filemap.c revision 8079b1c859c44f27d63da4951f5038a16589a563
1/*
2 *	linux/mm/filemap.c
3 *
4 * Copyright (C) 1994-1999  Linus Torvalds
5 */
6
7/*
8 * This file handles the generic file mmap semantics used by
9 * most "normal" filesystems (but you don't /have/ to use this:
10 * the NFS filesystem used to do this differently, for example)
11 */
12#include <linux/module.h>
13#include <linux/compiler.h>
14#include <linux/fs.h>
15#include <linux/uaccess.h>
16#include <linux/aio.h>
17#include <linux/capability.h>
18#include <linux/kernel_stat.h>
19#include <linux/gfp.h>
20#include <linux/mm.h>
21#include <linux/swap.h>
22#include <linux/mman.h>
23#include <linux/pagemap.h>
24#include <linux/file.h>
25#include <linux/uio.h>
26#include <linux/hash.h>
27#include <linux/writeback.h>
28#include <linux/backing-dev.h>
29#include <linux/pagevec.h>
30#include <linux/blkdev.h>
31#include <linux/security.h>
32#include <linux/syscalls.h>
33#include <linux/cpuset.h>
34#include <linux/hardirq.h> /* for BUG_ON(!in_atomic()) only */
35#include <linux/memcontrol.h>
36#include <linux/cleancache.h>
37#include "internal.h"
38
39/*
40 * FIXME: remove all knowledge of the buffer layer from the core VM
41 */
42#include <linux/buffer_head.h> /* for try_to_free_buffers */
43
44#include <asm/mman.h>
45
46/*
47 * Shared mappings implemented 30.11.1994. It's not fully working yet,
48 * though.
49 *
50 * Shared mappings now work. 15.8.1995  Bruno.
51 *
52 * finished 'unifying' the page and buffer cache and SMP-threaded the
53 * page-cache, 21.05.1999, Ingo Molnar <mingo@redhat.com>
54 *
55 * SMP-threaded pagemap-LRU 1999, Andrea Arcangeli <andrea@suse.de>
56 */
57
58/*
59 * Lock ordering:
60 *
61 *  ->i_mmap_mutex		(truncate_pagecache)
62 *    ->private_lock		(__free_pte->__set_page_dirty_buffers)
63 *      ->swap_lock		(exclusive_swap_page, others)
64 *        ->mapping->tree_lock
65 *
66 *  ->i_mutex
67 *    ->i_mmap_mutex		(truncate->unmap_mapping_range)
68 *
69 *  ->mmap_sem
70 *    ->i_mmap_mutex
71 *      ->page_table_lock or pte_lock	(various, mainly in memory.c)
72 *        ->mapping->tree_lock	(arch-dependent flush_dcache_mmap_lock)
73 *
74 *  ->mmap_sem
75 *    ->lock_page		(access_process_vm)
76 *
77 *  ->i_mutex			(generic_file_buffered_write)
78 *    ->mmap_sem		(fault_in_pages_readable->do_page_fault)
79 *
80 *  bdi->wb.list_lock
81 *    sb_lock			(fs/fs-writeback.c)
82 *    ->mapping->tree_lock	(__sync_single_inode)
83 *
84 *  ->i_mmap_mutex
85 *    ->anon_vma.lock		(vma_adjust)
86 *
87 *  ->anon_vma.lock
88 *    ->page_table_lock or pte_lock	(anon_vma_prepare and various)
89 *
90 *  ->page_table_lock or pte_lock
91 *    ->swap_lock		(try_to_unmap_one)
92 *    ->private_lock		(try_to_unmap_one)
93 *    ->tree_lock		(try_to_unmap_one)
94 *    ->zone.lru_lock		(follow_page->mark_page_accessed)
95 *    ->zone.lru_lock		(check_pte_range->isolate_lru_page)
96 *    ->private_lock		(page_remove_rmap->set_page_dirty)
97 *    ->tree_lock		(page_remove_rmap->set_page_dirty)
98 *    bdi.wb->list_lock		(page_remove_rmap->set_page_dirty)
99 *    ->inode->i_lock		(page_remove_rmap->set_page_dirty)
100 *    bdi.wb->list_lock		(zap_pte_range->set_page_dirty)
101 *    ->inode->i_lock		(zap_pte_range->set_page_dirty)
102 *    ->private_lock		(zap_pte_range->__set_page_dirty_buffers)
103 *
104 *  (code doesn't rely on that order, so you could switch it around)
105 *  ->tasklist_lock             (memory_failure, collect_procs_ao)
106 *    ->i_mmap_mutex
107 */
108
109/*
110 * Delete a page from the page cache and free it. Caller has to make
111 * sure the page is locked and that nobody else uses it - or that usage
112 * is safe.  The caller must hold the mapping's tree_lock.
113 */
114void __delete_from_page_cache(struct page *page)
115{
116	struct address_space *mapping = page->mapping;
117
118	/*
119	 * if we're uptodate, flush out into the cleancache, otherwise
120	 * invalidate any existing cleancache entries.  We can't leave
121	 * stale data around in the cleancache once our page is gone
122	 */
123	if (PageUptodate(page) && PageMappedToDisk(page))
124		cleancache_put_page(page);
125	else
126		cleancache_flush_page(mapping, page);
127
128	radix_tree_delete(&mapping->page_tree, page->index);
129	page->mapping = NULL;
130	/* Leave page->index set: truncation lookup relies upon it */
131	mapping->nrpages--;
132	__dec_zone_page_state(page, NR_FILE_PAGES);
133	if (PageSwapBacked(page))
134		__dec_zone_page_state(page, NR_SHMEM);
135	BUG_ON(page_mapped(page));
136
137	/*
138	 * Some filesystems seem to re-dirty the page even after
139	 * the VM has canceled the dirty bit (eg ext3 journaling).
140	 *
141	 * Fix it up by doing a final dirty accounting check after
142	 * having removed the page entirely.
143	 */
144	if (PageDirty(page) && mapping_cap_account_dirty(mapping)) {
145		dec_zone_page_state(page, NR_FILE_DIRTY);
146		dec_bdi_stat(mapping->backing_dev_info, BDI_RECLAIMABLE);
147	}
148}
149
150/**
151 * delete_from_page_cache - delete page from page cache
152 * @page: the page which the kernel is trying to remove from page cache
153 *
154 * This must be called only on pages that have been verified to be in the page
155 * cache and locked.  It will never put the page into the free list, the caller
156 * has a reference on the page.
157 */
158void delete_from_page_cache(struct page *page)
159{
160	struct address_space *mapping = page->mapping;
161	void (*freepage)(struct page *);
162
163	BUG_ON(!PageLocked(page));
164
165	freepage = mapping->a_ops->freepage;
166	spin_lock_irq(&mapping->tree_lock);
167	__delete_from_page_cache(page);
168	spin_unlock_irq(&mapping->tree_lock);
169	mem_cgroup_uncharge_cache_page(page);
170
171	if (freepage)
172		freepage(page);
173	page_cache_release(page);
174}
175EXPORT_SYMBOL(delete_from_page_cache);
176
177static int sleep_on_page(void *word)
178{
179	io_schedule();
180	return 0;
181}
182
183static int sleep_on_page_killable(void *word)
184{
185	sleep_on_page(word);
186	return fatal_signal_pending(current) ? -EINTR : 0;
187}
188
189/**
190 * __filemap_fdatawrite_range - start writeback on mapping dirty pages in range
191 * @mapping:	address space structure to write
192 * @start:	offset in bytes where the range starts
193 * @end:	offset in bytes where the range ends (inclusive)
194 * @sync_mode:	enable synchronous operation
195 *
196 * Start writeback against all of a mapping's dirty pages that lie
197 * within the byte offsets <start, end> inclusive.
198 *
199 * If sync_mode is WB_SYNC_ALL then this is a "data integrity" operation, as
200 * opposed to a regular memory cleansing writeback.  The difference between
201 * these two operations is that if a dirty page/buffer is encountered, it must
202 * be waited upon, and not just skipped over.
203 */
204int __filemap_fdatawrite_range(struct address_space *mapping, loff_t start,
205				loff_t end, int sync_mode)
206{
207	int ret;
208	struct writeback_control wbc = {
209		.sync_mode = sync_mode,
210		.nr_to_write = LONG_MAX,
211		.range_start = start,
212		.range_end = end,
213	};
214
215	if (!mapping_cap_writeback_dirty(mapping))
216		return 0;
217
218	ret = do_writepages(mapping, &wbc);
219	return ret;
220}
221
222static inline int __filemap_fdatawrite(struct address_space *mapping,
223	int sync_mode)
224{
225	return __filemap_fdatawrite_range(mapping, 0, LLONG_MAX, sync_mode);
226}
227
228int filemap_fdatawrite(struct address_space *mapping)
229{
230	return __filemap_fdatawrite(mapping, WB_SYNC_ALL);
231}
232EXPORT_SYMBOL(filemap_fdatawrite);
233
234int filemap_fdatawrite_range(struct address_space *mapping, loff_t start,
235				loff_t end)
236{
237	return __filemap_fdatawrite_range(mapping, start, end, WB_SYNC_ALL);
238}
239EXPORT_SYMBOL(filemap_fdatawrite_range);
240
241/**
242 * filemap_flush - mostly a non-blocking flush
243 * @mapping:	target address_space
244 *
245 * This is a mostly non-blocking flush.  Not suitable for data-integrity
246 * purposes - I/O may not be started against all dirty pages.
247 */
248int filemap_flush(struct address_space *mapping)
249{
250	return __filemap_fdatawrite(mapping, WB_SYNC_NONE);
251}
252EXPORT_SYMBOL(filemap_flush);
253
254/**
255 * filemap_fdatawait_range - wait for writeback to complete
256 * @mapping:		address space structure to wait for
257 * @start_byte:		offset in bytes where the range starts
258 * @end_byte:		offset in bytes where the range ends (inclusive)
259 *
260 * Walk the list of under-writeback pages of the given address space
261 * in the given range and wait for all of them.
262 */
263int filemap_fdatawait_range(struct address_space *mapping, loff_t start_byte,
264			    loff_t end_byte)
265{
266	pgoff_t index = start_byte >> PAGE_CACHE_SHIFT;
267	pgoff_t end = end_byte >> PAGE_CACHE_SHIFT;
268	struct pagevec pvec;
269	int nr_pages;
270	int ret = 0;
271
272	if (end_byte < start_byte)
273		return 0;
274
275	pagevec_init(&pvec, 0);
276	while ((index <= end) &&
277			(nr_pages = pagevec_lookup_tag(&pvec, mapping, &index,
278			PAGECACHE_TAG_WRITEBACK,
279			min(end - index, (pgoff_t)PAGEVEC_SIZE-1) + 1)) != 0) {
280		unsigned i;
281
282		for (i = 0; i < nr_pages; i++) {
283			struct page *page = pvec.pages[i];
284
285			/* until radix tree lookup accepts end_index */
286			if (page->index > end)
287				continue;
288
289			wait_on_page_writeback(page);
290			if (TestClearPageError(page))
291				ret = -EIO;
292		}
293		pagevec_release(&pvec);
294		cond_resched();
295	}
296
297	/* Check for outstanding write errors */
298	if (test_and_clear_bit(AS_ENOSPC, &mapping->flags))
299		ret = -ENOSPC;
300	if (test_and_clear_bit(AS_EIO, &mapping->flags))
301		ret = -EIO;
302
303	return ret;
304}
305EXPORT_SYMBOL(filemap_fdatawait_range);
306
307/**
308 * filemap_fdatawait - wait for all under-writeback pages to complete
309 * @mapping: address space structure to wait for
310 *
311 * Walk the list of under-writeback pages of the given address space
312 * and wait for all of them.
