filemap.c revision ac6aadb24b7d4f0e54246732e221c102073412bf
1/*
2 *	linux/mm/filemap.c
3 *
4 * Copyright (C) 1994-1999  Linus Torvalds
5 */
6
7/*
8 * This file handles the generic file mmap semantics used by
9 * most "normal" filesystems (but you don't /have/ to use this:
10 * the NFS filesystem used to do this differently, for example)
11 */
12#include <linux/module.h>
13#include <linux/slab.h>
14#include <linux/compiler.h>
15#include <linux/fs.h>
16#include <linux/uaccess.h>
17#include <linux/aio.h>
18#include <linux/capability.h>
19#include <linux/kernel_stat.h>
20#include <linux/mm.h>
21#include <linux/swap.h>
22#include <linux/mman.h>
23#include <linux/pagemap.h>
24#include <linux/file.h>
25#include <linux/uio.h>
26#include <linux/hash.h>
27#include <linux/writeback.h>
28#include <linux/backing-dev.h>
29#include <linux/pagevec.h>
30#include <linux/blkdev.h>
31#include <linux/security.h>
32#include <linux/syscalls.h>
33#include <linux/cpuset.h>
34#include <linux/hardirq.h> /* for BUG_ON(!in_atomic()) only */
35#include <linux/memcontrol.h>
36#include "internal.h"
37
38/*
39 * FIXME: remove all knowledge of the buffer layer from the core VM
40 */
41#include <linux/buffer_head.h> /* for generic_osync_inode */
42
43#include <asm/mman.h>
44
45static ssize_t
46generic_file_direct_IO(int rw, struct kiocb *iocb, const struct iovec *iov,
47	loff_t offset, unsigned long nr_segs);
48
49/*
50 * Shared mappings implemented 30.11.1994. It's not fully working yet,
51 * though.
52 *
53 * Shared mappings now work. 15.8.1995  Bruno.
54 *
55 * finished 'unifying' the page and buffer cache and SMP-threaded the
56 * page-cache, 21.05.1999, Ingo Molnar <mingo@redhat.com>
57 *
58 * SMP-threaded pagemap-LRU 1999, Andrea Arcangeli <andrea@suse.de>
59 */
60
61/*
62 * Lock ordering:
63 *
64 *  ->i_mmap_lock		(vmtruncate)
65 *    ->private_lock		(__free_pte->__set_page_dirty_buffers)
66 *      ->swap_lock		(exclusive_swap_page, others)
67 *        ->mapping->tree_lock
68 *
69 *  ->i_mutex
70 *    ->i_mmap_lock		(truncate->unmap_mapping_range)
71 *
72 *  ->mmap_sem
73 *    ->i_mmap_lock
74 *      ->page_table_lock or pte_lock	(various, mainly in memory.c)
75 *        ->mapping->tree_lock	(arch-dependent flush_dcache_mmap_lock)
76 *
77 *  ->mmap_sem
78 *    ->lock_page		(access_process_vm)
79 *
80 *  ->i_mutex			(generic_file_buffered_write)
81 *    ->mmap_sem		(fault_in_pages_readable->do_page_fault)
82 *
83 *  ->i_mutex
84 *    ->i_alloc_sem             (various)
85 *
86 *  ->inode_lock
87 *    ->sb_lock			(fs/fs-writeback.c)
88 *    ->mapping->tree_lock	(__sync_single_inode)
89 *
90 *  ->i_mmap_lock
91 *    ->anon_vma.lock		(vma_adjust)
92 *
93 *  ->anon_vma.lock
94 *    ->page_table_lock or pte_lock	(anon_vma_prepare and various)
95 *
96 *  ->page_table_lock or pte_lock
97 *    ->swap_lock		(try_to_unmap_one)
98 *    ->private_lock		(try_to_unmap_one)
99 *    ->tree_lock		(try_to_unmap_one)
100 *    ->zone.lru_lock		(follow_page->mark_page_accessed)
101 *    ->zone.lru_lock		(check_pte_range->isolate_lru_page)
102 *    ->private_lock		(page_remove_rmap->set_page_dirty)
103 *    ->tree_lock		(page_remove_rmap->set_page_dirty)
104 *    ->inode_lock		(page_remove_rmap->set_page_dirty)
105 *    ->inode_lock		(zap_pte_range->set_page_dirty)
106 *    ->private_lock		(zap_pte_range->__set_page_dirty_buffers)
107 *
108 *  ->task->proc_lock
109 *    ->dcache_lock		(proc_pid_lookup)
110 */
111
112/*
113 * Remove a page from the page cache and free it. Caller has to make
114 * sure the page is locked and that nobody else uses it - or that usage
115 * is safe.  The caller must hold a write_lock on the mapping's tree_lock.
116 */
117void __remove_from_page_cache(struct page *page)
118{
119	struct address_space *mapping = page->mapping;
120
121	mem_cgroup_uncharge_page(page);
122	radix_tree_delete(&mapping->page_tree, page->index);
123	page->mapping = NULL;
124	mapping->nrpages--;
125	__dec_zone_page_state(page, NR_FILE_PAGES);
126	BUG_ON(page_mapped(page));
127
128	/*
129	 * Some filesystems seem to re-dirty the page even after
130	 * the VM has canceled the dirty bit (eg ext3 journaling).
131	 *
132	 * Fix it up by doing a final dirty accounting check after
133	 * having removed the page entirely.
134	 */
135	if (PageDirty(page) && mapping_cap_account_dirty(mapping)) {
136		dec_zone_page_state(page, NR_FILE_DIRTY);
137		dec_bdi_stat(mapping->backing_dev_info, BDI_RECLAIMABLE);
138	}
139}
140
141void remove_from_page_cache(struct page *page)
142{
143	struct address_space *mapping = page->mapping;
144
145	BUG_ON(!PageLocked(page));
146
147	write_lock_irq(&mapping->tree_lock);
148	__remove_from_page_cache(page);
149	write_unlock_irq(&mapping->tree_lock);
150}
151
152static int sync_page(void *word)
153{
154	struct address_space *mapping;
155	struct page *page;
156
157	page = container_of((unsigned long *)word, struct page, flags);
158
159	/*
160	 * page_mapping() is being called without PG_locked held.
161	 * Some knowledge of the state and use of the page is used to
162	 * reduce the requirements down to a memory barrier.
163	 * The danger here is of a stale page_mapping() return value
164	 * indicating a struct address_space different from the one it's
165	 * associated with when it is associated with one.
166	 * After smp_mb(), it's either the correct page_mapping() for
167	 * the page, or an old page_mapping() and the page's own
168	 * page_mapping() has gone NULL.
169	 * The ->sync_page() address_space operation must tolerate
170	 * page_mapping() going NULL. By an amazing coincidence,
171	 * this comes about because none of the users of the page
172	 * in the ->sync_page() methods make essential use of the
173	 * page_mapping(), merely passing the page down to the backing
174	 * device's unplug functions when it's non-NULL, which in turn
175	 * ignore it for all cases but swap, where only page_private(page) is
176	 * of interest. When page_mapping() does go NULL, the entire
177	 * call stack gracefully ignores the page and returns.
178	 * -- wli
179	 */
180	smp_mb();
181	mapping = page_mapping(page);
182	if (mapping && mapping->a_ops && mapping->a_ops->sync_page)
183		mapping->a_ops->sync_page(page);
184	io_schedule();
185	return 0;
186}
187
188static int sync_page_killable(void *word)
189{
190	sync_page(word);
191	return fatal_signal_pending(current) ? -EINTR : 0;
192}
193
194/**
195 * __filemap_fdatawrite_range - start writeback on mapping dirty pages in range
196 * @mapping:	address space structure to write
197 * @start:	offset in bytes where the range starts
198 * @end:	offset in bytes where the range ends (inclusive)
199 * @sync_mode:	enable synchronous operation
200 *
201 * Start writeback against all of a mapping's dirty pages that lie
202 * within the byte offsets <start, end> inclusive.
203 *
204 * If sync_mode is WB_SYNC_ALL then this is a "data integrity" operation, as
205 * opposed to a regular memory cleansing writeback.  The difference between
206 * these two operations is that if a dirty page/buffer is encountered, it must
207 * be waited upon, and not just skipped over.
208 */
209int __filemap_fdatawrite_range(struct address_space *mapping, loff_t start,
210				loff_t end, int sync_mode)
211{
212	int ret;
213	struct writeback_control wbc = {
214		.sync_mode = sync_mode,
215		.nr_to_write = mapping->nrpages * 2,
216		.range_start = start,
217		.range_end = end,
218	};
219
220	if (!mapping_cap_writeback_dirty(mapping))
221		return 0;
222
223	ret = do_writepages(mapping, &wbc);
224	return ret;
225}
226
227static inline int __filemap_fdatawrite(struct address_space *mapping,
228	int sync_mode)
229{
230	return __filemap_fdatawrite_range(mapping, 0, LLONG_MAX, sync_mode);
231}
232
233int filemap_fdatawrite(struct address_space *mapping)
234{
235	return __filemap_fdatawrite(mapping, WB_SYNC_ALL);
236}
237EXPORT_SYMBOL(filemap_fdatawrite);
238
239static int filemap_fdatawrite_range(struct address_space *mapping, loff_t start,
240				loff_t end)
241{
242	return __filemap_fdatawrite_range(mapping, start, end, WB_SYNC_ALL);
243}
244
245/**
246 * filemap_flush - mostly a non-blocking flush
247 * @mapping:	target address_space
248 *
249 * This is a mostly non-blocking flush.  Not suitable for data-integrity
250 * purposes - I/O may not be started against all dirty pages.
251 */
252int filemap_flush(struct address_space *mapping)
253{
254	return __filemap_fdatawrite(mapping, WB_SYNC_NONE);
255}
256EXPORT_SYMBOL(filemap_flush);
257
258/**
259 * wait_on_page_writeback_range - wait for writeback to complete
260 * @mapping:	target address_space
261 * @start:	beginning page index
262 * @end:	ending page index
263 *
264 * Wait for writeback to complete against pages indexed by start->end
265 * inclusive
266 */
267int wait_on_page_writeback_range(struct address_space *mapping,
268				pgoff_t start, pgoff_t end)
269{
270	struct pagevec pvec;
271	int nr_pages;
272	int ret = 0;
273	pgoff_t index;
274
275	if (end < start)
276		return 0;
277
278	pagevec_init(&pvec, 0);
279	index = start;
280	while ((index <= end) &&
281			(nr_pages = pagevec_lookup_tag(&pvec, mapping, &index,
282			PAGECACHE_TAG_WRITEBACK,
283			min(end - index, (pgoff_t)PAGEVEC_SIZE-1) + 1)) != 0) {
284		unsigned i;
285
286		for (i = 0; i < nr_pages; i++) {
287			struct page *page = pvec.pages[i];
288
289			/* until radix tree lookup accepts end_index */
290			if (page->index > end)
291				continue;
292
293			wait_on_page_writeback(page);
294			if (PageError(page))
295				ret = -EIO;
296		}
297		pagevec_release(&pvec);
298		cond_resched();
299	}
300
301	/* Check for outstanding write errors */
302	if (test_and_clear_bit(AS_ENOSPC, &mapping->flags))
303		ret = -ENOSPC;
304	if (test_and_clear_bit(AS_EIO, &mapping->flags))
305		ret = -EIO;
306
307	return ret;
308}
309
310/**
311 * sync_page_range - write and wait on all pages in the passed range
312 * @inode:	target inode
313 * @mapping:	target address_space
314 * @pos:	beginning offset in pages to write
315 * @count:	number of bytes to write
316 *
317 * Write and wait upon all the pages in the passed range.  This is a "data
318 * integrity" operation.  It waits upon in-flight writeout before starting and
319 * waiting upon new writeout.  If there was an IO error, return it.
