filemap.c revision b0cfbd995d091b10841eeb948976f5d1fbf13cdd
1/*
2 *	linux/mm/filemap.c
3 *
4 * Copyright (C) 1994-1999  Linus Torvalds
5 */
6
7/*
8 * This file handles the generic file mmap semantics used by
9 * most "normal" filesystems (but you don't /have/ to use this:
10 * the NFS filesystem used to do this differently, for example)
11 */
12#include <linux/config.h>
13#include <linux/module.h>
14#include <linux/slab.h>
15#include <linux/compiler.h>
16#include <linux/fs.h>
17#include <linux/aio.h>
18#include <linux/kernel_stat.h>
19#include <linux/mm.h>
20#include <linux/swap.h>
21#include <linux/mman.h>
22#include <linux/pagemap.h>
23#include <linux/file.h>
24#include <linux/uio.h>
25#include <linux/hash.h>
26#include <linux/writeback.h>
27#include <linux/pagevec.h>
28#include <linux/blkdev.h>
29#include <linux/security.h>
30#include <linux/syscalls.h>
31#include "filemap.h"
32/*
33 * FIXME: remove all knowledge of the buffer layer from the core VM
34 */
35#include <linux/buffer_head.h> /* for generic_osync_inode */
36
37#include <asm/uaccess.h>
38#include <asm/mman.h>
39
40/*
41 * Shared mappings implemented 30.11.1994. It's not fully working yet,
42 * though.
43 *
44 * Shared mappings now work. 15.8.1995  Bruno.
45 *
46 * finished 'unifying' the page and buffer cache and SMP-threaded the
47 * page-cache, 21.05.1999, Ingo Molnar <mingo@redhat.com>
48 *
49 * SMP-threaded pagemap-LRU 1999, Andrea Arcangeli <andrea@suse.de>
50 */
51
52/*
53 * Lock ordering:
54 *
55 *  ->i_mmap_lock		(vmtruncate)
56 *    ->private_lock		(__free_pte->__set_page_dirty_buffers)
57 *      ->swap_list_lock
58 *        ->swap_device_lock	(exclusive_swap_page, others)
59 *          ->mapping->tree_lock
60 *
61 *  ->i_sem
62 *    ->i_mmap_lock		(truncate->unmap_mapping_range)
63 *
64 *  ->mmap_sem
65 *    ->i_mmap_lock
66 *      ->page_table_lock	(various places, mainly in mmap.c)
67 *        ->mapping->tree_lock	(arch-dependent flush_dcache_mmap_lock)
68 *
69 *  ->mmap_sem
70 *    ->lock_page		(access_process_vm)
71 *
72 *  ->mmap_sem
73 *    ->i_sem			(msync)
74 *
75 *  ->i_sem
76 *    ->i_alloc_sem             (various)
77 *
78 *  ->inode_lock
79 *    ->sb_lock			(fs/fs-writeback.c)
80 *    ->mapping->tree_lock	(__sync_single_inode)
81 *
82 *  ->i_mmap_lock
83 *    ->anon_vma.lock		(vma_adjust)
84 *
85 *  ->anon_vma.lock
86 *    ->page_table_lock		(anon_vma_prepare and various)
87 *
88 *  ->page_table_lock
89 *    ->swap_device_lock	(try_to_unmap_one)
90 *    ->private_lock		(try_to_unmap_one)
91 *    ->tree_lock		(try_to_unmap_one)
92 *    ->zone.lru_lock		(follow_page->mark_page_accessed)
93 *    ->private_lock		(page_remove_rmap->set_page_dirty)
94 *    ->tree_lock		(page_remove_rmap->set_page_dirty)
95 *    ->inode_lock		(page_remove_rmap->set_page_dirty)
96 *    ->inode_lock		(zap_pte_range->set_page_dirty)
97 *    ->private_lock		(zap_pte_range->__set_page_dirty_buffers)
98 *
99 *  ->task->proc_lock
100 *    ->dcache_lock		(proc_pid_lookup)
101 */
102
103/*
104 * Remove a page from the page cache and free it. Caller has to make
105 * sure the page is locked and that nobody else uses it - or that usage
106 * is safe.  The caller must hold a write_lock on the mapping's tree_lock.
107 */
108void __remove_from_page_cache(struct page *page)
109{
110	struct address_space *mapping = page->mapping;
111
112	radix_tree_delete(&mapping->page_tree, page->index);
113	page->mapping = NULL;
114	mapping->nrpages--;
115	pagecache_acct(-1);
116}
117
118void remove_from_page_cache(struct page *page)
119{
120	struct address_space *mapping = page->mapping;
121
122	BUG_ON(!PageLocked(page));
123
124	write_lock_irq(&mapping->tree_lock);
125	__remove_from_page_cache(page);
126	write_unlock_irq(&mapping->tree_lock);
127}
128
129static int sync_page(void *word)
130{
131	struct address_space *mapping;
132	struct page *page;
133
134	page = container_of((page_flags_t *)word, struct page, flags);
135
136	/*
137	 * page_mapping() is being called without PG_locked held.
138	 * Some knowledge of the state and use of the page is used to
139	 * reduce the requirements down to a memory barrier.
140	 * The danger here is of a stale page_mapping() return value
141	 * indicating a struct address_space different from the one it's
142	 * associated with when it is associated with one.
143	 * After smp_mb(), it's either the correct page_mapping() for
144	 * the page, or an old page_mapping() and the page's own
145	 * page_mapping() has gone NULL.
146	 * The ->sync_page() address_space operation must tolerate
147	 * page_mapping() going NULL. By an amazing coincidence,
148	 * this comes about because none of the users of the page
149	 * in the ->sync_page() methods make essential use of the
150	 * page_mapping(), merely passing the page down to the backing
151	 * device's unplug functions when it's non-NULL, which in turn
152	 * ignore it for all cases but swap, where only page->private is
153	 * of interest. When page_mapping() does go NULL, the entire
154	 * call stack gracefully ignores the page and returns.
155	 * -- wli
156	 */
157	smp_mb();
158	mapping = page_mapping(page);
159	if (mapping && mapping->a_ops && mapping->a_ops->sync_page)
160		mapping->a_ops->sync_page(page);
161	io_schedule();
162	return 0;
163}
164
165/**
166 * filemap_fdatawrite_range - start writeback against all of a mapping's
167 * dirty pages that lie within the byte offsets <start, end>
168 * @mapping:	address space structure to write
169 * @start:	offset in bytes where the range starts
170 * @end:	offset in bytes where the range ends
171 * @sync_mode:	enable synchronous operation
172 *
173 * If sync_mode is WB_SYNC_ALL then this is a "data integrity" operation, as
174 * opposed to a regular memory * cleansing writeback.  The difference between
175 * these two operations is that if a dirty page/buffer is encountered, it must
176 * be waited upon, and not just skipped over.