313 */
314int filemap_fdatawait(struct address_space *mapping)
315{
316	loff_t i_size = i_size_read(mapping->host);
317
318	if (i_size == 0)
319		return 0;
320
321	return filemap_fdatawait_range(mapping, 0, i_size - 1);
322}
323EXPORT_SYMBOL(filemap_fdatawait);
324
325int filemap_write_and_wait(struct address_space *mapping)
326{
327	int err = 0;
328
329	if (mapping->nrpages) {
330		err = filemap_fdatawrite(mapping);
331		/*
332		 * Even if the above returned error, the pages may be
333		 * written partially (e.g. -ENOSPC), so we wait for it.
334		 * But the -EIO is special case, it may indicate the worst
335		 * thing (e.g. bug) happened, so we avoid waiting for it.
336		 */
337		if (err != -EIO) {
338			int err2 = filemap_fdatawait(mapping);
339			if (!err)
340				err = err2;
341		}
342	}
343	return err;
344}
345EXPORT_SYMBOL(filemap_write_and_wait);
346
347/**
348 * filemap_write_and_wait_range - write out & wait on a file range
349 * @mapping:	the address_space for the pages
350 * @lstart:	offset in bytes where the range starts
351 * @lend:	offset in bytes where the range ends (inclusive)
352 *
353 * Write out and wait upon file offsets lstart->lend, inclusive.
354 *
355 * Note that `lend' is inclusive (describes the last byte to be written) so
356 * that this function can be used to write to the very end-of-file (end = -1).
357 */
358int filemap_write_and_wait_range(struct address_space *mapping,
359				 loff_t lstart, loff_t lend)
360{
361	int err = 0;
362
363	if (mapping->nrpages) {
364		err = __filemap_fdatawrite_range(mapping, lstart, lend,
365						 WB_SYNC_ALL);
366		/* See comment of filemap_write_and_wait() */
367		if (err != -EIO) {
368			int err2 = filemap_fdatawait_range(mapping,
369						lstart, lend);
370			if (!err)
371				err = err2;
372		}
373	}
374	return err;
375}
376EXPORT_SYMBOL(filemap_write_and_wait_range);
377
378/**
379 * replace_page_cache_page - replace a pagecache page with a new one
380 * @old:	page to be replaced
381 * @new:	page to replace with
382 * @gfp_mask:	allocation mode
383 *
384 * This function replaces a page in the pagecache with a new one.  On
385 * success it acquires the pagecache reference for the new page and
386 * drops it for the old page.  Both the old and new pages must be
387 * locked.  This function does not add the new page to the LRU, the
388 * caller must do that.
389 *
390 * The remove + add is atomic.  The only way this function can fail is
391 * memory allocation failure.
392 */
393int replace_page_cache_page(struct page *old, struct page *new, gfp_t gfp_mask)
394{
395	int error;
396	struct mem_cgroup *memcg = NULL;
397
398	VM_BUG_ON(!PageLocked(old));
399	VM_BUG_ON(!PageLocked(new));
400	VM_BUG_ON(new->mapping);
401
402	/*
403	 * This is not page migration, but prepare_migration and
404	 * end_migration does enough work for charge replacement.
405	 *
406	 * In the longer term we probably want a specialized function
407	 * for moving the charge from old to new in a more efficient
408	 * manner.
409	 */
410	error = mem_cgroup_prepare_migration(old, new, &memcg, gfp_mask);
411	if (error)
412		return error;
413
414	error = radix_tree_preload(gfp_mask & ~__GFP_HIGHMEM);
415	if (!error) {
416		struct address_space *mapping = old->mapping;
417		void (*freepage)(struct page *);
418
419		pgoff_t offset = old->index;
420		freepage = mapping->a_ops->freepage;
421
422		page_cache_get(new);
423		new->mapping = mapping;
424		new->index = offset;
425
426		spin_lock_irq(&mapping->tree_lock);
427		__delete_from_page_cache(old);
428		error = radix_tree_insert(&mapping->page_tree, offset, new);
429		BUG_ON(error);
430		mapping->nrpages++;
431		__inc_zone_page_state(new, NR_FILE_PAGES);
432		if (PageSwapBacked(new))
433			__inc_zone_page_state(new, NR_SHMEM);
434		spin_unlock_irq(&mapping->tree_lock);
435		radix_tree_preload_end();
436		if (freepage)
437			freepage(old);
438		page_cache_release(old);
439		mem_cgroup_end_migration(memcg, old, new, true);
440	} else {
441		mem_cgroup_end_migration(memcg, old, new, false);
442	}
443
444	return error;
445}
446EXPORT_SYMBOL_GPL(replace_page_cache_page);
447
448/**
449 * add_to_page_cache_locked - add a locked page to the pagecache
450 * @page:	page to add
451 * @mapping:	the page's address_space
452 * @offset:	page index
453 * @gfp_mask:	page allocation mode
454 *
455 * This function is used to add a page to the pagecache. It must be locked.
456 * This function does not add the page to the LRU.  The caller must do that.
457 */
458int add_to_page_cache_locked(struct page *page, struct address_space *mapping,
459		pgoff_t offset, gfp_t gfp_mask)
460{
461	int error;
462
463	VM_BUG_ON(!PageLocked(page));
464	VM_BUG_ON(PageSwapBacked(page));
465
466	error = mem_cgroup_cache_charge(page, current->mm,
467					gfp_mask & GFP_RECLAIM_MASK);
468	if (error)
469		goto out;
470
471	error = radix_tree_preload(gfp_mask & ~__GFP_HIGHMEM);
472	if (error == 0) {
473		page_cache_get(page);
474		page->mapping = mapping;
475		page->index = offset;
476
477		spin_lock_irq(&mapping->tree_lock);
478		error = radix_tree_insert(&mapping->page_tree, offset, page);
479		if (likely(!error)) {
480			mapping->nrpages++;
481			__inc_zone_page_state(page, NR_FILE_PAGES);
482			spin_unlock_irq(&mapping->tree_lock);
483		} else {
484			page->mapping = NULL;
485			/* Leave page->index set: truncation relies upon it */
486			spin_unlock_irq(&mapping->tree_lock);
487			mem_cgroup_uncharge_cache_page(page);
488			page_cache_release(page);
489		}
490		radix_tree_preload_end();
491	} else
492		mem_cgroup_uncharge_cache_page(page);
493out:
494	return error;
495}
496EXPORT_SYMBOL(add_to_page_cache_locked);
497
498int add_to_page_cache_lru(struct page *page, struct address_space *mapping,
499				pgoff_t offset, gfp_t gfp_mask)
500{
501	int ret;
502
503	ret = add_to_page_cache(page, mapping, offset, gfp_mask);
504	if (ret == 0)
505		lru_cache_add_file(page);
506	return ret;
507}
508EXPORT_SYMBOL_GPL(add_to_page_cache_lru);
509
510#ifdef CONFIG_NUMA
511struct page *__page_cache_alloc(gfp_t gfp)
512{
513	int n;
514	struct page *page;
515
516	if (cpuset_do_page_mem_spread()) {
517		get_mems_allowed();
518		n = cpuset_mem_spread_node();
519		page = alloc_pages_exact_node(n, gfp, 0);
520		put_mems_allowed();
521		return page;
522	}
523	return alloc_pages(gfp, 0);
524}
525EXPORT_SYMBOL(__page_cache_alloc);
526#endif
527
528/*
529 * In order to wait for pages to become available there must be
530 * waitqueues associated with pages. By using a hash table of
531 * waitqueues where the bucket discipline is to maintain all
532 * waiters on the same queue and wake all when any of the pages
533 * become available, and for the woken contexts to check to be
534 * sure the appropriate page became available, this saves space
535 * at a cost of "thundering herd" phenomena during rare hash
536 * collisions.
537 */
538static wait_queue_head_t *page_waitqueue(struct page *page)
539{
540	const struct zone *zone = page_zone(page);
541
542	return &zone->wait_table[hash_ptr(page, zone->wait_table_bits)];
543}
544
545static inline void wake_up_page(struct page *page, int bit)
546{
547	__wake_up_bit(page_waitqueue(page), &page->flags, bit);
548}
549
550void wait_on_page_bit(struct page *page, int bit_nr)
551{
552	DEFINE_WAIT_BIT(wait, &page->flags, bit_nr);
553
554	if (test_bit(bit_nr, &page->flags))
555		__wait_on_bit(page_waitqueue(page), &wait, sleep_on_page,
556							TASK_UNINTERRUPTIBLE);
557}
558EXPORT_SYMBOL(wait_on_page_bit);
559
560int wait_on_page_bit_killable(struct page *page, int bit_nr)
561{
562	DEFINE_WAIT_BIT(wait, &page->flags, bit_nr);
563
564	if (!test_bit(bit_nr, &page->flags))
565		return 0;
566
567	return __wait_on_bit(page_waitqueue(page), &wait,
568			     sleep_on_page_killable, TASK_KILLABLE);
569}
570
571/**
572 * add_page_wait_queue - Add an arbitrary waiter to a page's wait queue
573 * @page: Page defining the wait queue of interest
574 * @waiter: Waiter to add to the queue
575 *
576 * Add an arbitrary @waiter to the wait queue for the nominated @page.
577 */
578void add_page_wait_queue(struct page *page, wait_queue_t *waiter)
579{
580	wait_queue_head_t *q = page_waitqueue(page);
581	unsigned long flags;
582
583	spin_lock_irqsave(&q->lock, flags);
584	__add_wait_queue(q, waiter);
585	spin_unlock_irqrestore(&q->lock, flags);
586}
587EXPORT_SYMBOL_GPL(add_page_wait_queue);
588
589/**
590 * unlock_page - unlock a locked page
591 * @page: the page
592 *
593 * Unlocks the page and wakes up sleepers in ___wait_on_page_locked().
594 * Also wakes sleepers in wait_on_page_writeback() because the wakeup
595 * mechananism between PageLocked pages and PageWriteback pages is shared.
596 * But that's OK - sleepers in wait_on_page_writeback() just go back to sleep.
597 *
598 * The mb is necessary to enforce ordering between the clear_bit and the read
599 * of the waitqueue (to avoid SMP races with a parallel wait_on_page_locked()).
600 */
601void unlock_page(struct page *page)
602{
603	VM_BUG_ON(!PageLocked(page));
604	clear_bit_unlock(PG_locked, &page->flags);
605	smp_mb__after_clear_bit();
606	wake_up_page(page, PG_locked);
607}
608EXPORT_SYMBOL(unlock_page);
609
610/**
611 * end_page_writeback - end writeback against a page
612 * @page: the page
613 */
614void end_page_writeback(struct page *page)
615{
616	if (TestClearPageReclaim(page))
617		rotate_reclaimable_page(page);
618
619	if (!test_clear_page_writeback(page))
620		BUG();
621
622	smp_mb__after_clear_bit();
623	wake_up_page(page, PG_writeback);
624}
625EXPORT_SYMBOL(end_page_writeback);
626
627/**
628 * __lock_page - get a lock on the page, assuming we need to sleep to get it
629 * @page: the page to lock
630 */
631void __lock_page(struct page *page)
632{
633	DEFINE_WAIT_BIT(wait, &page->flags, PG_locked);
634
635	__wait_on_bit_lock(page_waitqueue(page), &wait, sleep_on_page,
636							TASK_UNINTERRUPTIBLE);
637}
638EXPORT_SYMBOL(__lock_page);
639
640int __lock_page_killable(struct page *page)
641{
642	DEFINE_WAIT_BIT(wait, &page->flags, PG_locked);
643
644	return __wait_on_bit_lock(page_waitqueue(page), &wait,
645					sleep_on_page_killable, TASK_KILLABLE);
646}
647EXPORT_SYMBOL_GPL(__lock_page_killable);
648
649int __lock_page_or_retry(struct page *page, struct mm_struct *mm,
650			 unsigned int flags)
651{
652	if (flags & FAULT_FLAG_ALLOW_RETRY) {
653		/*
654		 * CAUTION! In this case, mmap_sem is not released
655		 * even though return 0.