320 *
321 * We need to re-take i_mutex during the generic_osync_inode list walk because
322 * it is otherwise livelockable.
323 */
324int sync_page_range(struct inode *inode, struct address_space *mapping,
325			loff_t pos, loff_t count)
326{
327	pgoff_t start = pos >> PAGE_CACHE_SHIFT;
328	pgoff_t end = (pos + count - 1) >> PAGE_CACHE_SHIFT;
329	int ret;
330
331	if (!mapping_cap_writeback_dirty(mapping) || !count)
332		return 0;
333	ret = filemap_fdatawrite_range(mapping, pos, pos + count - 1);
334	if (ret == 0) {
335		mutex_lock(&inode->i_mutex);
336		ret = generic_osync_inode(inode, mapping, OSYNC_METADATA);
337		mutex_unlock(&inode->i_mutex);
338	}
339	if (ret == 0)
340		ret = wait_on_page_writeback_range(mapping, start, end);
341	return ret;
342}
343EXPORT_SYMBOL(sync_page_range);
344
345/**
346 * sync_page_range_nolock - write & wait on all pages in the passed range without locking
347 * @inode:	target inode
348 * @mapping:	target address_space
349 * @pos:	beginning offset in pages to write
350 * @count:	number of bytes to write
351 *
352 * Note: Holding i_mutex across sync_page_range_nolock() is not a good idea
353 * as it forces O_SYNC writers to different parts of the same file
354 * to be serialised right until io completion.
355 */
356int sync_page_range_nolock(struct inode *inode, struct address_space *mapping,
357			   loff_t pos, loff_t count)
358{
359	pgoff_t start = pos >> PAGE_CACHE_SHIFT;
360	pgoff_t end = (pos + count - 1) >> PAGE_CACHE_SHIFT;
361	int ret;
362
363	if (!mapping_cap_writeback_dirty(mapping) || !count)
364		return 0;
365	ret = filemap_fdatawrite_range(mapping, pos, pos + count - 1);
366	if (ret == 0)
367		ret = generic_osync_inode(inode, mapping, OSYNC_METADATA);
368	if (ret == 0)
369		ret = wait_on_page_writeback_range(mapping, start, end);
370	return ret;
371}
372EXPORT_SYMBOL(sync_page_range_nolock);
373
374/**
375 * filemap_fdatawait - wait for all under-writeback pages to complete
376 * @mapping: address space structure to wait for
377 *
378 * Walk the list of under-writeback pages of the given address space
379 * and wait for all of them.
380 */
381int filemap_fdatawait(struct address_space *mapping)
382{
383	loff_t i_size = i_size_read(mapping->host);
384
385	if (i_size == 0)
386		return 0;
387
388	return wait_on_page_writeback_range(mapping, 0,
389				(i_size - 1) >> PAGE_CACHE_SHIFT);
390}
391EXPORT_SYMBOL(filemap_fdatawait);
392
393int filemap_write_and_wait(struct address_space *mapping)
394{
395	int err = 0;
396
397	if (mapping->nrpages) {
398		err = filemap_fdatawrite(mapping);
399		/*
400		 * Even if the above returned error, the pages may be
401		 * written partially (e.g. -ENOSPC), so we wait for it.
402		 * But the -EIO is special case, it may indicate the worst
403		 * thing (e.g. bug) happened, so we avoid waiting for it.
404		 */
405		if (err != -EIO) {
406			int err2 = filemap_fdatawait(mapping);
407			if (!err)
408				err = err2;
409		}
410	}
411	return err;
412}
413EXPORT_SYMBOL(filemap_write_and_wait);
414
415/**
416 * filemap_write_and_wait_range - write out & wait on a file range
417 * @mapping:	the address_space for the pages
418 * @lstart:	offset in bytes where the range starts
419 * @lend:	offset in bytes where the range ends (inclusive)
420 *
421 * Write out and wait upon file offsets lstart->lend, inclusive.
422 *
423 * Note that `lend' is inclusive (describes the last byte to be written) so
424 * that this function can be used to write to the very end-of-file (end = -1).
425 */
426int filemap_write_and_wait_range(struct address_space *mapping,
427				 loff_t lstart, loff_t lend)
428{
429	int err = 0;
430
431	if (mapping->nrpages) {
432		err = __filemap_fdatawrite_range(mapping, lstart, lend,
433						 WB_SYNC_ALL);
434		/* See comment of filemap_write_and_wait() */
435		if (err != -EIO) {
436			int err2 = wait_on_page_writeback_range(mapping,
437						lstart >> PAGE_CACHE_SHIFT,
438						lend >> PAGE_CACHE_SHIFT);
439			if (!err)
440				err = err2;
441		}
442	}
443	return err;
444}
445
446/**
447 * add_to_page_cache - add newly allocated pagecache pages
448 * @page:	page to add
449 * @mapping:	the page's address_space
450 * @offset:	page index
451 * @gfp_mask:	page allocation mode
452 *
453 * This function is used to add newly allocated pagecache pages;
454 * the page is new, so we can just run SetPageLocked() against it.
455 * The other page state flags were set by rmqueue().
456 *
457 * This function does not add the page to the LRU.  The caller must do that.
458 */
459int add_to_page_cache(struct page *page, struct address_space *mapping,
460		pgoff_t offset, gfp_t gfp_mask)
461{
462	int error = mem_cgroup_cache_charge(page, current->mm,
463					gfp_mask & ~__GFP_HIGHMEM);
464	if (error)
465		goto out;
466
467	error = radix_tree_preload(gfp_mask & ~__GFP_HIGHMEM);
468	if (error == 0) {
469		write_lock_irq(&mapping->tree_lock);
470		error = radix_tree_insert(&mapping->page_tree, offset, page);
471		if (!error) {
472			page_cache_get(page);
473			SetPageLocked(page);
474			page->mapping = mapping;
475			page->index = offset;
476			mapping->nrpages++;
477			__inc_zone_page_state(page, NR_FILE_PAGES);
478		} else
479			mem_cgroup_uncharge_page(page);
480
481		write_unlock_irq(&mapping->tree_lock);
482		radix_tree_preload_end();
483	} else
484		mem_cgroup_uncharge_page(page);
485out:
486	return error;
487}
488EXPORT_SYMBOL(add_to_page_cache);
489
490int add_to_page_cache_lru(struct page *page, struct address_space *mapping,
491				pgoff_t offset, gfp_t gfp_mask)
492{
493	int ret = add_to_page_cache(page, mapping, offset, gfp_mask);
494	if (ret == 0)
495		lru_cache_add(page);
496	return ret;
497}
498
499#ifdef CONFIG_NUMA
500struct page *__page_cache_alloc(gfp_t gfp)
501{
502	if (cpuset_do_page_mem_spread()) {
503		int n = cpuset_mem_spread_node();
504		return alloc_pages_node(n, gfp, 0);
505	}
506	return alloc_pages(gfp, 0);
507}
508EXPORT_SYMBOL(__page_cache_alloc);
509#endif
510
511static int __sleep_on_page_lock(void *word)
512{
513	io_schedule();
514	return 0;
515}
516
517/*
518 * In order to wait for pages to become available there must be
519 * waitqueues associated with pages. By using a hash table of
520 * waitqueues where the bucket discipline is to maintain all
521 * waiters on the same queue and wake all when any of the pages
522 * become available, and for the woken contexts to check to be
523 * sure the appropriate page became available, this saves space
524 * at a cost of "thundering herd" phenomena during rare hash
525 * collisions.
526 */
527static wait_queue_head_t *page_waitqueue(struct page *page)
528{
529	const struct zone *zone = page_zone(page);
530
531	return &zone->wait_table[hash_ptr(page, zone->wait_table_bits)];
532}
533
534static inline void wake_up_page(struct page *page, int bit)
535{
536	__wake_up_bit(page_waitqueue(page), &page->flags, bit);
537}
538
539void wait_on_page_bit(struct page *page, int bit_nr)
540{
541	DEFINE_WAIT_BIT(wait, &page->flags, bit_nr);
542
543	if (test_bit(bit_nr, &page->flags))
544		__wait_on_bit(page_waitqueue(page), &wait, sync_page,
545							TASK_UNINTERRUPTIBLE);
546}
547EXPORT_SYMBOL(wait_on_page_bit);
548
549/**
550 * unlock_page - unlock a locked page
551 * @page: the page
552 *
553 * Unlocks the page and wakes up sleepers in ___wait_on_page_locked().
554 * Also wakes sleepers in wait_on_page_writeback() because the wakeup
555 * mechananism between PageLocked pages and PageWriteback pages is shared.
556 * But that's OK - sleepers in wait_on_page_writeback() just go back to sleep.
557 *
558 * The first mb is necessary to safely close the critical section opened by the
559 * TestSetPageLocked(), the second mb is necessary to enforce ordering between
560 * the clear_bit and the read of the waitqueue (to avoid SMP races with a
561 * parallel wait_on_page_locked()).
562 */
563void unlock_page(struct page *page)
564{
565	smp_mb__before_clear_bit();
566	if (!TestClearPageLocked(page))
567		BUG();
568	smp_mb__after_clear_bit();
569	wake_up_page(page, PG_locked);
570}
571EXPORT_SYMBOL(unlock_page);
572
573/**
574 * end_page_writeback - end writeback against a page
575 * @page: the page
576 */
577void end_page_writeback(struct page *page)
578{
579	if (TestClearPageReclaim(page))
580		rotate_reclaimable_page(page);
581
582	if (!test_clear_page_writeback(page))
583		BUG();
584
585	smp_mb__after_clear_bit();
586	wake_up_page(page, PG_writeback);
587}
588EXPORT_SYMBOL(end_page_writeback);
589
590/**
591 * __lock_page - get a lock on the page, assuming we need to sleep to get it
592 * @page: the page to lock
593 *
594 * Ugly. Running sync_page() in state TASK_UNINTERRUPTIBLE is scary.  If some
595 * random driver's requestfn sets TASK_RUNNING, we could busywait.  However
596 * chances are that on the second loop, the block layer's plug list is empty,
597 * so sync_page() will then return in state TASK_UNINTERRUPTIBLE.
598 */
599void __lock_page(struct page *page)
600{
601	DEFINE_WAIT_BIT(wait, &page->flags, PG_locked);
602
603	__wait_on_bit_lock(page_waitqueue(page), &wait, sync_page,
604							TASK_UNINTERRUPTIBLE);
605}
606EXPORT_SYMBOL(__lock_page);
607
608int __lock_page_killable(struct page *page)
609{
610	DEFINE_WAIT_BIT(wait, &page->flags, PG_locked);
611
612	return __wait_on_bit_lock(page_waitqueue(page), &wait,
613					sync_page_killable, TASK_KILLABLE);
614}
615
616/**
617 * __lock_page_nosync - get a lock on the page, without calling sync_page()
618 * @page: the page to lock
619 *
620 * Variant of lock_page that does not require the caller to hold a reference
621 * on the page's mapping.
622 */
623void __lock_page_nosync(struct page *page)
624{
625	DEFINE_WAIT_BIT(wait, &page->flags, PG_locked);
626	__wait_on_bit_lock(page_waitqueue(page), &wait, __sleep_on_page_lock,
627							TASK_UNINTERRUPTIBLE);
628}
629
630/**
631 * find_get_page - find and get a page reference
632 * @mapping: the address_space to search
633 * @offset: the page index
634 *
635 * Is there a pagecache struct page at the given (mapping, offset) tuple?
