filemap.c revision 920c7a5d0c94b8ce740f1d76fa06422f2a95a757
1/*
2 *	linux/mm/filemap.c
3 *
4 * Copyright (C) 1994-1999  Linus Torvalds
5 */
6
7/*
8 * This file handles the generic file mmap semantics used by
9 * most "normal" filesystems (but you don't /have/ to use this:
10 * the NFS filesystem used to do this differently, for example)
11 */
12#include <linux/module.h>
13#include <linux/slab.h>
14#include <linux/compiler.h>
15#include <linux/fs.h>
16#include <linux/uaccess.h>
17#include <linux/aio.h>
18#include <linux/capability.h>
19#include <linux/kernel_stat.h>
20#include <linux/mm.h>
21#include <linux/swap.h>
22#include <linux/mman.h>
23#include <linux/pagemap.h>
24#include <linux/file.h>
25#include <linux/uio.h>
26#include <linux/hash.h>
27#include <linux/writeback.h>
28#include <linux/backing-dev.h>
29#include <linux/pagevec.h>
30#include <linux/blkdev.h>
31#include <linux/backing-dev.h>
32#include <linux/security.h>
33#include <linux/syscalls.h>
34#include <linux/cpuset.h>
35#include <linux/hardirq.h> /* for BUG_ON(!in_atomic()) only */
36#include "internal.h"
37
38/*
39 * FIXME: remove all knowledge of the buffer layer from the core VM
40 */
41#include <linux/buffer_head.h> /* for generic_osync_inode */
42
43#include <asm/mman.h>
44
45static ssize_t
46generic_file_direct_IO(int rw, struct kiocb *iocb, const struct iovec *iov,
47	loff_t offset, unsigned long nr_segs);
48
49/*
50 * Shared mappings implemented 30.11.1994. It's not fully working yet,
51 * though.
52 *
53 * Shared mappings now work. 15.8.1995  Bruno.
54 *
55 * finished 'unifying' the page and buffer cache and SMP-threaded the
56 * page-cache, 21.05.1999, Ingo Molnar <mingo@redhat.com>
57 *
58 * SMP-threaded pagemap-LRU 1999, Andrea Arcangeli <andrea@suse.de>
59 */
60
61/*
62 * Lock ordering:
63 *
64 *  ->i_mmap_lock		(vmtruncate)
65 *    ->private_lock		(__free_pte->__set_page_dirty_buffers)
66 *      ->swap_lock		(exclusive_swap_page, others)
67 *        ->mapping->tree_lock
68 *
69 *  ->i_mutex
70 *    ->i_mmap_lock		(truncate->unmap_mapping_range)
71 *
72 *  ->mmap_sem
73 *    ->i_mmap_lock
74 *      ->page_table_lock or pte_lock	(various, mainly in memory.c)
75 *        ->mapping->tree_lock	(arch-dependent flush_dcache_mmap_lock)
76 *
77 *  ->mmap_sem
78 *    ->lock_page		(access_process_vm)
79 *
80 *  ->i_mutex			(generic_file_buffered_write)
81 *    ->mmap_sem		(fault_in_pages_readable->do_page_fault)
82 *
83 *  ->i_mutex
84 *    ->i_alloc_sem             (various)
85 *
86 *  ->inode_lock
87 *    ->sb_lock			(fs/fs-writeback.c)
88 *    ->mapping->tree_lock	(__sync_single_inode)
89 *
90 *  ->i_mmap_lock
91 *    ->anon_vma.lock		(vma_adjust)
92 *
93 *  ->anon_vma.lock
94 *    ->page_table_lock or pte_lock	(anon_vma_prepare and various)
95 *
96 *  ->page_table_lock or pte_lock
97 *    ->swap_lock		(try_to_unmap_one)
98 *    ->private_lock		(try_to_unmap_one)
99 *    ->tree_lock		(try_to_unmap_one)
100 *    ->zone.lru_lock		(follow_page->mark_page_accessed)
101 *    ->zone.lru_lock		(check_pte_range->isolate_lru_page)
102 *    ->private_lock		(page_remove_rmap->set_page_dirty)
103 *    ->tree_lock		(page_remove_rmap->set_page_dirty)
104 *    ->inode_lock		(page_remove_rmap->set_page_dirty)
105 *    ->inode_lock		(zap_pte_range->set_page_dirty)
106 *    ->private_lock		(zap_pte_range->__set_page_dirty_buffers)
107 *
108 *  ->task->proc_lock
109 *    ->dcache_lock		(proc_pid_lookup)
110 */
111
112/*
113 * Remove a page from the page cache and free it. Caller has to make
114 * sure the page is locked and that nobody else uses it - or that usage
115 * is safe.  The caller must hold a write_lock on the mapping's tree_lock.
116 */
117void __remove_from_page_cache(struct page *page)
118{
119	struct address_space *mapping = page->mapping;
120
121	radix_tree_delete(&mapping->page_tree, page->index);
122	page->mapping = NULL;
123	mapping->nrpages--;
124	__dec_zone_page_state(page, NR_FILE_PAGES);
125	BUG_ON(page_mapped(page));
126
127	/*
128	 * Some filesystems seem to re-dirty the page even after
129	 * the VM has canceled the dirty bit (eg ext3 journaling).
130	 *
131	 * Fix it up by doing a final dirty accounting check after
132	 * having removed the page entirely.
133	 */
134	if (PageDirty(page) && mapping_cap_account_dirty(mapping)) {
135		dec_zone_page_state(page, NR_FILE_DIRTY);
136		dec_bdi_stat(mapping->backing_dev_info, BDI_RECLAIMABLE);
137	}
138}
139
140void remove_from_page_cache(struct page *page)
141{
142	struct address_space *mapping = page->mapping;
143
144	BUG_ON(!PageLocked(page));
145
146	write_lock_irq(&mapping->tree_lock);
147	__remove_from_page_cache(page);
148	write_unlock_irq(&mapping->tree_lock);
149}
150
151static int sync_page(void *word)
152{
153	struct address_space *mapping;
154	struct page *page;
155
156	page = container_of((unsigned long *)word, struct page, flags);
157
158	/*
159	 * page_mapping() is being called without PG_locked held.
160	 * Some knowledge of the state and use of the page is used to
161	 * reduce the requirements down to a memory barrier.
162	 * The danger here is of a stale page_mapping() return value
163	 * indicating a struct address_space different from the one it's
164	 * associated with when it is associated with one.
165	 * After smp_mb(), it's either the correct page_mapping() for
166	 * the page, or an old page_mapping() and the page's own
167	 * page_mapping() has gone NULL.
168	 * The ->sync_page() address_space operation must tolerate
169	 * page_mapping() going NULL. By an amazing coincidence,
170	 * this comes about because none of the users of the page
171	 * in the ->sync_page() methods make essential use of the
172	 * page_mapping(), merely passing the page down to the backing
173	 * device's unplug functions when it's non-NULL, which in turn
174	 * ignore it for all cases but swap, where only page_private(page) is
175	 * of interest. When page_mapping() does go NULL, the entire
176	 * call stack gracefully ignores the page and returns.
177	 * -- wli
178	 */
179	smp_mb();
180	mapping = page_mapping(page);
181	if (mapping && mapping->a_ops && mapping->a_ops->sync_page)
182		mapping->a_ops->sync_page(page);
183	io_schedule();
184	return 0;
185}
186
187static int sync_page_killable(void *word)
188{
189	sync_page(word);
190	return fatal_signal_pending(current) ? -EINTR : 0;
191}
192
193/**
194 * __filemap_fdatawrite_range - start writeback on mapping dirty pages in range
195 * @mapping:	address space structure to write
196 * @start:	offset in bytes where the range starts
197 * @end:	offset in bytes where the range ends (inclusive)
198 * @sync_mode:	enable synchronous operation
199 *
200 * Start writeback against all of a mapping's dirty pages that lie
201 * within the byte offsets <start, end> inclusive.
202 *
203 * If sync_mode is WB_SYNC_ALL then this is a "data integrity" operation, as
204 * opposed to a regular memory cleansing writeback.  The difference between
205 * these two operations is that if a dirty page/buffer is encountered, it must
206 * be waited upon, and not just skipped over.
207 */
208int __filemap_fdatawrite_range(struct address_space *mapping, loff_t start,
209				loff_t end, int sync_mode)
210{
211	int ret;
212	struct writeback_control wbc = {
213		.sync_mode = sync_mode,
214		.nr_to_write = mapping->nrpages * 2,
215		.range_start = start,
216		.range_end = end,
217	};
218
219	if (!mapping_cap_writeback_dirty(mapping))
220		return 0;
221
222	ret = do_writepages(mapping, &wbc);
223	return ret;
224}
225
226static inline int __filemap_fdatawrite(struct address_space *mapping,
227	int sync_mode)
228{
229	return __filemap_fdatawrite_range(mapping, 0, LLONG_MAX, sync_mode);
230}
231
232int filemap_fdatawrite(struct address_space *mapping)
233{
234	return __filemap_fdatawrite(mapping, WB_SYNC_ALL);
235}
236EXPORT_SYMBOL(filemap_fdatawrite);
237
238static int filemap_fdatawrite_range(struct address_space *mapping, loff_t start,
239				loff_t end)
240{
241	return __filemap_fdatawrite_range(mapping, start, end, WB_SYNC_ALL);
242}
243
244/**
245 * filemap_flush - mostly a non-blocking flush
246 * @mapping:	target address_space
247 *
248 * This is a mostly non-blocking flush.  Not suitable for data-integrity
249 * purposes - I/O may not be started against all dirty pages.
250 */
251int filemap_flush(struct address_space *mapping)
252{
253	return __filemap_fdatawrite(mapping, WB_SYNC_NONE);
254}
255EXPORT_SYMBOL(filemap_flush);
256
257/**
258 * wait_on_page_writeback_range - wait for writeback to complete
259 * @mapping:	target address_space
260 * @start:	beginning page index
261 * @end:	ending page index
262 *
263 * Wait for writeback to complete against pages indexed by start->end
264 * inclusive
265 */
266int wait_on_page_writeback_range(struct address_space *mapping,
267				pgoff_t start, pgoff_t end)
268{
269	struct pagevec pvec;
270	int nr_pages;
271	int ret = 0;
272	pgoff_t index;
273
274	if (end < start)
275		return 0;
276
277	pagevec_init(&pvec, 0);
278	index = start;
279	while ((index <= end) &&
280			(nr_pages = pagevec_lookup_tag(&pvec, mapping, &index,
281			PAGECACHE_TAG_WRITEBACK,
282			min(end - index, (pgoff_t)PAGEVEC_SIZE-1) + 1)) != 0) {
283		unsigned i;
284
285		for (i = 0; i < nr_pages; i++) {
286			struct page *page = pvec.pages[i];
287
288			/* until radix tree lookup accepts end_index */
289			if (page->index > end)
290				continue;
291
292			wait_on_page_writeback(page);
293			if (PageError(page))
294				ret = -EIO;
295		}
296		pagevec_release(&pvec);
297		cond_resched();
298	}
299
300	/* Check for outstanding write errors */
301	if (test_and_clear_bit(AS_ENOSPC, &mapping->flags))
302		ret = -ENOSPC;
303	if (test_and_clear_bit(AS_EIO, &mapping->flags))
304		ret = -EIO;
305
306	return ret;
307}
308
309/**
310 * sync_page_range - write and wait on all pages in the passed range
311 * @inode:	target inode
312 * @mapping:	target address_space
313 * @pos:	beginning offset in pages to write
314 * @count:	number of bytes to write
315 *
316 * Write and wait upon all the pages in the passed range.  This is a "data
317 * integrity" operation.  It waits upon in-flight writeout before starting and
318 * waiting upon new writeout.  If there was an IO error, return it.