656		 */
657		if (flags & FAULT_FLAG_RETRY_NOWAIT)
658			return 0;
659
660		up_read(&mm->mmap_sem);
661		if (flags & FAULT_FLAG_KILLABLE)
662			wait_on_page_locked_killable(page);
663		else
664			wait_on_page_locked(page);
665		return 0;
666	} else {
667		if (flags & FAULT_FLAG_KILLABLE) {
668			int ret;
669
670			ret = __lock_page_killable(page);
671			if (ret) {
672				up_read(&mm->mmap_sem);
673				return 0;
674			}
675		} else
676			__lock_page(page);
677		return 1;
678	}
679}
680
681/**
682 * find_get_page - find and get a page reference
683 * @mapping: the address_space to search
684 * @offset: the page index
685 *
686 * Is there a pagecache struct page at the given (mapping, offset) tuple?
687 * If yes, increment its refcount and return it; if no, return NULL.
688 */
689struct page *find_get_page(struct address_space *mapping, pgoff_t offset)
690{
691	void **pagep;
692	struct page *page;
693
694	rcu_read_lock();
695repeat:
696	page = NULL;
697	pagep = radix_tree_lookup_slot(&mapping->page_tree, offset);
698	if (pagep) {
699		page = radix_tree_deref_slot(pagep);
700		if (unlikely(!page))
701			goto out;
702		if (radix_tree_exception(page)) {
703			if (radix_tree_deref_retry(page))
704				goto repeat;
705			/*
706			 * Otherwise, shmem/tmpfs must be storing a swap entry
707			 * here as an exceptional entry: so return it without
708			 * attempting to raise page count.
709			 */
710			goto out;
711		}
712		if (!page_cache_get_speculative(page))
713			goto repeat;
714
715		/*
716		 * Has the page moved?
717		 * This is part of the lockless pagecache protocol. See
718		 * include/linux/pagemap.h for details.
719		 */
720		if (unlikely(page != *pagep)) {
721			page_cache_release(page);
722			goto repeat;
723		}
724	}
725out:
726	rcu_read_unlock();
727
728	return page;
729}
730EXPORT_SYMBOL(find_get_page);
731
732/**
733 * find_lock_page - locate, pin and lock a pagecache page
734 * @mapping: the address_space to search
735 * @offset: the page index
736 *
737 * Locates the desired pagecache page, locks it, increments its reference
738 * count and returns its address.
739 *
740 * Returns zero if the page was not present. find_lock_page() may sleep.
741 */
742struct page *find_lock_page(struct address_space *mapping, pgoff_t offset)
743{
744	struct page *page;
745
746repeat:
747	page = find_get_page(mapping, offset);
748	if (page && !radix_tree_exception(page)) {
749		lock_page(page);
750		/* Has the page been truncated? */
751		if (unlikely(page->mapping != mapping)) {
752			unlock_page(page);
753			page_cache_release(page);
754			goto repeat;
755		}
756		VM_BUG_ON(page->index != offset);
757	}
758	return page;
759}
760EXPORT_SYMBOL(find_lock_page);
761
762/**
763 * find_or_create_page - locate or add a pagecache page
764 * @mapping: the page's address_space
765 * @index: the page's index into the mapping
766 * @gfp_mask: page allocation mode
767 *
768 * Locates a page in the pagecache.  If the page is not present, a new page
769 * is allocated using @gfp_mask and is added to the pagecache and to the VM's
770 * LRU list.  The returned page is locked and has its reference count
771 * incremented.
772 *
773 * find_or_create_page() may sleep, even if @gfp_flags specifies an atomic
774 * allocation!
775 *
776 * find_or_create_page() returns the desired page's address, or zero on
777 * memory exhaustion.
778 */
779struct page *find_or_create_page(struct address_space *mapping,
780		pgoff_t index, gfp_t gfp_mask)
781{
782	struct page *page;
783	int err;
784repeat:
785	page = find_lock_page(mapping, index);
786	if (!page) {
787		page = __page_cache_alloc(gfp_mask);
788		if (!page)
789			return NULL;
790		/*
791		 * We want a regular kernel memory (not highmem or DMA etc)
792		 * allocation for the radix tree nodes, but we need to honour
793		 * the context-specific requirements the caller has asked for.
794		 * GFP_RECLAIM_MASK collects those requirements.
795		 */
796		err = add_to_page_cache_lru(page, mapping, index,
797			(gfp_mask & GFP_RECLAIM_MASK));
798		if (unlikely(err)) {
799			page_cache_release(page);
800			page = NULL;
801			if (err == -EEXIST)
802				goto repeat;
803		}
804	}
805	return page;
806}
807EXPORT_SYMBOL(find_or_create_page);
808
809/**
810 * find_get_pages - gang pagecache lookup
811 * @mapping:	The address_space to search
812 * @start:	The starting page index
813 * @nr_pages:	The maximum number of pages
814 * @pages:	Where the resulting pages are placed
815 *
816 * find_get_pages() will search for and return a group of up to
817 * @nr_pages pages in the mapping.  The pages are placed at @pages.
818 * find_get_pages() takes a reference against the returned pages.
819 *
820 * The search returns a group of mapping-contiguous pages with ascending
821 * indexes.  There may be holes in the indices due to not-present pages.
822 *
823 * find_get_pages() returns the number of pages which were found.
824 */
825unsigned find_get_pages(struct address_space *mapping, pgoff_t start,
826			    unsigned int nr_pages, struct page **pages)
827{
828	unsigned int i;
829	unsigned int ret;
830	unsigned int nr_found;
831
832	rcu_read_lock();
833restart:
834	nr_found = radix_tree_gang_lookup_slot(&mapping->page_tree,
835				(void ***)pages, NULL, start, nr_pages);
836	ret = 0;
837	for (i = 0; i < nr_found; i++) {
838		struct page *page;
839repeat:
840		page = radix_tree_deref_slot((void **)pages[i]);
841		if (unlikely(!page))
842			continue;
843
844		if (radix_tree_exception(page)) {
845			if (radix_tree_deref_retry(page)) {
846				/*
847				 * Transient condition which can only trigger
848				 * when entry at index 0 moves out of or back
849				 * to root: none yet gotten, safe to restart.
850				 */
851				WARN_ON(start | i);
852				goto restart;
853			}
854			/*
855			 * Otherwise, shmem/tmpfs must be storing a swap entry
856			 * here as an exceptional entry: so skip over it -
857			 * we only reach this from invalidate_mapping_pages().
858			 */
859			continue;
860		}
861
862		if (!page_cache_get_speculative(page))
863			goto repeat;
864
865		/* Has the page moved? */
866		if (unlikely(page != *((void **)pages[i]))) {
867			page_cache_release(page);
868			goto repeat;
869		}
870
871		pages[ret] = page;
872		ret++;
873	}
874
875	/*
876	 * If all entries were removed before we could secure them,
877	 * try again, because callers stop trying once 0 is returned.
878	 */
879	if (unlikely(!ret && nr_found))
880		goto restart;
881	rcu_read_unlock();
882	return ret;
883}
884
885/**
886 * find_get_pages_contig - gang contiguous pagecache lookup
887 * @mapping:	The address_space to search
888 * @index:	The starting page index
889 * @nr_pages:	The maximum number of pages
890 * @pages:	Where the resulting pages are placed
891 *
892 * find_get_pages_contig() works exactly like find_get_pages(), except
893 * that the returned number of pages are guaranteed to be contiguous.
894 *
895 * find_get_pages_contig() returns the number of pages which were found.
896 */
897unsigned find_get_pages_contig(struct address_space *mapping, pgoff_t index,
898			       unsigned int nr_pages, struct page **pages)
899{
900	unsigned int i;
901	unsigned int ret;
902	unsigned int nr_found;
903
904	rcu_read_lock();
905restart:
906	nr_found = radix_tree_gang_lookup_slot(&mapping->page_tree,
907				(void ***)pages, NULL, index, nr_pages);
908	ret = 0;
909	for (i = 0; i < nr_found; i++) {
910		struct page *page;
911repeat:
912		page = radix_tree_deref_slot((void **)pages[i]);
913		if (unlikely(!page))
914			continue;
915
916		if (radix_tree_exception(page)) {
917			if (radix_tree_deref_retry(page)) {
918				/*
919				 * Transient condition which can only trigger
920				 * when entry at index 0 moves out of or back
921				 * to root: none yet gotten, safe to restart.
922				 */
923				goto restart;
924			}
925			/*
926			 * Otherwise, shmem/tmpfs must be storing a swap entry
927			 * here as an exceptional entry: so stop looking for
928			 * contiguous pages.
929			 */
930			break;
931		}
932
933		if (!page_cache_get_speculative(page))
934			goto repeat;
935
936		/* Has the page moved? */
937		if (unlikely(page != *((void **)pages[i]))) {
938			page_cache_release(page);
939			goto repeat;
940		}
941
942		/*
943		 * must check mapping and index after taking the ref.
944		 * otherwise we can get both false positives and false
945		 * negatives, which is just confusing to the caller.
946		 */
947		if (page->mapping == NULL || page->index != index) {
948			page_cache_release(page);
949			break;
950		}
951
952		pages[ret] = page;
953		ret++;
954		index++;
955	}
956	rcu_read_unlock();
957	return ret;
958}
959EXPORT_SYMBOL(find_get_pages_contig);
960
961/**
962 * find_get_pages_tag - find and return pages that match @tag
963 * @mapping:	the address_space to search
964 * @index:	the starting page index
965 * @tag:	the tag index
966 * @nr_pages:	the maximum number of pages
967 * @pages:	where the resulting pages are placed
968 *
969 * Like find_get_pages, except we only return pages which are tagged with
970 * @tag.   We update @index to index the next page for the traversal.
971 */
972unsigned find_get_pages_tag(struct address_space *mapping, pgoff_t *index,
973			int tag, unsigned int nr_pages, struct page **pages)
974{
975	unsigned int i;
976	unsigned int ret;
977	unsigned int nr_found;
978
979	rcu_read_lock();
980restart:
981	nr_found = radix_tree_gang_lookup_tag_slot(&mapping->page_tree,
982				(void ***)pages, *index, nr_pages, tag);
983	ret = 0;
984	for (i = 0; i < nr_found; i++) {
985		struct page *page;
986repeat:
987		page = radix_tree_deref_slot((void **)pages[i]);
988		if (unlikely(!page))
989			continue;
990
991		if (radix_tree_exception(page)) {
992			if (radix_tree_deref_retry(page)) {
993				/*
994				 * Transient condition which can only trigger
995				 * when entry at index 0 moves out of or back
996				 * to root: none yet gotten, safe to restart.
997				 */
998				goto restart;
999			}
1000			/*
1001			 * This function is never used on a shmem/tmpfs
1002			 * mapping, so a swap entry won't be found here.
1003			 */
1004			BUG();
1005		}
1006
1007		if (!page_cache_get_speculative(page))
1008			goto repeat;
1009
1010		/* Has the page moved? */
1011		if (unlikely(page != *((void **)pages[i]))) {
1012			page_cache_release(page);
1013			goto repeat;
1014		}
1015
1016		pages[ret] = page;
1017		ret++;
1018	}
1019
1020	/*
1021	 * If all entries were removed before we could secure them,
1022	 * try again, because callers stop trying once 0 is returned.
