killpriv < 0)
1628		return killpriv;
1629	if (killpriv)
1630		error = security_inode_killpriv(dentry);
1631	if (!error && killsuid)
1632		error = __remove_suid(dentry, killsuid);
1633
1634	return error;
1635}
1636EXPORT_SYMBOL(remove_suid);
1637
1638static size_t __iovec_copy_from_user_inatomic(char *vaddr,
1639			const struct iovec *iov, size_t base, size_t bytes)
1640{
1641	size_t copied = 0, left = 0;
1642
1643	while (bytes) {
1644		char __user *buf = iov->iov_base + base;
1645		int copy = min(bytes, iov->iov_len - base);
1646
1647		base = 0;
1648		left = __copy_from_user_inatomic_nocache(vaddr, buf, copy);
1649		copied += copy;
1650		bytes -= copy;
1651		vaddr += copy;
1652		iov++;
1653
1654		if (unlikely(left))
1655			break;
1656	}
1657	return copied - left;
1658}
1659
1660/*
1661 * Copy as much as we can into the page and return the number of bytes which
1662 * were sucessfully copied.  If a fault is encountered then return the number of
1663 * bytes which were copied.
1664 */
1665size_t iov_iter_copy_from_user_atomic(struct page *page,
1666		struct iov_iter *i, unsigned long offset, size_t bytes)
1667{
1668	char *kaddr;
1669	size_t copied;
1670
1671	BUG_ON(!in_atomic());
1672	kaddr = kmap_atomic(page, KM_USER0);
1673	if (likely(i->nr_segs == 1)) {
1674		int left;
1675		char __user *buf = i->iov->iov_base + i->iov_offset;
1676		left = __copy_from_user_inatomic_nocache(kaddr + offset,
1677							buf, bytes);
1678		copied = bytes - left;
1679	} else {
1680		copied = __iovec_copy_from_user_inatomic(kaddr + offset,
1681						i->iov, i->iov_offset, bytes);
1682	}
1683	kunmap_atomic(kaddr, KM_USER0);
1684
1685	return copied;
1686}
1687EXPORT_SYMBOL(iov_iter_copy_from_user_atomic);
1688
1689/*
1690 * This has the same sideeffects and return value as
1691 * iov_iter_copy_from_user_atomic().
1692 * The difference is that it attempts to resolve faults.
1693 * Page must not be locked.
1694 */
1695size_t iov_iter_copy_from_user(struct page *page,
1696		struct iov_iter *i, unsigned long offset, size_t bytes)
1697{
1698	char *kaddr;
1699	size_t copied;
1700
1701	kaddr = kmap(page);
1702	if (likely(i->nr_segs == 1)) {
1703		int left;
1704		char __user *buf = i->iov->iov_base + i->iov_offset;
1705		left = __copy_from_user_nocache(kaddr + offset, buf, bytes);
1706		copied = bytes - left;
1707	} else {
1708		copied = __iovec_copy_from_user_inatomic(kaddr + offset,
1709						i->iov, i->iov_offset, bytes);
1710	}
1711	kunmap(page);
1712	return copied;
1713}
1714EXPORT_SYMBOL(iov_iter_copy_from_user);
1715
1716static void __iov_iter_advance_iov(struct iov_iter *i, size_t bytes)
1717{
1718	if (likely(i->nr_segs == 1)) {
1719		i->iov_offset += bytes;
1720	} else {
1721		const struct iovec *iov = i->iov;
1722		size_t base = i->iov_offset;
1723
1724		while (bytes) {
1725			int copy = min(bytes, iov->iov_len - base);
1726
1727			bytes -= copy;
1728			base += copy;
1729			if (iov->iov_len == base) {
1730				iov++;
1731				base = 0;
1732			}
1733		}
1734		i->iov = iov;
1735		i->iov_offset = base;
1736	}
1737}
1738
1739void iov_iter_advance(struct iov_iter *i, size_t bytes)
1740{
1741	BUG_ON(i->count < bytes);
1742
1743	__iov_iter_advance_iov(i, bytes);
1744	i->count -= bytes;
1745}
1746EXPORT_SYMBOL(iov_iter_advance);
1747
1748/*
1749 * Fault in the first iovec of the given iov_iter, to a maximum length
1750 * of bytes. Returns 0 on success, or non-zero if the memory could not be
1751 * accessed (ie. because it is an invalid address).