636 * If yes, increment its refcount and return it; if no, return NULL.
637 */
638struct page * find_get_page(struct address_space *mapping, pgoff_t offset)
639{
640	struct page *page;
641
642	read_lock_irq(&mapping->tree_lock);
643	page = radix_tree_lookup(&mapping->page_tree, offset);
644	if (page)
645		page_cache_get(page);
646	read_unlock_irq(&mapping->tree_lock);
647	return page;
648}
649EXPORT_SYMBOL(find_get_page);
650
651/**
652 * find_lock_page - locate, pin and lock a pagecache page
653 * @mapping: the address_space to search
654 * @offset: the page index
655 *
656 * Locates the desired pagecache page, locks it, increments its reference
657 * count and returns its address.
658 *
659 * Returns zero if the page was not present. find_lock_page() may sleep.
660 */
661struct page *find_lock_page(struct address_space *mapping,
662				pgoff_t offset)
663{
664	struct page *page;
665
666repeat:
667	read_lock_irq(&mapping->tree_lock);
668	page = radix_tree_lookup(&mapping->page_tree, offset);
669	if (page) {
670		page_cache_get(page);
671		if (TestSetPageLocked(page)) {
672			read_unlock_irq(&mapping->tree_lock);
673			__lock_page(page);
674
675			/* Has the page been truncated while we slept? */
676			if (unlikely(page->mapping != mapping)) {
677				unlock_page(page);
678				page_cache_release(page);
679				goto repeat;
680			}
681			VM_BUG_ON(page->index != offset);
682			goto out;
683		}
684	}
685	read_unlock_irq(&mapping->tree_lock);
686out:
687	return page;
688}
689EXPORT_SYMBOL(find_lock_page);
690
691/**
692 * find_or_create_page - locate or add a pagecache page
693 * @mapping: the page's address_space
694 * @index: the page's index into the mapping
695 * @gfp_mask: page allocation mode
696 *
697 * Locates a page in the pagecache.  If the page is not present, a new page
698 * is allocated using @gfp_mask and is added to the pagecache and to the VM's
699 * LRU list.  The returned page is locked and has its reference count
700 * incremented.
701 *
702 * find_or_create_page() may sleep, even if @gfp_flags specifies an atomic
703 * allocation!
704 *
705 * find_or_create_page() returns the desired page's address, or zero on
706 * memory exhaustion.
707 */
708struct page *find_or_create_page(struct address_space *mapping,
709		pgoff_t index, gfp_t gfp_mask)
710{
711	struct page *page;
712	int err;
713repeat:
714	page = find_lock_page(mapping, index);
715	if (!page) {
716		page = __page_cache_alloc(gfp_mask);
717		if (!page)
718			return NULL;
719		err = add_to_page_cache_lru(page, mapping, index, gfp_mask);
720		if (unlikely(err)) {
721			page_cache_release(page);
722			page = NULL;
723			if (err == -EEXIST)
724				goto repeat;
725		}
726	}
727	return page;
728}
729EXPORT_SYMBOL(find_or_create_page);
730
731/**
732 * find_get_pages - gang pagecache lookup
733 * @mapping:	The address_space to search
734 * @start:	The starting page index
735 * @nr_pages:	The maximum number of pages
736 * @pages:	Where the resulting pages are placed
737 *
738 * find_get_pages() will search for and return a group of up to
739 * @nr_pages pages in the mapping.  The pages are placed at @pages.
740 * find_get_pages() takes a reference against the returned pages.
741 *
742 * The search returns a group of mapping-contiguous pages with ascending
743 * indexes.  There may be holes in the indices due to not-present pages.
744 *
745 * find_get_pages() returns the number of pages which were found.
746 */
747unsigned find_get_pages(struct address_space *mapping, pgoff_t start,
748			    unsigned int nr_pages, struct page **pages)
749{
750	unsigned int i;
751	unsigned int ret;
752
753	read_lock_irq(&mapping->tree_lock);
754	ret = radix_tree_gang_lookup(&mapping->page_tree,
755				(void **)pages, start, nr_pages);
756	for (i = 0; i < ret; i++)
757		page_cache_get(pages[i]);
758	read_unlock_irq(&mapping->tree_lock);
759	return ret;
760}
761
762/**
763 * find_get_pages_contig - gang contiguous pagecache lookup
764 * @mapping:	The address_space to search
765 * @index:	The starting page index
766 * @nr_pages:	The maximum number of pages
767 * @pages:	Where the resulting pages are placed
768 *
769 * find_get_pages_contig() works exactly like find_get_pages(), except
770 * that the returned number of pages are guaranteed to be contiguous.
771 *
772 * find_get_pages_contig() returns the number of pages which were found.
773 */
774unsigned find_get_pages_contig(struct address_space *mapping, pgoff_t index,
775			       unsigned int nr_pages, struct page **pages)
776{
777	unsigned int i;
778	unsigned int ret;
779
780	read_lock_irq(&mapping->tree_lock);
781	ret = radix_tree_gang_lookup(&mapping->page_tree,
782				(void **)pages, index, nr_pages);
783	for (i = 0; i < ret; i++) {
784		if (pages[i]->mapping == NULL || pages[i]->index != index)
785			break;
786
787		page_cache_get(pages[i]);
788		index++;
789	}
790	read_unlock_irq(&mapping->tree_lock);
791	return i;
792}
793EXPORT_SYMBOL(find_get_pages_contig);
794
795/**
796 * find_get_pages_tag - find and return pages that match @tag
797 * @mapping:	the address_space to search
798 * @index:	the starting page index
799 * @tag:	the tag index
800 * @nr_pages:	the maximum number of pages
801 * @pages:	where the resulting pages are placed
802 *
803 * Like find_get_pages, except we only return pages which are tagged with
804 * @tag.   We update @index to index the next page for the traversal.
805 */
806unsigned find_get_pages_tag(struct address_space *mapping, pgoff_t *index,
807			int tag, unsigned int nr_pages, struct page **pages)
808{
809	unsigned int i;
810	unsigned int ret;
811
812	read_lock_irq(&mapping->tree_lock);
813	ret = radix_tree_gang_lookup_tag(&mapping->page_tree,
814				(void **)pages, *index, nr_pages, tag);
815	for (i = 0; i < ret; i++)
816		page_cache_get(pages[i]);
817	if (ret)
818		*index = pages[ret - 1]->index + 1;
819	read_unlock_irq(&mapping->tree_lock);
820	return ret;
821}
822EXPORT_SYMBOL(find_get_pages_tag);
823
824/**
825 * grab_cache_page_nowait - returns locked page at given index in given cache
826 * @mapping: target address_space
827 * @index: the page index
828 *
829 * Same as grab_cache_page(), but do not wait if the page is unavailable.
830 * This is intended for speculative data generators, where the data can
831 * be regenerated if the page couldn't be grabbed.  This routine should
832 * be safe to call while holding the lock for another page.
833 *
834 * Clear __GFP_FS when allocating the page to avoid recursion into the fs
835 * and deadlock against the caller's locked page.
836 */
837struct page *
838grab_cache_page_nowait(struct address_space *mapping, pgoff_t index)
839{
840	struct page *page = find_get_page(mapping, index);
841
842	if (page) {
843		if (!TestSetPageLocked(page))
844			return page;
845		page_cache_release(page);
846		return NULL;
847	}
848	page = __page_cache_alloc(mapping_gfp_mask(mapping) & ~__GFP_FS);
849	if (page && add_to_page_cache_lru(page, mapping, index, GFP_KERNEL)) {
850		page_cache_release(page);
851		page = NULL;
852	}
853	return page;
854}
855EXPORT_SYMBOL(grab_cache_page_nowait);
856
857/*
858 * CD/DVDs are error prone. When a medium error occurs, the driver may fail
859 * a _large_ part of the i/o request. Imagine the worst scenario:
860 *
861 *      ---R__________________________________________B__________
862 *         ^ reading here                             ^ bad block(assume 4k)
863 *
864 * read(R) => miss => readahead(R...B) => media error => frustrating retries
865 * => failing the whole request => read(R) => read(R+1) =>
866 * readahead(R+1...B+1) => bang => read(R+2) => read(R+3) =>
867 * readahead(R+3...B+2) => bang => read(R+3) => read(R+4) =>
868 * readahead(R+4...B+3) => bang => read(R+4) => read(R+5) => ......
869 *
870 * It is going insane. Fix it by quickly scaling down the readahead size.
871 */
872static void shrink_readahead_size_eio(struct file *filp,
873					struct file_ra_state *ra)
874{
875	if (!ra->ra_pages)
876		return;
877
878	ra->ra_pages /= 4;
879}
880
881/**
882 * do_generic_file_read - generic file read routine
883 * @filp:	the file to read
884 * @ppos:	current file position
885 * @desc:	read_descriptor
886 * @actor:	read method
887 *
888 * This is a generic file read routine, and uses the
889 * mapping->a_ops->readpage() function for the actual low-level stuff.
890 *
891 * This is really ugly. But the goto's actually try to clarify some
892 * of the logic when it comes to error handling etc.
893 */
894static void do_generic_file_read(struct file *filp, loff_t *ppos,
895		read_descriptor_t *desc, read_actor_t actor)
896{
897	struct address_space *mapping = filp->f_mapping;
898	struct inode *inode = mapping->host;
899	struct file_ra_state *ra = &filp->f_ra;
900	pgoff_t index;
901	pgoff_t last_index;
902	pgoff_t prev_index;
903	unsigned long offset;      /* offset into pagecache page */
904	unsigned int prev_offset;
905	int error;
906
907	index = *ppos >> PAGE_CACHE_SHIFT;
908	prev_index = ra->prev_pos >> PAGE_CACHE_SHIFT;
909	prev_offset = ra->prev_pos & (PAGE_CACHE_SIZE-1);
910	last_index = (*ppos + desc->count + PAGE_CACHE_SIZE-1) >> PAGE_CACHE_SHIFT;
911	offset = *ppos & ~PAGE_CACHE_MASK;
912
913	for (;;) {
914		struct page *page;
915		pgoff_t end_index;
916		loff_t isize;
917		unsigned long nr, ret;
918
919		cond_resched();
920find_page:
921		page = find_get_page(mapping, index);
922		if (!page) {
923			page_cache_sync_readahead(mapping,
924					ra, filp,
925					index, last_index - index);
926			page = find_get_page(mapping, index);
927			if (unlikely(page == NULL))
928				goto no_cached_page;
929		}
930		if (PageReadahead(page)) {
931			page_cache_async_readahead(mapping,
932					ra, filp, page,
933					index, last_index - index);
934		}
935		if (!PageUptodate(page))
936			goto page_not_up_to_date;
937page_ok:
938		/*
939		 * i_size must be checked after we know the page is Uptodate.
940		 *
941		 * Checking i_size after the check allows us to calculate
942		 * the correct value for "nr", which means the zero-filled
943		 * part of the page is not copied back to userspace (unless
944		 * another truncate extends the file - this is desired though).