1023	 */
1024	if (unlikely(!ret && nr_found))
1025		goto restart;
1026	rcu_read_unlock();
1027
1028	if (ret)
1029		*index = pages[ret - 1]->index + 1;
1030
1031	return ret;
1032}
1033EXPORT_SYMBOL(find_get_pages_tag);
1034
1035/**
1036 * grab_cache_page_nowait - returns locked page at given index in given cache
1037 * @mapping: target address_space
1038 * @index: the page index
1039 *
1040 * Same as grab_cache_page(), but do not wait if the page is unavailable.
1041 * This is intended for speculative data generators, where the data can
1042 * be regenerated if the page couldn't be grabbed.  This routine should
1043 * be safe to call while holding the lock for another page.
1044 *
1045 * Clear __GFP_FS when allocating the page to avoid recursion into the fs
1046 * and deadlock against the caller's locked page.
1047 */
1048struct page *
1049grab_cache_page_nowait(struct address_space *mapping, pgoff_t index)
1050{
1051	struct page *page = find_get_page(mapping, index);
1052
1053	if (page) {
1054		if (trylock_page(page))
1055			return page;
1056		page_cache_release(page);
1057		return NULL;
1058	}
1059	page = __page_cache_alloc(mapping_gfp_mask(mapping) & ~__GFP_FS);
1060	if (page && add_to_page_cache_lru(page, mapping, index, GFP_NOFS)) {
1061		page_cache_release(page);
1062		page = NULL;
1063	}
1064	return page;
1065}
1066EXPORT_SYMBOL(grab_cache_page_nowait);
1067
1068/*
1069 * CD/DVDs are error prone. When a medium error occurs, the driver may fail
1070 * a _large_ part of the i/o request. Imagine the worst scenario:
1071 *
1072 *      ---R__________________________________________B__________
1073 *         ^ reading here                             ^ bad block(assume 4k)
1074 *
1075 * read(R) => miss => readahead(R...B) => media error => frustrating retries
1076 * => failing the whole request => read(R) => read(R+1) =>
1077 * readahead(R+1...B+1) => bang => read(R+2) => read(R+3) =>
1078 * readahead(R+3...B+2) => bang => read(R+3) => read(R+4) =>
1079 * readahead(R+4...B+3) => bang => read(R+4) => read(R+5) => ......
1080 *
1081 * It is going insane. Fix it by quickly scaling down the readahead size.
1082 */
1083static void shrink_readahead_size_eio(struct file *filp,
1084					struct file_ra_state *ra)
1085{
1086	ra->ra_pages /= 4;
1087}
1088
1089/**
1090 * do_generic_file_read - generic file read routine
1091 * @filp:	the file to read
1092 * @ppos:	current file position
1093 * @desc:	read_descriptor
1094 * @actor:	read method
1095 *
1096 * This is a generic file read routine, and uses the
1097 * mapping->a_ops->readpage() function for the actual low-level stuff.
1098 *
1099 * This is really ugly. But the goto's actually try to clarify some
1100 * of the logic when it comes to error handling etc.
1101 */
1102static void do_generic_file_read(struct file *filp, loff_t *ppos,
1103		read_descriptor_t *desc, read_actor_t actor)
1104{
1105	struct address_space *mapping = filp->f_mapping;
1106	struct inode *inode = mapping->host;
1107	struct file_ra_state *ra = &filp->f_ra;
1108	pgoff_t index;
1109	pgoff_t last_index;
1110	pgoff_t prev_index;
1111	unsigned long offset;      /* offset into pagecache page */
1112	unsigned int prev_offset;
1113	int error;
1114
1115	index = *ppos >> PAGE_CACHE_SHIFT;
1116	prev_index = ra->prev_pos >> PAGE_CACHE_SHIFT;
1117	prev_offset = ra->prev_pos & (PAGE_CACHE_SIZE-1);
1118	last_index = (*ppos + desc->count + PAGE_CACHE_SIZE-1) >> PAGE_CACHE_SHIFT;
1119	offset = *ppos & ~PAGE_CACHE_MASK;
1120
1121	for (;;) {
1122		struct page *page;
1123		pgoff_t end_index;
1124		loff_t isize;
1125		unsigned long nr, ret;
1126
1127		cond_resched();
1128find_page:
1129		page = find_get_page(mapping, index);
1130		if (!page) {
1131			page_cache_sync_readahead(mapping,
1132					ra, filp,
1133					index, last_index - index);
1134			page = find_get_page(mapping, index);
1135			if (unlikely(page == NULL))
1136				goto no_cached_page;
1137		}
1138		if (PageReadahead(page)) {
1139			page_cache_async_readahead(mapping,
1140					ra, filp, page,
1141					index, last_index - index);
1142		}
1143		if (!PageUptodate(page)) {
1144			if (inode->i_blkbits == PAGE_CACHE_SHIFT ||
1145					!mapping->a_ops->is_partially_uptodate)
1146				goto page_not_up_to_date;
1147			if (!trylock_page(page))
1148				goto page_not_up_to_date;
1149			/* Did it get truncated before we got the lock? */
1150			if (!page->mapping)
1151				goto page_not_up_to_date_locked;
1152			if (!mapping->a_ops->is_partially_uptodate(page,
1153								desc, offset))
1154				goto page_not_up_to_date_locked;
1155			unlock_page(page);
1156		}
1157page_ok:
1158		/*
1159		 * i_size must be checked after we know the page is Uptodate.
1160		 *
1161		 * Checking i_size after the check allows us to calculate
1162		 * the correct value for "nr", which means the zero-filled
1163		 * part of the page is not copied back to userspace (unless
1164		 * another truncate extends the file - this is desired though).
1165		 */
1166
1167		isize = i_size_read(inode);
1168		end_index = (isize - 1) >> PAGE_CACHE_SHIFT;
1169		if (unlikely(!isize || index > end_index)) {
1170			page_cache_release(page);
1171			goto out;
1172		}
1173
1174		/* nr is the maximum number of bytes to copy from this page */
1175		nr = PAGE_CACHE_SIZE;
1176		if (index == end_index) {
1177			nr = ((isize - 1) & ~PAGE_CACHE_MASK) + 1;
1178			if (nr <= offset) {
1179				page_cache_release(page);
1180				goto out;
1181			}
1182		}
1183		nr = nr - offset;
1184
1185		/* If users can be writing to this page using arbitrary
1186		 * virtual addresses, take care about potential aliasing
1187		 * before reading the page on the kernel side.
1188		 */
1189		if (mapping_writably_mapped(mapping))
1190			flush_dcache_page(page);
1191
1192		/*
1193		 * When a sequential read accesses a page several times,
1194		 * only mark it as accessed the first time.
1195		 */
1196		if (prev_index != index || offset != prev_offset)
1197			mark_page_accessed(page);
1198		prev_index = index;
1199
1200		/*
1201		 * Ok, we have the page, and it's up-to-date, so
1202		 * now we can copy it to user space...
1203		 *
1204		 * The actor routine returns how many bytes were actually used..
1205		 * NOTE! This may not be the same as how much of a user buffer
1206		 * we filled up (we may be padding etc), so we can only update
1207		 * "pos" here (the actor routine has to update the user buffer
1208		 * pointers and the remaining count).
1209		 */
1210		ret = actor(desc, page, offset, nr);
1211		offset += ret;
1212		index += offset >> PAGE_CACHE_SHIFT;
1213		offset &= ~PAGE_CACHE_MASK;
1214		prev_offset = offset;
1215
1216		page_cache_release(page);
1217		if (ret == nr && desc->count)
1218			continue;
1219		goto out;
1220
1221page_not_up_to_date:
1222		/* Get exclusive access to the page ... */
1223		error = lock_page_killable(page);
1224		if (unlikely(error))
1225			goto readpage_error;
1226
1227page_not_up_to_date_locked:
1228		/* Did it get truncated before we got the lock? */
1229		if (!page->mapping) {
1230			unlock_page(page);
1231			page_cache_release(page);
1232			continue;
1233		}
1234
1235		/* Did somebody else fill it already? */
1236		if (PageUptodate(page)) {
1237			unlock_page(page);
1238			goto page_ok;
1239		}
1240
1241readpage:
1242		/*
1243		 * A previous I/O error may have been due to temporary
1244		 * failures, eg. multipath errors.
1245		 * PG_error will be set again if readpage fails.
1246		 */
1247		ClearPageError(page);
1248		/* Start the actual read. The read will unlock the page. */
1249		error = mapping->a_ops->readpage(filp, page);
1250
1251		if (unlikely(error)) {
1252			if (error == AOP_TRUNCATED_PAGE) {
1253				page_cache_release(page);
1254				goto find_page;
1255			}
1256			goto readpage_error;
1257		}
1258
1259		if (!PageUptodate(page)) {
1260			error = lock_page_killable(page);
1261			if (unlikely(error))
1262				goto readpage_error;
1263			if (!PageUptodate(page)) {
1264				if (page->mapping == NULL) {
1265					/*
1266					 * invalidate_mapping_pages got it
1267					 */
1268					unlock_page(page);
1269					page_cache_release(page);
1270					goto find_page;
1271				}
1272				unlock_page(page);
1273				shrink_readahead_size_eio(filp, ra);
1274				error = -EIO;
1275				goto readpage_error;
1276			}
1277			unlock_page(page);
1278		}
1279
1280		goto page_ok;
1281
1282readpage_error:
1283		/* UHHUH! A synchronous read error occurred. Report it */
1284		desc->error = error;
1285		page_cache_release(page);
1286		goto out;
1287
1288no_cached_page:
1289		/*
1290		 * Ok, it wasn't cached, so we need to create a new
1291		 * page..
1292		 */
1293		page = page_cache_alloc_cold(mapping);
1294		if (!page) {
1295			desc->error = -ENOMEM;
1296			goto out;
1297		}
1298		error = add_to_page_cache_lru(page, mapping,
1299						index, GFP_KERNEL);
1300		if (error) {
1301			page_cache_release(page);
1302			if (error == -EEXIST)
1303				goto find_page;
1304			desc->error = error;
1305			goto out;
1306		}
1307		goto readpage;
1308	}
1309
1310out:
1311	ra->prev_pos = prev_index;
1312	ra->prev_pos <<= PAGE_CACHE_SHIFT;
1313	ra->prev_pos |= prev_offset;
1314
1315	*ppos = ((loff_t)index << PAGE_CACHE_SHIFT) + offset;
1316	file_accessed(filp);
1317}
1318
1319int file_read_actor(read_descriptor_t *desc, struct page *page,
1320			unsigned long offset, unsigned long size)
1321{
1322	char *kaddr;
1323	unsigned long left, count = desc->count;
1324
1325	if (size > count)
1326		size = count;
1327
1328	/*
1329	 * Faults on the destination of a read are common, so do it before
1330	 * taking the kmap.
1331	 */
1332	if (!fault_in_pages_writeable(desc->arg.buf, size)) {
1333		kaddr = kmap_atomic(page, KM_USER0);
1334		left = __copy_to_user_inatomic(desc->arg.buf,
1335						kaddr + offset, size);
1336		kunmap_atomic(kaddr, KM_USER0);
1337		if (left == 0)
1338			goto success;
1339	}
1340
1341	/* Do it the slow way */
1342	kaddr = kmap(page);
1343	left = __copy_to_user(desc->arg.buf, kaddr + offset, size);
1344	kunmap(page);
1345
1346	if (left) {
1347		size -= left;
1348		desc->error = -EFAULT;
1349	}
1350success:
1351	desc->count = count - size;
1352	desc->written += size;
1353	desc->arg.buf += size;
1354	return size;
1355}
1356
1357/*
1358 * Performs necessary checks before doing a write
1359 * @iov:	io vector request
1360 * @nr_segs:	number of segments in the iovec
1361 * @count:	number of bytes to write
1362 * @access_flags: type of access: %VERIFY_READ or %VERIFY_WRITE
1363 *
1364 * Adjust number of segments and amount of bytes to write (nr_segs should be
1365 * properly initialized first). Returns appropriate error code that caller
1366 * should return or zero in case that write should be allowed.