1752 *
1753 * writev-intensive code may want this to prefault several iovecs -- that
1754 * would be possible (callers must not rely on the fact that _only_ the
1755 * first iovec will be faulted with the current implementation).
1756 */
1757int iov_iter_fault_in_readable(struct iov_iter *i, size_t bytes)
1758{
1759	char __user *buf = i->iov->iov_base + i->iov_offset;
1760	bytes = min(bytes, i->iov->iov_len - i->iov_offset);
1761	return fault_in_pages_readable(buf, bytes);
1762}
1763EXPORT_SYMBOL(iov_iter_fault_in_readable);
1764
1765/*
1766 * Return the count of just the current iov_iter segment.
1767 */
1768size_t iov_iter_single_seg_count(struct iov_iter *i)
1769{
1770	const struct iovec *iov = i->iov;
1771	if (i->nr_segs == 1)
1772		return i->count;
1773	else
1774		return min(i->count, iov->iov_len - i->iov_offset);
1775}
1776EXPORT_SYMBOL(iov_iter_single_seg_count);
1777
1778/*
1779 * Performs necessary checks before doing a write
1780 *
1781 * Can adjust writing position or amount of bytes to write.
1782 * Returns appropriate error code that caller should return or
1783 * zero in case that write should be allowed.
1784 */
1785inline int generic_write_checks(struct file *file, loff_t *pos, size_t *count, int isblk)
1786{
1787	struct inode *inode = file->f_mapping->host;
1788	unsigned long limit = current->signal->rlim[RLIMIT_FSIZE].rlim_cur;
1789
1790        if (unlikely(*pos < 0))
1791                return -EINVAL;
1792
1793	if (!isblk) {
1794		/* FIXME: this is for backwards compatibility with 2.4 */
1795		if (file->f_flags & O_APPEND)
1796                        *pos = i_size_read(inode);
1797
1798		if (limit != RLIM_INFINITY) {
1799			if (*pos >= limit) {
1800				send_sig(SIGXFSZ, current, 0);
1801				return -EFBIG;
1802			}
1803			if (*count > limit - (typeof(limit))*pos) {
1804				*count = limit - (typeof(limit))*pos;
1805			}
1806		}
1807	}
1808
1809	/*
1810	 * LFS rule
1811	 */
1812	if (unlikely(*pos + *count > MAX_NON_LFS &&
1813				!(file->f_flags & O_LARGEFILE))) {
1814		if (*pos >= MAX_NON_LFS) {
1815			return -EFBIG;
1816		}
1817		if (*count > MAX_NON_LFS - (unsigned long)*pos) {
1818			*count = MAX_NON_LFS - (unsigned long)*pos;
1819		}
1820	}
1821
1822	/*
1823	 * Are we about to exceed the fs block limit ?
1824	 *
1825	 * If we have written data it becomes a short write.  If we have
1826	 * exceeded without writing data we send a signal and return EFBIG.
1827	 * Linus frestrict idea will clean these up nicely..
1828	 */
1829	if (likely(!isblk)) {
1830		if (unlikely(*pos >= inode->i_sb->s_maxbytes)) {
1831			if (*count || *pos > inode->i_sb->s_maxbytes) {
1832				return -EFBIG;
1833			}
1834			/* zero-length writes at ->s_maxbytes are OK */
1835		}
1836
1837		if (unlikely(*pos + *count > inode->i_sb->s_maxbytes))
1838			*count = inode->i_sb->s_maxbytes - *pos;
1839	} else {
1840#ifdef CONFIG_BLOCK
1841		loff_t isize;
1842		if (bdev_read_only(I_BDEV(inode)))
1843			return -EPERM;
1844		isize = i_size_read(inode);
1845		if (*pos >= isize) {
1846			if (*count || *pos > isize)
1847				return -ENOSPC;
1848		}
1849
1850		if (*pos + *count > isize)
1851			*count = isize - *pos;
1852#else
1853		return -EPERM;
1854#endif
1855	}
1856	return 0;
1857}
1858EXPORT_SYMBOL(generic_write_checks);
1859
1860int pagecache_write_begin(struct file *file, struct address_space *mapping,
1861				loff_t pos, unsigned len, unsigned flags,
1862				struct page **pagep, void **fsdata)
1863{
1864	const struct address_space_operations *aops = mapping->a_ops;
1865
1866	if (aops->write_begin) {
1867		return aops->write_begin(file, mapping, pos, len, flags,
1868							pagep, fsdata);
1869	} else {
1870		int ret;
1871		pgoff_t index = pos >> PAGE_CACHE_SHIFT;
1872		unsigned offset = pos & (PAGE_CACHE_SIZE - 1);
1873		struct inode *inode = mapping->host;
1874		struct page *page;
1875again:
1876		page = __grab_cache_page(mapping, index);
1877		*pagep = page;
1878		if (!page)
1879			return -ENOMEM;
1880
1881		if (flags & AOP_FLAG_UNINTERRUPTIBLE && !PageUptodate(page)) {
1882			/*
1883			 * There is no way to resolve a short write situation
1884			 * for a !Uptodate page (except by double copying in
1885			 * the caller done by generic_perform_write_2copy).