177 */
178static int __filemap_fdatawrite_range(struct address_space *mapping,
179	loff_t start, loff_t end, int sync_mode)
180{
181	int ret;
182	struct writeback_control wbc = {
183		.sync_mode = sync_mode,
184		.nr_to_write = mapping->nrpages * 2,
185		.start = start,
186		.end = end,
187	};
188
189	if (!mapping_cap_writeback_dirty(mapping))
190		return 0;
191
192	ret = do_writepages(mapping, &wbc);
193	return ret;
194}
195
196static inline int __filemap_fdatawrite(struct address_space *mapping,
197	int sync_mode)
198{
199	return __filemap_fdatawrite_range(mapping, 0, 0, sync_mode);
200}
201
202int filemap_fdatawrite(struct address_space *mapping)
203{
204	return __filemap_fdatawrite(mapping, WB_SYNC_ALL);
205}
206EXPORT_SYMBOL(filemap_fdatawrite);
207
208static int filemap_fdatawrite_range(struct address_space *mapping,
209	loff_t start, loff_t end)
210{
211	return __filemap_fdatawrite_range(mapping, start, end, WB_SYNC_ALL);
212}
213
214/*
215 * This is a mostly non-blocking flush.  Not suitable for data-integrity
216 * purposes - I/O may not be started against all dirty pages.
217 */
218int filemap_flush(struct address_space *mapping)
219{
220	return __filemap_fdatawrite(mapping, WB_SYNC_NONE);
221}
222EXPORT_SYMBOL(filemap_flush);
223
224/*
225 * Wait for writeback to complete against pages indexed by start->end
226 * inclusive
227 */
228static int wait_on_page_writeback_range(struct address_space *mapping,
229				pgoff_t start, pgoff_t end)
230{
231	struct pagevec pvec;
232	int nr_pages;
233	int ret = 0;
234	pgoff_t index;
235
236	if (end < start)
237		return 0;
238
239	pagevec_init(&pvec, 0);
240	index = start;
241	while ((index <= end) &&
242			(nr_pages = pagevec_lookup_tag(&pvec, mapping, &index,
243			PAGECACHE_TAG_WRITEBACK,
244			min(end - index, (pgoff_t)PAGEVEC_SIZE-1) + 1)) != 0) {
245		unsigned i;
246
247		for (i = 0; i < nr_pages; i++) {
248			struct page *page = pvec.pages[i];
249
250			/* until radix tree lookup accepts end_index */
251			if (page->index > end)
252				continue;
253
254			wait_on_page_writeback(page);
255			if (PageError(page))
256				ret = -EIO;
257		}
258		pagevec_release(&pvec);
259		cond_resched();
260	}
261
262	/* Check for outstanding write errors */
263	if (test_and_clear_bit(AS_ENOSPC, &mapping->flags))
264		ret = -ENOSPC;
265	if (test_and_clear_bit(AS_EIO, &mapping->flags))
266		ret = -EIO;
267
268	return ret;
269}
270
271/*
272 * Write and wait upon all the pages in the passed range.  This is a "data
273 * integrity" operation.  It waits upon in-flight writeout before starting and
274 * waiting upon new writeout.  If there was an IO error, return it.
275 *
276 * We need to re-take i_sem during the generic_osync_inode list walk because
277 * it is otherwise livelockable.
278 */
279int sync_page_range(struct inode *inode, struct address_space *mapping,
280			loff_t pos, size_t count)
281{
282	pgoff_t start = pos >> PAGE_CACHE_SHIFT;
283	pgoff_t end = (pos + count - 1) >> PAGE_CACHE_SHIFT;
284	int ret;
285
286	if (!mapping_cap_writeback_dirty(mapping) || !count)
287		return 0;
288	ret = filemap_fdatawrite_range(mapping, pos, pos + count - 1);
289	if (ret == 0) {
290		down(&inode->i_sem);
291		ret = generic_osync_inode(inode, mapping, OSYNC_METADATA);
292		up(&inode->i_sem);
293	}
294	if (ret == 0)
295		ret = wait_on_page_writeback_range(mapping, start, end);
296	return ret;
297}
298EXPORT_SYMBOL(sync_page_range);
299
300/*
301 * Note: Holding i_sem across sync_page_range_nolock is not a good idea
302 * as it forces O_SYNC writers to different parts of the same file
303 * to be serialised right until io completion.
304 */
305int sync_page_range_nolock(struct inode *inode, struct address_space *mapping,
306			loff_t pos, size_t count)
307{
308	pgoff_t start = pos >> PAGE_CACHE_SHIFT;
309	pgoff_t end = (pos + count - 1) >> PAGE_CACHE_SHIFT;
310	int ret;
311
312	if (!mapping_cap_writeback_dirty(mapping) || !count)
313		return 0;
314	ret = filemap_fdatawrite_range(mapping, pos, pos + count - 1);
315	if (ret == 0)
316		ret = generic_osync_inode(inode, mapping, OSYNC_METADATA);
317	if (ret == 0)
318		ret = wait_on_page_writeback_range(mapping, start, end);
319	return ret;
320}
321EXPORT_SYMBOL(sync_page_range_nolock);
322
323/**
324 * filemap_fdatawait - walk the list of under-writeback pages of the given
325 *     address space and wait for all of them.
326 *
327 * @mapping: address space structure to wait for
328 */
329int filemap_fdatawait(struct address_space *mapping)
330{
331	loff_t i_size = i_size_read(mapping->host);
332
333	if (i_size == 0)
334		return 0;
335
336	return wait_on_page_writeback_range(mapping, 0,
337				(i_size - 1) >> PAGE_CACHE_SHIFT);
338}
339EXPORT_SYMBOL(filemap_fdatawait);
340
341int filemap_write_and_wait(struct address_space *mapping)
342{
343	int retval = 0;
344
345	if (mapping->nrpages) {
346		retval = filemap_fdatawrite(mapping);
347		if (retval == 0)
348			retval = filemap_fdatawait(mapping);
349	}
350	return retval;
351}
352
353int filemap_write_and_wait_range(struct address_space *mapping,
354				 loff_t lstart, loff_t lend)
355{
356	int retval = 0;
357
358	if (mapping->nrpages) {
359		retval = __filemap_fdatawrite_range(mapping, lstart, lend,
360						    WB_SYNC_ALL);
361		if (retval == 0)
362			retval = wait_on_page_writeback_range(mapping,
363						    lstart >> PAGE_CACHE_SHIFT,
364						    lend >> PAGE_CACHE_SHIFT);
365	}
366	return retval;
367}
368
369/*
370 * This function is used to add newly allocated pagecache pages:
371 * the page is new, so we can just run SetPageLocked() against it.
372 * The other page state flags were set by rmqueue().
373 *
374 * This function does not add the page to the LRU.  The caller must do that.
375 */
376int add_to_page_cache(struct page *page, struct address_space *mapping,
377		pgoff_t offset, int gfp_mask)
378{
379	int error = radix_tree_preload(gfp_mask & ~__GFP_HIGHMEM);
380
381	if (error == 0) {
382		write_lock_irq(&mapping->tree_lock);
383		error = radix_tree_insert(&mapping->page_tree, offset, page);
384		if (!error) {
385			page_cache_get(page);
386			SetPageLocked(page);
387			page->mapping = mapping;
388			page->index = offset;
389			mapping->nrpages++;
390			pagecache_acct(1);
391		}
392		write_unlock_irq(&mapping->tree_lock);
393		radix_tree_preload_end();
394	}
395	return error;
396}
397
398EXPORT_SYMBOL(add_to_page_cache);
399
400int add_to_page_cache_lru(struct page *page, struct address_space *mapping,
401				pgoff_t offset, int gfp_mask)
402{
403	int ret = add_to_page_cache(page, mapping, offset, gfp_mask);
404	if (ret == 0)
405		lru_cache_add(page);
406	return ret;
407}
408
409/*
410 * In order to wait for pages to become available there must be
411 * waitqueues associated with pages. By using a hash table of
412 * waitqueues where the bucket discipline is to maintain all
413 * waiters on the same queue and wake all when any of the pages
414 * become available, and for the woken contexts to check to be
415 * sure the appropriate page became available, this saves space
416 * at a cost of "thundering herd" phenomena during rare hash
417 * collisions.