319 *
320 * We need to re-take i_mutex during the generic_osync_inode list walk because
321 * it is otherwise livelockable.
322 */
323int sync_page_range(struct inode *inode, struct address_space *mapping,
324			loff_t pos, loff_t count)
325{
326	pgoff_t start = pos >> PAGE_CACHE_SHIFT;
327	pgoff_t end = (pos + count - 1) >> PAGE_CACHE_SHIFT;
328	int ret;
329
330	if (!mapping_cap_writeback_dirty(mapping) || !count)
331		return 0;
332	ret = filemap_fdatawrite_range(mapping, pos, pos + count - 1);
333	if (ret == 0) {
334		mutex_lock(&inode->i_mutex);
335		ret = generic_osync_inode(inode, mapping, OSYNC_METADATA);
336		mutex_unlock(&inode->i_mutex);
337	}
338	if (ret == 0)
339		ret = wait_on_page_writeback_range(mapping, start, end);
340	return ret;
341}
342EXPORT_SYMBOL(sync_page_range);
343
344/**
345 * sync_page_range_nolock
346 * @inode:	target inode
347 * @mapping:	target address_space
348 * @pos:	beginning offset in pages to write
349 * @count:	number of bytes to write
350 *
351 * Note: Holding i_mutex across sync_page_range_nolock() is not a good idea
352 * as it forces O_SYNC writers to different parts of the same file
353 * to be serialised right until io completion.
354 */
355int sync_page_range_nolock(struct inode *inode, struct address_space *mapping,
356			   loff_t pos, loff_t count)
357{
358	pgoff_t start = pos >> PAGE_CACHE_SHIFT;
359	pgoff_t end = (pos + count - 1) >> PAGE_CACHE_SHIFT;
360	int ret;
361
362	if (!mapping_cap_writeback_dirty(mapping) || !count)
363		return 0;
364	ret = filemap_fdatawrite_range(mapping, pos, pos + count - 1);
365	if (ret == 0)
366		ret = generic_osync_inode(inode, mapping, OSYNC_METADATA);
367	if (ret == 0)
368		ret = wait_on_page_writeback_range(mapping, start, end);
369	return ret;
370}
371EXPORT_SYMBOL(sync_page_range_nolock);
372
373/**
374 * filemap_fdatawait - wait for all under-writeback pages to complete
375 * @mapping: address space structure to wait for
376 *
377 * Walk the list of under-writeback pages of the given address space
378 * and wait for all of them.
379 */
380int filemap_fdatawait(struct address_space *mapping)
381{
382	loff_t i_size = i_size_read(mapping->host);
383
384	if (i_size == 0)
385		return 0;
386
387	return wait_on_page_writeback_range(mapping, 0,
388				(i_size - 1) >> PAGE_CACHE_SHIFT);
389}
390EXPORT_SYMBOL(filemap_fdatawait);
391
392int filemap_write_and_wait(struct address_space *mapping)
393{
394	int err = 0;
395
396	if (mapping->nrpages) {
397		err = filemap_fdatawrite(mapping);
398		/*
399		 * Even if the above returned error, the pages may be
400		 * written partially (e.g. -ENOSPC), so we wait for it.
401		 * But the -EIO is special case, it may indicate the worst
402		 * thing (e.g. bug) happened, so we avoid waiting for it.
403		 */
404		if (err != -EIO) {
405			int err2 = filemap_fdatawait(mapping);
406			if (!err)
407				err = err2;
408		}
409	}
410	return err;
411}
412EXPORT_SYMBOL(filemap_write_and_wait);
413
414/**
415 * filemap_write_and_wait_range - write out & wait on a file range
416 * @mapping:	the address_space for the pages
417 * @lstart:	offset in bytes where the range starts
418 * @lend:	offset in bytes where the range ends (inclusive)
419 *
420 * Write out and wait upon file offsets lstart->lend, inclusive.
421 *
422 * Note that `lend' is inclusive (describes the last byte to be written) so
423 * that this function can be used to write to the very end-of-file (end = -1).
424 */
425int filemap_write_and_wait_range(struct address_space *mapping,
426				 loff_t lstart, loff_t lend)
427{
428	int err = 0;
429
430	if (mapping->nrpages) {
431		err = __filemap_fdatawrite_range(mapping, lstart, lend,
432						 WB_SYNC_ALL);
433		/* See comment of filemap_write_and_wait() */
434		if (err != -EIO) {
435			int err2 = wait_on_page_writeback_range(mapping,
436						lstart >> PAGE_CACHE_SHIFT,
437						lend >> PAGE_CACHE_SHIFT);
438			if (!err)
439				err = err2;
440		}
441	}
442	return err;
443}
444
445/**
446 * add_to_page_cache - add newly allocated pagecache pages
447 * @page:	page to add
448 * @mapping:	the page's address_space
449 * @offset:	page index
450 * @gfp_mask:	page allocation mode
451 *
452 * This function is used to add newly allocated pagecache pages;
453 * the page is new, so we can just run SetPageLocked() against it.
454 * The other page state flags were set by rmqueue().
455 *
456 * This function does not add the page to the LRU.  The caller must do that.
457 */
458int add_to_page_cache(struct page *page, struct address_space *mapping,
459		pgoff_t offset, gfp_t gfp_mask)
460{
461	int error = radix_tree_preload(gfp_mask & ~__GFP_HIGHMEM);
462
463	if (error == 0) {
464		write_lock_irq(&mapping->tree_lock);
465		error = radix_tree_insert(&mapping->page_tree, offset, page);
466		if (!error) {
467			page_cache_get(page);
468			SetPageLocked(page);
469			page->mapping = mapping;
470			page->index = offset;
471			mapping->nrpages++;
472			__inc_zone_page_state(page, NR_FILE_PAGES);
473		}
474		write_unlock_irq(&mapping->tree_lock);
475		radix_tree_preload_end();
476	}
477	return error;
478}
479EXPORT_SYMBOL(add_to_page_cache);
480
481int add_to_page_cache_lru(struct page *page, struct address_space *mapping,
482				pgoff_t offset, gfp_t gfp_mask)
483{
484	int ret = add_to_page_cache(page, mapping, offset, gfp_mask);
485	if (ret == 0)
486		lru_cache_add(page);
487	return ret;
488}
489
490#ifdef CONFIG_NUMA
491struct page *__page_cache_alloc(gfp_t gfp)
492{
493	if (cpuset_do_page_mem_spread()) {
494		int n = cpuset_mem_spread_node();
495		return alloc_pages_node(n, gfp, 0);
496	}
497	return alloc_pages(gfp, 0);
498}
499EXPORT_SYMBOL(__page_cache_alloc);
500#endif
501
502static int __sleep_on_page_lock(void *word)
503{
504	io_schedule();
505	return 0;
506}
507
508/*
509 * In order to wait for pages to become available there must be
510 * waitqueues associated with pages. By using a hash table of
511 * waitqueues where the bucket discipline is to maintain all
512 * waiters on the same queue and wake all when any of the pages
513 * become available, and for the woken contexts to check to be
514 * sure the appropriate page became available, this saves space
515 * at a cost of "thundering herd" phenomena during rare hash
516 * collisions.
517 */
518static wait_queue_head_t *page_waitqueue(struct page *page)
519{
520	const struct zone *zone = page_zone(page);
521
522	return &zone->wait_table[hash_ptr(page, zone->wait_table_bits)];
523}
524
525static inline void wake_up_page(struct page *page, int bit)
526{
527	__wake_up_bit(page_waitqueue(page), &page->flags, bit);
528}
529
530void wait_on_page_bit(struct page *page, int bit_nr)
531{
532	DEFINE_WAIT_BIT(wait, &page->flags, bit_nr);
533
534	if (test_bit(bit_nr, &page->flags))
535		__wait_on_bit(page_waitqueue(page), &wait, sync_page,
536							TASK_UNINTERRUPTIBLE);
537}
538EXPORT_SYMBOL(wait_on_page_bit);
539
540/**
541 * unlock_page - unlock a locked page
542 * @page: the page
543 *
544 * Unlocks the page and wakes up sleepers in ___wait_on_page_locked().
545 * Also wakes sleepers in wait_on_page_writeback() because the wakeup
546 * mechananism between PageLocked pages and PageWriteback pages is shared.
547 * But that's OK - sleepers in wait_on_page_writeback() just go back to sleep.
548 *
549 * The first mb is necessary to safely close the critical section opened by the
550 * TestSetPageLocked(), the second mb is necessary to enforce ordering between
551 * the clear_bit and the read of the waitqueue (to avoid SMP races with a
552 * parallel wait_on_page_locked()).
553 */
554void unlock_page(struct page *page)
555{
556	smp_mb__before_clear_bit();
557	if (!TestClearPageLocked(page))
558		BUG();
559	smp_mb__after_clear_bit();
560	wake_up_page(page, PG_locked);
561}
562EXPORT_SYMBOL(unlock_page);
563
564/**
565 * end_page_writeback - end writeback against a page
566 * @page: the page
567 */
568void end_page_writeback(struct page *page)
569{
570	if (!TestClearPageReclaim(page) || rotate_reclaimable_page(page)) {
571		if (!test_clear_page_writeback(page))
572			BUG();
573	}
574	smp_mb__after_clear_bit();
575	wake_up_page(page, PG_writeback);
576}
577EXPORT_SYMBOL(end_page_writeback);
578
579/**
580 * __lock_page - get a lock on the page, assuming we need to sleep to get it
581 * @page: the page to lock
582 *
583 * Ugly. Running sync_page() in state TASK_UNINTERRUPTIBLE is scary.  If some
584 * random driver's requestfn sets TASK_RUNNING, we could busywait.  However
585 * chances are that on the second loop, the block layer's plug list is empty,
586 * so sync_page() will then return in state TASK_UNINTERRUPTIBLE.
587 */
588void __lock_page(struct page *page)
589{
590	DEFINE_WAIT_BIT(wait, &page->flags, PG_locked);
591
592	__wait_on_bit_lock(page_waitqueue(page), &wait, sync_page,
593							TASK_UNINTERRUPTIBLE);
594}
595EXPORT_SYMBOL(__lock_page);
596
597int fastcall __lock_page_killable(struct page *page)
598{
599	DEFINE_WAIT_BIT(wait, &page->flags, PG_locked);
600
601	return __wait_on_bit_lock(page_waitqueue(page), &wait,
602					sync_page_killable, TASK_KILLABLE);
603}
604
605/*
606 * Variant of lock_page that does not require the caller to hold a reference
607 * on the page's mapping.
608 */
609void __lock_page_nosync(struct page *page)
610{
611	DEFINE_WAIT_BIT(wait, &page->flags, PG_locked);
612	__wait_on_bit_lock(page_waitqueue(page), &wait, __sleep_on_page_lock,
613							TASK_UNINTERRUPTIBLE);
614}
615
616/**
617 * find_get_page - find and get a page reference
618 * @mapping: the address_space to search
619 * @offset: the page index
620 *
621 * Is there a pagecache struct page at the given (mapping, offset) tuple?
622 * If yes, increment its refcount and return it; if no, return NULL.