945		 */
946
947		isize = i_size_read(inode);
948		end_index = (isize - 1) >> PAGE_CACHE_SHIFT;
949		if (unlikely(!isize || index > end_index)) {
950			page_cache_release(page);
951			goto out;
952		}
953
954		/* nr is the maximum number of bytes to copy from this page */
955		nr = PAGE_CACHE_SIZE;
956		if (index == end_index) {
957			nr = ((isize - 1) & ~PAGE_CACHE_MASK) + 1;
958			if (nr <= offset) {
959				page_cache_release(page);
960				goto out;
961			}
962		}
963		nr = nr - offset;
964
965		/* If users can be writing to this page using arbitrary
966		 * virtual addresses, take care about potential aliasing
967		 * before reading the page on the kernel side.
968		 */
969		if (mapping_writably_mapped(mapping))
970			flush_dcache_page(page);
971
972		/*
973		 * When a sequential read accesses a page several times,
974		 * only mark it as accessed the first time.
975		 */
976		if (prev_index != index || offset != prev_offset)
977			mark_page_accessed(page);
978		prev_index = index;
979
980		/*
981		 * Ok, we have the page, and it's up-to-date, so
982		 * now we can copy it to user space...
983		 *
984		 * The actor routine returns how many bytes were actually used..
985		 * NOTE! This may not be the same as how much of a user buffer
986		 * we filled up (we may be padding etc), so we can only update
987		 * "pos" here (the actor routine has to update the user buffer
988		 * pointers and the remaining count).
989		 */
990		ret = actor(desc, page, offset, nr);
991		offset += ret;
992		index += offset >> PAGE_CACHE_SHIFT;
993		offset &= ~PAGE_CACHE_MASK;
994		prev_offset = offset;
995
996		page_cache_release(page);
997		if (ret == nr && desc->count)
998			continue;
999		goto out;
1000
1001page_not_up_to_date:
1002		/* Get exclusive access to the page ... */
1003		if (lock_page_killable(page))
1004			goto readpage_eio;
1005
1006		/* Did it get truncated before we got the lock? */
1007		if (!page->mapping) {
1008			unlock_page(page);
1009			page_cache_release(page);
1010			continue;
1011		}
1012
1013		/* Did somebody else fill it already? */
1014		if (PageUptodate(page)) {
1015			unlock_page(page);
1016			goto page_ok;
1017		}
1018
1019readpage:
1020		/* Start the actual read. The read will unlock the page. */
1021		error = mapping->a_ops->readpage(filp, page);
1022
1023		if (unlikely(error)) {
1024			if (error == AOP_TRUNCATED_PAGE) {
1025				page_cache_release(page);
1026				goto find_page;
1027			}
1028			goto readpage_error;
1029		}
1030
1031		if (!PageUptodate(page)) {
1032			if (lock_page_killable(page))
1033				goto readpage_eio;
1034			if (!PageUptodate(page)) {
1035				if (page->mapping == NULL) {
1036					/*
1037					 * invalidate_inode_pages got it
1038					 */
1039					unlock_page(page);
1040					page_cache_release(page);
1041					goto find_page;
1042				}
1043				unlock_page(page);
1044				shrink_readahead_size_eio(filp, ra);
1045				goto readpage_eio;
1046			}
1047			unlock_page(page);
1048		}
1049
1050		goto page_ok;
1051
1052readpage_eio:
1053		error = -EIO;
1054readpage_error:
1055		/* UHHUH! A synchronous read error occurred. Report it */
1056		desc->error = error;
1057		page_cache_release(page);
1058		goto out;
1059
1060no_cached_page:
1061		/*
1062		 * Ok, it wasn't cached, so we need to create a new
1063		 * page..
1064		 */
1065		page = page_cache_alloc_cold(mapping);
1066		if (!page) {
1067			desc->error = -ENOMEM;
1068			goto out;
1069		}
1070		error = add_to_page_cache_lru(page, mapping,
1071						index, GFP_KERNEL);
1072		if (error) {
1073			page_cache_release(page);
1074			if (error == -EEXIST)
1075				goto find_page;
1076			desc->error = error;
1077			goto out;
1078		}
1079		goto readpage;
1080	}
1081
1082out:
1083	ra->prev_pos = prev_index;
1084	ra->prev_pos <<= PAGE_CACHE_SHIFT;
1085	ra->prev_pos |= prev_offset;
1086
1087	*ppos = ((loff_t)index << PAGE_CACHE_SHIFT) + offset;
1088	if (filp)
1089		file_accessed(filp);
1090}
1091
1092int file_read_actor(read_descriptor_t *desc, struct page *page,
1093			unsigned long offset, unsigned long size)
1094{
1095	char *kaddr;
1096	unsigned long left, count = desc->count;
1097
1098	if (size > count)
1099		size = count;
1100
1101	/*
1102	 * Faults on the destination of a read are common, so do it before
1103	 * taking the kmap.
1104	 */
1105	if (!fault_in_pages_writeable(desc->arg.buf, size)) {
1106		kaddr = kmap_atomic(page, KM_USER0);
1107		left = __copy_to_user_inatomic(desc->arg.buf,
1108						kaddr + offset, size);
1109		kunmap_atomic(kaddr, KM_USER0);
1110		if (left == 0)
1111			goto success;
1112	}
1113
1114	/* Do it the slow way */
1115	kaddr = kmap(page);
1116	left = __copy_to_user(desc->arg.buf, kaddr + offset, size);
1117	kunmap(page);
1118
1119	if (left) {
1120		size -= left;
1121		desc->error = -EFAULT;
1122	}
1123success:
1124	desc->count = count - size;
1125	desc->written += size;
1126	desc->arg.buf += size;
1127	return size;
1128}
1129
1130/*
1131 * Performs necessary checks before doing a write
1132 * @iov:	io vector request
1133 * @nr_segs:	number of segments in the iovec
1134 * @count:	number of bytes to write
1135 * @access_flags: type of access: %VERIFY_READ or %VERIFY_WRITE
1136 *
1137 * Adjust number of segments and amount of bytes to write (nr_segs should be
1138 * properly initialized first). Returns appropriate error code that caller
1139 * should return or zero in case that write should be allowed.
1140 */
1141int generic_segment_checks(const struct iovec *iov,
1142			unsigned long *nr_segs, size_t *count, int access_flags)
1143{
1144	unsigned long   seg;
1145	size_t cnt = 0;
1146	for (seg = 0; seg < *nr_segs; seg++) {
1147		const struct iovec *iv = &iov[seg];
1148
1149		/*
1150		 * If any segment has a negative length, or the cumulative
1151		 * length ever wraps negative then return -EINVAL.
1152		 */
1153		cnt += iv->iov_len;
1154		if (unlikely((ssize_t)(cnt|iv->iov_len) < 0))
1155			return -EINVAL;
1156		if (access_ok(access_flags, iv->iov_base, iv->iov_len))
1157			continue;
1158		if (seg == 0)
1159			return -EFAULT;
1160		*nr_segs = seg;
1161		cnt -= iv->iov_len;	/* This segment is no good */
1162		break;
1163	}
1164	*count = cnt;
1165	return 0;
1166}
1167EXPORT_SYMBOL(generic_segment_checks);
1168
1169/**
1170 * generic_file_aio_read - generic filesystem read routine
1171 * @iocb:	kernel I/O control block
1172 * @iov:	io vector request
1173 * @nr_segs:	number of segments in the iovec
1174 * @pos:	current file position
1175 *
1176 * This is the "read()" routine for all filesystems
1177 * that can use the page cache directly.
1178 */
1179ssize_t
1180generic_file_aio_read(struct kiocb *iocb, const struct iovec *iov,
1181		unsigned long nr_segs, loff_t pos)
1182{
1183	struct file *filp = iocb->ki_filp;
1184	ssize_t retval;
1185	unsigned long seg;
1186	size_t count;
1187	loff_t *ppos = &iocb->ki_pos;
1188
1189	count = 0;
1190	retval = generic_segment_checks(iov, &nr_segs, &count, VERIFY_WRITE);
1191	if (retval)
1192		return retval;
1193
1194	/* coalesce the iovecs and go direct-to-BIO for O_DIRECT */
1195	if (filp->f_flags & O_DIRECT) {
1196		loff_t size;
1197		struct address_space *mapping;
1198		struct inode *inode;
1199
1200		mapping = filp->f_mapping;
1201		inode = mapping->host;
1202		retval = 0;
1203		if (!count)
1204			goto out; /* skip atime */
1205		size = i_size_read(inode);
1206		if (pos < size) {
1207			retval = generic_file_direct_IO(READ, iocb,
1208						iov, pos, nr_segs);
1209			if (retval > 0)
1210				*ppos = pos + retval;
1211		}
1212		if (likely(retval != 0)) {
1213			file_accessed(filp);
1214			goto out;
1215		}
1216	}
1217
1218	retval = 0;
1219	if (count) {
1220		for (seg = 0; seg < nr_segs; seg++) {
1221			read_descriptor_t desc;
1222
1223			desc.written = 0;
1224			desc.arg.buf = iov[seg].iov_base;
1225			desc.count = iov[seg].iov_len;
1226			if (desc.count == 0)
1227				continue;
1228			desc.error = 0;
1229			do_generic_file_read(filp,ppos,&desc,file_read_actor);
1230			retval += desc.written;
1231			if (desc.error) {
1232				retval = retval ?: desc.error;
1233				break;
1234			}
1235			if (desc.count > 0)
1236				break;
1237		}
1238	}
1239out:
1240	return retval;
1241}
1242EXPORT_SYMBOL(generic_file_aio_read);
1243
1244static ssize_t
1245do_readahead(struct address_space *mapping, struct file *filp,
1246	     pgoff_t index, unsigned long nr)
1247{
1248	if (!mapping || !mapping->a_ops || !mapping->a_ops->readpage)
1249		return -EINVAL;
1250
1251	force_page_cache_readahead(mapping, filp, index,
1252					max_sane_readahead(nr));
1253	return 0;
1254}
1255
1256asmlinkage ssize_t sys_readahead(int fd, loff_t offset, size_t count)
1257{
1258	ssize_t ret;
1259	struct file *file;
1260
1261	ret = -EBADF;
1262	file = fget(fd);
1263	if (file) {
1264		if (file->f_mode & FMODE_READ) {
1265			struct address_space *mapping = file->f_mapping;
1266			pgoff_t start = offset >> PAGE_CACHE_SHIFT;
1267			pgoff_t end = (offset + count - 1) >> PAGE_CACHE_SHIFT;
1268			unsigned long len = end - start + 1;
1269			ret = do_readahead(mapping, file, start, len);
1270		}
1271		fput(file);
1272	}
1273	return ret;
1274}
1275
1276#ifdef CONFIG_MMU
1277/**
1278 * page_cache_read - adds requested page to the page cache if not already there
1279 * @file:	file to read
1280 * @offset:	page index
1281 *
1282 * This adds the requested page to the page cache if it isn't already there,
1283 * and schedules an I/O to read in its contents from disk.
1284 */
1285static int page_cache_read(struct file *file, pgoff_t offset)
1286{
1287	struct address_space *mapping = file->f_mapping;
1288	struct page *page;
1289	int ret;
1290
1291	do {
1292		page = page_cache_alloc_cold(mapping);
1293		if (!page)
1294			return -ENOMEM;
1295
1296		ret = add_to_page_cache_lru(page, mapping, offset, GFP_KERNEL);
1297		if (ret == 0)
1298			ret = mapping->a_ops->readpage(file, page);
1299		else if (ret == -EEXIST)
1300			ret = 0; /* losing race to add is OK */
1301
1302		page_cache_release(page);
1303
1304	} while (ret == AOP_TRUNCATED_PAGE);
1305
1306	return ret;
1307}
1308
1309#define MMAP_LOTSAMISS  (100)
1310
1311/**
1312 * filemap_fault - read in file data for page fault handling
1313 * @vma:	vma in which the fault was taken
1314 * @vmf:	struct vm_fault containing details of the fault
1315 *
1316 * filemap_fault() is invoked via the vma operations vector for a
1317 * mapped memory region to read in file data during a page fault.