418 */
419static wait_queue_head_t *page_waitqueue(struct page *page)
420{
421	const struct zone *zone = page_zone(page);
422
423	return &zone->wait_table[hash_ptr(page, zone->wait_table_bits)];
424}
425
426static inline void wake_up_page(struct page *page, int bit)
427{
428	__wake_up_bit(page_waitqueue(page), &page->flags, bit);
429}
430
431void fastcall wait_on_page_bit(struct page *page, int bit_nr)
432{
433	DEFINE_WAIT_BIT(wait, &page->flags, bit_nr);
434
435	if (test_bit(bit_nr, &page->flags))
436		__wait_on_bit(page_waitqueue(page), &wait, sync_page,
437							TASK_UNINTERRUPTIBLE);
438}
439EXPORT_SYMBOL(wait_on_page_bit);
440
441/**
442 * unlock_page() - unlock a locked page
443 *
444 * @page: the page
445 *
446 * Unlocks the page and wakes up sleepers in ___wait_on_page_locked().
447 * Also wakes sleepers in wait_on_page_writeback() because the wakeup
448 * mechananism between PageLocked pages and PageWriteback pages is shared.
449 * But that's OK - sleepers in wait_on_page_writeback() just go back to sleep.
450 *
451 * The first mb is necessary to safely close the critical section opened by the
452 * TestSetPageLocked(), the second mb is necessary to enforce ordering between
453 * the clear_bit and the read of the waitqueue (to avoid SMP races with a
454 * parallel wait_on_page_locked()).
455 */
456void fastcall unlock_page(struct page *page)
457{
458	smp_mb__before_clear_bit();
459	if (!TestClearPageLocked(page))
460		BUG();
461	smp_mb__after_clear_bit();
462	wake_up_page(page, PG_locked);
463}
464EXPORT_SYMBOL(unlock_page);
465
466/*
467 * End writeback against a page.
468 */
469void end_page_writeback(struct page *page)
470{
471	if (!TestClearPageReclaim(page) || rotate_reclaimable_page(page)) {
472		if (!test_clear_page_writeback(page))
473			BUG();
474	}
475	smp_mb__after_clear_bit();
476	wake_up_page(page, PG_writeback);
477}
478EXPORT_SYMBOL(end_page_writeback);
479
480/*
481 * Get a lock on the page, assuming we need to sleep to get it.
482 *
483 * Ugly: running sync_page() in state TASK_UNINTERRUPTIBLE is scary.  If some
484 * random driver's requestfn sets TASK_RUNNING, we could busywait.  However
485 * chances are that on the second loop, the block layer's plug list is empty,
486 * so sync_page() will then return in state TASK_UNINTERRUPTIBLE.
487 */
488void fastcall __lock_page(struct page *page)
489{
490	DEFINE_WAIT_BIT(wait, &page->flags, PG_locked);
491
492	__wait_on_bit_lock(page_waitqueue(page), &wait, sync_page,
493							TASK_UNINTERRUPTIBLE);
494}
495EXPORT_SYMBOL(__lock_page);
496
497/*
498 * a rather lightweight function, finding and getting a reference to a
499 * hashed page atomically.
500 */
501struct page * find_get_page(struct address_space *mapping, unsigned long offset)
502{
503	struct page *page;
504
505	read_lock_irq(&mapping->tree_lock);
506	page = radix_tree_lookup(&mapping->page_tree, offset);
507	if (page)
508		page_cache_get(page);
509	read_unlock_irq(&mapping->tree_lock);
510	return page;
511}
512
513EXPORT_SYMBOL(find_get_page);
514
515/*
516 * Same as above, but trylock it instead of incrementing the count.
517 */
518struct page *find_trylock_page(struct address_space *mapping, unsigned long offset)
519{
520	struct page *page;
521
522	read_lock_irq(&mapping->tree_lock);
523	page = radix_tree_lookup(&mapping->page_tree, offset);
524	if (page && TestSetPageLocked(page))
525		page = NULL;
526	read_unlock_irq(&mapping->tree_lock);
527	return page;
528}
529
530EXPORT_SYMBOL(find_trylock_page);
531
532/**
533 * find_lock_page - locate, pin and lock a pagecache page
534 *
535 * @mapping: the address_space to search
536 * @offset: the page index
537 *
538 * Locates the desired pagecache page, locks it, increments its reference
539 * count and returns its address.
540 *
541 * Returns zero if the page was not present. find_lock_page() may sleep.
542 */
543struct page *find_lock_page(struct address_space *mapping,
544				unsigned long offset)
545{
546	struct page *page;
547
548	read_lock_irq(&mapping->tree_lock);
549repeat:
550	page = radix_tree_lookup(&mapping->page_tree, offset);
551	if (page) {
552		page_cache_get(page);
553		if (TestSetPageLocked(page)) {
554			read_unlock_irq(&mapping->tree_lock);
555			lock_page(page);
556			read_lock_irq(&mapping->tree_lock);
557
558			/* Has the page been truncated while we slept? */
559			if (page->mapping != mapping || page->index != offset) {
560				unlock_page(page);
561				page_cache_release(page);
562				goto repeat;
563			}
564		}
565	}
566	read_unlock_irq(&mapping->tree_lock);
567	return page;
568}
569
570EXPORT_SYMBOL(find_lock_page);
571
572/**
573 * find_or_create_page - locate or add a pagecache page
574 *
575 * @mapping: the page's address_space
576 * @index: the page's index into the mapping
577 * @gfp_mask: page allocation mode
578 *
579 * Locates a page in the pagecache.  If the page is not present, a new page
580 * is allocated using @gfp_mask and is added to the pagecache and to the VM's
581 * LRU list.  The returned page is locked and has its reference count
582 * incremented.
583 *
584 * find_or_create_page() may sleep, even if @gfp_flags specifies an atomic
585 * allocation!
586 *
587 * find_or_create_page() returns the desired page's address, or zero on
588 * memory exhaustion.
589 */
590struct page *find_or_create_page(struct address_space *mapping,
591		unsigned long index, unsigned int gfp_mask)
592{
593	struct page *page, *cached_page = NULL;
594	int err;
595repeat:
596	page = find_lock_page(mapping, index);
597	if (!page) {
598		if (!cached_page) {
599			cached_page = alloc_page(gfp_mask);
600			if (!cached_page)
601				return NULL;
602		}
603		err = add_to_page_cache_lru(cached_page, mapping,
604					index, gfp_mask);
605		if (!err) {
606			page = cached_page;
607			cached_page = NULL;
608		} else if (err == -EEXIST)
609			goto repeat;
610	}
611	if (cached_page)
612		page_cache_release(cached_page);
613	return page;
614}
615
616EXPORT_SYMBOL(find_or_create_page);
617
618/**
619 * find_get_pages - gang pagecache lookup
620 * @mapping:	The address_space to search
621 * @start:	The starting page index
622 * @nr_pages:	The maximum number of pages
623 * @pages:	Where the resulting pages are placed
624 *
625 * find_get_pages() will search for and return a group of up to
626 * @nr_pages pages in the mapping.  The pages are placed at @pages.