623 */
624struct page * find_get_page(struct address_space *mapping, pgoff_t offset)
625{
626	struct page *page;
627
628	read_lock_irq(&mapping->tree_lock);
629	page = radix_tree_lookup(&mapping->page_tree, offset);
630	if (page)
631		page_cache_get(page);
632	read_unlock_irq(&mapping->tree_lock);
633	return page;
634}
635EXPORT_SYMBOL(find_get_page);
636
637/**
638 * find_lock_page - locate, pin and lock a pagecache page
639 * @mapping: the address_space to search
640 * @offset: the page index
641 *
642 * Locates the desired pagecache page, locks it, increments its reference
643 * count and returns its address.
644 *
645 * Returns zero if the page was not present. find_lock_page() may sleep.
646 */
647struct page *find_lock_page(struct address_space *mapping,
648				pgoff_t offset)
649{
650	struct page *page;
651
652repeat:
653	read_lock_irq(&mapping->tree_lock);
654	page = radix_tree_lookup(&mapping->page_tree, offset);
655	if (page) {
656		page_cache_get(page);
657		if (TestSetPageLocked(page)) {
658			read_unlock_irq(&mapping->tree_lock);
659			__lock_page(page);
660
661			/* Has the page been truncated while we slept? */
662			if (unlikely(page->mapping != mapping)) {
663				unlock_page(page);
664				page_cache_release(page);
665				goto repeat;
666			}
667			VM_BUG_ON(page->index != offset);
668			goto out;
669		}
670	}
671	read_unlock_irq(&mapping->tree_lock);
672out:
673	return page;
674}
675EXPORT_SYMBOL(find_lock_page);
676
677/**
678 * find_or_create_page - locate or add a pagecache page
679 * @mapping: the page's address_space
680 * @index: the page's index into the mapping
681 * @gfp_mask: page allocation mode
682 *
683 * Locates a page in the pagecache.  If the page is not present, a new page
684 * is allocated using @gfp_mask and is added to the pagecache and to the VM's
685 * LRU list.  The returned page is locked and has its reference count
686 * incremented.
687 *
688 * find_or_create_page() may sleep, even if @gfp_flags specifies an atomic
689 * allocation!
690 *
691 * find_or_create_page() returns the desired page's address, or zero on
692 * memory exhaustion.
693 */
694struct page *find_or_create_page(struct address_space *mapping,
695		pgoff_t index, gfp_t gfp_mask)
696{
697	struct page *page;
698	int err;
699repeat:
700	page = find_lock_page(mapping, index);
701	if (!page) {
702		page = __page_cache_alloc(gfp_mask);
703		if (!page)
704			return NULL;
705		err = add_to_page_cache_lru(page, mapping, index, gfp_mask);
706		if (unlikely(err)) {
707			page_cache_release(page);
708			page = NULL;
709			if (err == -EEXIST)
710				goto repeat;
711		}
712	}
713	return page;
714}
715EXPORT_SYMBOL(find_or_create_page);
716
717/**
718 * find_get_pages - gang pagecache lookup
719 * @mapping:	The address_space to search
720 * @start:	The starting page index
721 * @nr_pages:	The maximum number of pages
722 * @pages:	Where the resulting pages are placed
723 *
724 * find_get_pages() will search for and return a group of up to
725 * @nr_pages pages in the mapping.  The pages are placed at @pages.
726 * find_get_pages() takes a reference against the returned pages.
727 *
728 * The search returns a group of mapping-contiguous pages with ascending
729 * indexes.  There may be holes in the indices due to not-present pages.
730 *
731 * find_get_pages() returns the number of pages which were found.
732 */
733unsigned find_get_pages(struct address_space *mapping, pgoff_t start,
734			    unsigned int nr_pages, struct page **pages)
735{
736	unsigned int i;
737	unsigned int ret;
738
739	read_lock_irq(&mapping->tree_lock);
740	ret = radix_tree_gang_lookup(&mapping->page_tree,
741				(void **)pages, start, nr_pages);
742	for (i = 0; i < ret; i++)
743		page_cache_get(pages[i]);
744	read_unlock_irq(&mapping->tree_lock);
745	return ret;
746}
747
748/**
749 * find_get_pages_contig - gang contiguous pagecache lookup
750 * @mapping:	The address_space to search
751 * @index:	The starting page index
752 * @nr_pages:	The maximum number of pages
753 * @pages:	Where the resulting pages are placed
754 *
755 * find_get_pages_contig() works exactly like find_get_pages(), except
756 * that the returned number of pages are guaranteed to be contiguous.
757 *
758 * find_get_pages_contig() returns the number of pages which were found.
759 */
760unsigned find_get_pages_contig(struct address_space *mapping, pgoff_t index,
761			       unsigned int nr_pages, struct page **pages)
762{
763	unsigned int i;
764	unsigned int ret;
765
766	read_lock_irq(&mapping->tree_lock);
767	ret = radix_tree_gang_lookup(&mapping->page_tree,
768				(void **)pages, index, nr_pages);
769	for (i = 0; i < ret; i++) {
770		if (pages[i]->mapping == NULL || pages[i]->index != index)
771			break;
772
773		page_cache_get(pages[i]);
774		index++;
775	}
776	read_unlock_irq(&mapping->tree_lock);
777	return i;
778}
779EXPORT_SYMBOL(find_get_pages_contig);
780
781/**
782 * find_get_pages_tag - find and return pages that match @tag
783 * @mapping:	the address_space to search
784 * @index:	the starting page index
785 * @tag:	the tag index
786 * @nr_pages:	the maximum number of pages
787 * @pages:	where the resulting pages are placed
788 *
789 * Like find_get_pages, except we only return pages which are tagged with
790 * @tag.   We update @index to index the next page for the traversal.
791 */
792unsigned find_get_pages_tag(struct address_space *mapping, pgoff_t *index,
793			int tag, unsigned int nr_pages, struct page **pages)
794{
795	unsigned int i;
796	unsigned int ret;
797
798	read_lock_irq(&mapping->tree_lock);
799	ret = radix_tree_gang_lookup_tag(&mapping->page_tree,
800				(void **)pages, *index, nr_pages, tag);
801	for (i = 0; i < ret; i++)
802		page_cache_get(pages[i]);
803	if (ret)
804		*index = pages[ret - 1]->index + 1;
805	read_unlock_irq(&mapping->tree_lock);
806	return ret;
807}
808EXPORT_SYMBOL(find_get_pages_tag);
809
810/**
811 * grab_cache_page_nowait - returns locked page at given index in given cache
812 * @mapping: target address_space
813 * @index: the page index
814 *
815 * Same as grab_cache_page(), but do not wait if the page is unavailable.
816 * This is intended for speculative data generators, where the data can
817 * be regenerated if the page couldn't be grabbed.  This routine should
818 * be safe to call while holding the lock for another page.
819 *
820 * Clear __GFP_FS when allocating the page to avoid recursion into the fs
821 * and deadlock against the caller's locked page.
822 */
823struct page *
824grab_cache_page_nowait(struct address_space *mapping, pgoff_t index)
825{
826	struct page *page = find_get_page(mapping, index);
827
828	if (page) {
829		if (!TestSetPageLocked(page))
830			return page;
831		page_cache_release(page);
832		return NULL;
833	}
834	page = __page_cache_alloc(mapping_gfp_mask(mapping) & ~__GFP_FS);
835	if (page && add_to_page_cache_lru(page, mapping, index, GFP_KERNEL)) {
836		page_cache_release(page);
837		page = NULL;
838	}
839	return page;
840}
841EXPORT_SYMBOL(grab_cache_page_nowait);
842
843/*
844 * CD/DVDs are error prone. When a medium error occurs, the driver may fail
845 * a _large_ part of the i/o request. Imagine the worst scenario:
846 *
847 *      ---R__________________________________________B__________
848 *         ^ reading here                             ^ bad block(assume 4k)
849 *
850 * read(R) => miss => readahead(R...B) => media error => frustrating retries
851 * => failing the whole request => read(R) => read(R+1) =>
852 * readahead(R+1...B+1) => bang => read(R+2) => read(R+3) =>
853 * readahead(R+3...B+2) => bang => read(R+3) => read(R+4) =>
854 * readahead(R+4...B+3) => bang => read(R+4) => read(R+5) => ......
855 *
856 * It is going insane. Fix it by quickly scaling down the readahead size.
857 */
858static void shrink_readahead_size_eio(struct file *filp,
859					struct file_ra_state *ra)
860{
861	if (!ra->ra_pages)
862		return;
863
864	ra->ra_pages /= 4;
865}
866
867/**
868 * do_generic_mapping_read - generic file read routine
869 * @mapping:	address_space to be read
870 * @ra:		file's readahead state
871 * @filp:	the file to read
872 * @ppos:	current file position
873 * @desc:	read_descriptor
874 * @actor:	read method
875 *
876 * This is a generic file read routine, and uses the
877 * mapping->a_ops->readpage() function for the actual low-level stuff.
878 *
879 * This is really ugly. But the goto's actually try to clarify some
880 * of the logic when it comes to error handling etc.
881 *
882 * Note the struct file* is only passed for the use of readpage.
883 * It may be NULL.
884 */
885void do_generic_mapping_read(struct address_space *mapping,
886			     struct file_ra_state *ra,
887			     struct file *filp,
888			     loff_t *ppos,
889			     read_descriptor_t *desc,
890			     read_actor_t actor)
891{
892	struct inode *inode = mapping->host;
893	pgoff_t index;
894	pgoff_t last_index;
895	pgoff_t prev_index;
896	unsigned long offset;      /* offset into pagecache page */
897	unsigned int prev_offset;
898	int error;
899
900	index = *ppos >> PAGE_CACHE_SHIFT;
901	prev_index = ra->prev_pos >> PAGE_CACHE_SHIFT;
902	prev_offset = ra->prev_pos & (PAGE_CACHE_SIZE-1);
903	last_index = (*ppos + desc->count + PAGE_CACHE_SIZE-1) >> PAGE_CACHE_SHIFT;
904	offset = *ppos & ~PAGE_CACHE_MASK;
905
906	for (;;) {
907		struct page *page;
908		pgoff_t end_index;
909		loff_t isize;
910		unsigned long nr, ret;
911
912		cond_resched();
913find_page:
914		page = find_get_page(mapping, index);
915		if (!page) {
916			page_cache_sync_readahead(mapping,
917					ra, filp,
918					index, last_index - index);
919			page = find_get_page(mapping, index);
920			if (unlikely(page == NULL))
921				goto no_cached_page;
922		}
923		if (PageReadahead(page)) {
924			page_cache_async_readahead(mapping,
925					ra, filp, page,
926					index, last_index - index);
927		}
928		if (!PageUptodate(page))
929			goto page_not_up_to_date;
930page_ok:
931		/*
932		 * i_size must be checked after we know the page is Uptodate.
933		 *
934		 * Checking i_size after the check allows us to calculate
935		 * the correct value for "nr", which means the zero-filled
936		 * part of the page is not copied back to userspace (unless
937		 * another truncate extends the file - this is desired though).
938		 */
939
940		isize = i_size_read(inode);
941		end_index = (isize - 1) >> PAGE_CACHE_SHIFT;
942		if (unlikely(!isize || index > end_index)) {
943			page_cache_release(page);
944			goto out;
945		}
946
947		/* nr is the maximum number of bytes to copy from this page */
948		nr = PAGE_CACHE_SIZE;
949		if (index == end_index) {
950			nr = ((isize - 1) & ~PAGE_CACHE_MASK) + 1;
951			if (nr <= offset) {
952				page_cache_release(page);
953				goto out;
954			}
955		}
956		nr = nr - offset;
957
958		/* If users can be writing to this page using arbitrary
959		 * virtual addresses, take care about potential aliasing
960		 * before reading the page on the kernel side.