1886			 *
1887			 * Instead, we have to bring it uptodate here.
1888			 */
1889			ret = aops->readpage(file, page);
1890			page_cache_release(page);
1891			if (ret) {
1892				if (ret == AOP_TRUNCATED_PAGE)
1893					goto again;
1894				return ret;
1895			}
1896			goto again;
1897		}
1898
1899		ret = aops->prepare_write(file, page, offset, offset+len);
1900		if (ret) {
1901			unlock_page(page);
1902			page_cache_release(page);
1903			if (pos + len > inode->i_size)
1904				vmtruncate(inode, inode->i_size);
1905		}
1906		return ret;
1907	}
1908}
1909EXPORT_SYMBOL(pagecache_write_begin);
1910
1911int pagecache_write_end(struct file *file, struct address_space *mapping,
1912				loff_t pos, unsigned len, unsigned copied,
1913				struct page *page, void *fsdata)
1914{
1915	const struct address_space_operations *aops = mapping->a_ops;
1916	int ret;
1917
1918	if (aops->write_end) {
1919		mark_page_accessed(page);
1920		ret = aops->write_end(file, mapping, pos, len, copied,
1921							page, fsdata);
1922	} else {
1923		unsigned offset = pos & (PAGE_CACHE_SIZE - 1);
1924		struct inode *inode = mapping->host;
1925
1926		flush_dcache_page(page);
1927		ret = aops->commit_write(file, page, offset, offset+len);
1928		unlock_page(page);
1929		mark_page_accessed(page);
1930		page_cache_release(page);
1931
1932		if (ret < 0) {
1933			if (pos + len > inode->i_size)
1934				vmtruncate(inode, inode->i_size);
1935		} else if (ret > 0)
1936			ret = min_t(size_t, copied, ret);
1937		else
1938			ret = copied;
1939	}
1940
1941	return ret;
1942}
1943EXPORT_SYMBOL(pagecache_write_end);
1944
1945ssize_t
1946generic_file_direct_write(struct kiocb *iocb, const struct iovec *iov,
1947		unsigned long *nr_segs, loff_t pos, loff_t *ppos,
1948		size_t count, size_t ocount)
1949{
1950	struct file	*file = iocb->ki_filp;
1951	struct address_space *mapping = file->f_mapping;
1952	struct inode	*inode = mapping->host;
1953	ssize_t		written;
1954
1955	if (count != ocount)
1956		*nr_segs = iov_shorten((struct iovec *)iov, *nr_segs, count);
1957
1958	written = generic_file_direct_IO(WRITE, iocb, iov, pos, *nr_segs);
1959	if (written > 0) {
1960		loff_t end = pos + written;
1961		if (end > i_size_read(inode) && !S_ISBLK(inode->i_mode)) {
1962			i_size_write(inode,  end);
1963			mark_inode_dirty(inode);
1964		}
1965		*ppos = end;
1966	}
1967
1968	/*
1969	 * Sync the fs metadata but not the minor inode changes and
1970	 * of course not the data as we did direct DMA for the IO.
1971	 * i_mutex is held, which protects generic_osync_inode() from
1972	 * livelocking.  AIO O_DIRECT ops attempt to sync metadata here.