1318 *
1319 * The goto's are kind of ugly, but this streamlines the normal case of having
1320 * it in the page cache, and handles the special cases reasonably without
1321 * having a lot of duplicated code.
1322 */
1323int filemap_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
1324{
1325	int error;
1326	struct file *file = vma->vm_file;
1327	struct address_space *mapping = file->f_mapping;
1328	struct file_ra_state *ra = &file->f_ra;
1329	struct inode *inode = mapping->host;
1330	struct page *page;
1331	pgoff_t size;
1332	int did_readaround = 0;
1333	int ret = 0;
1334
1335	size = (i_size_read(inode) + PAGE_CACHE_SIZE - 1) >> PAGE_CACHE_SHIFT;
1336	if (vmf->pgoff >= size)
1337		return VM_FAULT_SIGBUS;
1338
1339	/* If we don't want any read-ahead, don't bother */
1340	if (VM_RandomReadHint(vma))
1341		goto no_cached_page;
1342
1343	/*
1344	 * Do we have something in the page cache already?
1345	 */
1346retry_find:
1347	page = find_lock_page(mapping, vmf->pgoff);
1348	/*
1349	 * For sequential accesses, we use the generic readahead logic.
1350	 */
1351	if (VM_SequentialReadHint(vma)) {
1352		if (!page) {
1353			page_cache_sync_readahead(mapping, ra, file,
1354							   vmf->pgoff, 1);
1355			page = find_lock_page(mapping, vmf->pgoff);
1356			if (!page)
1357				goto no_cached_page;
1358		}
1359		if (PageReadahead(page)) {
1360			page_cache_async_readahead(mapping, ra, file, page,
1361							   vmf->pgoff, 1);
1362		}
1363	}
1364
1365	if (!page) {
1366		unsigned long ra_pages;
1367
1368		ra->mmap_miss++;
1369
1370		/*
1371		 * Do we miss much more than hit in this file? If so,
1372		 * stop bothering with read-ahead. It will only hurt.
1373		 */
1374		if (ra->mmap_miss > MMAP_LOTSAMISS)
1375			goto no_cached_page;
1376
1377		/*
1378		 * To keep the pgmajfault counter straight, we need to
1379		 * check did_readaround, as this is an inner loop.
1380		 */
1381		if (!did_readaround) {
1382			ret = VM_FAULT_MAJOR;
1383			count_vm_event(PGMAJFAULT);
1384		}
1385		did_readaround = 1;
1386		ra_pages = max_sane_readahead(file->f_ra.ra_pages);
1387		if (ra_pages) {
1388			pgoff_t start = 0;
1389
1390			if (vmf->pgoff > ra_pages / 2)
1391				start = vmf->pgoff - ra_pages / 2;
1392			do_page_cache_readahead(mapping, file, start, ra_pages);
1393		}
1394		page = find_lock_page(mapping, vmf->pgoff);
1395		if (!page)
1396			goto no_cached_page;
1397	}
1398
1399	if (!did_readaround)
1400		ra->mmap_miss--;
1401
1402	/*
1403	 * We have a locked page in the page cache, now we need to check
1404	 * that it's up-to-date. If not, it is going to be due to an error.
1405	 */
1406	if (unlikely(!PageUptodate(page)))
1407		goto page_not_uptodate;
1408
1409	/* Must recheck i_size under page lock */
1410	size = (i_size_read(inode) + PAGE_CACHE_SIZE - 1) >> PAGE_CACHE_SHIFT;
1411	if (unlikely(vmf->pgoff >= size)) {
1412		unlock_page(page);
1413		page_cache_release(page);
1414		return VM_FAULT_SIGBUS;
1415	}
1416
1417	/*
1418	 * Found the page and have a reference on it.
1419	 */
1420	mark_page_accessed(page);
1421	ra->prev_pos = (loff_t)page->index << PAGE_CACHE_SHIFT;
1422	vmf->page = page;
1423	return ret | VM_FAULT_LOCKED;
1424
1425no_cached_page:
1426	/*
1427	 * We're only likely to ever get here if MADV_RANDOM is in
1428	 * effect.
1429	 */
1430	error = page_cache_read(file, vmf->pgoff);
1431
1432	/*
1433	 * The page we want has now been added to the page cache.
1434	 * In the unlikely event that someone removed it in the
1435	 * meantime, we'll just come back here and read it again.
1436	 */
1437	if (error >= 0)
1438		goto retry_find;
1439
1440	/*
1441	 * An error return from page_cache_read can result if the
1442	 * system is low on memory, or a problem occurs while trying
1443	 * to schedule I/O.
1444	 */
1445	if (error == -ENOMEM)
1446		return VM_FAULT_OOM;
1447	return VM_FAULT_SIGBUS;
1448
1449page_not_uptodate:
1450	/* IO error path */
1451	if (!did_readaround) {
1452		ret = VM_FAULT_MAJOR;
1453		count_vm_event(PGMAJFAULT);
1454	}
1455
1456	/*
1457	 * Umm, take care of errors if the page isn't up-to-date.
1458	 * Try to re-read it _once_. We do this synchronously,
1459	 * because there really aren't any performance issues here
1460	 * and we need to check for errors.
1461	 */
1462	ClearPageError(page);
1463	error = mapping->a_ops->readpage(file, page);
1464	page_cache_release(page);
1465
1466	if (!error || error == AOP_TRUNCATED_PAGE)
1467		goto retry_find;
1468
1469	/* Things didn't work out. Return zero to tell the mm layer so. */
1470	shrink_readahead_size_eio(file, ra);
1471	return VM_FAULT_SIGBUS;
1472}
1473EXPORT_SYMBOL(filemap_fault);
1474
1475struct vm_operations_struct generic_file_vm_ops = {
1476	.fault		= filemap_fault,
1477};
1478
1479/* This is used for a general mmap of a disk file */
1480
1481int generic_file_mmap(struct file * file, struct vm_area_struct * vma)
1482{
1483	struct address_space *mapping = file->f_mapping;
1484
1485	if (!mapping->a_ops->readpage)
1486		return -ENOEXEC;
1487	file_accessed(file);
1488	vma->vm_ops = &generic_file_vm_ops;
1489	vma->vm_flags |= VM_CAN_NONLINEAR;
1490	return 0;
1491}
1492
1493/*
1494 * This is for filesystems which do not implement ->writepage.
1495 */
1496int generic_file_readonly_mmap(struct file *file, struct vm_area_struct *vma)
1497{
1498	if ((vma->vm_flags & VM_SHARED) && (vma->vm_flags & VM_MAYWRITE))
1499		return -EINVAL;
1500	return generic_file_mmap(file, vma);
1501}
1502#else
1503int generic_file_mmap(struct file * file, struct vm_area_struct * vma)
1504{
1505	return -ENOSYS;
1506}
1507int generic_file_readonly_mmap(struct file * file, struct vm_area_struct * vma)
1508{
1509	return -ENOSYS;
1510}
1511#endif /* CONFIG_MMU */
1512
1513EXPORT_SYMBOL(generic_file_mmap);
1514EXPORT_SYMBOL(generic_file_readonly_mmap);
1515
1516static struct page *__read_cache_page(struct address_space *mapping,
1517				pgoff_t index,
1518				int (*filler)(void *,struct page*),
1519				void *data)
1520{
1521	struct page *page;
1522	int err;
1523repeat:
1524	page = find_get_page(mapping, index);
1525	if (!page) {
1526		page = page_cache_alloc_cold(mapping);
1527		if (!page)
1528			return ERR_PTR(-ENOMEM);
1529		err = add_to_page_cache_lru(page, mapping, index, GFP_KERNEL);
1530		if (unlikely(err)) {
1531			page_cache_release(page);
1532			if (err == -EEXIST)
1533				goto repeat;
1534			/* Presumably ENOMEM for radix tree node */
1535			return ERR_PTR(err);
1536		}
1537		err = filler(data, page);
1538		if (err < 0) {
1539			page_cache_release(page);
1540			page = ERR_PTR(err);
1541		}
1542	}
1543	return page;
1544}
1545
1546/**
1547 * read_cache_page_async - read into page cache, fill it if needed
1548 * @mapping:	the page's address_space
1549 * @index:	the page index
1550 * @filler:	function to perform the read
1551 * @data:	destination for read data
1552 *
1553 * Same as read_cache_page, but don't wait for page to become unlocked
1554 * after submitting it to the filler.
1555 *
1556 * Read into the page cache. If a page already exists, and PageUptodate() is
1557 * not set, try to fill the page but don't wait for it to become unlocked.
1558 *
1559 * If the page does not get brought uptodate, return -EIO.
1560 */
1561struct page *read_cache_page_async(struct address_space *mapping,
1562				pgoff_t index,
1563				int (*filler)(void *,struct page*),
1564				void *data)
1565{
1566	struct page *page;
1567	int err;
1568
1569retry:
1570	page = __read_cache_page(mapping, index, filler, data);
1571	if (IS_ERR(page))
1572		return page;
1573	if (PageUptodate(page))
1574		goto out;
1575
1576	lock_page(page);
1577	if (!page->mapping) {
1578		unlock_page(page);
1579		page_cache_release(page);
1580		goto retry;
1581	}
1582	if (PageUptodate(page)) {
1583		unlock_page(page);
1584		goto out;
1585	}
1586	err = filler(data, page);
1587	if (err < 0) {
1588		page_cache_release(page);
1589		return ERR_PTR(err);
1590	}
1591out:
1592	mark_page_accessed(page);
1593	return page;
1594}
1595EXPORT_SYMBOL(read_cache_page_async);
1596
1597/**
1598 * read_cache_page - read into page cache, fill it if needed
1599 * @mapping:	the page's address_space
1600 * @index:	the page index
1601 * @filler:	function to perform the read
1602 * @data:	destination for read data
1603 *
1604 * Read into the page cache. If a page already exists, and PageUptodate() is
1605 * not set, try to fill the page then wait for it to become unlocked.
1606 *
1607 * If the page does not get brought uptodate, return -EIO.
1608 */
1609struct page *read_cache_page(struct address_space *mapping,
1610				pgoff_t index,
1611				int (*filler)(void *,struct page*),
1612				void *data)
1613{
1614	struct page *page;
1615
1616	page = read_cache_page_async(mapping, index, filler, data);
1617	if (IS_ERR(page))
1618		goto out;
1619	wait_on_page_locked(page);
1620	if (!PageUptodate(page)) {
1621		page_cache_release(page);
1622		page = ERR_PTR(-EIO);
1623	}
1624 out:
1625	return page;
1626}
1627EXPORT_SYMBOL(read_cache_page);
1628
1629/*
1630 * The logic we want is
1631 *
1632 *	if suid or (sgid and xgrp)
1633 *		remove privs
1634 */
1635int should_remove_suid(struct dentry *dentry)
1636{
1637	mode_t mode = dentry->d_inode->i_mode;
1638	int kill = 0;
1639
1640	/* suid always must be killed */
1641	if (unlikely(mode & S_ISUID))
1642		kill = ATTR_KILL_SUID;
1643
1644	/*
1645	 * sgid without any exec bits is just a mandatory locking mark; leave
1646	 * it alone.  If some exec bits are set, it's a real sgid; kill it.