961		 */
962		if (mapping_writably_mapped(mapping))
963			flush_dcache_page(page);
964
965		/*
966		 * When a sequential read accesses a page several times,
967		 * only mark it as accessed the first time.
968		 */
969		if (prev_index != index || offset != prev_offset)
970			mark_page_accessed(page);
971		prev_index = index;
972
973		/*
974		 * Ok, we have the page, and it's up-to-date, so
975		 * now we can copy it to user space...
976		 *
977		 * The actor routine returns how many bytes were actually used..
978		 * NOTE! This may not be the same as how much of a user buffer
979		 * we filled up (we may be padding etc), so we can only update
980		 * "pos" here (the actor routine has to update the user buffer
981		 * pointers and the remaining count).
982		 */
983		ret = actor(desc, page, offset, nr);
984		offset += ret;
985		index += offset >> PAGE_CACHE_SHIFT;
986		offset &= ~PAGE_CACHE_MASK;
987		prev_offset = offset;
988
989		page_cache_release(page);
990		if (ret == nr && desc->count)
991			continue;
992		goto out;
993
994page_not_up_to_date:
995		/* Get exclusive access to the page ... */
996		if (lock_page_killable(page))
997			goto readpage_eio;
998
999		/* Did it get truncated before we got the lock? */
1000		if (!page->mapping) {
1001			unlock_page(page);
1002			page_cache_release(page);
1003			continue;
1004		}
1005
1006		/* Did somebody else fill it already? */
1007		if (PageUptodate(page)) {
1008			unlock_page(page);
1009			goto page_ok;
1010		}
1011
1012readpage:
1013		/* Start the actual read. The read will unlock the page. */
1014		error = mapping->a_ops->readpage(filp, page);
1015
1016		if (unlikely(error)) {
1017			if (error == AOP_TRUNCATED_PAGE) {
1018				page_cache_release(page);
1019				goto find_page;
1020			}
1021			goto readpage_error;
1022		}
1023
1024		if (!PageUptodate(page)) {
1025			if (lock_page_killable(page))
1026				goto readpage_eio;
1027			if (!PageUptodate(page)) {
1028				if (page->mapping == NULL) {
1029					/*
1030					 * invalidate_inode_pages got it
1031					 */
1032					unlock_page(page);
1033					page_cache_release(page);
1034					goto find_page;
1035				}
1036				unlock_page(page);
1037				shrink_readahead_size_eio(filp, ra);
1038				goto readpage_eio;
1039			}
1040			unlock_page(page);
1041		}
1042
1043		goto page_ok;
1044
1045readpage_eio:
1046		error = -EIO;
1047readpage_error:
1048		/* UHHUH! A synchronous read error occurred. Report it */
1049		desc->error = error;
1050		page_cache_release(page);
1051		goto out;
1052
1053no_cached_page:
1054		/*
1055		 * Ok, it wasn't cached, so we need to create a new
1056		 * page..
1057		 */
1058		page = page_cache_alloc_cold(mapping);
1059		if (!page) {
1060			desc->error = -ENOMEM;
1061			goto out;
1062		}
1063		error = add_to_page_cache_lru(page, mapping,
1064						index, GFP_KERNEL);
1065		if (error) {
1066			page_cache_release(page);
1067			if (error == -EEXIST)
1068				goto find_page;
1069			desc->error = error;
1070			goto out;
1071		}
1072		goto readpage;
1073	}
1074
1075out:
1076	ra->prev_pos = prev_index;
1077	ra->prev_pos <<= PAGE_CACHE_SHIFT;
1078	ra->prev_pos |= prev_offset;
1079
1080	*ppos = ((loff_t)index << PAGE_CACHE_SHIFT) + offset;
1081	if (filp)
1082		file_accessed(filp);
1083}
1084EXPORT_SYMBOL(do_generic_mapping_read);
1085
1086int file_read_actor(read_descriptor_t *desc, struct page *page,
1087			unsigned long offset, unsigned long size)
1088{
1089	char *kaddr;
1090	unsigned long left, count = desc->count;
1091
1092	if (size > count)
1093		size = count;
1094
1095	/*
1096	 * Faults on the destination of a read are common, so do it before
1097	 * taking the kmap.
1098	 */
1099	if (!fault_in_pages_writeable(desc->arg.buf, size)) {
1100		kaddr = kmap_atomic(page, KM_USER0);
1101		left = __copy_to_user_inatomic(desc->arg.buf,
1102						kaddr + offset, size);
1103		kunmap_atomic(kaddr, KM_USER0);
1104		if (left == 0)
1105			goto success;
1106	}
1107
1108	/* Do it the slow way */
1109	kaddr = kmap(page);
1110	left = __copy_to_user(desc->arg.buf, kaddr + offset, size);
1111	kunmap(page);
1112
1113	if (left) {
1114		size -= left;
1115		desc->error = -EFAULT;
1116	}
1117success:
1118	desc->count = count - size;
1119	desc->written += size;
1120	desc->arg.buf += size;
1121	return size;
1122}
1123
1124/*
1125 * Performs necessary checks before doing a write
1126 * @iov:	io vector request
1127 * @nr_segs:	number of segments in the iovec
1128 * @count:	number of bytes to write
1129 * @access_flags: type of access: %VERIFY_READ or %VERIFY_WRITE
1130 *
1131 * Adjust number of segments and amount of bytes to write (nr_segs should be
1132 * properly initialized first). Returns appropriate error code that caller
1133 * should return or zero in case that write should be allowed.
1134 */
1135int generic_segment_checks(const struct iovec *iov,
1136			unsigned long *nr_segs, size_t *count, int access_flags)
1137{
1138	unsigned long   seg;
1139	size_t cnt = 0;
1140	for (seg = 0; seg < *nr_segs; seg++) {
1141		const struct iovec *iv = &iov[seg];
1142
1143		/*
1144		 * If any segment has a negative length, or the cumulative
1145		 * length ever wraps negative then return -EINVAL.
1146		 */
1147		cnt += iv->iov_len;
1148		if (unlikely((ssize_t)(cnt|iv->iov_len) < 0))
1149			return -EINVAL;
1150		if (access_ok(access_flags, iv->iov_base, iv->iov_len))
1151			continue;
1152		if (seg == 0)
1153			return -EFAULT;
1154		*nr_segs = seg;
1155		cnt -= iv->iov_len;	/* This segment is no good */
1156		break;
1157	}
1158	*count = cnt;
1159	return 0;
1160}
1161EXPORT_SYMBOL(generic_segment_checks);
1162
1163/**
1164 * generic_file_aio_read - generic filesystem read routine
1165 * @iocb:	kernel I/O control block
1166 * @iov:	io vector request
1167 * @nr_segs:	number of segments in the iovec
1168 * @pos:	current file position
1169 *
1170 * This is the "read()" routine for all filesystems
1171 * that can use the page cache directly.
1172 */
1173ssize_t
1174generic_file_aio_read(struct kiocb *iocb, const struct iovec *iov,
1175		unsigned long nr_segs, loff_t pos)
1176{
1177	struct file *filp = iocb->ki_filp;
1178	ssize_t retval;
1179	unsigned long seg;
1180	size_t count;
1181	loff_t *ppos = &iocb->ki_pos;
1182
1183	count = 0;
1184	retval = generic_segment_checks(iov, &nr_segs, &count, VERIFY_WRITE);
1185	if (retval)
1186		return retval;
1187
1188	/* coalesce the iovecs and go direct-to-BIO for O_DIRECT */
1189	if (filp->f_flags & O_DIRECT) {
1190		loff_t size;
1191		struct address_space *mapping;
1192		struct inode *inode;
1193
1194		mapping = filp->f_mapping;
1195		inode = mapping->host;
1196		retval = 0;
1197		if (!count)
1198			goto out; /* skip atime */
1199		size = i_size_read(inode);
1200		if (pos < size) {
1201			retval = generic_file_direct_IO(READ, iocb,
1202						iov, pos, nr_segs);
1203			if (retval > 0)
1204				*ppos = pos + retval;
1205		}
1206		if (likely(retval != 0)) {
1207			file_accessed(filp);
1208			goto out;
1209		}
1210	}
1211
1212	retval = 0;
1213	if (count) {
1214		for (seg = 0; seg < nr_segs; seg++) {
1215			read_descriptor_t desc;
1216
1217			desc.written = 0;
1218			desc.arg.buf = iov[seg].iov_base;
1219			desc.count = iov[seg].iov_len;
1220			if (desc.count == 0)
1221				continue;
1222			desc.error = 0;
1223			do_generic_file_read(filp,ppos,&desc,file_read_actor);
1224			retval += desc.written;
1225			if (desc.error) {
1226				retval = retval ?: desc.error;
1227				break;
1228			}
1229			if (desc.count > 0)
1230				break;
1231		}
1232	}
1233out:
1234	return retval;
1235}
1236EXPORT_SYMBOL(generic_file_aio_read);
1237
1238static ssize_t
1239do_readahead(struct address_space *mapping, struct file *filp,
1240	     pgoff_t index, unsigned long nr)
1241{
1242	if (!mapping || !mapping->a_ops || !mapping->a_ops->readpage)
1243		return -EINVAL;
1244
1245	force_page_cache_readahead(mapping, filp, index,
1246					max_sane_readahead(nr));
1247	return 0;
1248}
1249
1250asmlinkage ssize_t sys_readahead(int fd, loff_t offset, size_t count)
1251{
1252	ssize_t ret;
1253	struct file *file;
1254
1255	ret = -EBADF;
1256	file = fget(fd);
1257	if (file) {
1258		if (file->f_mode & FMODE_READ) {
1259			struct address_space *mapping = file->f_mapping;
1260			pgoff_t start = offset >> PAGE_CACHE_SHIFT;
1261			pgoff_t end = (offset + count - 1) >> PAGE_CACHE_SHIFT;
1262			unsigned long len = end - start + 1;
1263			ret = do_readahead(mapping, file, start, len);
1264		}
1265		fput(file);
1266	}
1267	return ret;
1268}
1269
1270#ifdef CONFIG_MMU
1271/**
1272 * page_cache_read - adds requested page to the page cache if not already there
1273 * @file:	file to read
1274 * @offset:	page index
1275 *
1276 * This adds the requested page to the page cache if it isn't already there,
1277 * and schedules an I/O to read in its contents from disk.
1278 */
1279static int page_cache_read(struct file *file, pgoff_t offset)
1280{
1281	struct address_space *mapping = file->f_mapping;
1282	struct page *page;
1283	int ret;
1284
1285	do {
1286		page = page_cache_alloc_cold(mapping);
1287		if (!page)
1288			return -ENOMEM;
1289
1290		ret = add_to_page_cache_lru(page, mapping, offset, GFP_KERNEL);
1291		if (ret == 0)
1292			ret = mapping->a_ops->readpage(file, page);
1293		else if (ret == -EEXIST)
1294			ret = 0; /* losing race to add is OK */
1295
1296		page_cache_release(page);
1297
1298	} while (ret == AOP_TRUNCATED_PAGE);
1299
1300	return ret;
1301}
1302
1303#define MMAP_LOTSAMISS  (100)
1304
1305/**
1306 * filemap_fault - read in file data for page fault handling
1307 * @vma:	vma in which the fault was taken
1308 * @vmf:	struct vm_fault containing details of the fault
1309 *
1310 * filemap_fault() is invoked via the vma operations vector for a
1311 * mapped memory region to read in file data during a page fault.