627 * find_get_pages() takes a reference against the returned pages.
628 *
629 * The search returns a group of mapping-contiguous pages with ascending
630 * indexes.  There may be holes in the indices due to not-present pages.
631 *
632 * find_get_pages() returns the number of pages which were found.
633 */
634unsigned find_get_pages(struct address_space *mapping, pgoff_t start,
635			    unsigned int nr_pages, struct page **pages)
636{
637	unsigned int i;
638	unsigned int ret;
639
640	read_lock_irq(&mapping->tree_lock);
641	ret = radix_tree_gang_lookup(&mapping->page_tree,
642				(void **)pages, start, nr_pages);
643	for (i = 0; i < ret; i++)
644		page_cache_get(pages[i]);
645	read_unlock_irq(&mapping->tree_lock);
646	return ret;
647}
648
649/*
650 * Like find_get_pages, except we only return pages which are tagged with
651 * `tag'.   We update *index to index the next page for the traversal.
652 */
653unsigned find_get_pages_tag(struct address_space *mapping, pgoff_t *index,
654			int tag, unsigned int nr_pages, struct page **pages)
655{
656	unsigned int i;
657	unsigned int ret;
658
659	read_lock_irq(&mapping->tree_lock);
660	ret = radix_tree_gang_lookup_tag(&mapping->page_tree,
661				(void **)pages, *index, nr_pages, tag);
662	for (i = 0; i < ret; i++)
663		page_cache_get(pages[i]);
664	if (ret)
665		*index = pages[ret - 1]->index + 1;
666	read_unlock_irq(&mapping->tree_lock);
667	return ret;
668}
669
670/*
671 * Same as grab_cache_page, but do not wait if the page is unavailable.
672 * This is intended for speculative data generators, where the data can
673 * be regenerated if the page couldn't be grabbed.  This routine should
674 * be safe to call while holding the lock for another page.
675 *
676 * Clear __GFP_FS when allocating the page to avoid recursion into the fs
677 * and deadlock against the caller's locked page.
678 */
679struct page *
680grab_cache_page_nowait(struct address_space *mapping, unsigned long index)
681{
682	struct page *page = find_get_page(mapping, index);
683	unsigned int gfp_mask;
684
685	if (page) {
686		if (!TestSetPageLocked(page))
687			return page;
688		page_cache_release(page);
689		return NULL;
690	}
691	gfp_mask = mapping_gfp_mask(mapping) & ~__GFP_FS;
692	page = alloc_pages(gfp_mask, 0);
693	if (page && add_to_page_cache_lru(page, mapping, index, gfp_mask)) {
694		page_cache_release(page);
695		page = NULL;
696	}
697	return page;
698}
699
700EXPORT_SYMBOL(grab_cache_page_nowait);
701
702/*
703 * This is a generic file read routine, and uses the
704 * mapping->a_ops->readpage() function for the actual low-level
705 * stuff.
706 *
707 * This is really ugly. But the goto's actually try to clarify some
708 * of the logic when it comes to error handling etc.
709 *
710 * Note the struct file* is only passed for the use of readpage.  It may be
711 * NULL.
712 */
713void do_generic_mapping_read(struct address_space *mapping,
714			     struct file_ra_state *_ra,
715			     struct file *filp,
716			     loff_t *ppos,
717			     read_descriptor_t *desc,
718			     read_actor_t actor)
719{
720	struct inode *inode = mapping->host;
721	unsigned long index;
722	unsigned long end_index;
723	unsigned long offset;
724	unsigned long last_index;
725	unsigned long next_index;
726	unsigned long prev_index;
727	loff_t isize;
728	struct page *cached_page;
729	int error;
730	struct file_ra_state ra = *_ra;
731
732	cached_page = NULL;
733	index = *ppos >> PAGE_CACHE_SHIFT;
734	next_index = index;
735	prev_index = ra.prev_page;
736	last_index = (*ppos + desc->count + PAGE_CACHE_SIZE-1) >> PAGE_CACHE_SHIFT;
737	offset = *ppos & ~PAGE_CACHE_MASK;
738
739	isize = i_size_read(inode);
740	if (!isize)
741		goto out;
742
743	end_index = (isize - 1) >> PAGE_CACHE_SHIFT;
744	for (;;) {
745		struct page *page;
746		unsigned long nr, ret;
747
748		/* nr is the maximum number of bytes to copy from this page */
749		nr = PAGE_CACHE_SIZE;
750		if (index >= end_index) {
751			if (index > end_index)
752				goto out;
753			nr = ((isize - 1) & ~PAGE_CACHE_MASK) + 1;
754			if (nr <= offset) {
755				goto out;
756			}
757		}
758		nr = nr - offset;
759
760		cond_resched();
761		if (index == next_index)
762			next_index = page_cache_readahead(mapping, &ra, filp,
763					index, last_index - index);
764
765find_page:
766		page = find_get_page(mapping, index);
767		if (unlikely(page == NULL)) {
768			handle_ra_miss(mapping, &ra, index);
769			goto no_cached_page;
770		}
771		if (!PageUptodate(page))
772			goto page_not_up_to_date;
773page_ok:
774
775		/* If users can be writing to this page using arbitrary
776		 * virtual addresses, take care about potential aliasing
777		 * before reading the page on the kernel side.
778		 */
779		if (mapping_writably_mapped(mapping))
780			flush_dcache_page(page);
781
782		/*
783		 * When (part of) the same page is read multiple times
784		 * in succession, only mark it as accessed the first time.
785		 */
786		if (prev_index != index)
787			mark_page_accessed(page);
788		prev_index = index;
789
790		/*
791		 * Ok, we have the page, and it's up-to-date, so
792		 * now we can copy it to user space...
793		 *
794		 * The actor routine returns how many bytes were actually used..
795		 * NOTE! This may not be the same as how much of a user buffer
796		 * we filled up (we may be padding etc), so we can only update
797		 * "pos" here (the actor routine has to update the user buffer
798		 * pointers and the remaining count).