1647	 */
1648	if (unlikely((mode & S_ISGID) && (mode & S_IXGRP)))
1649		kill |= ATTR_KILL_SGID;
1650
1651	if (unlikely(kill && !capable(CAP_FSETID)))
1652		return kill;
1653
1654	return 0;
1655}
1656EXPORT_SYMBOL(should_remove_suid);
1657
1658int __remove_suid(struct dentry *dentry, int kill)
1659{
1660	struct iattr newattrs;
1661
1662	newattrs.ia_valid = ATTR_FORCE | kill;
1663	return notify_change(dentry, &newattrs);
1664}
1665
1666int remove_suid(struct dentry *dentry)
1667{
1668	int killsuid = should_remove_suid(dentry);
1669	int killpriv = security_inode_need_killpriv(dentry);
1670	int error = 0;
1671
1672	if (killpriv < 0)
1673		return killpriv;
1674	if (killpriv)
1675		error = security_inode_killpriv(dentry);
1676	if (!error && killsuid)
1677		error = __remove_suid(dentry, killsuid);
1678
1679	return error;
1680}
1681EXPORT_SYMBOL(remove_suid);
1682
1683static size_t __iovec_copy_from_user_inatomic(char *vaddr,
1684			const struct iovec *iov, size_t base, size_t bytes)
1685{
1686	size_t copied = 0, left = 0;
1687
1688	while (bytes) {
1689		char __user *buf = iov->iov_base + base;
1690		int copy = min(bytes, iov->iov_len - base);
1691
1692		base = 0;
1693		left = __copy_from_user_inatomic_nocache(vaddr, buf, copy);
1694		copied += copy;
1695		bytes -= copy;
1696		vaddr += copy;
1697		iov++;
1698
1699		if (unlikely(left))
1700			break;
1701	}
1702	return copied - left;
1703}
1704
1705/*
1706 * Copy as much as we can into the page and return the number of bytes which
1707 * were sucessfully copied.  If a fault is encountered then return the number of
1708 * bytes which were copied.
1709 */
1710size_t iov_iter_copy_from_user_atomic(struct page *page,
1711		struct iov_iter *i, unsigned long offset, size_t bytes)
1712{
1713	char *kaddr;
1714	size_t copied;
1715
1716	BUG_ON(!in_atomic());
1717	kaddr = kmap_atomic(page, KM_USER0);
1718	if (likely(i->nr_segs == 1)) {
1719		int left;
1720		char __user *buf = i->iov->iov_base + i->iov_offset;
1721		left = __copy_from_user_inatomic_nocache(kaddr + offset,
1722							buf, bytes);
1723		copied = bytes - left;
1724	} else {
1725		copied = __iovec_copy_from_user_inatomic(kaddr + offset,
1726						i->iov, i->iov_offset, bytes);
1727	}
1728	kunmap_atomic(kaddr, KM_USER0);
1729
1730	return copied;
1731}
1732EXPORT_SYMBOL(iov_iter_copy_from_user_atomic);
1733
1734/*
1735 * This has the same sideeffects and return value as
1736 * iov_iter_copy_from_user_atomic().
1737 * The difference is that it attempts to resolve faults.
1738 * Page must not be locked.
1739 */
1740size_t iov_iter_copy_from_user(struct page *page,
1741		struct iov_iter *i, unsigned long offset, size_t bytes)
1742{
1743	char *kaddr;
1744	size_t copied;
1745
1746	kaddr = kmap(page);
1747	if (likely(i->nr_segs == 1)) {
1748		int left;
1749		char __user *buf = i->iov->iov_base + i->iov_offset;
1750		left = __copy_from_user_nocache(kaddr + offset, buf, bytes);
1751		copied = bytes - left;
1752	} else {
1753		copied = __iovec_copy_from_user_inatomic(kaddr + offset,
1754						i->iov, i->iov_offset, bytes);
1755	}
1756	kunmap(page);
1757	return copied;
1758}
1759EXPORT_SYMBOL(iov_iter_copy_from_user);
1760
1761void iov_iter_advance(struct iov_iter *i, size_t bytes)
1762{
1763	BUG_ON(i->count < bytes);
1764
1765	if (likely(i->nr_segs == 1)) {
1766		i->iov_offset += bytes;
1767		i->count -= bytes;
1768	} else {
1769		const struct iovec *iov = i->iov;
1770		size_t base = i->iov_offset;
1771
1772		/*
1773		 * The !iov->iov_len check ensures we skip over unlikely
1774		 * zero-length segments (without overruning the iovec).
1775		 */
1776		while (bytes || unlikely(!iov->iov_len && i->count)) {
1777			int copy;
1778
1779			copy = min(bytes, iov->iov_len - base);
1780			BUG_ON(!i->count || i->count < copy);
1781			i->count -= copy;
1782			bytes -= copy;
1783			base += copy;
1784			if (iov->iov_len == base) {
1785				iov++;
1786				base = 0;
1787			}
1788		}
1789		i->iov = iov;
1790		i->iov_offset = base;
1791	}
1792}
1793EXPORT_SYMBOL(iov_iter_advance);
1794
1795/*
1796 * Fault in the first iovec of the given iov_iter, to a maximum length
1797 * of bytes. Returns 0 on success, or non-zero if the memory could not be
1798 * accessed (ie. because it is an invalid address).
1799 *
1800 * writev-intensive code may want this to prefault several iovecs -- that
1801 * would be possible (callers must not rely on the fact that _only_ the
1802 * first iovec will be faulted with the current implementation).
1803 */
1804int iov_iter_fault_in_readable(struct iov_iter *i, size_t bytes)
1805{
1806	char __user *buf = i->iov->iov_base + i->iov_offset;
1807	bytes = min(bytes, i->iov->iov_len - i->iov_offset);
1808	return fault_in_pages_readable(buf, bytes);
1809}
1810EXPORT_SYMBOL(iov_iter_fault_in_readable);
1811
1812/*
1813 * Return the count of just the current iov_iter segment.
1814 */
1815size_t iov_iter_single_seg_count(struct iov_iter *i)
1816{
1817	const struct iovec *iov = i->iov;
1818	if (i->nr_segs == 1)
1819		return i->count;
1820	else
1821		return min(i->count, iov->iov_len - i->iov_offset);
1822}
1823EXPORT_SYMBOL(iov_iter_single_seg_count);
1824
1825/*
1826 * Performs necessary checks before doing a write
1827 *
1828 * Can adjust writing position or amount of bytes to write.
1829 * Returns appropriate error code that caller should return or
1830 * zero in case that write should be allowed.
1831 */
1832inline int generic_write_checks(struct file *file, loff_t *pos, size_t *count, int isblk)
1833{
1834	struct inode *inode = file->f_mapping->host;
1835	unsigned long limit = current->signal->rlim[RLIMIT_FSIZE].rlim_cur;
1836
1837        if (unlikely(*pos < 0))
1838                return -EINVAL;
1839
1840	if (!isblk) {
1841		/* FIXME: this is for backwards compatibility with 2.4 */
1842		if (file->f_flags & O_APPEND)
1843                        *pos = i_size_read(inode);
1844
1845		if (limit != RLIM_INFINITY) {
1846			if (*pos >= limit) {
1847				send_sig(SIGXFSZ, current, 0);
1848				return -EFBIG;
1849			}
1850			if (*count > limit - (typeof(limit))*pos) {
1851				*count = limit - (typeof(limit))*pos;
1852			}
1853		}
1854	}
1855
1856	/*
1857	 * LFS rule
1858	 */
1859	if (unlikely(*pos + *count > MAX_NON_LFS &&
1860				!(file->f_flags & O_LARGEFILE))) {
1861		if (*pos >= MAX_NON_LFS) {
1862			return -EFBIG;
1863		}
1864		if (*count > MAX_NON_LFS - (unsigned long)*pos) {
1865			*count = MAX_NON_LFS - (unsigned long)*pos;
1866		}
1867	}
1868
1869	/*
1870	 * Are we about to exceed the fs block limit ?
1871	 *
1872	 * If we have written data it becomes a short write.  If we have
1873	 * exceeded without writing data we send a signal and return EFBIG.
1874	 * Linus frestrict idea will clean these up nicely..
1875	 */
1876	if (likely(!isblk)) {
1877		if (unlikely(*pos >= inode->i_sb->s_maxbytes)) {
1878			if (*count || *pos > inode->i_sb->s_maxbytes) {
1879				return -EFBIG;
1880			}
1881			/* zero-length writes at ->s_maxbytes are OK */
1882		}
1883
1884		if (unlikely(*pos + *count > inode->i_sb->s_maxbytes))
1885			*count = inode->i_sb->s_maxbytes - *pos;
1886	} else {
1887#ifdef CONFIG_BLOCK
1888		loff_t isize;
1889		if (bdev_read_only(I_BDEV(inode)))
1890			return -EPERM;
1891		isize = i_size_read(inode);
1892		if (*pos >= isize) {
1893			if (*count || *pos > isize)
1894				return -ENOSPC;
1895		}
1896
1897		if (*pos + *count > isize)
1898			*count = isize - *pos;
1899#else
1900		return -EPERM;
1901#endif
1902	}
1903	return 0;
1904}
1905EXPORT_SYMBOL(generic_write_checks);
1906
1907int pagecache_write_begin(struct file *file, struct address_space *mapping,
1908				loff_t pos, unsigned len, unsigned flags,
1909				struct page **pagep, void **fsdata)
1910{
1911	const struct address_space_operations *aops = mapping->a_ops;
1912
1913	if (aops->write_begin) {
1914		return aops->write_begin(file, mapping, pos, len, flags,
1915							pagep, fsdata);
1916	} else {
1917		int ret;
1918		pgoff_t index = pos >> PAGE_CACHE_SHIFT;
1919		unsigned offset = pos & (PAGE_CACHE_SIZE - 1);
1920		struct inode *inode = mapping->host;
1921		struct page *page;
1922again:
1923		page = __grab_cache_page(mapping, index);
1924		*pagep = page;
1925		if (!page)
1926			return -ENOMEM;
1927
1928		if (flags & AOP_FLAG_UNINTERRUPTIBLE && !PageUptodate(page)) {
1929			/*
1930			 * There is no way to resolve a short write situation
1931			 * for a !Uptodate page (except by double copying in
1932			 * the caller done by generic_perform_write_2copy).
1933			 *
1934			 * Instead, we have to bring it uptodate here.