1312 *
1313 * The goto's are kind of ugly, but this streamlines the normal case of having
1314 * it in the page cache, and handles the special cases reasonably without
1315 * having a lot of duplicated code.
1316 */
1317int filemap_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
1318{
1319	int error;
1320	struct file *file = vma->vm_file;
1321	struct address_space *mapping = file->f_mapping;
1322	struct file_ra_state *ra = &file->f_ra;
1323	struct inode *inode = mapping->host;
1324	struct page *page;
1325	unsigned long size;
1326	int did_readaround = 0;
1327	int ret = 0;
1328
1329	size = (i_size_read(inode) + PAGE_CACHE_SIZE - 1) >> PAGE_CACHE_SHIFT;
1330	if (vmf->pgoff >= size)
1331		return VM_FAULT_SIGBUS;
1332
1333	/* If we don't want any read-ahead, don't bother */
1334	if (VM_RandomReadHint(vma))
1335		goto no_cached_page;
1336
1337	/*
1338	 * Do we have something in the page cache already?
1339	 */
1340retry_find:
1341	page = find_lock_page(mapping, vmf->pgoff);
1342	/*
1343	 * For sequential accesses, we use the generic readahead logic.
1344	 */
1345	if (VM_SequentialReadHint(vma)) {
1346		if (!page) {
1347			page_cache_sync_readahead(mapping, ra, file,
1348							   vmf->pgoff, 1);
1349			page = find_lock_page(mapping, vmf->pgoff);
1350			if (!page)
1351				goto no_cached_page;
1352		}
1353		if (PageReadahead(page)) {
1354			page_cache_async_readahead(mapping, ra, file, page,
1355							   vmf->pgoff, 1);
1356		}
1357	}
1358
1359	if (!page) {
1360		unsigned long ra_pages;
1361
1362		ra->mmap_miss++;
1363
1364		/*
1365		 * Do we miss much more than hit in this file? If so,
1366		 * stop bothering with read-ahead. It will only hurt.
1367		 */
1368		if (ra->mmap_miss > MMAP_LOTSAMISS)
1369			goto no_cached_page;
1370
1371		/*
1372		 * To keep the pgmajfault counter straight, we need to
1373		 * check did_readaround, as this is an inner loop.
1374		 */
1375		if (!did_readaround) {
1376			ret = VM_FAULT_MAJOR;
1377			count_vm_event(PGMAJFAULT);
1378		}
1379		did_readaround = 1;
1380		ra_pages = max_sane_readahead(file->f_ra.ra_pages);
1381		if (ra_pages) {
1382			pgoff_t start = 0;
1383
1384			if (vmf->pgoff > ra_pages / 2)
1385				start = vmf->pgoff - ra_pages / 2;
1386			do_page_cache_readahead(mapping, file, start, ra_pages);
1387		}
1388		page = find_lock_page(mapping, vmf->pgoff);
1389		if (!page)
1390			goto no_cached_page;
1391	}
1392
1393	if (!did_readaround)
1394		ra->mmap_miss--;
1395
1396	/*
1397	 * We have a locked page in the page cache, now we need to check
1398	 * that it's up-to-date. If not, it is going to be due to an error.
1399	 */
1400	if (unlikely(!PageUptodate(page)))
1401		goto page_not_uptodate;
1402
1403	/* Must recheck i_size under page lock */
1404	size = (i_size_read(inode) + PAGE_CACHE_SIZE - 1) >> PAGE_CACHE_SHIFT;
1405	if (unlikely(vmf->pgoff >= size)) {
1406		unlock_page(page);
1407		page_cache_release(page);
1408		return VM_FAULT_SIGBUS;
1409	}
1410
1411	/*
1412	 * Found the page and have a reference on it.
1413	 */
1414	mark_page_accessed(page);
1415	ra->prev_pos = (loff_t)page->index << PAGE_CACHE_SHIFT;
1416	vmf->page = page;
1417	return ret | VM_FAULT_LOCKED;
1418
1419no_cached_page:
1420	/*
1421	 * We're only likely to ever get here if MADV_RANDOM is in
1422	 * effect.
1423	 */
1424	error = page_cache_read(file, vmf->pgoff);
1425
1426	/*
1427	 * The page we want has now been added to the page cache.
1428	 * In the unlikely event that someone removed it in the
1429	 * meantime, we'll just come back here and read it again.
1430	 */
1431	if (error >= 0)
1432		goto retry_find;
1433
1434	/*
1435	 * An error return from page_cache_read can result if the
1436	 * system is low on memory, or a problem occurs while trying
1437	 * to schedule I/O.
1438	 */
1439	if (error == -ENOMEM)
1440		return VM_FAULT_OOM;
1441	return VM_FAULT_SIGBUS;
1442
1443page_not_uptodate:
1444	/* IO error path */
1445	if (!did_readaround) {
1446		ret = VM_FAULT_MAJOR;
1447		count_vm_event(PGMAJFAULT);
1448	}
1449
1450	/*
1451	 * Umm, take care of errors if the page isn't up-to-date.
1452	 * Try to re-read it _once_. We do this synchronously,
1453	 * because there really aren't any performance issues here
1454	 * and we need to check for errors.
1455	 */
1456	ClearPageError(page);
1457	error = mapping->a_ops->readpage(file, page);
1458	page_cache_release(page);
1459
1460	if (!error || error == AOP_TRUNCATED_PAGE)
1461		goto retry_find;
1462
1463	/* Things didn't work out. Return zero to tell the mm layer so. */
1464	shrink_readahead_size_eio(file, ra);
1465	return VM_FAULT_SIGBUS;
1466}
1467EXPORT_SYMBOL(filemap_fault);
1468
1469struct vm_operations_struct generic_file_vm_ops = {
1470	.fault		= filemap_fault,
1471};
1472
1473/* This is used for a general mmap of a disk file */
1474
1475int generic_file_mmap(struct file * file, struct vm_area_struct * vma)
1476{
1477	struct address_space *mapping = file->f_mapping;
1478
1479	if (!mapping->a_ops->readpage)
1480		return -ENOEXEC;
1481	file_accessed(file);
1482	vma->vm_ops = &generic_file_vm_ops;
1483	vma->vm_flags |= VM_CAN_NONLINEAR;
1484	return 0;
1485}
1486
1487/*
1488 * This is for filesystems which do not implement ->writepage.
1489 */
1490int generic_file_readonly_mmap(struct file *file, struct vm_area_struct *vma)
1491{
1492	if ((vma->vm_flags & VM_SHARED) && (vma->vm_flags & VM_MAYWRITE))
1493		return -EINVAL;
1494	return generic_file_mmap(file, vma);
1495}
1496#else
1497int generic_file_mmap(struct file * file, struct vm_area_struct * vma)
1498{
1499	return -ENOSYS;
1500}
1501int generic_file_readonly_mmap(struct file * file, struct vm_area_struct * vma)
1502{
1503	return -ENOSYS;
1504}
1505#endif /* CONFIG_MMU */
1506
1507EXPORT_SYMBOL(generic_file_mmap);
1508EXPORT_SYMBOL(generic_file_readonly_mmap);
1509
1510static struct page *__read_cache_page(struct address_space *mapping,
1511				pgoff_t index,
1512				int (*filler)(void *,struct page*),
1513				void *data)
1514{
1515	struct page *page;
1516	int err;
1517repeat:
1518	page = find_get_page(mapping, index);
1519	if (!page) {
1520		page = page_cache_alloc_cold(mapping);
1521		if (!page)
1522			return ERR_PTR(-ENOMEM);
1523		err = add_to_page_cache_lru(page, mapping, index, GFP_KERNEL);
1524		if (unlikely(err)) {
1525			page_cache_release(page);
1526			if (err == -EEXIST)
1527				goto repeat;
1528			/* Presumably ENOMEM for radix tree node */
1529			return ERR_PTR(err);
1530		}
1531		err = filler(data, page);
1532		if (err < 0) {
1533			page_cache_release(page);
1534			page = ERR_PTR(err);
1535		}
1536	}
1537	return page;
1538}
1539
1540/*
1541 * Same as read_cache_page, but don't wait for page to become unlocked
1542 * after submitting it to the filler.
1543 */
1544struct page *read_cache_page_async(struct address_space *mapping,
1545				pgoff_t index,
1546				int (*filler)(void *,struct page*),
1547				void *data)
1548{
1549	struct page *page;
1550	int err;
1551
1552retry:
1553	page = __read_cache_page(mapping, index, filler, data);
1554	if (IS_ERR(page))
1555		return page;
1556	if (PageUptodate(page))
1557		goto out;
1558
1559	lock_page(page);
1560	if (!page->mapping) {
1561		unlock_page(page);
1562		page_cache_release(page);
1563		goto retry;
1564	}
1565	if (PageUptodate(page)) {
1566		unlock_page(page);
1567		goto out;
1568	}
1569	err = filler(data, page);
1570	if (err < 0) {
1571		page_cache_release(page);
1572		return ERR_PTR(err);
1573	}
1574out:
1575	mark_page_accessed(page);
1576	return page;
1577}
1578EXPORT_SYMBOL(read_cache_page_async);
1579
1580/**
1581 * read_cache_page - read into page cache, fill it if needed
1582 * @mapping:	the page's address_space
1583 * @index:	the page index
1584 * @filler:	function to perform the read
1585 * @data:	destination for read data
1586 *
1587 * Read into the page cache. If a page already exists, and PageUptodate() is
1588 * not set, try to fill the page then wait for it to become unlocked.
1589 *
1590 * If the page does not get brought uptodate, return -EIO.
1591 */
1592struct page *read_cache_page(struct address_space *mapping,
1593				pgoff_t index,
1594				int (*filler)(void *,struct page*),
1595				void *data)
1596{
1597	struct page *page;
1598
1599	page = read_cache_page_async(mapping, index, filler, data);
1600	if (IS_ERR(page))
1601		goto out;
1602	wait_on_page_locked(page);
1603	if (!PageUptodate(page)) {
1604		page_cache_release(page);
1605		page = ERR_PTR(-EIO);
1606	}
1607 out:
1608	return page;
1609}
1610EXPORT_SYMBOL(read_cache_page);
1611
1612/*
1613 * The logic we want is
1614 *
1615 *	if suid or (sgid and xgrp)
1616 *		remove privs
1617 */
1618int should_remove_suid(struct dentry *dentry)
1619{
1620	mode_t mode = dentry->d_inode->i_mode;
1621	int kill = 0;
1622
1623	/* suid always must be killed */
1624	if (unlikely(mode & S_ISUID))
1625		kill = ATTR_KILL_SUID;
1626
1627	/*
1628	 * sgid without any exec bits is just a mandatory locking mark; leave
1629	 * it alone.  If some exec bits are set, it's a real sgid; kill it.