1973	 */
1974	if ((written >= 0 || written == -EIOCBQUEUED) &&
1975	    ((file->f_flags & O_SYNC) || IS_SYNC(inode))) {
1976		int err = generic_osync_inode(inode, mapping, OSYNC_METADATA);
1977		if (err < 0)
1978			written = err;
1979	}
1980	return written;
1981}
1982EXPORT_SYMBOL(generic_file_direct_write);
1983
1984/*
1985 * Find or create a page at the given pagecache position. Return the locked
1986 * page. This function is specifically for buffered writes.
1987 */
1988struct page *__grab_cache_page(struct address_space *mapping, pgoff_t index)
1989{
1990	int status;
1991	struct page *page;
1992repeat:
1993	page = find_lock_page(mapping, index);
1994	if (likely(page))
1995		return page;
1996
1997	page = page_cache_alloc(mapping);
1998	if (!page)
1999		return NULL;
2000	status = add_to_page_cache_lru(page, mapping, index, GFP_KERNEL);
2001	if (unlikely(status)) {
2002		page_cache_release(page);
2003		if (status == -EEXIST)
2004			goto repeat;
2005		return NULL;
2006	}
2007	return page;
2008}
2009EXPORT_SYMBOL(__grab_cache_page);
2010
2011static ssize_t generic_perform_write_2copy(struct file *file,
2012				struct iov_iter *i, loff_t pos)
2013{
2014	struct address_space *mapping = file->f_mapping;
2015	const struct address_space_operations *a_ops = mapping->a_ops;
2016	struct inode *inode = mapping->host;
2017	long status = 0;
2018	ssize_t written = 0;
2019
2020	do {
2021		struct page *src_page;
2022		struct page *page;
2023		pgoff_t index;		/* Pagecache index for current page */
2024		unsigned long offset;	/* Offset into pagecache page */
2025		unsigned long bytes;	/* Bytes to write to page */
2026		size_t copied;		/* Bytes copied from user */
2027
2028		offset = (pos & (PAGE_CACHE_SIZE - 1));
2029		index = pos >> PAGE_CACHE_SHIFT;
2030		bytes = min_t(unsigned long, PAGE_CACHE_SIZE - offset,
2031						iov_iter_count(i));
2032
2033		/*
2034		 * a non-NULL src_page indicates that we're doing the
2035		 * copy via get_user_pages and kmap.
2036		 */
2037		src_page = NULL;
2038
2039		/*
2040		 * Bring in the user page that we will copy from _first_.
2041		 * Otherwise there's a nasty deadlock on copying from the
2042		 * same page as we're writing to, without it being marked
2043		 * up-to-date.
2044		 *
2045		 * Not only is this an optimisation, but it is also required
2046		 * to check that the address is actually valid, when atomic
2047		 * usercopies are used, below.
2048		 */
2049		if (unlikely(iov_iter_fault_in_readable(i, bytes))) {
2050			status = -EFAULT;
2051			break;
2052		}
2053
2054		page = __grab_cache_page(mapping, index);
2055		if (!page) {
2056			status = -ENOMEM;
2057			break;
2058		}
2059
2060		/*
2061		 * non-uptodate pages cannot cope with short copies, and we
2062		 * cannot take a pagefault with the destination page locked.
2063		 * So pin the source page to copy it.
2064		 */
2065		if (!PageUptodate(page) && !segment_eq(get_fs(), KERNEL_DS)) {
2066			unlock_page(page);
2067
2068			src_page = alloc_page(GFP_KERNEL);
2069			if (!src_page) {
2070				page_cache_release(page);
2071				status = -ENOMEM;
2072				break;
2073			}
2074
2075			/*
2076			 * Cannot get_user_pages with a page locked for the
2077			 * same reason as we can't take a page fault with a
2078			 * page locked (as explained below).
2079			 */
2080			copied = iov_iter_copy_from_user(src_page, i,
2081								offset, bytes);
2082			if (unlikely(copied == 0)) {
2083				status = -EFAULT;
2084				page_cache_release(page);
2085				page_cache_release(src_page);
2086				break;
2087			}
2088			bytes = copied;
2089
2090			lock_page(page);
2091			/*
2092			 * Can't handle the page going uptodate here, because
2093			 * that means we would use non-atomic usercopies, which
2094			 * zero out the tail of the page, which can cause
2095			 * zeroes to become transiently visible. We could just
2096			 * use a non-zeroing copy, but the APIs aren't too
2097			 * consistent.