1935			 */
1936			ret = aops->readpage(file, page);
1937			page_cache_release(page);
1938			if (ret) {
1939				if (ret == AOP_TRUNCATED_PAGE)
1940					goto again;
1941				return ret;
1942			}
1943			goto again;
1944		}
1945
1946		ret = aops->prepare_write(file, page, offset, offset+len);
1947		if (ret) {
1948			unlock_page(page);
1949			page_cache_release(page);
1950			if (pos + len > inode->i_size)
1951				vmtruncate(inode, inode->i_size);
1952		}
1953		return ret;
1954	}
1955}
1956EXPORT_SYMBOL(pagecache_write_begin);
1957
1958int pagecache_write_end(struct file *file, struct address_space *mapping,
1959				loff_t pos, unsigned len, unsigned copied,
1960				struct page *page, void *fsdata)
1961{
1962	const struct address_space_operations *aops = mapping->a_ops;
1963	int ret;
1964
1965	if (aops->write_end) {
1966		mark_page_accessed(page);
1967		ret = aops->write_end(file, mapping, pos, len, copied,
1968							page, fsdata);
1969	} else {
1970		unsigned offset = pos & (PAGE_CACHE_SIZE - 1);
1971		struct inode *inode = mapping->host;
1972
1973		flush_dcache_page(page);
1974		ret = aops->commit_write(file, page, offset, offset+len);
1975		unlock_page(page);
1976		mark_page_accessed(page);
1977		page_cache_release(page);
1978
1979		if (ret < 0) {
1980			if (pos + len > inode->i_size)
1981				vmtruncate(inode, inode->i_size);
1982		} else if (ret > 0)
1983			ret = min_t(size_t, copied, ret);
1984		else
1985			ret = copied;
1986	}
1987
1988	return ret;
1989}
1990EXPORT_SYMBOL(pagecache_write_end);
1991
1992ssize_t
1993generic_file_direct_write(struct kiocb *iocb, const struct iovec *iov,
1994		unsigned long *nr_segs, loff_t pos, loff_t *ppos,
1995		size_t count, size_t ocount)
1996{
1997	struct file	*file = iocb->ki_filp;
1998	struct address_space *mapping = file->f_mapping;
1999	struct inode	*inode = mapping->host;
2000	ssize_t		written;
2001
2002	if (count != ocount)
2003		*nr_segs = iov_shorten((struct iovec *)iov, *nr_segs, count);
2004
2005	written = generic_file_direct_IO(WRITE, iocb, iov, pos, *nr_segs);
2006	if (written > 0) {
2007		loff_t end = pos + written;
2008		if (end > i_size_read(inode) && !S_ISBLK(inode->i_mode)) {
2009			i_size_write(inode,  end);
2010			mark_inode_dirty(inode);
2011		}
2012		*ppos = end;
2013	}
2014
2015	/*
2016	 * Sync the fs metadata but not the minor inode changes and
2017	 * of course not the data as we did direct DMA for the IO.
2018	 * i_mutex is held, which protects generic_osync_inode() from
2019	 * livelocking.  AIO O_DIRECT ops attempt to sync metadata here.
2020	 */
2021	if ((written >= 0 || written == -EIOCBQUEUED) &&
2022	    ((file->f_flags & O_SYNC) || IS_SYNC(inode))) {
2023		int err = generic_osync_inode(inode, mapping, OSYNC_METADATA);
2024		if (err < 0)
2025			written = err;
2026	}
2027	return written;
2028}
2029EXPORT_SYMBOL(generic_file_direct_write);
2030
2031/*
2032 * Find or create a page at the given pagecache position. Return the locked
2033 * page. This function is specifically for buffered writes.
2034 */
2035struct page *__grab_cache_page(struct address_space *mapping, pgoff_t index)
2036{
2037	int status;
2038	struct page *page;
2039repeat:
2040	page = find_lock_page(mapping, index);
2041	if (likely(page))
2042		return page;
2043
2044	page = page_cache_alloc(mapping);
2045	if (!page)
2046		return NULL;
2047	status = add_to_page_cache_lru(page, mapping, index, GFP_KERNEL);
2048	if (unlikely(status)) {
2049		page_cache_release(page);
2050		if (status == -EEXIST)
2051			goto repeat;
2052		return NULL;
2053	}
2054	return page;
2055}
2056EXPORT_SYMBOL(__grab_cache_page);
2057
2058static ssize_t generic_perform_write_2copy(struct file *file,
2059				struct iov_iter *i, loff_t pos)
2060{
2061	struct address_space *mapping = file->f_mapping;
2062	const struct address_space_operations *a_ops = mapping->a_ops;
2063	struct inode *inode = mapping->host;
2064	long status = 0;
2065	ssize_t written = 0;
2066
2067	do {
2068		struct page *src_page;
2069		struct page *page;
2070		pgoff_t index;		/* Pagecache index for current page */
2071		unsigned long offset;	/* Offset into pagecache page */
2072		unsigned long bytes;	/* Bytes to write to page */
2073		size_t copied;		/* Bytes copied from user */
2074
2075		offset = (pos & (PAGE_CACHE_SIZE - 1));
2076		index = pos >> PAGE_CACHE_SHIFT;
2077		bytes = min_t(unsigned long, PAGE_CACHE_SIZE - offset,
2078						iov_iter_count(i));
2079
2080		/*
2081		 * a non-NULL src_page indicates that we're doing the
2082		 * copy via get_user_pages and kmap.
2083		 */
2084		src_page = NULL;
2085
2086		/*
2087		 * Bring in the user page that we will copy from _first_.
2088		 * Otherwise there's a nasty deadlock on copying from the
2089		 * same page as we're writing to, without it being marked
2090		 * up-to-date.
2091		 *
2092		 * Not only is this an optimisation, but it is also required
2093		 * to check that the address is actually valid, when atomic
2094		 * usercopies are used, below.
2095		 */
2096		if (unlikely(iov_iter_fault_in_readable(i, bytes))) {
2097			status = -EFAULT;
2098			break;
2099		}
2100
2101		page = __grab_cache_page(mapping, index);
2102		if (!page) {
2103			status = -ENOMEM;
2104			break;
2105		}
2106
2107		/*
2108		 * non-uptodate pages cannot cope with short copies, and we
2109		 * cannot take a pagefault with the destination page locked.
2110		 * So pin the source page to copy it.
2111		 */
2112		if (!PageUptodate(page) && !segment_eq(get_fs(), KERNEL_DS)) {
2113			unlock_page(page);
2114
2115			src_page = alloc_page(GFP_KERNEL);
2116			if (!src_page) {
2117				page_cache_release(page);
2118				status = -ENOMEM;
2119				break;
2120			}
2121
2122			/*
2123			 * Cannot get_user_pages with a page locked for the
2124			 * same reason as we can't take a page fault with a
2125			 * page locked (as explained below).
2126			 */
2127			copied = iov_iter_copy_from_user(src_page, i,
2128								offset, bytes);
2129			if (unlikely(copied == 0)) {
2130				status = -EFAULT;
2131				page_cache_release(page);
2132				page_cache_release(src_page);
2133				break;
2134			}
2135			bytes = copied;
2136
2137			lock_page(page);
2138			/*
2139			 * Can't handle the page going uptodate here, because
2140			 * that means we would use non-atomic usercopies, which
2141			 * zero out the tail of the page, which can cause
2142			 * zeroes to become transiently visible. We could just
2143			 * use a non-zeroing copy, but the APIs aren't too
2144			 * consistent.
2145			 */
2146			if (unlikely(!page->mapping || PageUptodate(page))) {
2147				unlock_page(page);
2148				page_cache_release(page);
2149				page_cache_release(src_page);
2150				continue;
2151			}
2152		}
2153
2154		status = a_ops->prepare_write(file, page, offset, offset+bytes);
2155		if (unlikely(status))
2156			goto fs_write_aop_error;
2157
2158		if (!src_page) {
2159			/*
2160			 * Must not enter the pagefault handler here, because
2161			 * we hold the page lock, so we might recursively
2162			 * deadlock on the same lock, or get an ABBA deadlock
2163			 * against a different lock, or against the mmap_sem
2164			 * (which nests outside the page lock).  So increment
2165			 * preempt count, and use _atomic usercopies.
2166			 *
2167			 * The page is uptodate so we are OK to encounter a
2168			 * short copy: if unmodified parts of the page are
2169			 * marked dirty and written out to disk, it doesn't
2170			 * really matter.
2171			 */
2172			pagefault_disable();
2173			copied = iov_iter_copy_from_user_atomic(page, i,
2174								offset, bytes);
2175			pagefault_enable();
2176		} else {
2177			void *src, *dst;
2178			src = kmap_atomic(src_page, KM_USER0);
2179			dst = kmap_atomic(page, KM_USER1);
2180			memcpy(dst + offset, src + offset, bytes);
2181			kunmap_atomic(dst, KM_USER1);
2182			kunmap_atomic(src, KM_USER0);
2183			copied = bytes;
2184		}
2185		flush_dcache_page(page);
2186
2187		status = a_ops->commit_write(file, page, offset, offset+bytes);
2188		if (unlikely(status < 0))
2189			goto fs_write_aop_error;
2190		if (unlikely(status > 0)) /* filesystem did partial write */
2191			copied = min_t(size_t, copied, status);
2192
2193		unlock_page(page);
2194		mark_page_accessed(page);
2195		page_cache_release(page);
2196		if (src_page)
2197			page_cache_release(src_page);
2198
2199		iov_iter_advance(i, copied);
2200		pos += copied;
2201		written += copied;
2202
2203		balance_dirty_pages_ratelimited(mapping);
2204		cond_resched();
2205		continue;
2206
2207fs_write_aop_error:
2208		unlock_page(page);
2209		page_cache_release(page);
2210		if (src_page)
2211			page_cache_release(src_page);
2212
2213		/*
2214		 * prepare_write() may have instantiated a few blocks
2215		 * outside i_size.  Trim these off again. Don't need
2216		 * i_size_read because we hold i_mutex.
2217		 */
2218		if (pos + bytes > inode->i_size)
2219			vmtruncate(inode, inode->i_size);
2220		break;
2221	} while (iov_iter_count(i));
2222
2223	return written ? written : status;
2224}
2225
2226static ssize_t generic_perform_write(struct file *file,
2227				struct iov_iter *i, loff_t pos)
2228{
2229	struct address_space *mapping = file->f_mapping;
2230	const struct address_space_operations *a_ops = mapping->a_ops;
2231	long status = 0;
2232	ssize_t written = 0;
2233	unsigned int flags = 0;
2234
2235	/*
2236	 * Copies from kernel address space cannot fail (NFSD is a big user).
2237	 */
2238	if (segment_eq(get_fs(), KERNEL_DS))
2239		flags |= AOP_FLAG_UNINTERRUPTIBLE;
2240
2241	do {
2242		struct page *page;
2243		pgoff_t index;		/* Pagecache index for current page */
2244		unsigned long offset;	/* Offset into pagecache page */
2245		unsigned long bytes;	/* Bytes to write to page */
2246		size_t copied;		/* Bytes copied from user */
2247		void *fsdata;
2248
2249		offset = (pos & (PAGE_CACHE_SIZE - 1));
2250		index = pos >> PAGE_CACHE_SHIFT;
2251		bytes = min_t(unsigned long, PAGE_CACHE_SIZE - offset,
2252						iov_iter_count(i));
2253
2254again:
2255
2256		/*
2257		 * Bring in the user page that we will copy from _first_.
2258		 * Otherwise there's a nasty deadlock on copying from the
2259		 * same page as we're writing to, without it being marked
2260		 * up-to-date.
2261		 *
2262		 * Not only is this an optimisation, but it is also required
2263		 * to check that the address is actually valid, when atomic
2264		 * usercopies are used, below.
2265		 */
2266		if (unlikely(iov_iter_fault_in_readable(i, bytes))) {
2267			status = -EFAULT;
2268			break;
2269		}
2270
2271		status = a_ops->write_begin(file, mapping, pos, bytes, flags,
2272						&page, &fsdata);
2273		if (unlikely(status))
2274			break;
2275
2276		pagefault_disable();
2277		copied = iov_iter_copy_from_user_atomic(page, i, offset, bytes);
2278		pagefault_enable();
2279		flush_dcache_page(page);
2280
2281		status = a_ops->write_end(file, mapping, pos, bytes, copied,
2282						page, fsdata);
2283		if (unlikely(status < 0))
2284			break;
2285		copied = status;
2286
2287		cond_resched();
2288
2289		iov_iter_advance(i, copied);
2290		if (unlikely(copied == 0)) {
2291			/*
2292			 * If we were unable to copy any data at all, we must
2293			 * fall back to a single segment length write.