1630	 */
1631	if (unlikely((mode & S_ISGID) && (mode & S_IXGRP)))
1632		kill |= ATTR_KILL_SGID;
1633
1634	if (unlikely(kill && !capable(CAP_FSETID)))
1635		return kill;
1636
1637	return 0;
1638}
1639EXPORT_SYMBOL(should_remove_suid);
1640
1641int __remove_suid(struct dentry *dentry, int kill)
1642{
1643	struct iattr newattrs;
1644
1645	newattrs.ia_valid = ATTR_FORCE | kill;
1646	return notify_change(dentry, &newattrs);
1647}
1648
1649int remove_suid(struct dentry *dentry)
1650{
1651	int killsuid = should_remove_suid(dentry);
1652	int killpriv = security_inode_need_killpriv(dentry);
1653	int error = 0;
1654
1655	if (killpriv < 0)
1656		return killpriv;
1657	if (killpriv)
1658		error = security_inode_killpriv(dentry);
1659	if (!error && killsuid)
1660		error = __remove_suid(dentry, killsuid);
1661
1662	return error;
1663}
1664EXPORT_SYMBOL(remove_suid);
1665
1666static size_t __iovec_copy_from_user_inatomic(char *vaddr,
1667			const struct iovec *iov, size_t base, size_t bytes)
1668{
1669	size_t copied = 0, left = 0;
1670
1671	while (bytes) {
1672		char __user *buf = iov->iov_base + base;
1673		int copy = min(bytes, iov->iov_len - base);
1674
1675		base = 0;
1676		left = __copy_from_user_inatomic_nocache(vaddr, buf, copy);
1677		copied += copy;
1678		bytes -= copy;
1679		vaddr += copy;
1680		iov++;
1681
1682		if (unlikely(left))
1683			break;
1684	}
1685	return copied - left;
1686}
1687
1688/*
1689 * Copy as much as we can into the page and return the number of bytes which
1690 * were sucessfully copied.  If a fault is encountered then return the number of
1691 * bytes which were copied.
1692 */
1693size_t iov_iter_copy_from_user_atomic(struct page *page,
1694		struct iov_iter *i, unsigned long offset, size_t bytes)
1695{
1696	char *kaddr;
1697	size_t copied;
1698
1699	BUG_ON(!in_atomic());
1700	kaddr = kmap_atomic(page, KM_USER0);
1701	if (likely(i->nr_segs == 1)) {
1702		int left;
1703		char __user *buf = i->iov->iov_base + i->iov_offset;
1704		left = __copy_from_user_inatomic_nocache(kaddr + offset,
1705							buf, bytes);
1706		copied = bytes - left;
1707	} else {
1708		copied = __iovec_copy_from_user_inatomic(kaddr + offset,
1709						i->iov, i->iov_offset, bytes);
1710	}
1711	kunmap_atomic(kaddr, KM_USER0);
1712
1713	return copied;
1714}
1715EXPORT_SYMBOL(iov_iter_copy_from_user_atomic);
1716
1717/*
1718 * This has the same sideeffects and return value as
1719 * iov_iter_copy_from_user_atomic().
1720 * The difference is that it attempts to resolve faults.
1721 * Page must not be locked.
1722 */
1723size_t iov_iter_copy_from_user(struct page *page,
1724		struct iov_iter *i, unsigned long offset, size_t bytes)
1725{
1726	char *kaddr;
1727	size_t copied;
1728
1729	kaddr = kmap(page);
1730	if (likely(i->nr_segs == 1)) {
1731		int left;
1732		char __user *buf = i->iov->iov_base + i->iov_offset;
1733		left = __copy_from_user_nocache(kaddr + offset, buf, bytes);
1734		copied = bytes - left;
1735	} else {
1736		copied = __iovec_copy_from_user_inatomic(kaddr + offset,
1737						i->iov, i->iov_offset, bytes);
1738	}
1739	kunmap(page);
1740	return copied;
1741}
1742EXPORT_SYMBOL(iov_iter_copy_from_user);
1743
1744static void __iov_iter_advance_iov(struct iov_iter *i, size_t bytes)
1745{
1746	if (likely(i->nr_segs == 1)) {
1747		i->iov_offset += bytes;
1748	} else {
1749		const struct iovec *iov = i->iov;
1750		size_t base = i->iov_offset;
1751
1752		/*
1753		 * The !iov->iov_len check ensures we skip over unlikely
1754		 * zero-length segments.
1755		 */
1756		while (bytes || !iov->iov_len) {
1757			int copy = min(bytes, iov->iov_len - base);
1758
1759			bytes -= copy;
1760			base += copy;
1761			if (iov->iov_len == base) {
1762				iov++;
1763				base = 0;
1764			}
1765		}
1766		i->iov = iov;
1767		i->iov_offset = base;
1768	}
1769}
1770
1771void iov_iter_advance(struct iov_iter *i, size_t bytes)
1772{
1773	BUG_ON(i->count < bytes);
1774
1775	__iov_iter_advance_iov(i, bytes);
1776	i->count -= bytes;
1777}
1778EXPORT_SYMBOL(iov_iter_advance);
1779
1780/*
1781 * Fault in the first iovec of the given iov_iter, to a maximum length
1782 * of bytes. Returns 0 on success, or non-zero if the memory could not be
1783 * accessed (ie. because it is an invalid address).
1784 *
1785 * writev-intensive code may want this to prefault several iovecs -- that
1786 * would be possible (callers must not rely on the fact that _only_ the
1787 * first iovec will be faulted with the current implementation).
1788 */
1789int iov_iter_fault_in_readable(struct iov_iter *i, size_t bytes)
1790{
1791	char __user *buf = i->iov->iov_base + i->iov_offset;
1792	bytes = min(bytes, i->iov->iov_len - i->iov_offset);
1793	return fault_in_pages_readable(buf, bytes);
1794}
1795EXPORT_SYMBOL(iov_iter_fault_in_readable);
1796
1797/*
1798 * Return the count of just the current iov_iter segment.
1799 */
1800size_t iov_iter_single_seg_count(struct iov_iter *i)
1801{
1802	const struct iovec *iov = i->iov;
1803	if (i->nr_segs == 1)
1804		return i->count;
1805	else
1806		return min(i->count, iov->iov_len - i->iov_offset);
1807}
1808EXPORT_SYMBOL(iov_iter_single_seg_count);
1809
1810/*
1811 * Performs necessary checks before doing a write
1812 *
1813 * Can adjust writing position or amount of bytes to write.
1814 * Returns appropriate error code that caller should return or
1815 * zero in case that write should be allowed.
1816 */
1817inline int generic_write_checks(struct file *file, loff_t *pos, size_t *count, int isblk)
1818{
1819	struct inode *inode = file->f_mapping->host;
1820	unsigned long limit = current->signal->rlim[RLIMIT_FSIZE].rlim_cur;
1821
1822        if (unlikely(*pos < 0))
1823                return -EINVAL;
1824
1825	if (!isblk) {
1826		/* FIXME: this is for backwards compatibility with 2.4 */
1827		if (file->f_flags & O_APPEND)
1828                        *pos = i_size_read(inode);
1829
1830		if (limit != RLIM_INFINITY) {
1831			if (*pos >= limit) {
1832				send_sig(SIGXFSZ, current, 0);
1833				return -EFBIG;
1834			}
1835			if (*count > limit - (typeof(limit))*pos) {
1836				*count = limit - (typeof(limit))*pos;
1837			}
1838		}
1839	}
1840
1841	/*
1842	 * LFS rule
1843	 */
1844	if (unlikely(*pos + *count > MAX_NON_LFS &&
1845				!(file->f_flags & O_LARGEFILE))) {
1846		if (*pos >= MAX_NON_LFS) {
1847			return -EFBIG;
1848		}
1849		if (*count > MAX_NON_LFS - (unsigned long)*pos) {
1850			*count = MAX_NON_LFS - (unsigned long)*pos;
1851		}
1852	}
1853
1854	/*
1855	 * Are we about to exceed the fs block limit ?
1856	 *
1857	 * If we have written data it becomes a short write.  If we have
1858	 * exceeded without writing data we send a signal and return EFBIG.
1859	 * Linus frestrict idea will clean these up nicely..
1860	 */
1861	if (likely(!isblk)) {
1862		if (unlikely(*pos >= inode->i_sb->s_maxbytes)) {
1863			if (*count || *pos > inode->i_sb->s_maxbytes) {
1864				return -EFBIG;
1865			}
1866			/* zero-length writes at ->s_maxbytes are OK */
1867		}
1868
1869		if (unlikely(*pos + *count > inode->i_sb->s_maxbytes))
1870			*count = inode->i_sb->s_maxbytes - *pos;
1871	} else {
1872#ifdef CONFIG_BLOCK
1873		loff_t isize;
1874		if (bdev_read_only(I_BDEV(inode)))
1875			return -EPERM;
1876		isize = i_size_read(inode);
1877		if (*pos >= isize) {
1878			if (*count || *pos > isize)
1879				return -ENOSPC;
1880		}
1881
1882		if (*pos + *count > isize)
1883			*count = isize - *pos;
1884#else
1885		return -EPERM;
1886#endif
1887	}
1888	return 0;
1889}
1890EXPORT_SYMBOL(generic_write_checks);
1891
1892int pagecache_write_begin(struct file *file, struct address_space *mapping,
1893				loff_t pos, unsigned len, unsigned flags,
1894				struct page **pagep, void **fsdata)
1895{
1896	const struct address_space_operations *aops = mapping->a_ops;
1897
1898	if (aops->write_begin) {
1899		return aops->write_begin(file, mapping, pos, len, flags,
1900							pagep, fsdata);
1901	} else {
1902		int ret;
1903		pgoff_t index = pos >> PAGE_CACHE_SHIFT;
1904		unsigned offset = pos & (PAGE_CACHE_SIZE - 1);
1905		struct inode *inode = mapping->host;
1906		struct page *page;
1907again:
1908		page = __grab_cache_page(mapping, index);
1909		*pagep = page;
1910		if (!page)
1911			return -ENOMEM;
1912
1913		if (flags & AOP_FLAG_UNINTERRUPTIBLE && !PageUptodate(page)) {
1914			/*
1915			 * There is no way to resolve a short write situation
1916			 * for a !Uptodate page (except by double copying in
1917			 * the caller done by generic_perform_write_2copy).
1918			 *
1919			 * Instead, we have to bring it uptodate here.