2098			 */
2099			if (unlikely(!page->mapping || PageUptodate(page))) {
2100				unlock_page(page);
2101				page_cache_release(page);
2102				page_cache_release(src_page);
2103				continue;
2104			}
2105		}
2106
2107		status = a_ops->prepare_write(file, page, offset, offset+bytes);
2108		if (unlikely(status))
2109			goto fs_write_aop_error;
2110
2111		if (!src_page) {
2112			/*
2113			 * Must not enter the pagefault handler here, because
2114			 * we hold the page lock, so we might recursively
2115			 * deadlock on the same lock, or get an ABBA deadlock
2116			 * against a different lock, or against the mmap_sem
2117			 * (which nests outside the page lock).  So increment
2118			 * preempt count, and use _atomic usercopies.
2119			 *
2120			 * The page is uptodate so we are OK to encounter a
2121			 * short copy: if unmodified parts of the page are
2122			 * marked dirty and written out to disk, it doesn't
2123			 * really matter.
2124			 */
2125			pagefault_disable();
2126			copied = iov_iter_copy_from_user_atomic(page, i,
2127								offset, bytes);
2128			pagefault_enable();
2129		} else {
2130			void *src, *dst;
2131			src = kmap_atomic(src_page, KM_USER0);
2132			dst = kmap_atomic(page, KM_USER1);
2133			memcpy(dst + offset, src + offset, bytes);
2134			kunmap_atomic(dst, KM_USER1);
2135			kunmap_atomic(src, KM_USER0);
2136			copied = bytes;
2137		}
2138		flush_dcache_page(page);
2139
2140		status = a_ops->commit_write(file, page, offset, offset+bytes);
2141		if (unlikely(status < 0))
2142			goto fs_write_aop_error;
2143		if (unlikely(status > 0)) /* filesystem did partial write */
2144			copied = min_t(size_t, copied, status);
2145
2146		unlock_page(page);
2147		mark_page_accessed(page);
2148		page_cache_release(page);
2149		if (src_page)
2150			page_cache_release(src_page);
2151
2152		iov_iter_advance(i, copied);
2153		pos += copied;
2154		written += copied;
2155
2156		balance_dirty_pages_ratelimited(mapping);
2157		cond_resched();
2158		continue;
2159
2160fs_write_aop_error:
2161		unlock_page(page);
2162		page_cache_release(page);
2163		if (src_page)
2164			page_cache_release(src_page);
2165
2166		/*
2167		 * prepare_write() may have instantiated a few blocks
2168		 * outside i_size.  Trim these off again. Don't need
2169		 * i_size_read because we hold i_mutex.
2170		 */
2171		if (pos + bytes > inode->i_size)
2172			vmtruncate(inode, inode->i_size);
2173		break;
2174	} while (iov_iter_count(i));
2175
2176	return written ? written : status;
2177}
2178
2179static ssize_t generic_perform_write(struct file *file,
2180				struct iov_iter *i, loff_t pos)
2181{
2182	struct address_space *mapping = file->f_mapping;
2183	const struct address_space_operations *a_ops = mapping->a_ops;
2184	long status = 0;
2185	ssize_t written = 0;
2186	unsigned int flags = 0;
2187
2188	/*
2189	 * Copies from kernel address space cannot fail (NFSD is a big user).
2190	 */
2191	if (segment_eq(get_fs(), KERNEL_DS))
2192		flags |= AOP_FLAG_UNINTERRUPTIBLE;
2193
2194	do {
2195		struct page *page;
2196		pgoff_t index;		/* Pagecache index for current page */
2197		unsigned long offset;	/* Offset into pagecache page */
2198		unsigned long bytes;	/* Bytes to write to page */
2199		size_t copied;		/* Bytes copied from user */
2200		void *fsdata;
2201
2202		offset = (pos & (PAGE_CACHE_SIZE - 1));
2203		index = pos >> PAGE_CACHE_SHIFT;
2204		bytes = min_t(unsigned long, PAGE_CACHE_SIZE - offset,
2205						iov_iter_count(i));
2206
2207again:
2208
2209		/*
2210		 * Bring in the user page that we will copy from _first_.
2211		 * Otherwise there's a nasty deadlock on copying from the
2212		 * same page as we're writing to, without it being marked
2213		 * up-to-date.