799		 */
800		ret = actor(desc, page, offset, nr);
801		offset += ret;
802		index += offset >> PAGE_CACHE_SHIFT;
803		offset &= ~PAGE_CACHE_MASK;
804
805		page_cache_release(page);
806		if (ret == nr && desc->count)
807			continue;
808		goto out;
809
810page_not_up_to_date:
811		/* Get exclusive access to the page ... */
812		lock_page(page);
813
814		/* Did it get unhashed before we got the lock? */
815		if (!page->mapping) {
816			unlock_page(page);
817			page_cache_release(page);
818			continue;
819		}
820
821		/* Did somebody else fill it already? */
822		if (PageUptodate(page)) {
823			unlock_page(page);
824			goto page_ok;
825		}
826
827readpage:
828		/* Start the actual read. The read will unlock the page. */
829		error = mapping->a_ops->readpage(filp, page);
830
831		if (unlikely(error))
832			goto readpage_error;
833
834		if (!PageUptodate(page)) {
835			lock_page(page);
836			if (!PageUptodate(page)) {
837				if (page->mapping == NULL) {
838					/*
839					 * invalidate_inode_pages got it
840					 */
841					unlock_page(page);
842					page_cache_release(page);
843					goto find_page;
844				}
845				unlock_page(page);
846				error = -EIO;
847				goto readpage_error;
848			}
849			unlock_page(page);
850		}
851
852		/*
853		 * i_size must be checked after we have done ->readpage.
854		 *
855		 * Checking i_size after the readpage allows us to calculate
856		 * the correct value for "nr", which means the zero-filled
857		 * part of the page is not copied back to userspace (unless
858		 * another truncate extends the file - this is desired though).
859		 */
860		isize = i_size_read(inode);
861		end_index = (isize - 1) >> PAGE_CACHE_SHIFT;
862		if (unlikely(!isize || index > end_index)) {
863			page_cache_release(page);
864			goto out;
865		}
866
867		/* nr is the maximum number of bytes to copy from this page */
868		nr = PAGE_CACHE_SIZE;
869		if (index == end_index) {
870			nr = ((isize - 1) & ~PAGE_CACHE_MASK) + 1;
871			if (nr <= offset) {
872				page_cache_release(page);
873				goto out;
874			}
875		}
876		nr = nr - offset;
877		goto page_ok;
878
879readpage_error:
880		/* UHHUH! A synchronous read error occurred. Report it */
881		desc->error = error;
882		page_cache_release(page);
883		goto out;
884
885no_cached_page:
886		/*
887		 * Ok, it wasn't cached, so we need to create a new
888		 * page..
889		 */
890		if (!cached_page) {
891			cached_page = page_cache_alloc_cold(mapping);
892			if (!cached_page) {
893				desc->error = -ENOMEM;
894				goto out;
895			}
896		}
897		error = add_to_page_cache_lru(cached_page, mapping,
898						index, GFP_KERNEL);
899		if (error) {
900			if (error == -EEXIST)
901				goto find_page;
902			desc->error = error;
903			goto out;
904		}
905		page = cached_page;
906		cached_page = NULL;
907		goto readpage;
908	}
909
910out:
911	*_ra = ra;
912
913	*ppos = ((loff_t) index << PAGE_CACHE_SHIFT) + offset;
914	if (cached_page)
915		page_cache_release(cached_page);
916	if (filp)
917		file_accessed(filp);
918}
919
920EXPORT_SYMBOL(do_generic_mapping_read);
921
922int file_read_actor(read_descriptor_t *desc, struct page *page,
923			unsigned long offset, unsigned long size)
924{
925	char *kaddr;
926	unsigned long left, count = desc->count;
927
928	if (size > count)
929		size = count;
930
931	/*
932	 * Faults on the destination of a read are common, so do it before
933	 * taking the kmap.
934	 */
935	if (!fault_in_pages_writeable(desc->arg.buf, size)) {
936		kaddr = kmap_atomic(page, KM_USER0);
937		left = __copy_to_user_inatomic(desc->arg.buf,
938						kaddr + offset, size);
939		kunmap_atomic(kaddr, KM_USER0);
940		if (left == 0)
941			goto success;
942	}
943
944	/* Do it the slow way */
945	kaddr = kmap(page);
946	left = __copy_to_user(desc->arg.buf, kaddr + offset, size);
947	kunmap(page);
948
949	if (left) {
950		size -= left;
951		desc->error = -EFAULT;
952	}
953success:
954	desc->count = count - size;
955	desc->written += size;
956	desc->arg.buf += size;
957	return size;
958}
959
960/*
961 * This is the "read()" routine for all filesystems
962 * that can use the page cache directly.
963 */
964ssize_t
965__generic_file_aio_read(struct kiocb *iocb, const struct iovec *iov,
966		unsigned long nr_segs, loff_t *ppos)
967{
968	struct file *filp = iocb->ki_filp;
969	ssize_t retval;
970	unsigned long seg;
971	size_t count;
972
973	count = 0;
974	for (seg = 0; seg < nr_segs; seg++) {
975		const struct iovec *iv = &iov[seg];
976
977		/*
978		 * If any segment has a negative length, or the cumulative
979		 * length ever wraps negative then return -EINVAL.
980		 */
981		count += iv->iov_len;
982		if (unlikely((ssize_t)(count|iv->iov_len) < 0))
983			return -EINVAL;
984		if (access_ok(VERIFY_WRITE, iv->iov_base, iv->iov_len))
985			continue;
986		if (seg == 0)
987			return -EFAULT;
988		nr_segs = seg;
989		count -= iv->iov_len;	/* This segment is no good */
990		break;
991	}
992
993	/* coalesce the iovecs and go direct-to-BIO for O_DIRECT */
994	if (filp->f_flags & O_DIRECT) {
995		loff_t pos = *ppos, size;
996		struct address_space *mapping;
997		struct inode *inode;
998
999		mapping = filp->f_mapping;
1000		inode = mapping->host;
1001		retval = 0;
1002		if (!count)
1003			goto out; /* skip atime */
1004		size = i_size_read(inode);
1005		if (pos < size) {
1006			retval = generic_file_direct_IO(READ, iocb,
1007						iov, pos, nr_segs);
1008			if (retval > 0 && !is_sync_kiocb(iocb))
1009				retval = -EIOCBQUEUED;
1010			if (retval > 0)
1011				*ppos = pos + retval;
1012		}
1013		file_accessed(filp);
1014		goto out;
1015	}
1016
1017	retval = 0;
1018	if (count) {
1019		for (seg = 0; seg < nr_segs; seg++) {
1020			read_descriptor_t desc;
1021
1022			desc.written = 0;
1023			desc.arg.buf = iov[seg].iov_base;
1024			desc.count = iov[seg].iov_len;
1025			if (desc.count == 0)
1026				continue;
1027			desc.error = 0;
1028			do_generic_file_read(filp,ppos,&desc,file_read_actor);
1029			retval += desc.written;
1030			if (!retval) {
1031				retval = desc.error;
1032				break;
1033			}
1034		}
1035	}
1036out:
1037	return retval;
1038}
1039
1040EXPORT_SYMBOL(__generic_file_aio_read);
1041
1042ssize_t
1043generic_file_aio_read(struct kiocb *iocb, char __user *buf, size_t count, loff_t pos)
1044{
1045	struct iovec local_iov = { .iov_base = buf, .iov_len = count };
1046
1047	BUG_ON(iocb->ki_pos != pos);
1048	return __generic_file_aio_read(iocb, &local_iov, 1, &iocb->ki_pos);