1920			 */
1921			ret = aops->readpage(file, page);
1922			page_cache_release(page);
1923			if (ret) {
1924				if (ret == AOP_TRUNCATED_PAGE)
1925					goto again;
1926				return ret;
1927			}
1928			goto again;
1929		}
1930
1931		ret = aops->prepare_write(file, page, offset, offset+len);
1932		if (ret) {
1933			unlock_page(page);
1934			page_cache_release(page);
1935			if (pos + len > inode->i_size)
1936				vmtruncate(inode, inode->i_size);
1937		}
1938		return ret;
1939	}
1940}
1941EXPORT_SYMBOL(pagecache_write_begin);
1942
1943int pagecache_write_end(struct file *file, struct address_space *mapping,
1944				loff_t pos, unsigned len, unsigned copied,
1945				struct page *page, void *fsdata)
1946{
1947	const struct address_space_operations *aops = mapping->a_ops;
1948	int ret;
1949
1950	if (aops->write_end) {
1951		mark_page_accessed(page);
1952		ret = aops->write_end(file, mapping, pos, len, copied,
1953							page, fsdata);
1954	} else {
1955		unsigned offset = pos & (PAGE_CACHE_SIZE - 1);
1956		struct inode *inode = mapping->host;
1957
1958		flush_dcache_page(page);
1959		ret = aops->commit_write(file, page, offset, offset+len);
1960		unlock_page(page);
1961		mark_page_accessed(page);
1962		page_cache_release(page);
1963
1964		if (ret < 0) {
1965			if (pos + len > inode->i_size)
1966				vmtruncate(inode, inode->i_size);
1967		} else if (ret > 0)
1968			ret = min_t(size_t, copied, ret);
1969		else
1970			ret = copied;
1971	}
1972
1973	return ret;
1974}
1975EXPORT_SYMBOL(pagecache_write_end);
1976
1977ssize_t
1978generic_file_direct_write(struct kiocb *iocb, const struct iovec *iov,
1979		unsigned long *nr_segs, loff_t pos, loff_t *ppos,
1980		size_t count, size_t ocount)
1981{
1982	struct file	*file = iocb->ki_filp;
1983	struct address_space *mapping = file->f_mapping;
1984	struct inode	*inode = mapping->host;
1985	ssize_t		written;
1986
1987	if (count != ocount)
1988		*nr_segs = iov_shorten((struct iovec *)iov, *nr_segs, count);
1989
1990	written = generic_file_direct_IO(WRITE, iocb, iov, pos, *nr_segs);
1991	if (written > 0) {
1992		loff_t end = pos + written;
1993		if (end > i_size_read(inode) && !S_ISBLK(inode->i_mode)) {
1994			i_size_write(inode,  end);
1995			mark_inode_dirty(inode);
1996		}
1997		*ppos = end;
1998	}
1999
2000	/*
2001	 * Sync the fs metadata but not the minor inode changes and
2002	 * of course not the data as we did direct DMA for the IO.
2003	 * i_mutex is held, which protects generic_osync_inode() from
2004	 * livelocking.  AIO O_DIRECT ops attempt to sync metadata here.
2005	 */
2006	if ((written >= 0 || written == -EIOCBQUEUED) &&
2007	    ((file->f_flags & O_SYNC) || IS_SYNC(inode))) {
2008		int err = generic_osync_inode(inode, mapping, OSYNC_METADATA);
2009		if (err < 0)
2010			written = err;
2011	}
2012	return written;
2013}
2014EXPORT_SYMBOL(generic_file_direct_write);
2015
2016/*
2017 * Find or create a page at the given pagecache position. Return the locked
2018 * page. This function is specifically for buffered writes.
2019 */
2020struct page *__grab_cache_page(struct address_space *mapping, pgoff_t index)
2021{
2022	int status;
2023	struct page *page;
2024repeat:
2025	page = find_lock_page(mapping, index);
2026	if (likely(page))
2027		return page;
2028
2029	page = page_cache_alloc(mapping);
2030	if (!page)
2031		return NULL;
2032	status = add_to_page_cache_lru(page, mapping, index, GFP_KERNEL);
2033	if (unlikely(status)) {
2034		page_cache_release(page);
2035		if (status == -EEXIST)
2036			goto repeat;
2037		return NULL;
2038	}
2039	return page;
2040}
2041EXPORT_SYMBOL(__grab_cache_page);
2042
2043static ssize_t generic_perform_write_2copy(struct file *file,
2044				struct iov_iter *i, loff_t pos)
2045{
2046	struct address_space *mapping = file->f_mapping;
2047	const struct address_space_operations *a_ops = mapping->a_ops;
2048	struct inode *inode = mapping->host;
2049	long status = 0;
2050	ssize_t written = 0;
2051
2052	do {
2053		struct page *src_page;
2054		struct page *page;
2055		pgoff_t index;		/* Pagecache index for current page */
2056		unsigned long offset;	/* Offset into pagecache page */
2057		unsigned long bytes;	/* Bytes to write to page */
2058		size_t copied;		/* Bytes copied from user */
2059
2060		offset = (pos & (PAGE_CACHE_SIZE - 1));
2061		index = pos >> PAGE_CACHE_SHIFT;
2062		bytes = min_t(unsigned long, PAGE_CACHE_SIZE - offset,
2063						iov_iter_count(i));
2064
2065		/*
2066		 * a non-NULL src_page indicates that we're doing the
2067		 * copy via get_user_pages and kmap.
2068		 */
2069		src_page = NULL;
2070
2071		/*
2072		 * Bring in the user page that we will copy from _first_.
2073		 * Otherwise there's a nasty deadlock on copying from the
2074		 * same page as we're writing to, without it being marked
2075		 * up-to-date.
2076		 *
2077		 * Not only is this an optimisation, but it is also required
2078		 * to check that the address is actually valid, when atomic
2079		 * usercopies are used, below.
2080		 */
2081		if (unlikely(iov_iter_fault_in_readable(i, bytes))) {
2082			status = -EFAULT;
2083			break;
2084		}
2085
2086		page = __grab_cache_page(mapping, index);
2087		if (!page) {
2088			status = -ENOMEM;
2089			break;
2090		}
2091
2092		/*
2093		 * non-uptodate pages cannot cope with short copies, and we
2094		 * cannot take a pagefault with the destination page locked.
2095		 * So pin the source page to copy it.
2096		 */
2097		if (!PageUptodate(page) && !segment_eq(get_fs(), KERNEL_DS)) {
2098			unlock_page(page);
2099
2100			src_page = alloc_page(GFP_KERNEL);
2101			if (!src_page) {
2102				page_cache_release(page);
2103				status = -ENOMEM;
2104				break;
2105			}
2106
2107			/*
2108			 * Cannot get_user_pages with a page locked for the
2109			 * same reason as we can't take a page fault with a
2110			 * page locked (as explained below).
2111			 */
2112			copied = iov_iter_copy_from_user(src_page, i,
2113								offset, bytes);
2114			if (unlikely(copied == 0)) {
2115				status = -EFAULT;
2116				page_cache_release(page);
2117				page_cache_release(src_page);
2118				break;
2119			}
2120			bytes = copied;
2121
2122			lock_page(page);
2123			/*
2124			 * Can't handle the page going uptodate here, because
2125			 * that means we would use non-atomic usercopies, which
2126			 * zero out the tail of the page, which can cause
2127			 * zeroes to become transiently visible. We could just
2128			 * use a non-zeroing copy, but the APIs aren't too
2129			 * consistent.
2130			 */
2131			if (unlikely(!page->mapping || PageUptodate(page))) {
2132				unlock_page(page);
2133				page_cache_release(page);
2134				page_cache_release(src_page);
2135				continue;
2136			}
2137		}
2138
2139		status = a_ops->prepare_write(file, page, offset, offset+bytes);
2140		if (unlikely(status))
2141			goto fs_write_aop_error;
2142
2143		if (!src_page) {
2144			/*
2145			 * Must not enter the pagefault handler here, because
2146			 * we hold the page lock, so we might recursively
2147			 * deadlock on the same lock, or get an ABBA deadlock
2148			 * against a different lock, or against the mmap_sem
2149			 * (which nests outside the page lock).  So increment
2150			 * preempt count, and use _atomic usercopies.
2151			 *
2152			 * The page is uptodate so we are OK to encounter a
2153			 * short copy: if unmodified parts of the page are
2154			 * marked dirty and written out to disk, it doesn't
2155			 * really matter.
2156			 */
2157			pagefault_disable();
2158			copied = iov_iter_copy_from_user_atomic(page, i,
2159								offset, bytes);
2160			pagefault_enable();
2161		} else {
2162			void *src, *dst;
2163			src = kmap_atomic(src_page, KM_USER0);
2164			dst = kmap_atomic(page, KM_USER1);
2165			memcpy(dst + offset, src + offset, bytes);
2166			kunmap_atomic(dst, KM_USER1);
2167			kunmap_atomic(src, KM_USER0);
2168			copied = bytes;
2169		}
2170		flush_dcache_page(page);
2171
2172		status = a_ops->commit_write(file, page, offset, offset+bytes);
2173		if (unlikely(status < 0))
2174			goto fs_write_aop_error;
2175		if (unlikely(status > 0)) /* filesystem did partial write */
2176			copied = min_t(size_t, copied, status);
2177
2178		unlock_page(page);
2179		mark_page_accessed(page);
2180		page_cache_release(page);
2181		if (src_page)
2182			page_cache_release(src_page);
2183
2184		iov_iter_advance(i, copied);
2185		pos += copied;
2186		written += copied;
2187
2188		balance_dirty_pages_ratelimited(mapping);
2189		cond_resched();
2190		continue;
2191
2192fs_write_aop_error:
2193		unlock_page(page);
2194		page_cache_release(page);
2195		if (src_page)
2196			page_cache_release(src_page);
2197
2198		/*
2199		 * prepare_write() may have instantiated a few blocks
2200		 * outside i_size.  Trim these off again. Don't need
2201		 * i_size_read because we hold i_mutex.
2202		 */
2203		if (pos + bytes > inode->i_size)
2204			vmtruncate(inode, inode->i_size);
2205		break;
2206	} while (iov_iter_count(i));
2207
2208	return written ? written : status;
2209}
2210
2211static ssize_t generic_perform_write(struct file *file,
2212				struct iov_iter *i, loff_t pos)
2213{
2214	struct address_space *mapping = file->f_mapping;
2215	const struct address_space_operations *a_ops = mapping->a_ops;
2216	long status = 0;
2217	ssize_t written = 0;
2218	unsigned int flags = 0;
2219
2220	/*
2221	 * Copies from kernel address space cannot fail (NFSD is a big user).
2222	 */
2223	if (segment_eq(get_fs(), KERNEL_DS))
2224		flags |= AOP_FLAG_UNINTERRUPTIBLE;
2225
2226	do {
2227		struct page *page;
2228		pgoff_t index;		/* Pagecache index for current page */
2229		unsigned long offset;	/* Offset into pagecache page */
2230		unsigned long bytes;	/* Bytes to write to page */
2231		size_t copied;		/* Bytes copied from user */
2232		void *fsdata;
2233
2234		offset = (pos & (PAGE_CACHE_SIZE - 1));
2235		index = pos >> PAGE_CACHE_SHIFT;
2236		bytes = min_t(unsigned long, PAGE_CACHE_SIZE - offset,
2237						iov_iter_count(i));
2238
2239again:
2240
2241		/*
2242		 * Bring in the user page that we will copy from _first_.
2243		 * Otherwise there's a nasty deadlock on copying from the
2244		 * same page as we're writing to, without it being marked
2245		 * up-to-date.
2246		 *
2247		 * Not only is this an optimisation, but it is also required
2248		 * to check that the address is actually valid, when atomic
2249		 * usercopies are used, below.
2250		 */
2251		if (unlikely(iov_iter_fault_in_readable(i, bytes))) {
2252			status = -EFAULT;
2253			break;
2254		}
2255
2256		status = a_ops->write_begin(file, mapping, pos, bytes, flags,
2257						&page, &fsdata);
2258		if (unlikely(status))
2259			break;
2260
2261		pagefault_disable();
2262		copied = iov_iter_copy_from_user_atomic(page, i, offset, bytes);
2263		pagefault_enable();
2264		flush_dcache_page(page);
2265
2266		status = a_ops->write_end(file, mapping, pos, bytes, copied,
2267						page, fsdata);
2268		if (unlikely(status < 0))
2269			break;
2270		copied = status;
2271
2272		cond_resched();
2273
2274		iov_iter_advance(i, copied);
2275		if (unlikely(copied == 0)) {
2276			/*
2277			 * If we were unable to copy any data at all, we must
2278			 * fall back to a single segment length write.
2279			 *
2280			 * If we didn't fallback here, we could livelock
2281			 * because not all segments in the iov can be copied at
2282			 * once without a pagefault.