2214		 *
2215		 * Not only is this an optimisation, but it is also required
2216		 * to check that the address is actually valid, when atomic
2217		 * usercopies are used, below.
2218		 */
2219		if (unlikely(iov_iter_fault_in_readable(i, bytes))) {
2220			status = -EFAULT;
2221			break;
2222		}
2223
2224		status = a_ops->write_begin(file, mapping, pos, bytes, flags,
2225						&page, &fsdata);
2226		if (unlikely(status))
2227			break;
2228
2229		pagefault_disable();
2230		copied = iov_iter_copy_from_user_atomic(page, i, offset, bytes);
2231		pagefault_enable();
2232		flush_dcache_page(page);
2233
2234		status = a_ops->write_end(file, mapping, pos, bytes, copied,
2235						page, fsdata);
2236		if (unlikely(status < 0))
2237			break;
2238		copied = status;
2239
2240		cond_resched();
2241
2242		if (unlikely(copied == 0)) {
2243			/*
2244			 * If we were unable to copy any data at all, we must
2245			 * fall back to a single segment length write.
2246			 *
2247			 * If we didn't fallback here, we could livelock
2248			 * because not all segments in the iov can be copied at
2249			 * once without a pagefault.
2250			 */
2251			bytes = min_t(unsigned long, PAGE_CACHE_SIZE - offset,
2252						iov_iter_single_seg_count(i));
2253			goto again;
2254		}
2255		iov_iter_advance(i, copied);
2256		pos += copied;
2257		written += copied;
2258
2259		balance_dirty_pages_ratelimited(mapping);
2260
2261	} while (iov_iter_count(i));
2262
2263	return written ? written : status;
2264}
2265
2266ssize_t
2267generic_file_buffered_write(struct kiocb *iocb, const struct iovec *iov,
2268		unsigned long nr_segs, loff_t pos, loff_t *ppos,
2269		size_t count, ssize_t written)
2270{
2271	struct file *file = iocb->ki_filp;
2272	struct address_space *mapping = file->f_mapping;
2273	const struct address_space_operations *a_ops = mapping->a_ops;
2274	struct inode *inode = mapping->host;
2275	ssize_t status;
2276	struct iov_iter i;
2277
2278	iov_iter_init(&i, iov, nr_segs, count, written);
2279	if (a_ops->write_begin)
2280		status = generic_perform_write(file, &i, pos);
2281	else
2282		status = generic_perform_write_2copy(file, &i, pos);
2283
2284	if (likely(status >= 0)) {
2285		written += status;
2286		*ppos = pos + status;
2287
2288		/*
2289		 * For now, when the user asks for O_SYNC, we'll actually give
2290		 * O_DSYNC
2291		 */
2292		if (unlikely((file->f_flags & O_SYNC) || IS_SYNC(inode))) {
2293			if (!a_ops->writepage || !is_sync_kiocb(iocb))
2294				status = generic_osync_inode(inode, mapping,
2295						OSYNC_METADATA|OSYNC_DATA);
2296		}
2297  	}
2298
2299	/*
2300	 * If we get here for O_DIRECT writes then we must have fallen through
2301	 * to buffered writes (block instantiation inside i_size).  So we sync
2302	 * the file data here, to try to honour O_DIRECT expectations.