1049}
1050
1051EXPORT_SYMBOL(generic_file_aio_read);
1052
1053ssize_t
1054generic_file_read(struct file *filp, char __user *buf, size_t count, loff_t *ppos)
1055{
1056	struct iovec local_iov = { .iov_base = buf, .iov_len = count };
1057	struct kiocb kiocb;
1058	ssize_t ret;
1059
1060	init_sync_kiocb(&kiocb, filp);
1061	ret = __generic_file_aio_read(&kiocb, &local_iov, 1, ppos);
1062	if (-EIOCBQUEUED == ret)
1063		ret = wait_on_sync_kiocb(&kiocb);
1064	return ret;
1065}
1066
1067EXPORT_SYMBOL(generic_file_read);
1068
1069int file_send_actor(read_descriptor_t * desc, struct page *page, unsigned long offset, unsigned long size)
1070{
1071	ssize_t written;
1072	unsigned long count = desc->count;
1073	struct file *file = desc->arg.data;
1074
1075	if (size > count)
1076		size = count;
1077
1078	written = file->f_op->sendpage(file, page, offset,
1079				       size, &file->f_pos, size<count);
1080	if (written < 0) {
1081		desc->error = written;
1082		written = 0;
1083	}
1084	desc->count = count - written;
1085	desc->written += written;
1086	return written;
1087}
1088
1089ssize_t generic_file_sendfile(struct file *in_file, loff_t *ppos,
1090			 size_t count, read_actor_t actor, void *target)
1091{
1092	read_descriptor_t desc;
1093
1094	if (!count)
1095		return 0;
1096
1097	desc.written = 0;
1098	desc.count = count;
1099	desc.arg.data = target;
1100	desc.error = 0;
1101
1102	do_generic_file_read(in_file, ppos, &desc, actor);
1103	if (desc.written)
1104		return desc.written;
1105	return desc.error;
1106}
1107
1108EXPORT_SYMBOL(generic_file_sendfile);
1109
1110static ssize_t
1111do_readahead(struct address_space *mapping, struct file *filp,
1112	     unsigned long index, unsigned long nr)
1113{
1114	if (!mapping || !mapping->a_ops || !mapping->a_ops->readpage)
1115		return -EINVAL;
1116
1117	force_page_cache_readahead(mapping, filp, index,
1118					max_sane_readahead(nr));
1119	return 0;
1120}
1121
1122asmlinkage ssize_t sys_readahead(int fd, loff_t offset, size_t count)
1123{
1124	ssize_t ret;
1125	struct file *file;
1126
1127	ret = -EBADF;
1128	file = fget(fd);
1129	if (file) {
1130		if (file->f_mode & FMODE_READ) {
1131			struct address_space *mapping = file->f_mapping;
1132			unsigned long start = offset >> PAGE_CACHE_SHIFT;
1133			unsigned long end = (offset + count - 1) >> PAGE_CACHE_SHIFT;
1134			unsigned long len = end - start + 1;
1135			ret = do_readahead(mapping, file, start, len);
1136		}
1137		fput(file);
1138	}
1139	return ret;
1140}
1141
1142#ifdef CONFIG_MMU
1143/*
1144 * This adds the requested page to the page cache if it isn't already there,
1145 * and schedules an I/O to read in its contents from disk.
1146 */
1147static int FASTCALL(page_cache_read(struct file * file, unsigned long offset));
1148static int fastcall page_cache_read(struct file * file, unsigned long offset)
1149{
1150	struct address_space *mapping = file->f_mapping;
1151	struct page *page;
1152	int error;
1153
1154	page = page_cache_alloc_cold(mapping);
1155	if (!page)
1156		return -ENOMEM;
1157
1158	error = add_to_page_cache_lru(page, mapping, offset, GFP_KERNEL);
1159	if (!error) {
1160		error = mapping->a_ops->readpage(file, page);
1161		page_cache_release(page);
1162		return error;
1163	}
1164
1165	/*
1166	 * We arrive here in the unlikely event that someone
1167	 * raced with us and added our page to the cache first
1168	 * or we are out of memory for radix-tree nodes.
1169	 */
1170	page_cache_release(page);
1171	return error == -EEXIST ? 0 : error;
1172}
1173
1174#define MMAP_LOTSAMISS  (100)
1175
1176/*
1177 * filemap_nopage() is invoked via the vma operations vector for a
1178 * mapped memory region to read in file data during a page fault.
1179 *
1180 * The goto's are kind of ugly, but this streamlines the normal case of having
1181 * it in the page cache, and handles the special cases reasonably without
1182 * having a lot of duplicated code.
1183 */
1184struct page *filemap_nopage(struct vm_area_struct *area,
1185				unsigned long address, int *type)
1186{
1187	int error;
1188	struct file *file = area->vm_file;
1189	struct address_space *mapping = file->f_mapping;
1190	struct file_ra_state *ra = &file->f_ra;
1191	struct inode *inode = mapping->host;
1192	struct page *page;
1193	unsigned long size, pgoff;
1194	int did_readaround = 0, majmin = VM_FAULT_MINOR;
1195
1196	pgoff = ((address-area->vm_start) >> PAGE_CACHE_SHIFT) + area->vm_pgoff;
1197
1198retry_all:
1199	size = (i_size_read(inode) + PAGE_CACHE_SIZE - 1) >> PAGE_CACHE_SHIFT;
1200	if (pgoff >= size)
1201		goto outside_data_content;
1202
1203	/* If we don't want any read-ahead, don't bother */
1204	if (VM_RandomReadHint(area))
1205		goto no_cached_page;
1206
1207	/*
1208	 * The readahead code wants to be told about each and every page
1209	 * so it can build and shrink its windows appropriately
1210	 *
1211	 * For sequential accesses, we use the generic readahead logic.
1212	 */
1213	if (VM_SequentialReadHint(area))
1214		page_cache_readahead(mapping, ra, file, pgoff, 1);
1215
1216	/*
1217	 * Do we have something in the page cache already?
1218	 */
1219retry_find:
1220	page = find_get_page(mapping, pgoff);
1221	if (!page) {
1222		unsigned long ra_pages;
1223
1224		if (VM_SequentialReadHint(area)) {
1225			handle_ra_miss(mapping, ra, pgoff);
1226			goto no_cached_page;
1227		}
1228		ra->mmap_miss++;
1229
1230		/*
1231		 * Do we miss much more than hit in this file? If so,
1232		 * stop bothering with read-ahead. It will only hurt.
1233		 */
1234		if (ra->mmap_miss > ra->mmap_hit + MMAP_LOTSAMISS)
1235			goto no_cached_page;
1236
1237		/*
1238		 * To keep the pgmajfault counter straight, we need to
1239		 * check did_readaround, as this is an inner loop.
1240		 */
1241		if (!did_readaround) {
1242			majmin = VM_FAULT_MAJOR;
1243			inc_page_state(pgmajfault);
1244		}
1245		did_readaround = 1;
1246		ra_pages = max_sane_readahead(file->f_ra.ra_pages);
1247		if (ra_pages) {
1248			pgoff_t start = 0;
1249
1250			if (pgoff > ra_pages / 2)
1251				start = pgoff - ra_pages / 2;
1252			do_page_cache_readahead(mapping, file, start, ra_pages);
1253		}
1254		page = find_get_page(mapping, pgoff);
1255		if (!page)
1256			goto no_cached_page;
1257	}
1258
1259	if (!did_readaround)
1260		ra->mmap_hit++;
1261
1262	/*
1263	 * Ok, found a page in the page cache, now we need to check
1264	 * that it's up-to-date.