2283			 */
2284			bytes = min_t(unsigned long, PAGE_CACHE_SIZE - offset,
2285						iov_iter_single_seg_count(i));
2286			goto again;
2287		}
2288		pos += copied;
2289		written += copied;
2290
2291		balance_dirty_pages_ratelimited(mapping);
2292
2293	} while (iov_iter_count(i));
2294
2295	return written ? written : status;
2296}
2297
2298ssize_t
2299generic_file_buffered_write(struct kiocb *iocb, const struct iovec *iov,
2300		unsigned long nr_segs, loff_t pos, loff_t *ppos,
2301		size_t count, ssize_t written)
2302{
2303	struct file *file = iocb->ki_filp;
2304	struct address_space *mapping = file->f_mapping;
2305	const struct address_space_operations *a_ops = mapping->a_ops;
2306	struct inode *inode = mapping->host;
2307	ssize_t status;
2308	struct iov_iter i;
2309
2310	iov_iter_init(&i, iov, nr_segs, count, written);
2311	if (a_ops->write_begin)
2312		status = generic_perform_write(file, &i, pos);
2313	else
2314		status = generic_perform_write_2copy(file, &i, pos);
2315
2316	if (likely(status >= 0)) {
2317		written += status;
2318		*ppos = pos + status;
2319
2320		/*
2321		 * For now, when the user asks for O_SYNC, we'll actually give
2322		 * O_DSYNC
2323		 */
2324		if (unlikely((file->f_flags & O_SYNC) || IS_SYNC(inode))) {
2325			if (!a_ops->writepage || !is_sync_kiocb(iocb))
2326				status = generic_osync_inode(inode, mapping,
2327						OSYNC_METADATA|OSYNC_DATA);
2328		}
2329  	}
2330
2331	/*
2332	 * If we get here for O_DIRECT writes then we must have fallen through
2333	 * to buffered writes (block instantiation inside i_size).  So we sync
2334	 * the file data here, to try to honour O_DIRECT expectations.
2335	 */
2336	if (unlikely(file->f_flags & O_DIRECT) && written)
2337		status = filemap_write_and_wait(mapping);
2338
2339	return written ? written : status;
2340}
2341EXPORT_SYMBOL(generic_file_buffered_write);
2342
2343static ssize_t
2344__generic_file_aio_write_nolock(struct kiocb *iocb, const struct iovec *iov,
2345				unsigned long nr_segs, loff_t *ppos)
2346{
2347	struct file *file = iocb->ki_filp;
2348	struct address_space * mapping = file->f_mapping;
2349	size_t ocount;		/* original count */
2350	size_t count;		/* after file limit checks */
2351	struct inode 	*inode = mapping->host;
2352	loff_t		pos;
2353	ssize_t		written;
2354	ssize_t		err;
2355
2356	ocount = 0;
2357	err = generic_segment_checks(iov, &nr_segs, &ocount, VERIFY_READ);
2358	if (err)
2359		return err;
2360
2361	count = ocount;
2362	pos = *ppos;
2363
2364	vfs_check_frozen(inode->i_sb, SB_FREEZE_WRITE);
2365
2366	/* We can write back this queue in page reclaim */
2367	current->backing_dev_info = mapping->backing_dev_info;
2368	written = 0;
2369
2370	err = generic_write_checks(file, &pos, &count, S_ISBLK(inode->i_mode));
2371	if (err)
2372		goto out;
2373
2374	if (count == 0)
2375		goto out;
2376
2377	err = remove_suid(file->f_path.dentry);
2378	if (err)
2379		goto out;
2380
2381	file_update_time(file);
2382
2383	/* coalesce the iovecs and go direct-to-BIO for O_DIRECT */
2384	if (unlikely(file->f_flags & O_DIRECT)) {
2385		loff_t endbyte;
2386		ssize_t written_buffered;
2387
2388		written = generic_file_direct_write(iocb, iov, &nr_segs, pos,
2389							ppos, count, ocount);
2390		if (written < 0 || written == count)
2391			goto out;
2392		/*
2393		 * direct-io write to a hole: fall through to buffered I/O
2394		 * for completing the rest of the request.
2395		 */
2396		pos += written;
2397		count -= written;
2398		written_buffered = generic_file_buffered_write(iocb, iov,
2399						nr_segs, pos, ppos, count,
2400						written);
2401		/*
2402		 * If generic_file_buffered_write() retuned a synchronous error
2403		 * then we want to return the number of bytes which were
2404		 * direct-written, or the error code if that was zero.  Note
2405		 * that this differs from normal direct-io semantics, which
2406		 * will return -EFOO even if some bytes were written.
2407		 */
2408		if (written_buffered < 0) {
2409			err = written_buffered;
2410			goto out;
2411		}
2412
2413		/*
2414		 * We need to ensure that the page cache pages are written to
2415		 * disk and invalidated to preserve the expected O_DIRECT
2416		 * semantics.
2417		 */
2418		endbyte = pos + written_buffered - written - 1;
2419		err = do_sync_mapping_range(file->f_mapping, pos, endbyte,
2420					    SYNC_FILE_RANGE_WAIT_BEFORE|
2421					    SYNC_FILE_RANGE_WRITE|
2422					    SYNC_FILE_RANGE_WAIT_AFTER);
2423		if (err == 0) {
2424			written = written_buffered;
2425			invalidate_mapping_pages(mapping,
2426						 pos >> PAGE_CACHE_SHIFT,
2427						 endbyte >> PAGE_CACHE_SHIFT);
2428		} else {
2429			/*
2430			 * We don't know how much we wrote, so just return
2431			 * the number of bytes which were direct-written
2432			 */
2433		}
2434	} else {
2435		written = generic_file_buffered_write(iocb, iov, nr_segs,
2436				pos, ppos, count, written);
2437	}
2438out:
2439	current->backing_dev_info = NULL;
2440	return written ? written : err;
2441}
2442
2443ssize_t generic_file_aio_write_nolock(struct kiocb *iocb,
2444		const struct iovec *iov, unsigned long nr_segs, loff_t pos)
2445{
2446	struct file *file = iocb->ki_filp;
2447	struct address_space *mapping = file->f_mapping;
2448	struct inode *inode = mapping->host;
2449	ssize_t ret;
2450
2451	BUG_ON(iocb->ki_pos != pos);
2452
2453	ret = __generic_file_aio_write_nolock(iocb, iov, nr_segs,
2454			&iocb->ki_pos);
2455
2456	if (ret > 0 && ((file->f_flags & O_SYNC) || IS_SYNC(inode))) {
2457		ssize_t err;
2458
2459		err = sync_page_range_nolock(inode, mapping, pos, ret);
2460		if (err < 0)
2461			ret = err;
2462	}
2463	return ret;
2464}
2465EXPORT_SYMBOL(generic_file_aio_write_nolock);
2466
2467ssize_t generic_file_aio_write(struct kiocb *iocb, const struct iovec *iov,
2468		unsigned long nr_segs, loff_t pos)
2469{
2470	struct file *file = iocb->ki_filp;
2471	struct address_space *mapping = file->f_mapping;
2472	struct inode *inode = mapping->host;
2473	ssize_t ret;
2474
2475	BUG_ON(iocb->ki_pos != pos);
2476
2477	mutex_lock(&inode->i_mutex);
2478	ret = __generic_file_aio_write_nolock(iocb, iov, nr_segs,
2479			&iocb->ki_pos);
2480	mutex_unlock(&inode->i_mutex);
2481
2482	if (ret > 0 && ((file->f_flags & O_SYNC) || IS_SYNC(inode))) {
2483		ssize_t err;
2484
2485		err = sync_page_range(inode, mapping, pos, ret);
2486		if (err < 0)
2487			ret = err;
2488	}
2489	return ret;
2490}
2491EXPORT_SYMBOL(generic_file_aio_write);
2492
2493/*
2494 * Called under i_mutex for writes to S_ISREG files.   Returns -EIO if something
2495 * went wrong during pagecache shootdown.
2496 */
2497static ssize_t
2498generic_file_direct_IO(int rw, struct kiocb *iocb, const struct iovec *iov,
2499	loff_t offset, unsigned long nr_segs)
2500{
2501	struct file *file = iocb->ki_filp;
2502	struct address_space *mapping = file->f_mapping;
2503	ssize_t retval;
2504	size_t write_len;
2505	pgoff_t end = 0; /* silence gcc */
2506
2507	/*
2508	 * If it's a write, unmap all mmappings of the file up-front.  This
2509	 * will cause any pte dirty bits to be propagated into the pageframes
2510	 * for the subsequent filemap_write_and_wait().
2511	 */
2512	if (rw == WRITE) {
2513		write_len = iov_length(iov, nr_segs);
2514		end = (offset + write_len - 1) >> PAGE_CACHE_SHIFT;
2515	       	if (mapping_mapped(mapping))
2516			unmap_mapping_range(mapping, offset, write_len, 0);
2517	}
2518
2519	retval = filemap_write_and_wait(mapping);
2520	if (retval)
2521		goto out;
2522
2523	/*
2524	 * After a write we want buffered reads to be sure to go to disk to get
2525	 * the new data.  We invalidate clean cached page from the region we're
2526	 * about to write.  We do this *before* the write so that we can return
2527	 * -EIO without clobbering -EIOCBQUEUED from ->direct_IO().
2528	 */
2529	if (rw == WRITE && mapping->nrpages) {
2530		retval = invalidate_inode_pages2_range(mapping,
2531					offset >> PAGE_CACHE_SHIFT, end);
2532		if (retval)
2533			goto out;
2534	}
2535
2536	retval = mapping->a_ops->direct_IO(rw, iocb, iov, offset, nr_segs);
2537
2538	/*
2539	 * Finally, try again to invalidate clean pages which might have been
2540	 * cached by non-direct readahead, or faulted in by get_user_pages()
2541	 * if the source of the write was an mmap'ed region of the file
2542	 * we're writing.  Either one is a pretty crazy thing to do,
2543	 * so we don't support it 100%.  If this invalidation
2544	 * fails, tough, the write still worked...
2545	 */
2546	if (rw == WRITE && mapping->nrpages) {
2547		invalidate_inode_pages2_range(mapping, offset >> PAGE_CACHE_SHIFT, end);
2548	}
2549out:
2550	return retval;
2551}
2552
2553/**
2554 * try_to_release_page() - release old fs-specific metadata on a page
2555 *
2556 * @page: the page which the kernel is trying to free
2557 * @gfp_mask: memory allocation flags (and I/O mode)
2558 *
2559 * The address_space is to try to release any data against the page
2560 * (presumably at page->private).  If the release was successful, return `1'.
2561 * Otherwise return zero.
2562 *
2563 * The @gfp_mask argument specifies whether I/O may be performed to release
2564 * this page (__GFP_IO), and whether the call may block (__GFP_WAIT).
2565 *
2566 * NOTE: @gfp_mask may go away, and this function may become non-blocking.
2567 */
2568int try_to_release_page(struct page *page, gfp_t gfp_mask)
2569{
2570	struct address_space * const mapping = page->mapping;
2571
2572	BUG_ON(!PageLocked(page));
2573	if (PageWriteback(page))
2574		return 0;
2575
2576	if (mapping && mapping->a_ops->releasepage)
2577		return mapping->a_ops->releasepage(page, gfp_mask);
2578	return try_to_free_buffers(page);
2579}
2580
2581EXPORT_SYMBOL(try_to_release_page);
2582