1367 */
1368int generic_segment_checks(const struct iovec *iov,
1369			unsigned long *nr_segs, size_t *count, int access_flags)
1370{
1371	unsigned long   seg;
1372	size_t cnt = 0;
1373	for (seg = 0; seg < *nr_segs; seg++) {
1374		const struct iovec *iv = &iov[seg];
1375
1376		/*
1377		 * If any segment has a negative length, or the cumulative
1378		 * length ever wraps negative then return -EINVAL.
1379		 */
1380		cnt += iv->iov_len;
1381		if (unlikely((ssize_t)(cnt|iv->iov_len) < 0))
1382			return -EINVAL;
1383		if (access_ok(access_flags, iv->iov_base, iv->iov_len))
1384			continue;
1385		if (seg == 0)
1386			return -EFAULT;
1387		*nr_segs = seg;
1388		cnt -= iv->iov_len;	/* This segment is no good */
1389		break;
1390	}
1391	*count = cnt;
1392	return 0;
1393}
1394EXPORT_SYMBOL(generic_segment_checks);
1395
1396/**
1397 * generic_file_aio_read - generic filesystem read routine
1398 * @iocb:	kernel I/O control block
1399 * @iov:	io vector request
1400 * @nr_segs:	number of segments in the iovec
1401 * @pos:	current file position
1402 *
1403 * This is the "read()" routine for all filesystems
1404 * that can use the page cache directly.
1405 */
1406ssize_t
1407generic_file_aio_read(struct kiocb *iocb, const struct iovec *iov,
1408		unsigned long nr_segs, loff_t pos)
1409{
1410	struct file *filp = iocb->ki_filp;
1411	ssize_t retval;
1412	unsigned long seg = 0;
1413	size_t count;
1414	loff_t *ppos = &iocb->ki_pos;
1415	struct blk_plug plug;
1416
1417	count = 0;
1418	retval = generic_segment_checks(iov, &nr_segs, &count, VERIFY_WRITE);
1419	if (retval)
1420		return retval;
1421
1422	blk_start_plug(&plug);
1423
1424	/* coalesce the iovecs and go direct-to-BIO for O_DIRECT */
1425	if (filp->f_flags & O_DIRECT) {
1426		loff_t size;
1427		struct address_space *mapping;
1428		struct inode *inode;
1429
1430		mapping = filp->f_mapping;
1431		inode = mapping->host;
1432		if (!count)
1433			goto out; /* skip atime */
1434		size = i_size_read(inode);
1435		if (pos < size) {
1436			retval = filemap_write_and_wait_range(mapping, pos,
1437					pos + iov_length(iov, nr_segs) - 1);
1438			if (!retval) {
1439				retval = mapping->a_ops->direct_IO(READ, iocb,
1440							iov, pos, nr_segs);
1441			}
1442			if (retval > 0) {
1443				*ppos = pos + retval;
1444				count -= retval;
1445			}
1446
1447			/*
1448			 * Btrfs can have a short DIO read if we encounter
1449			 * compressed extents, so if there was an error, or if
1450			 * we've already read everything we wanted to, or if
1451			 * there was a short read because we hit EOF, go ahead
1452			 * and return.  Otherwise fallthrough to buffered io for
1453			 * the rest of the read.
1454			 */
1455			if (retval < 0 || !count || *ppos >= size) {
1456				file_accessed(filp);
1457				goto out;
1458			}
1459		}
1460	}
1461
1462	count = retval;
1463	for (seg = 0; seg < nr_segs; seg++) {
1464		read_descriptor_t desc;
1465		loff_t offset = 0;
1466
1467		/*
1468		 * If we did a short DIO read we need to skip the section of the
1469		 * iov that we've already read data into.
1470		 */
1471		if (count) {
1472			if (count > iov[seg].iov_len) {
1473				count -= iov[seg].iov_len;
1474				continue;
1475			}
1476			offset = count;
1477			count = 0;
1478		}
1479
1480		desc.written = 0;
1481		desc.arg.buf = iov[seg].iov_base + offset;
1482		desc.count = iov[seg].iov_len - offset;
1483		if (desc.count == 0)
1484			continue;
1485		desc.error = 0;
1486		do_generic_file_read(filp, ppos, &desc, file_read_actor);
1487		retval += desc.written;
1488		if (desc.error) {
1489			retval = retval ?: desc.error;
1490			break;
1491		}
1492		if (desc.count > 0)
1493			break;
1494	}
1495out:
1496	blk_finish_plug(&plug);
1497	return retval;
1498}
1499EXPORT_SYMBOL(generic_file_aio_read);
1500
1501static ssize_t
1502do_readahead(struct address_space *mapping, struct file *filp,
1503	     pgoff_t index, unsigned long nr)
1504{
1505	if (!mapping || !mapping->a_ops || !mapping->a_ops->readpage)
1506		return -EINVAL;
1507
1508	force_page_cache_readahead(mapping, filp, index, nr);
1509	return 0;
1510}
1511
1512SYSCALL_DEFINE(readahead)(int fd, loff_t offset, size_t count)
1513{
1514	ssize_t ret;
1515	struct file *file;
1516
1517	ret = -EBADF;
1518	file = fget(fd);
1519	if (file) {
1520		if (file->f_mode & FMODE_READ) {
1521			struct address_space *mapping = file->f_mapping;
1522			pgoff_t start = offset >> PAGE_CACHE_SHIFT;
1523			pgoff_t end = (offset + count - 1) >> PAGE_CACHE_SHIFT;
1524			unsigned long len = end - start + 1;
1525			ret = do_readahead(mapping, file, start, len);
1526		}
1527		fput(file);
1528	}
1529	return ret;
1530}
1531#ifdef CONFIG_HAVE_SYSCALL_WRAPPERS
1532asmlinkage long SyS_readahead(long fd, loff_t offset, long count)
1533{
1534	return SYSC_readahead((int) fd, offset, (size_t) count);
1535}
1536SYSCALL_ALIAS(sys_readahead, SyS_readahead);
1537#endif
1538
1539#ifdef CONFIG_MMU
1540/**
1541 * page_cache_read - adds requested page to the page cache if not already there
1542 * @file:	file to read
1543 * @offset:	page index
1544 *
1545 * This adds the requested page to the page cache if it isn't already there,
1546 * and schedules an I/O to read in its contents from disk.
1547 */
1548static int page_cache_read(struct file *file, pgoff_t offset)
1549{
1550	struct address_space *mapping = file->f_mapping;
1551	struct page *page;
1552	int ret;
1553
1554	do {
1555		page = page_cache_alloc_cold(mapping);
1556		if (!page)
1557			return -ENOMEM;
1558
1559		ret = add_to_page_cache_lru(page, mapping, offset, GFP_KERNEL);
1560		if (ret == 0)
1561			ret = mapping->a_ops->readpage(file, page);
1562		else if (ret == -EEXIST)
1563			ret = 0; /* losing race to add is OK */
1564
1565		page_cache_release(page);
1566
1567	} while (ret == AOP_TRUNCATED_PAGE);
1568
1569	return ret;
1570}
1571
1572#define MMAP_LOTSAMISS  (100)
1573
1574/*
1575 * Synchronous readahead happens when we don't even find
1576 * a page in the page cache at all.
1577 */
1578static void do_sync_mmap_readahead(struct vm_area_struct *vma,
1579				   struct file_ra_state *ra,
1580				   struct file *file,
1581				   pgoff_t offset)
1582{
1583	unsigned long ra_pages;
1584	struct address_space *mapping = file->f_mapping;
1585
1586	/* If we don't want any read-ahead, don't bother */
1587	if (VM_RandomReadHint(vma))
1588		return;
1589	if (!ra->ra_pages)
1590		return;
1591
1592	if (VM_SequentialReadHint(vma)) {
1593		page_cache_sync_readahead(mapping, ra, file, offset,
1594					  ra->ra_pages);
1595		return;
1596	}
1597
1598	/* Avoid banging the cache line if not needed */
1599	if (ra->mmap_miss < MMAP_LOTSAMISS * 10)
1600		ra->mmap_miss++;
1601
1602	/*
1603	 * Do we miss much more than hit in this file? If so,
1604	 * stop bothering with read-ahead. It will only hurt.
1605	 */
1606	if (ra->mmap_miss > MMAP_LOTSAMISS)
1607		return;
1608
1609	/*
1610	 * mmap read-around
1611	 */
1612	ra_pages = max_sane_readahead(ra->ra_pages);
1613	ra->start = max_t(long, 0, offset - ra_pages / 2);
1614	ra->size = ra_pages;
1615	ra->async_size = ra_pages / 4;
1616	ra_submit(ra, mapping, file);
1617}
1618
1619/*
1620 * Asynchronous readahead happens when we find the page and PG_readahead,
1621 * so we want to possibly extend the readahead further..
1622 */
1623static void do_async_mmap_readahead(struct vm_area_struct *vma,
1624				    struct file_ra_state *ra,
1625				    struct file *file,
1626				    struct page *page,
1627				    pgoff_t offset)
1628{
1629	struct address_space *mapping = file->f_mapping;
1630
1631	/* If we don't want any read-ahead, don't bother */
1632	if (VM_RandomReadHint(vma))
1633		return;
1634	if (ra->mmap_miss > 0)
1635		ra->mmap_miss--;
1636	if (PageReadahead(page))
1637		page_cache_async_readahead(mapping, ra, file,
1638					   page, offset, ra->ra_pages);
1639}
1640
1641/**
1642 * filemap_fault - read in file data for page fault handling
1643 * @vma:	vma in which the fault was taken
1644 * @vmf:	struct vm_fault containing details of the fault
1645 *
1646 * filemap_fault() is invoked via the vma operations vector for a
1647 * mapped memory region to read in file data during a page fault.
1648 *
1649 * The goto's are kind of ugly, but this streamlines the normal case of having
1650 * it in the page cache, and handles the special cases reasonably without
1651 * having a lot of duplicated code.
1652 */
1653int filemap_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
1654{
1655	int error;
1656	struct file *file = vma->vm_file;
1657	struct address_space *mapping = file->f_mapping;
1658	struct file_ra_state *ra = &file->f_ra;
1659	struct inode *inode = mapping->host;
1660	pgoff_t offset = vmf->pgoff;
1661	struct page *page;
1662	pgoff_t size;
1663	int ret = 0;
1664
1665	size = (i_size_read(inode) + PAGE_CACHE_SIZE - 1) >> PAGE_CACHE_SHIFT;
1666	if (offset >= size)
1667		return VM_FAULT_SIGBUS;
1668
1669	/*
1670	 * Do we have something in the page cache already?
1671	 */
1672	page = find_get_page(mapping, offset);
1673	if (likely(page)) {
1674		/*
1675		 * We found the page, so try async readahead before
1676		 * waiting for the lock.