1265	 */
1266	if (!PageUptodate(page))
1267		goto page_not_uptodate;
1268
1269success:
1270	/*
1271	 * Found the page and have a reference on it.
1272	 */
1273	mark_page_accessed(page);
1274	if (type)
1275		*type = majmin;
1276	return page;
1277
1278outside_data_content:
1279	/*
1280	 * An external ptracer can access pages that normally aren't
1281	 * accessible..
1282	 */
1283	if (area->vm_mm == current->mm)
1284		return NULL;
1285	/* Fall through to the non-read-ahead case */
1286no_cached_page:
1287	/*
1288	 * We're only likely to ever get here if MADV_RANDOM is in
1289	 * effect.
1290	 */
1291	error = page_cache_read(file, pgoff);
1292	grab_swap_token();
1293
1294	/*
1295	 * The page we want has now been added to the page cache.
1296	 * In the unlikely event that someone removed it in the
1297	 * meantime, we'll just come back here and read it again.
1298	 */
1299	if (error >= 0)
1300		goto retry_find;
1301
1302	/*
1303	 * An error return from page_cache_read can result if the
1304	 * system is low on memory, or a problem occurs while trying
1305	 * to schedule I/O.
1306	 */
1307	if (error == -ENOMEM)
1308		return NOPAGE_OOM;
1309	return NULL;
1310
1311page_not_uptodate:
1312	if (!did_readaround) {
1313		majmin = VM_FAULT_MAJOR;
1314		inc_page_state(pgmajfault);
1315	}
1316	lock_page(page);
1317
1318	/* Did it get unhashed while we waited for it? */
1319	if (!page->mapping) {
1320		unlock_page(page);
1321		page_cache_release(page);
1322		goto retry_all;
1323	}
1324
1325	/* Did somebody else get it up-to-date? */
1326	if (PageUptodate(page)) {
1327		unlock_page(page);
1328		goto success;
1329	}
1330
1331	if (!mapping->a_ops->readpage(file, page)) {
1332		wait_on_page_locked(page);
1333		if (PageUptodate(page))
1334			goto success;
1335	}
1336
1337	/*
1338	 * Umm, take care of errors if the page isn't up-to-date.
1339	 * Try to re-read it _once_. We do this synchronously,
1340	 * because there really aren't any performance issues here
1341	 * and we need to check for errors.
1342	 */
1343	lock_page(page);
1344
1345	/* Somebody truncated the page on us? */
1346	if (!page->mapping) {
1347		unlock_page(page);
1348		page_cache_release(page);
1349		goto retry_all;
1350	}
1351
1352	/* Somebody else successfully read it in? */
1353	if (PageUptodate(page)) {
1354		unlock_page(page);
1355		goto success;
1356	}
1357	ClearPageError(page);
1358	if (!mapping->a_ops->readpage(file, page)) {
1359		wait_on_page_locked(page);
1360		if (PageUptodate(page))
1361			goto success;
1362	}
1363
1364	/*
1365	 * Things didn't work out. Return zero to tell the
1366	 * mm layer so, possibly freeing the page cache page first.
1367	 */
1368	page_cache_release(page);
1369	return NULL;
1370}
1371
1372EXPORT_SYMBOL(filemap_nopage);
1373
1374static struct page * filemap_getpage(struct file *file, unsigned long pgoff,
1375					int nonblock)
1376{
1377	struct address_space *mapping = file->f_mapping;
1378	struct page *page;
1379	int error;
1380
1381	/*
1382	 * Do we have something in the page cache already?
1383	 */
1384retry_find:
1385	page = find_get_page(mapping, pgoff);
1386	if (!page) {
1387		if (nonblock)
1388			return NULL;
1389		goto no_cached_page;
1390	}
1391
1392	/*
1393	 * Ok, found a page in the page cache, now we need to check
1394	 * that it's up-to-date.
1395	 */
1396	if (!PageUptodate(page)) {
1397		if (nonblock) {
1398			page_cache_release(page);
1399			return NULL;
1400		}
1401		goto page_not_uptodate;
1402	}
1403
1404success:
1405	/*
1406	 * Found the page and have a reference on it.
1407	 */
1408	mark_page_accessed(page);
1409	return page;
1410
1411no_cached_page:
1412	error = page_cache_read(file, pgoff);
1413
1414	/*
1415	 * The page we want has now been added to the page cache.
1416	 * In the unlikely event that someone removed it in the
1417	 * meantime, we'll just come back here and read it again.
1418	 */
1419	if (error >= 0)
1420		goto retry_find;
1421
1422	/*
1423	 * An error return from page_cache_read can result if the
1424	 * system is low on memory, or a problem occurs while trying
1425	 * to schedule I/O.
1426	 */
1427	return NULL;
1428
1429page_not_uptodate:
1430	lock_page(page);
1431
1432	/* Did it get unhashed while we waited for it? */
1433	if (!page->mapping) {
1434		unlock_page(page);
1435		goto err;
1436	}
1437
1438	/* Did somebody else get it up-to-date? */
1439	if (PageUptodate(page)) {
1440		unlock_page(page);
1441		goto success;
1442	}
1443
1444	if (!mapping->a_ops->readpage(file, page)) {
1445		wait_on_page_locked(page);
1446		if (PageUptodate(page))
1447			goto success;
1448	}
1449
1450	/*
1451	 * Umm, take care of errors if the page isn't up-to-date.
1452	 * Try to re-read it _once_. We do this synchronously,
1453	 * because there really aren't any performance issues here
1454	 * and we need to check for errors.
1455	 */
1456	lock_page(page);
1457
1458	/* Somebody truncated the page on us? */
1459	if (!page->mapping) {
1460		unlock_page(page);
1461		goto err;
1462	}
1463	/* Somebody else successfully read it in? */
1464	if (PageUptodate(page)) {
1465		unlock_page(page);
1466		goto success;
1467	}
1468
1469	ClearPageError(page);
1470	if (!mapping->a_ops->readpage(file, page)) {
1471		wait_on_page_locked(page);
1472		if (PageUptodate(page))
1473			goto success;
1474	}
1475
1476	/*
1477	 * Things didn't work out. Return zero to tell the
1478	 * mm layer so, possibly freeing the page cache page first.