2303	 */
2304	if (unlikely(file->f_flags & O_DIRECT) && written)
2305		status = filemap_write_and_wait(mapping);
2306
2307	return written ? written : status;
2308}
2309EXPORT_SYMBOL(generic_file_buffered_write);
2310
2311static ssize_t
2312__generic_file_aio_write_nolock(struct kiocb *iocb, const struct iovec *iov,
2313				unsigned long nr_segs, loff_t *ppos)
2314{
2315	struct file *file = iocb->ki_filp;
2316	struct address_space * mapping = file->f_mapping;
2317	size_t ocount;		/* original count */
2318	size_t count;		/* after file limit checks */
2319	struct inode 	*inode = mapping->host;
2320	loff_t		pos;
2321	ssize_t		written;
2322	ssize_t		err;
2323
2324	ocount = 0;
2325	err = generic_segment_checks(iov, &nr_segs, &ocount, VERIFY_READ);
2326	if (err)
2327		return err;
2328
2329	count = ocount;
2330	pos = *ppos;
2331
2332	vfs_check_frozen(inode->i_sb, SB_FREEZE_WRITE);
2333
2334	/* We can write back this queue in page reclaim */
2335	current->backing_dev_info = mapping->backing_dev_info;
2336	written = 0;
2337
2338	err = generic_write_checks(file, &pos, &count, S_ISBLK(inode->i_mode));
2339	if (err)
2340		goto out;
2341
2342	if (count == 0)
2343		goto out;
2344
2345	err = remove_suid(file->f_path.dentry);
2346	if (err)
2347		goto out;
2348
2349	file_update_time(file);
2350
2351	/* coalesce the iovecs and go direct-to-BIO for O_DIRECT */
2352	if (unlikely(file->f_flags & O_DIRECT)) {
2353		loff_t endbyte;
2354		ssize_t written_buffered;
2355
2356		written = generic_file_direct_write(iocb, iov, &nr_segs, pos,
2357							ppos, count, ocount);
2358		if (written < 0 || written == count)
2359			goto out;
2360		/*
2361		 * direct-io write to a hole: fall through to buffered I/O
2362		 * for completing the rest of the request.
2363		 */
2364		pos += written;
2365		count -= written;
2366		written_buffered = generic_file_buffered_write(iocb, iov,
2367						nr_segs, pos, ppos, count,
2368						written);
2369		/*
2370		 * If generic_file_buffered_write() retuned a synchronous error
2371		 * then we want to return the number of bytes which were
2372		 * direct-written, or the error code if that was zero.  Note
2373		 * that this differs from normal direct-io semantics, which
2374		 * will return -EFOO even if some bytes were written.
2375		 */
2376		if (written_buffered < 0) {
2377			err = written_buffered;
2378			goto out;
2379		}
2380
2381		/*
2382		 * We need to ensure that the page cache pages are written to
2383		 * disk and invalidated to preserve the expected O_DIRECT
2384		 * semantics.
2385		 */
2386		endbyte = pos + written_buffered - written - 1;
2387		err = do_sync_mapping_range(file->f_mapping, pos, endbyte,
2388					    SYNC_FILE_RANGE_WAIT_BEFORE|
2389					    SYNC_FILE_RANGE_WRITE|
2390					    SYNC_FILE_RANGE_WAIT_AFTER);
2391		if (err == 0) {
2392			written = written_buffered;
2393			invalidate_mapping_pages(mapping,
2394						 pos >> PAGE_CACHE_SHIFT,
2395						 endbyte >> PAGE_CACHE_SHIFT);
2396		} else {
2397			/*
2398			 * We don't know how much we wrote, so just return
2399			 * the number of bytes which were direct-written
2400			 */
2401		}
2402	} else {
2403		written = generic_file_buffered_write(iocb, iov, nr_segs,
2404				pos, ppos, count, written);
2405	}
2406out:
2407	current->backing_dev_info = NULL;
2408	return written ? written : err;
2409}
2410
2411ssize_t generic_file_aio_write_nolock(struct kiocb *iocb,
2412		const struct iovec *iov, unsigned long nr_segs, loff_t pos)
2413{
2414	struct file *file = iocb->ki_filp;
2415	struct address_space *mapping = file->f_mapping;
2416	struct inode *inode = mapping->host;
2417	ssize_t ret;
2418
2419	BUG_ON(iocb->ki_pos != pos);
2420
2421	ret = __generic_file_aio_write_nolock(iocb, iov, nr_segs,
2422			&iocb->ki_pos);
2423
2424	if (ret > 0 && ((file->f_flags & O_SYNC) || IS_SYNC(inode))) {
2425		ssize_t err;
2426
2427		err = sync_page_range_nolock(inode, mapping, pos, ret);
2428		if (err < 0)
2429			ret = err;
2430	}
2431	return ret;
2432}
2433EXPORT_SYMBOL(generic_file_aio_write_nolock);
2434
2435ssize_t generic_file_aio_write(struct kiocb *iocb, const struct iovec *iov,
2436		unsigned long nr_segs, loff_t pos)
2437{
2438	struct file *file = iocb->ki_filp;
2439	struct address_space *mapping = file->f_mapping;
2440	struct inode *inode = mapping->host;
2441	ssize_t ret;
2442
2443	BUG_ON(iocb->ki_pos != pos);
2444
2445	mutex_lock(&inode->i_mutex);
2446	ret = __generic_file_aio_write_nolock(iocb, iov, nr_segs,
2447			&iocb->ki_pos);
2448	mutex_unlock(&inode->i_mutex);
2449
2450	if (ret > 0 && ((file->f_flags & O_SYNC) || IS_SYNC(inode))) {
2451		ssize_t err;
2452
2453		err = sync_page_range(inode, mapping, pos, ret);
2454		if (err < 0)
2455			ret = err;
2456	}
2457	return ret;
2458}
2459EXPORT_SYMBOL(generic_file_aio_write);
2460
2461/*
2462 * Called under i_mutex for writes to S_ISREG files.   Returns -EIO if something
2463 * went wrong during pagecache shootdown.