1677		 */
1678		do_async_mmap_readahead(vma, ra, file, page, offset);
1679	} else {
1680		/* No page in the page cache at all */
1681		do_sync_mmap_readahead(vma, ra, file, offset);
1682		count_vm_event(PGMAJFAULT);
1683		mem_cgroup_count_vm_event(vma->vm_mm, PGMAJFAULT);
1684		ret = VM_FAULT_MAJOR;
1685retry_find:
1686		page = find_get_page(mapping, offset);
1687		if (!page)
1688			goto no_cached_page;
1689	}
1690
1691	if (!lock_page_or_retry(page, vma->vm_mm, vmf->flags)) {
1692		page_cache_release(page);
1693		return ret | VM_FAULT_RETRY;
1694	}
1695
1696	/* Did it get truncated? */
1697	if (unlikely(page->mapping != mapping)) {
1698		unlock_page(page);
1699		put_page(page);
1700		goto retry_find;
1701	}
1702	VM_BUG_ON(page->index != offset);
1703
1704	/*
1705	 * We have a locked page in the page cache, now we need to check
1706	 * that it's up-to-date. If not, it is going to be due to an error.
1707	 */
1708	if (unlikely(!PageUptodate(page)))
1709		goto page_not_uptodate;
1710
1711	/*
1712	 * Found the page and have a reference on it.
1713	 * We must recheck i_size under page lock.
1714	 */
1715	size = (i_size_read(inode) + PAGE_CACHE_SIZE - 1) >> PAGE_CACHE_SHIFT;
1716	if (unlikely(offset >= size)) {
1717		unlock_page(page);
1718		page_cache_release(page);
1719		return VM_FAULT_SIGBUS;
1720	}
1721
1722	vmf->page = page;
1723	return ret | VM_FAULT_LOCKED;
1724
1725no_cached_page:
1726	/*
1727	 * We're only likely to ever get here if MADV_RANDOM is in
1728	 * effect.
1729	 */
1730	error = page_cache_read(file, offset);
1731
1732	/*
1733	 * The page we want has now been added to the page cache.
1734	 * In the unlikely event that someone removed it in the
1735	 * meantime, we'll just come back here and read it again.
1736	 */
1737	if (error >= 0)
1738		goto retry_find;
1739
1740	/*
1741	 * An error return from page_cache_read can result if the
1742	 * system is low on memory, or a problem occurs while trying
1743	 * to schedule I/O.
1744	 */
1745	if (error == -ENOMEM)
1746		return VM_FAULT_OOM;
1747	return VM_FAULT_SIGBUS;
1748
1749page_not_uptodate:
1750	/*
1751	 * Umm, take care of errors if the page isn't up-to-date.
1752	 * Try to re-read it _once_. We do this synchronously,
1753	 * because there really aren't any performance issues here
1754	 * and we need to check for errors.
1755	 */
1756	ClearPageError(page);
1757	error = mapping->a_ops->readpage(file, page);
1758	if (!error) {
1759		wait_on_page_locked(page);
1760		if (!PageUptodate(page))
1761			error = -EIO;
1762	}
1763	page_cache_release(page);
1764
1765	if (!error || error == AOP_TRUNCATED_PAGE)
1766		goto retry_find;
1767
1768	/* Things didn't work out. Return zero to tell the mm layer so. */
1769	shrink_readahead_size_eio(file, ra);
1770	return VM_FAULT_SIGBUS;
1771}
1772EXPORT_SYMBOL(filemap_fault);
1773
1774const struct vm_operations_struct generic_file_vm_ops = {
1775	.fault		= filemap_fault,
1776};
1777
1778/* This is used for a general mmap of a disk file */
1779
1780int generic_file_mmap(struct file * file, struct vm_area_struct * vma)
1781{
1782	struct address_space *mapping = file->f_mapping;
1783
1784	if (!mapping->a_ops->readpage)
1785		return -ENOEXEC;
1786	file_accessed(file);
1787	vma->vm_ops = &generic_file_vm_ops;
1788	vma->vm_flags |= VM_CAN_NONLINEAR;
1789	return 0;
1790}
1791
1792/*
1793 * This is for filesystems which do not implement ->writepage.
1794 */
1795int generic_file_readonly_mmap(struct file *file, struct vm_area_struct *vma)
1796{
1797	if ((vma->vm_flags & VM_SHARED) && (vma->vm_flags & VM_MAYWRITE))
1798		return -EINVAL;
1799	return generic_file_mmap(file, vma);
1800}
1801#else
1802int generic_file_mmap(struct file * file, struct vm_area_struct * vma)
1803{
1804	return -ENOSYS;
1805}
1806int generic_file_readonly_mmap(struct file * file, struct vm_area_struct * vma)
1807{
1808	return -ENOSYS;
1809}
1810#endif /* CONFIG_MMU */
1811
1812EXPORT_SYMBOL(generic_file_mmap);
1813EXPORT_SYMBOL(generic_file_readonly_mmap);
1814
1815static struct page *__read_cache_page(struct address_space *mapping,
1816				pgoff_t index,
1817				int (*filler)(void *, struct page *),
1818				void *data,
1819				gfp_t gfp)
1820{
1821	struct page *page;
1822	int err;
1823repeat:
1824	page = find_get_page(mapping, index);
1825	if (!page) {
1826		page = __page_cache_alloc(gfp | __GFP_COLD);
1827		if (!page)
1828			return ERR_PTR(-ENOMEM);
1829		err = add_to_page_cache_lru(page, mapping, index, GFP_KERNEL);
1830		if (unlikely(err)) {
1831			page_cache_release(page);
1832			if (err == -EEXIST)
1833				goto repeat;
1834			/* Presumably ENOMEM for radix tree node */
1835			return ERR_PTR(err);
1836		}
1837		err = filler(data, page);
1838		if (err < 0) {
1839			page_cache_release(page);
1840			page = ERR_PTR(err);
1841		}
1842	}
1843	return page;
1844}
1845
1846static struct page *do_read_cache_page(struct address_space *mapping,
1847				pgoff_t index,
1848				int (*filler)(void *, struct page *),
1849				void *data,
1850				gfp_t gfp)
1851
1852{
1853	struct page *page;
1854	int err;
1855
1856retry:
1857	page = __read_cache_page(mapping, index, filler, data, gfp);
1858	if (IS_ERR(page))
1859		return page;
1860	if (PageUptodate(page))
1861		goto out;
1862
1863	lock_page(page);
1864	if (!page->mapping) {
1865		unlock_page(page);
1866		page_cache_release(page);
1867		goto retry;
1868	}
1869	if (PageUptodate(page)) {
1870		unlock_page(page);
1871		goto out;
1872	}
1873	err = filler(data, page);
1874	if (err < 0) {
1875		page_cache_release(page);
1876		return ERR_PTR(err);
1877	}
1878out:
1879	mark_page_accessed(page);
1880	return page;
1881}
1882
1883/**
1884 * read_cache_page_async - read into page cache, fill it if needed
1885 * @mapping:	the page's address_space
1886 * @index:	the page index
1887 * @filler:	function to perform the read
1888 * @data:	first arg to filler(data, page) function, often left as NULL
1889 *
1890 * Same as read_cache_page, but don't wait for page to become unlocked
1891 * after submitting it to the filler.
1892 *
1893 * Read into the page cache. If a page already exists, and PageUptodate() is
1894 * not set, try to fill the page but don't wait for it to become unlocked.
1895 *
1896 * If the page does not get brought uptodate, return -EIO.
1897 */
1898struct page *read_cache_page_async(struct address_space *mapping,
1899				pgoff_t index,
1900				int (*filler)(void *, struct page *),
1901				void *data)
1902{
1903	return do_read_cache_page(mapping, index, filler, data, mapping_gfp_mask(mapping));
1904}
1905EXPORT_SYMBOL(read_cache_page_async);
1906
1907static struct page *wait_on_page_read(struct page *page)
1908{
1909	if (!IS_ERR(page)) {
1910		wait_on_page_locked(page);
1911		if (!PageUptodate(page)) {
1912			page_cache_release(page);
1913			page = ERR_PTR(-EIO);
1914		}
1915	}
1916	return page;
1917}
1918
1919/**
1920 * read_cache_page_gfp - read into page cache, using specified page allocation flags.
1921 * @mapping:	the page's address_space
1922 * @index:	the page index
1923 * @gfp:	the page allocator flags to use if allocating
1924 *
1925 * This is the same as "read_mapping_page(mapping, index, NULL)", but with
1926 * any new page allocations done using the specified allocation flags. Note
1927 * that the Radix tree operations will still use GFP_KERNEL, so you can't
1928 * expect to do this atomically or anything like that - but you can pass in
1929 * other page requirements.
1930 *
1931 * If the page does not get brought uptodate, return -EIO.
1932 */
1933struct page *read_cache_page_gfp(struct address_space *mapping,
1934				pgoff_t index,
1935				gfp_t gfp)
1936{
1937	filler_t *filler = (filler_t *)mapping->a_ops->readpage;
1938
1939	return wait_on_page_read(do_read_cache_page(mapping, index, filler, NULL, gfp));
1940}
1941EXPORT_SYMBOL(read_cache_page_gfp);
1942
1943/**
1944 * read_cache_page - read into page cache, fill it if needed
1945 * @mapping:	the page's address_space
1946 * @index:	the page index
1947 * @filler:	function to perform the read
1948 * @data:	first arg to filler(data, page) function, often left as NULL
1949 *
1950 * Read into the page cache. If a page already exists, and PageUptodate() is
1951 * not set, try to fill the page then wait for it to become unlocked.
1952 *
1953 * If the page does not get brought uptodate, return -EIO.
1954 */
1955struct page *read_cache_page(struct address_space *mapping,
1956				pgoff_t index,
1957				int (*filler)(void *, struct page *),
1958				void *data)
1959{
1960	return wait_on_page_read(read_cache_page_async(mapping, index, filler, data));
1961}
1962EXPORT_SYMBOL(read_cache_page);
1963
1964/*
1965 * The logic we want is
1966 *
1967 *	if suid or (sgid and xgrp)
1968 *		remove privs
1969 */
1970int should_remove_suid(struct dentry *dentry)
1971{
1972	mode_t mode = dentry->d_inode->i_mode;
1973	int kill = 0;
1974
1975	/* suid always must be killed */
1976	if (unlikely(mode & S_ISUID))
1977		kill = ATTR_KILL_SUID;
1978
1979	/*
1980	 * sgid without any exec bits is just a mandatory locking mark; leave
1981	 * it alone.  If some exec bits are set, it's a real sgid; kill it.
1982	 */
1983	if (unlikely((mode & S_ISGID) && (mode & S_IXGRP)))
1984		kill |= ATTR_KILL_SGID;
1985
1986	if (unlikely(kill && !capable(CAP_FSETID) && S_ISREG(mode)))
1987		return kill;
1988
1989	return 0;
1990}
1991EXPORT_SYMBOL(should_remove_suid);
1992
1993static int __remove_suid(struct dentry *dentry, int kill)
1994{
1995	struct iattr newattrs;
1996
1997	newattrs.ia_valid = ATTR_FORCE | kill;
1998	return notify_change(dentry, &newattrs);
1999}
2000
2001int file_remove_suid(struct file *file)
2002{
2003	struct dentry *dentry = file->f_path.dentry;
2004	struct inode *inode = dentry->d_inode;
2005	int killsuid;
2006	int killpriv;
2007	int error = 0;
2008
2009	/* Fast path for nothing security related */
2010	if (IS_NOSEC(inode))
2011		return 0;
2012
2013	killsuid = should_remove_suid(dentry);
2014	killpriv = security_inode_need_killpriv(dentry);
2015
2016	if (killpriv < 0)
2017		return killpriv;
2018	if (killpriv)
2019		error = security_inode_killpriv(dentry);
2020	if (!error && killsuid)
2021		error = __remove_suid(dentry, killsuid);
2022	if (!error && (inode->i_sb->s_flags & MS_NOSEC))
2023		inode->i_flags |= S_NOSEC;
2024
2025	return error;
2026}
2027EXPORT_SYMBOL(file_remove_suid);
2028
2029static size_t __iovec_copy_from_user_inatomic(char *vaddr,
2030			const struct iovec *iov, size_t base, size_t bytes)
2031{
2032	size_t copied = 0, left = 0;
2033
2034	while (bytes) {
2035		char __user *buf = iov->iov_base + base;
2036		int copy = min(bytes, iov->iov_len - base);
2037
2038		base = 0;
2039		left = __copy_from_user_inatomic(vaddr, buf, copy);
2040		copied += copy;
2041		bytes -= copy;
2042		vaddr += copy;
2043		iov++;
2044
2045		if (unlikely(left))
2046			break;
2047	}
2048	return copied - left;
2049}
2050
2051/*
2052 * Copy as much as we can into the page and return the number of bytes which
2053 * were successfully copied.  If a fault is encountered then return the number of
2054 * bytes which were copied.