2294			 *
2295			 * If we didn't fallback here, we could livelock
2296			 * because not all segments in the iov can be copied at
2297			 * once without a pagefault.
2298			 */
2299			bytes = min_t(unsigned long, PAGE_CACHE_SIZE - offset,
2300						iov_iter_single_seg_count(i));
2301			goto again;
2302		}
2303		pos += copied;
2304		written += copied;
2305
2306		balance_dirty_pages_ratelimited(mapping);
2307
2308	} while (iov_iter_count(i));
2309
2310	return written ? written : status;
2311}
2312
2313ssize_t
2314generic_file_buffered_write(struct kiocb *iocb, const struct iovec *iov,
2315		unsigned long nr_segs, loff_t pos, loff_t *ppos,
2316		size_t count, ssize_t written)
2317{
2318	struct file *file = iocb->ki_filp;
2319	struct address_space *mapping = file->f_mapping;
2320	const struct address_space_operations *a_ops = mapping->a_ops;
2321	struct inode *inode = mapping->host;
2322	ssize_t status;
2323	struct iov_iter i;
2324
2325	iov_iter_init(&i, iov, nr_segs, count, written);
2326	if (a_ops->write_begin)
2327		status = generic_perform_write(file, &i, pos);
2328	else
2329		status = generic_perform_write_2copy(file, &i, pos);
2330
2331	if (likely(status >= 0)) {
2332		written += status;
2333		*ppos = pos + status;
2334
2335		/*
2336		 * For now, when the user asks for O_SYNC, we'll actually give
2337		 * O_DSYNC
2338		 */
2339		if (unlikely((file->f_flags & O_SYNC) || IS_SYNC(inode))) {
2340			if (!a_ops->writepage || !is_sync_kiocb(iocb))
2341				status = generic_osync_inode(inode, mapping,
2342						OSYNC_METADATA|OSYNC_DATA);
2343		}
2344  	}
2345
2346	/*
2347	 * If we get here for O_DIRECT writes then we must have fallen through
2348	 * to buffered writes (block instantiation inside i_size).  So we sync
2349	 * the file data here, to try to honour O_DIRECT expectations.
2350	 */
2351	if (unlikely(file->f_flags & O_DIRECT) && written)
2352		status = filemap_write_and_wait(mapping);
2353
2354	return written ? written : status;
2355}
2356EXPORT_SYMBOL(generic_file_buffered_write);
2357
2358static ssize_t
2359__generic_file_aio_write_nolock(struct kiocb *iocb, const struct iovec *iov,
2360				unsigned long nr_segs, loff_t *ppos)
2361{
2362	struct file *file = iocb->ki_filp;
2363	struct address_space * mapping = file->f_mapping;
2364	size_t ocount;		/* original count */
2365	size_t count;		/* after file limit checks */
2366	struct inode 	*inode = mapping->host;
2367	loff_t		pos;
2368	ssize_t		written;
2369	ssize_t		err;
2370
2371	ocount = 0;
2372	err = generic_segment_checks(iov, &nr_segs, &ocount, VERIFY_READ);
2373	if (err)
2374		return err;
2375
2376	count = ocount;
2377	pos = *ppos;
2378
2379	vfs_check_frozen(inode->i_sb, SB_FREEZE_WRITE);
2380
2381	/* We can write back this queue in page reclaim */
2382	current->backing_dev_info = mapping->backing_dev_info;
2383	written = 0;
2384
2385	err = generic_write_checks(file, &pos, &count, S_ISBLK(inode->i_mode));
2386	if (err)
2387		goto out;
2388
2389	if (count == 0)
2390		goto out;
2391
2392	err = remove_suid(file->f_path.dentry);
2393	if (err)
2394		goto out;
2395
2396	file_update_time(file);
2397
2398	/* coalesce the iovecs and go direct-to-BIO for O_DIRECT */
2399	if (unlikely(file->f_flags & O_DIRECT)) {
2400		loff_t endbyte;
2401		ssize_t written_buffered;
2402
2403		written = generic_file_direct_write(iocb, iov, &nr_segs, pos,
2404							ppos, count, ocount);
2405		if (written < 0 || written == count)
2406			goto out;
2407		/*
2408		 * direct-io write to a hole: fall through to buffered I/O
2409		 * for completing the rest of the request.
2410		 */
2411		pos += written;
2412		count -= written;
2413		written_buffered = generic_file_buffered_write(iocb, iov,
2414						nr_segs, pos, ppos, count,
2415						written);
2416		/*
2417		 * If generic_file_buffered_write() retuned a synchronous error
2418		 * then we want to return the number of bytes which were
2419		 * direct-written, or the error code if that was zero.  Note
2420		 * that this differs from normal direct-io semantics, which
2421		 * will return -EFOO even if some bytes were written.
2422		 */
2423		if (written_buffered < 0) {
2424			err = written_buffered;
2425			goto out;
2426		}
2427
2428		/*
2429		 * We need to ensure that the page cache pages are written to
2430		 * disk and invalidated to preserve the expected O_DIRECT
2431		 * semantics.
2432		 */
2433		endbyte = pos + written_buffered - written - 1;
2434		err = do_sync_mapping_range(file->f_mapping, pos, endbyte,
2435					    SYNC_FILE_RANGE_WAIT_BEFORE|
2436					    SYNC_FILE_RANGE_WRITE|
2437					    SYNC_FILE_RANGE_WAIT_AFTER);
2438		if (err == 0) {
2439			written = written_buffered;
2440			invalidate_mapping_pages(mapping,
2441						 pos >> PAGE_CACHE_SHIFT,
2442						 endbyte >> PAGE_CACHE_SHIFT);
2443		} else {
2444			/*
2445			 * We don't know how much we wrote, so just return
2446			 * the number of bytes which were direct-written
2447			 */
2448		}
2449	} else {
2450		written = generic_file_buffered_write(iocb, iov, nr_segs,
2451				pos, ppos, count, written);
2452	}
2453out:
2454	current->backing_dev_info = NULL;
2455	return written ? written : err;
2456}
2457
2458ssize_t generic_file_aio_write_nolock(struct kiocb *iocb,
2459		const struct iovec *iov, unsigned long nr_segs, loff_t pos)
2460{
2461	struct file *file = iocb->ki_filp;
2462	struct address_space *mapping = file->f_mapping;
2463	struct inode *inode = mapping->host;
2464	ssize_t ret;
2465
2466	BUG_ON(iocb->ki_pos != pos);
2467
2468	ret = __generic_file_aio_write_nolock(iocb, iov, nr_segs,
2469			&iocb->ki_pos);
2470
2471	if (ret > 0 && ((file->f_flags & O_SYNC) || IS_SYNC(inode))) {
2472		ssize_t err;
2473
2474		err = sync_page_range_nolock(inode, mapping, pos, ret);
2475		if (err < 0)
2476			ret = err;
2477	}
2478	return ret;
2479}
2480EXPORT_SYMBOL(generic_file_aio_write_nolock);
2481
2482ssize_t generic_file_aio_write(struct kiocb *iocb, const struct iovec *iov,
2483		unsigned long nr_segs, loff_t pos)
2484{
2485	struct file *file = iocb->ki_filp;
2486	struct address_space *mapping = file->f_mapping;
2487	struct inode *inode = mapping->host;
2488	ssize_t ret;
2489
2490	BUG_ON(iocb->ki_pos != pos);
2491
2492	mutex_lock(&inode->i_mutex);
2493	ret = __generic_file_aio_write_nolock(iocb, iov, nr_segs,
2494			&iocb->ki_pos);
2495	mutex_unlock(&inode->i_mutex);
2496
2497	if (ret > 0 && ((file->f_flags & O_SYNC) || IS_SYNC(inode))) {
2498		ssize_t err;
2499
2500		err = sync_page_range(inode, mapping, pos, ret);
2501		if (err < 0)
2502			ret = err;
2503	}
2504	return ret;
2505}
2506EXPORT_SYMBOL(generic_file_aio_write);
2507
2508/*
2509 * Called under i_mutex for writes to S_ISREG files.   Returns -EIO if something
2510 * went wrong during pagecache shootdown.
2511 */
2512static ssize_t
2513generic_file_direct_IO(int rw, struct kiocb *iocb, const struct iovec *iov,
2514	loff_t offset, unsigned long nr_segs)
2515{
2516	struct file *file = iocb->ki_filp;
2517	struct address_space *mapping = file->f_mapping;
2518	ssize_t retval;
2519	size_t write_len;
2520	pgoff_t end = 0; /* silence gcc */
2521
2522	/*
2523	 * If it's a write, unmap all mmappings of the file up-front.  This
2524	 * will cause any pte dirty bits to be propagated into the pageframes
2525	 * for the subsequent filemap_write_and_wait().
2526	 */
2527	if (rw == WRITE) {
2528		write_len = iov_length(iov, nr_segs);
2529		end = (offset + write_len - 1) >> PAGE_CACHE_SHIFT;
2530	       	if (mapping_mapped(mapping))
2531			unmap_mapping_range(mapping, offset, write_len, 0);
2532	}
2533
2534	retval = filemap_write_and_wait(mapping);
2535	if (retval)
2536		goto out;
2537
2538	/*
2539	 * After a write we want buffered reads to be sure to go to disk to get
2540	 * the new data.  We invalidate clean cached page from the region we're
2541	 * about to write.  We do this *before* the write so that we can return
2542	 * -EIO without clobbering -EIOCBQUEUED from ->direct_IO().
2543	 */
2544	if (rw == WRITE && mapping->nrpages) {
2545		retval = invalidate_inode_pages2_range(mapping,
2546					offset >> PAGE_CACHE_SHIFT, end);
2547		if (retval)
2548			goto out;
2549	}
2550
2551	retval = mapping->a_ops->direct_IO(rw, iocb, iov, offset, nr_segs);
2552
2553	/*
2554	 * Finally, try again to invalidate clean pages which might have been
2555	 * cached by non-direct readahead, or faulted in by get_user_pages()
2556	 * if the source of the write was an mmap'ed region of the file
2557	 * we're writing.  Either one is a pretty crazy thing to do,
2558	 * so we don't support it 100%.  If this invalidation
2559	 * fails, tough, the write still worked...
2560	 */
2561	if (rw == WRITE && mapping->nrpages) {
2562		invalidate_inode_pages2_range(mapping, offset >> PAGE_CACHE_SHIFT, end);
2563	}
2564out:
2565	return retval;
2566}
2567
2568/**
2569 * try_to_release_page() - release old fs-specific metadata on a page
2570 *
2571 * @page: the page which the kernel is trying to free
2572 * @gfp_mask: memory allocation flags (and I/O mode)
2573 *
2574 * The address_space is to try to release any data against the page
2575 * (presumably at page->private).  If the release was successful, return `1'.
2576 * Otherwise return zero.
2577 *
2578 * The @gfp_mask argument specifies whether I/O may be performed to release
2579 * this page (__GFP_IO), and whether the call may block (__GFP_WAIT).
2580 *
2581 * NOTE: @gfp_mask may go away, and this function may become non-blocking.
2582 */
2583int try_to_release_page(struct page *page, gfp_t gfp_mask)
2584{
2585	struct address_space * const mapping = page->mapping;
2586
2587	BUG_ON(!PageLocked(page));
2588	if (PageWriteback(page))
2589		return 0;
2590
2591	if (mapping && mapping->a_ops->releasepage)
2592		return mapping->a_ops->releasepage(page, gfp_mask);
2593	return try_to_free_buffers(page);
2594}
2595
2596EXPORT_SYMBOL(try_to_release_page);
2597