2464 */
2465static ssize_t
2466generic_file_direct_IO(int rw, struct kiocb *iocb, const struct iovec *iov,
2467	loff_t offset, unsigned long nr_segs)
2468{
2469	struct file *file = iocb->ki_filp;
2470	struct address_space *mapping = file->f_mapping;
2471	ssize_t retval;
2472	size_t write_len;
2473	pgoff_t end = 0; /* silence gcc */
2474
2475	/*
2476	 * If it's a write, unmap all mmappings of the file up-front.  This
2477	 * will cause any pte dirty bits to be propagated into the pageframes
2478	 * for the subsequent filemap_write_and_wait().
2479	 */
2480	if (rw == WRITE) {
2481		write_len = iov_length(iov, nr_segs);
2482		end = (offset + write_len - 1) >> PAGE_CACHE_SHIFT;
2483	       	if (mapping_mapped(mapping))
2484			unmap_mapping_range(mapping, offset, write_len, 0);
2485	}
2486
2487	retval = filemap_write_and_wait(mapping);
2488	if (retval)
2489		goto out;
2490
2491	/*
2492	 * After a write we want buffered reads to be sure to go to disk to get
2493	 * the new data.  We invalidate clean cached page from the region we're
2494	 * about to write.  We do this *before* the write so that we can return
2495	 * -EIO without clobbering -EIOCBQUEUED from ->direct_IO().
2496	 */
2497	if (rw == WRITE && mapping->nrpages) {
2498		retval = invalidate_inode_pages2_range(mapping,
2499					offset >> PAGE_CACHE_SHIFT, end);
2500		if (retval)
2501			goto out;
2502	}
2503
2504	retval = mapping->a_ops->direct_IO(rw, iocb, iov, offset, nr_segs);
2505
2506	/*
2507	 * Finally, try again to invalidate clean pages which might have been
2508	 * cached by non-direct readahead, or faulted in by get_user_pages()
2509	 * if the source of the write was an mmap'ed region of the file
2510	 * we're writing.  Either one is a pretty crazy thing to do,
2511	 * so we don't support it 100%.  If this invalidation
2512	 * fails, tough, the write still worked...
2513	 */
2514	if (rw == WRITE && mapping->nrpages) {
2515		invalidate_inode_pages2_range(mapping, offset >> PAGE_CACHE_SHIFT, end);
2516	}
2517out:
2518	return retval;
2519}
2520
2521/**
2522 * try_to_release_page() - release old fs-specific metadata on a page
2523 *
2524 * @page: the page which the kernel is trying to free
2525 * @gfp_mask: memory allocation flags (and I/O mode)
2526 *
2527 * The address_space is to try to release any data against the page
2528 * (presumably at page->private).  If the release was successful, return `1'.
2529 * Otherwise return zero.
2530 *
2531 * The @gfp_mask argument specifies whether I/O may be performed to release
2532 * this page (__GFP_IO), and whether the call may block (__GFP_WAIT).
2533 *
2534 * NOTE: @gfp_mask may go away, and this function may become non-blocking.
2535 */
2536int try_to_release_page(struct page *page, gfp_t gfp_mask)
2537{
2538	struct address_space * const mapping = page->mapping;
2539
2540	BUG_ON(!PageLocked(page));
2541	if (PageWriteback(page))
2542		return 0;
2543
2544	if (mapping && mapping->a_ops->releasepage)
2545		return mapping->a_ops->releasepage(page, gfp_mask);
2546	return try_to_free_buffers(page);
2547}
2548
2549EXPORT_SYMBOL(try_to_release_page);
2550