2055 */
2056size_t iov_iter_copy_from_user_atomic(struct page *page,
2057		struct iov_iter *i, unsigned long offset, size_t bytes)
2058{
2059	char *kaddr;
2060	size_t copied;
2061
2062	BUG_ON(!in_atomic());
2063	kaddr = kmap_atomic(page, KM_USER0);
2064	if (likely(i->nr_segs == 1)) {
2065		int left;
2066		char __user *buf = i->iov->iov_base + i->iov_offset;
2067		left = __copy_from_user_inatomic(kaddr + offset, buf, bytes);
2068		copied = bytes - left;
2069	} else {
2070		copied = __iovec_copy_from_user_inatomic(kaddr + offset,
2071						i->iov, i->iov_offset, bytes);
2072	}
2073	kunmap_atomic(kaddr, KM_USER0);
2074
2075	return copied;
2076}
2077EXPORT_SYMBOL(iov_iter_copy_from_user_atomic);
2078
2079/*
2080 * This has the same sideeffects and return value as
2081 * iov_iter_copy_from_user_atomic().
2082 * The difference is that it attempts to resolve faults.
2083 * Page must not be locked.
2084 */
2085size_t iov_iter_copy_from_user(struct page *page,
2086		struct iov_iter *i, unsigned long offset, size_t bytes)
2087{
2088	char *kaddr;
2089	size_t copied;
2090
2091	kaddr = kmap(page);
2092	if (likely(i->nr_segs == 1)) {
2093		int left;
2094		char __user *buf = i->iov->iov_base + i->iov_offset;
2095		left = __copy_from_user(kaddr + offset, buf, bytes);
2096		copied = bytes - left;
2097	} else {
2098		copied = __iovec_copy_from_user_inatomic(kaddr + offset,
2099						i->iov, i->iov_offset, bytes);
2100	}
2101	kunmap(page);
2102	return copied;
2103}
2104EXPORT_SYMBOL(iov_iter_copy_from_user);
2105
2106void iov_iter_advance(struct iov_iter *i, size_t bytes)
2107{
2108	BUG_ON(i->count < bytes);
2109
2110	if (likely(i->nr_segs == 1)) {
2111		i->iov_offset += bytes;
2112		i->count -= bytes;
2113	} else {
2114		const struct iovec *iov = i->iov;
2115		size_t base = i->iov_offset;
2116
2117		/*
2118		 * The !iov->iov_len check ensures we skip over unlikely
2119		 * zero-length segments (without overruning the iovec).
2120		 */
2121		while (bytes || unlikely(i->count && !iov->iov_len)) {
2122			int copy;
2123
2124			copy = min(bytes, iov->iov_len - base);
2125			BUG_ON(!i->count || i->count < copy);
2126			i->count -= copy;
2127			bytes -= copy;
2128			base += copy;
2129			if (iov->iov_len == base) {
2130				iov++;
2131				base = 0;
2132			}
2133		}
2134		i->iov = iov;
2135		i->iov_offset = base;
2136	}
2137}
2138EXPORT_SYMBOL(iov_iter_advance);
2139
2140/*
2141 * Fault in the first iovec of the given iov_iter, to a maximum length
2142 * of bytes. Returns 0 on success, or non-zero if the memory could not be
2143 * accessed (ie. because it is an invalid address).
2144 *
2145 * writev-intensive code may want this to prefault several iovecs -- that
2146 * would be possible (callers must not rely on the fact that _only_ the
2147 * first iovec will be faulted with the current implementation).
2148 */
2149int iov_iter_fault_in_readable(struct iov_iter *i, size_t bytes)
2150{
2151	char __user *buf = i->iov->iov_base + i->iov_offset;
2152	bytes = min(bytes, i->iov->iov_len - i->iov_offset);
2153	return fault_in_pages_readable(buf, bytes);
2154}
2155EXPORT_SYMBOL(iov_iter_fault_in_readable);
2156
2157/*
2158 * Return the count of just the current iov_iter segment.
2159 */
2160size_t iov_iter_single_seg_count(struct iov_iter *i)
2161{
2162	const struct iovec *iov = i->iov;
2163	if (i->nr_segs == 1)
2164		return i->count;
2165	else
2166		return min(i->count, iov->iov_len - i->iov_offset);
2167}
2168EXPORT_SYMBOL(iov_iter_single_seg_count);
2169
2170/*
2171 * Performs necessary checks before doing a write
2172 *
2173 * Can adjust writing position or amount of bytes to write.
2174 * Returns appropriate error code that caller should return or
2175 * zero in case that write should be allowed.
2176 */
2177inline int generic_write_checks(struct file *file, loff_t *pos, size_t *count, int isblk)
2178{
2179	struct inode *inode = file->f_mapping->host;
2180	unsigned long limit = rlimit(RLIMIT_FSIZE);
2181
2182        if (unlikely(*pos < 0))
2183                return -EINVAL;
2184
2185	if (!isblk) {
2186		/* FIXME: this is for backwards compatibility with 2.4 */
2187		if (file->f_flags & O_APPEND)
2188                        *pos = i_size_read(inode);
2189
2190		if (limit != RLIM_INFINITY) {
2191			if (*pos >= limit) {
2192				send_sig(SIGXFSZ, current, 0);
2193				return -EFBIG;
2194			}
2195			if (*count > limit - (typeof(limit))*pos) {
2196				*count = limit - (typeof(limit))*pos;
2197			}
2198		}
2199	}
2200
2201	/*
2202	 * LFS rule
2203	 */
2204	if (unlikely(*pos + *count > MAX_NON_LFS &&
2205				!(file->f_flags & O_LARGEFILE))) {
2206		if (*pos >= MAX_NON_LFS) {
2207			return -EFBIG;
2208		}
2209		if (*count > MAX_NON_LFS - (unsigned long)*pos) {
2210			*count = MAX_NON_LFS - (unsigned long)*pos;
2211		}
2212	}
2213
2214	/*
2215	 * Are we about to exceed the fs block limit ?
2216	 *
2217	 * If we have written data it becomes a short write.  If we have
2218	 * exceeded without writing data we send a signal and return EFBIG.
2219	 * Linus frestrict idea will clean these up nicely..
2220	 */
2221	if (likely(!isblk)) {
2222		if (unlikely(*pos >= inode->i_sb->s_maxbytes)) {
2223			if (*count || *pos > inode->i_sb->s_maxbytes) {
2224				return -EFBIG;
2225			}
2226			/* zero-length writes at ->s_maxbytes are OK */
2227		}
2228
2229		if (unlikely(*pos + *count > inode->i_sb->s_maxbytes))
2230			*count = inode->i_sb->s_maxbytes - *pos;
2231	} else {
2232#ifdef CONFIG_BLOCK
2233		loff_t isize;
2234		if (bdev_read_only(I_BDEV(inode)))
2235			return -EPERM;
2236		isize = i_size_read(inode);
2237		if (*pos >= isize) {
2238			if (*count || *pos > isize)
2239				return -ENOSPC;
2240		}
2241
2242		if (*pos + *count > isize)
2243			*count = isize - *pos;
2244#else
2245		return -EPERM;
2246#endif
2247	}
2248	return 0;
2249}
2250EXPORT_SYMBOL(generic_write_checks);
2251
2252int pagecache_write_begin(struct file *file, struct address_space *mapping,
2253				loff_t pos, unsigned len, unsigned flags,
2254				struct page **pagep, void **fsdata)
2255{
2256	const struct address_space_operations *aops = mapping->a_ops;
2257
2258	return aops->write_begin(file, mapping, pos, len, flags,
2259							pagep, fsdata);
2260}
2261EXPORT_SYMBOL(pagecache_write_begin);
2262
2263int pagecache_write_end(struct file *file, struct address_space *mapping,
2264				loff_t pos, unsigned len, unsigned copied,
2265				struct page *page, void *fsdata)
2266{
2267	const struct address_space_operations *aops = mapping->a_ops;
2268
2269	mark_page_accessed(page);
2270	return aops->write_end(file, mapping, pos, len, copied, page, fsdata);
2271}
2272EXPORT_SYMBOL(pagecache_write_end);
2273
2274ssize_t
2275generic_file_direct_write(struct kiocb *iocb, const struct iovec *iov,
2276		unsigned long *nr_segs, loff_t pos, loff_t *ppos,
2277		size_t count, size_t ocount)
2278{
2279	struct file	*file = iocb->ki_filp;
2280	struct address_space *mapping = file->f_mapping;
2281	struct inode	*inode = mapping->host;
2282	ssize_t		written;
2283	size_t		write_len;
2284	pgoff_t		end;
2285
2286	if (count != ocount)
2287		*nr_segs = iov_shorten((struct iovec *)iov, *nr_segs, count);
2288
2289	write_len = iov_length(iov, *nr_segs);
2290	end = (pos + write_len - 1) >> PAGE_CACHE_SHIFT;
2291
2292	written = filemap_write_and_wait_range(mapping, pos, pos + write_len - 1);
2293	if (written)
2294		goto out;
2295
2296	/*
2297	 * After a write we want buffered reads to be sure to go to disk to get
2298	 * the new data.  We invalidate clean cached page from the region we're
2299	 * about to write.  We do this *before* the write so that we can return
2300	 * without clobbering -EIOCBQUEUED from ->direct_IO().
2301	 */
2302	if (mapping->nrpages) {
2303		written = invalidate_inode_pages2_range(mapping,
2304					pos >> PAGE_CACHE_SHIFT, end);
2305		/*
2306		 * If a page can not be invalidated, return 0 to fall back
2307		 * to buffered write.
2308		 */
2309		if (written) {
2310			if (written == -EBUSY)
2311				return 0;
2312			goto out;
2313		}
2314	}
2315
2316	written = mapping->a_ops->direct_IO(WRITE, iocb, iov, pos, *nr_segs);
2317
2318	/*
2319	 * Finally, try again to invalidate clean pages which might have been
2320	 * cached by non-direct readahead, or faulted in by get_user_pages()
2321	 * if the source of the write was an mmap'ed region of the file
2322	 * we're writing.  Either one is a pretty crazy thing to do,
2323	 * so we don't support it 100%.  If this invalidation
2324	 * fails, tough, the write still worked...
2325	 */
2326	if (mapping->nrpages) {
2327		invalidate_inode_pages2_range(mapping,
2328					      pos >> PAGE_CACHE_SHIFT, end);
2329	}
2330
2331	if (written > 0) {
2332		pos += written;
2333		if (pos > i_size_read(inode) && !S_ISBLK(inode->i_mode)) {
2334			i_size_write(inode, pos);
2335			mark_inode_dirty(inode);
2336		}
2337		*ppos = pos;
2338	}
2339out:
2340	return written;
2341}
2342EXPORT_SYMBOL(generic_file_direct_write);
2343
2344/*
2345 * Find or create a page at the given pagecache position. Return the locked
2346 * page. This function is specifically for buffered writes.
2347 */
2348struct page *grab_cache_page_write_begin(struct address_space *mapping,
2349					pgoff_t index, unsigned flags)
2350{
2351	int status;
2352	struct page *page;
2353	gfp_t gfp_notmask = 0;
2354	if (flags & AOP_FLAG_NOFS)
2355		gfp_notmask = __GFP_FS;
2356repeat:
2357	page = find_lock_page(mapping, index);
2358	if (page)
2359		goto found;
2360
2361	page = __page_cache_alloc(mapping_gfp_mask(mapping) & ~gfp_notmask);
2362	if (!page)
2363		return NULL;
2364	status = add_to_page_cache_lru(page, mapping, index,
2365						GFP_KERNEL & ~gfp_notmask);
2366	if (unlikely(status)) {
2367		page_cache_release(page);
2368		if (status == -EEXIST)
2369			goto repeat;
2370		return NULL;
2371	}
2372found:
2373	wait_on_page_writeback(page);
2374	return page;
2375}
2376EXPORT_SYMBOL(grab_cache_page_write_begin);
2377
2378static ssize_t generic_perform_write(struct file *file,
2379				struct iov_iter *i, loff_t pos)
2380{
2381	struct address_space *mapping = file->f_mapping;
2382	const struct address_space_operations *a_ops = mapping->a_ops;
2383	long status = 0;
2384	ssize_t written = 0;
2385	unsigned int flags = 0;
2386
2387	/*
2388	 * Copies from kernel address space cannot fail (NFSD is a big user).
2389	 */
2390	if (segment_eq(get_fs(), KERNEL_DS))
2391		flags |= AOP_FLAG_UNINTERRUPTIBLE;
2392
2393	do {
2394		struct page *page;
2395		unsigned long offset;	/* Offset into pagecache page */
2396		unsigned long bytes;	/* Bytes to write to page */
2397		size_t copied;		/* Bytes copied from user */
2398		void *fsdata;
2399
2400		offset = (pos & (PAGE_CACHE_SIZE - 1));
2401		bytes = min_t(unsigned long, PAGE_CACHE_SIZE - offset,
2402						iov_iter_count(i));
2403
2404again:
2405
2406		/*
2407		 * Bring in the user page that we will copy from _first_.
2408		 * Otherwise there's a nasty deadlock on copying from the
2409		 * same page as we're writing to, without it being marked
2410		 * up-to-date.
2411		 *
2412		 * Not only is this an optimisation, but it is also required
2413		 * to check that the address is actually valid, when atomic
2414		 * usercopies are used, below.
2415		 */
2416		if (unlikely(iov_iter_fault_in_readable(i, bytes))) {
2417			status = -EFAULT;
2418			break;
2419		}
2420
2421		status = a_ops->write_begin(file, mapping, pos, bytes, flags,
2422						&page, &fsdata);
2423		if (unlikely(status))
2424			break;
2425
2426		if (mapping_writably_mapped(mapping))
2427			flush_dcache_page(page);
2428
2429		pagefault_disable();
2430		copied = iov_iter_copy_from_user_atomic(page, i, offset, bytes);
2431		pagefault_enable();
2432		flush_dcache_page(page);
2433
2434		mark_page_accessed(page);
2435		status = a_ops->write_end(file, mapping, pos, bytes, copied,
2436						page, fsdata);
2437		if (unlikely(status < 0))
2438			break;
2439		copied = status;
2440
2441		cond_resched();
2442
2443		iov_iter_advance(i, copied);
2444		if (unlikely(copied == 0)) {
2445			/*
2446			 * If we were unable to copy any data at all, we must
2447			 * fall back to a single segment length write.
2448			 *
2449			 * If we didn't fallback here, we could livelock
2450			 * because not all segments in the iov can be copied at
2451			 * once without a pagefault.
2452			 */
2453			bytes = min_t(unsigned long, PAGE_CACHE_SIZE - offset,
2454						iov_iter_single_seg_count(i));
2455			goto again;
2456		}
2457		pos += copied;
2458		written += copied;
2459
2460		balance_dirty_pages_ratelimited(mapping);
2461
2462	} while (iov_iter_count(i));
2463
2464	return written ? written : status;
2465}
2466
2467ssize_t
2468generic_file_buffered_write(struct kiocb *iocb, const struct iovec *iov,
2469		unsigned long nr_segs, loff_t pos, loff_t *ppos,
2470		size_t count, ssize_t written)
2471{
2472	struct file *file = iocb->ki_filp;
2473	ssize_t status;
2474	struct iov_iter i;
2475
2476	iov_iter_init(&i, iov, nr_segs, count, written);
2477	status = generic_perform_write(file, &i, pos);
2478
2479	if (likely(status >= 0)) {
2480		written += status;
2481		*ppos = pos + status;
2482  	}
2483
2484	return written ? written : status;
2485}
2486EXPORT_SYMBOL(generic_file_buffered_write);
2487
2488/**
2489 * __generic_file_aio_write - write data to a file
2490 * @iocb:	IO state structure (file, offset, etc.)
2491 * @iov:	vector with data to write
2492 * @nr_segs:	number of segments in the vector
2493 * @ppos:	position where to write
2494 *
2495 * This function does all the work needed for actually writing data to a
2496 * file. It does all basic checks, removes SUID from the file, updates
2497 * modification times and calls proper subroutines depending on whether we
2498 * do direct IO or a standard buffered write.
2499 *
2500 * It expects i_mutex to be grabbed unless we work on a block device or similar
2501 * object which does not need locking at all.
2502 *
2503 * This function does *not* take care of syncing data in case of O_SYNC write.
2504 * A caller has to handle it. This is mainly due to the fact that we want to
2505 * avoid syncing under i_mutex.
2506 */
2507ssize_t __generic_file_aio_write(struct kiocb *iocb, const struct iovec *iov,
2508				 unsigned long nr_segs, loff_t *ppos)
2509{
2510	struct file *file = iocb->ki_filp;
2511	struct address_space * mapping = file->f_mapping;
2512	size_t ocount;		/* original count */
2513	size_t count;		/* after file limit checks */
2514	struct inode 	*inode = mapping->host;
2515	loff_t		pos;
2516	ssize_t		written;
2517	ssize_t		err;
2518
2519	ocount = 0;
2520	err = generic_segment_checks(iov, &nr_segs, &ocount, VERIFY_READ);
2521	if (err)
2522		return err;
2523
2524	count = ocount;
2525	pos = *ppos;
2526
2527	vfs_check_frozen(inode->i_sb, SB_FREEZE_WRITE);
2528
2529	/* We can write back this queue in page reclaim */
2530	current->backing_dev_info = mapping->backing_dev_info;
2531	written = 0;
2532
2533	err = generic_write_checks(file, &pos, &count, S_ISBLK(inode->i_mode));
2534	if (err)
2535		goto out;
2536
2537	if (count == 0)
2538		goto out;
2539
2540	err = file_remove_suid(file);
2541	if (err)
2542		goto out;
2543
2544	file_update_time(file);
2545
2546	/* coalesce the iovecs and go direct-to-BIO for O_DIRECT */
2547	if (unlikely(file->f_flags & O_DIRECT)) {
2548		loff_t endbyte;
2549		ssize_t written_buffered;
2550
2551		written = generic_file_direct_write(iocb, iov, &nr_segs, pos,
2552							ppos, count, ocount);
2553		if (written < 0 || written == count)
2554			goto out;
2555		/*
2556		 * direct-io write to a hole: fall through to buffered I/O
2557		 * for completing the rest of the request.
2558		 */
2559		pos += written;
2560		count -= written;
2561		written_buffered = generic_file_buffered_write(iocb, iov,
2562						nr_segs, pos, ppos, count,
2563						written);
2564		/*
2565		 * If generic_file_buffered_write() retuned a synchronous error
2566		 * then we want to return the number of bytes which were
2567		 * direct-written, or the error code if that was zero.  Note
2568		 * that this differs from normal direct-io semantics, which
2569		 * will return -EFOO even if some bytes were written.
2570		 */
2571		if (written_buffered < 0) {
2572			err = written_buffered;
2573			goto out;
2574		}
2575
2576		/*
2577		 * We need to ensure that the page cache pages are written to
2578		 * disk and invalidated to preserve the expected O_DIRECT
2579		 * semantics.
2580		 */
2581		endbyte = pos + written_buffered - written - 1;
2582		err = filemap_write_and_wait_range(file->f_mapping, pos, endbyte);
2583		if (err == 0) {
2584			written = written_buffered;
2585			invalidate_mapping_pages(mapping,
2586						 pos >> PAGE_CACHE_SHIFT,
2587						 endbyte >> PAGE_CACHE_SHIFT);
2588		} else {
2589			/*
2590			 * We don't know how much we wrote, so just return
2591			 * the number of bytes which were direct-written
2592			 */
2593		}
2594	} else {
2595		written = generic_file_buffered_write(iocb, iov, nr_segs,
2596				pos, ppos, count, written);
2597	}
2598out:
2599	current->backing_dev_info = NULL;
2600	return written ? written : err;
2601}
2602EXPORT_SYMBOL(__generic_file_aio_write);
2603
2604/**
2605 * generic_file_aio_write - write data to a file
2606 * @iocb:	IO state structure
2607 * @iov:	vector with data to write
2608 * @nr_segs:	number of segments in the vector
2609 * @pos:	position in file where to write
2610 *
2611 * This is a wrapper around __generic_file_aio_write() to be used by most
2612 * filesystems. It takes care of syncing the file in case of O_SYNC file
2613 * and acquires i_mutex as needed.
2614 */
2615ssize_t generic_file_aio_write(struct kiocb *iocb, const struct iovec *iov,
2616		unsigned long nr_segs, loff_t pos)
2617{
2618	struct file *file = iocb->ki_filp;
2619	struct inode *inode = file->f_mapping->host;
2620	struct blk_plug plug;
2621	ssize_t ret;
2622
2623	BUG_ON(iocb->ki_pos != pos);
2624
2625	mutex_lock(&inode->i_mutex);
2626	blk_start_plug(&plug);
2627	ret = __generic_file_aio_write(iocb, iov, nr_segs, &iocb->ki_pos);
2628	mutex_unlock(&inode->i_mutex);
2629
2630	if (ret > 0 || ret == -EIOCBQUEUED) {
2631		ssize_t err;
2632
2633		err = generic_write_sync(file, pos, ret);
2634		if (err < 0 && ret > 0)
2635			ret = err;
2636	}
2637	blk_finish_plug(&plug);
2638	return ret;
2639}
2640EXPORT_SYMBOL(generic_file_aio_write);
2641
2642/**
2643 * try_to_release_page() - release old fs-specific metadata on a page
2644 *
2645 * @page: the page which the kernel is trying to free
2646 * @gfp_mask: memory allocation flags (and I/O mode)
2647 *
2648 * The address_space is to try to release any data against the page
2649 * (presumably at page->private).  If the release was successful, return `1'.
2650 * Otherwise return zero.
2651 *
2652 * This may also be called if PG_fscache is set on a page, indicating that the
2653 * page is known to the local caching routines.
2654 *
2655 * The @gfp_mask argument specifies whether I/O may be performed to release
2656 * this page (__GFP_IO), and whether the call may block (__GFP_WAIT & __GFP_FS).
2657 *
2658 */
2659int try_to_release_page(struct page *page, gfp_t gfp_mask)
2660{
2661	struct address_space * const mapping = page->mapping;
2662
2663	BUG_ON(!PageLocked(page));
2664	if (PageWriteback(page))
2665		return 0;
2666
2667	if (mapping && mapping->a_ops->releasepage)
2668		return mapping->a_ops->releasepage(page, gfp_mask);
2669	return try_to_free_buffers(page);
2670}
2671
2672EXPORT_SYMBOL(try_to_release_page);
2673