1479	 */
1480err:
1481	page_cache_release(page);
1482
1483	return NULL;
1484}
1485
1486int filemap_populate(struct vm_area_struct *vma, unsigned long addr,
1487		unsigned long len, pgprot_t prot, unsigned long pgoff,
1488		int nonblock)
1489{
1490	struct file *file = vma->vm_file;
1491	struct address_space *mapping = file->f_mapping;
1492	struct inode *inode = mapping->host;
1493	unsigned long size;
1494	struct mm_struct *mm = vma->vm_mm;
1495	struct page *page;
1496	int err;
1497
1498	if (!nonblock)
1499		force_page_cache_readahead(mapping, vma->vm_file,
1500					pgoff, len >> PAGE_CACHE_SHIFT);
1501
1502repeat:
1503	size = (i_size_read(inode) + PAGE_CACHE_SIZE - 1) >> PAGE_CACHE_SHIFT;
1504	if (pgoff + (len >> PAGE_CACHE_SHIFT) > size)
1505		return -EINVAL;
1506
1507	page = filemap_getpage(file, pgoff, nonblock);
1508	if (!page && !nonblock)
1509		return -ENOMEM;
1510	if (page) {
1511		err = install_page(mm, vma, addr, page, prot);
1512		if (err) {
1513			page_cache_release(page);
1514			return err;
1515		}
1516	} else {
1517		err = install_file_pte(mm, vma, addr, pgoff, prot);
1518		if (err)
1519			return err;
1520	}
1521
1522	len -= PAGE_SIZE;
1523	addr += PAGE_SIZE;
1524	pgoff++;
1525	if (len)
1526		goto repeat;
1527
1528	return 0;
1529}
1530
1531struct vm_operations_struct generic_file_vm_ops = {
1532	.nopage		= filemap_nopage,
1533	.populate	= filemap_populate,
1534};
1535
1536/* This is used for a general mmap of a disk file */
1537
1538int generic_file_mmap(struct file * file, struct vm_area_struct * vma)
1539{
1540	struct address_space *mapping = file->f_mapping;
1541
1542	if (!mapping->a_ops->readpage)
1543		return -ENOEXEC;
1544	file_accessed(file);
1545	vma->vm_ops = &generic_file_vm_ops;
1546	return 0;
1547}
1548EXPORT_SYMBOL(filemap_populate);
1549
1550/*
1551 * This is for filesystems which do not implement ->writepage.
1552 */
1553int generic_file_readonly_mmap(struct file *file, struct vm_area_struct *vma)
1554{
1555	if ((vma->vm_flags & VM_SHARED) && (vma->vm_flags & VM_MAYWRITE))
1556		return -EINVAL;
1557	return generic_file_mmap(file, vma);
1558}
1559#else
1560int generic_file_mmap(struct file * file, struct vm_area_struct * vma)
1561{
1562	return -ENOSYS;
1563}
1564int generic_file_readonly_mmap(struct file * file, struct vm_area_struct * vma)
1565{
1566	return -ENOSYS;
1567}
1568#endif /* CONFIG_MMU */
1569
1570EXPORT_SYMBOL(generic_file_mmap);
1571EXPORT_SYMBOL(generic_file_readonly_mmap);
1572
1573static inline struct page *__read_cache_page(struct address_space *mapping,
1574				unsigned long index,
1575				int (*filler)(void *,struct page*),
1576				void *data)
1577{
1578	struct page *page, *cached_page = NULL;
1579	int err;
1580repeat:
1581	page = find_get_page(mapping, index);
1582	if (!page) {
1583		if (!cached_page) {
1584			cached_page = page_cache_alloc_cold(mapping);
1585			if (!cached_page)
1586				return ERR_PTR(-ENOMEM);
1587		}
1588		err = add_to_page_cache_lru(cached_page, mapping,
1589					index, GFP_KERNEL);
1590		if (err == -EEXIST)
1591			goto repeat;
1592		if (err < 0) {
1593			/* Presumably ENOMEM for radix tree node */
1594			page_cache_release(cached_page);
1595			return ERR_PTR(err);
1596		}
1597		page = cached_page;
1598		cached_page = NULL;
1599		err = filler(data, page);
1600		if (err < 0) {
1601			page_cache_release(page);
1602			page = ERR_PTR(err);
1603		}
1604	}
1605	if (cached_page)
1606		page_cache_release(cached_page);
1607	return page;
1608}
1609
1610/*
1611 * Read into the page cache. If a page already exists,
1612 * and PageUptodate() is not set, try to fill the page.
1613 */
1614struct page *read_cache_page(struct address_space *mapping,
1615				unsigned long index,
1616				int (*filler)(void *,struct page*),
1617				void *data)
1618{
1619	struct page *page;
1620	int err;
1621
1622retry:
1623	page = __read_cache_page(mapping, index, filler, data);
1624	if (IS_ERR(page))
1625		goto out;
1626	mark_page_accessed(page);
1627	if (PageUptodate(page))
1628		goto out;
1629
1630	lock_page(page);
1631	if (!page->mapping) {
1632		unlock_page(page);
1633		page_cache_release(page);
1634		goto retry;
1635	}
1636	if (PageUptodate(page)) {
1637		unlock_page(page);
1638		goto out;
1639	}
1640	err = filler(data, page);
1641	if (err < 0) {
1642		page_cache_release(page);
1643		page = ERR_PTR(err);
1644	}
1645 out:
1646	return page;
1647}
1648
1649EXPORT_SYMBOL(read_cache_page);
1650
1651/*
1652 * If the page was newly created, increment its refcount and add it to the
1653 * caller's lru-buffering pagevec.  This function is specifically for
1654 * generic_file_write().
1655 */
1656static inline struct page *
1657__grab_cache_page(struct address_space *mapping, unsigned long index,
1658			struct page **cached_page, struct pagevec *lru_pvec)
1659{
1660	int err;
1661	struct page *page;
1662repeat:
1663	page = find_lock_page(mapping, index);
1664	if (!page) {
1665		if (!*cached_page) {
1666			*cached_page = page_cache_alloc(mapping);
1667			if (!*cached_page)
1668				return NULL;
1669		}
1670		err = add_to_page_cache(*cached_page, mapping,
1671					index, GFP_KERNEL);
1672		if (err == -EEXIST)
1673			goto repeat;
1674		if (err == 0) {
1675			page = *cached_page;
1676			page_cache_get(page);
1677			if (!pagevec_add(lru_pvec, page))
1678				__pagevec_lru_add(lru_pvec);
1679			*cached_page = NULL;
1680		}
1681	}
1682	return page;
1683}
1684
1685/*
1686 * The logic we want is
1687 *
1688 *	if suid or (sgid and xgrp)
1689 *		remove privs
1690 */
1691int remove_suid(struct dentry *dentry)
1692{
1693	mode_t mode = dentry->d_inode->i_mode;
1694	int kill = 0;
1695	int result = 0;
1696
1697	/* suid always must be killed */
1698	if (unlikely(mode & S_ISUID))
1699		kill = ATTR_KILL_SUID;
1700
1701	/*
1702	 * sgid without any exec bits is just a mandatory locking mark; leave
1703	 * it alone.  If some exec bits are set, it's a real sgid; kill it.
1704	 */
1705	if (unlikely((mode & S_ISGID) && (mode & S_IXGRP)))
1706		kill |= ATTR_KILL_SGID;
1707
1708	if (unlikely(kill && !capable(CAP_FSETID))) {
1709		struct iattr newattrs;
1710
1711		newattrs.ia_valid = ATTR_FORCE | kill;
1712		result = notify_change(dentry, &newattrs);
1713	}
1714	return result;
1715}
1716EXPORT_SYMBOL(remove_suid);
1717
1718size_t
1719__filemap_copy_from_user_iovec(char *vaddr,
1720			const struct iovec *iov, size_t base, size_t bytes)
1721{
1722	size_t copied = 0, left = 0;
1723
1724	while (bytes) {
1725		char __user *buf = iov->iov_base + base;
1726		int copy = min(bytes, iov->iov_len - base);
1727
1728		base = 0;
1729		left = __copy_from_user_inatomic(vaddr, buf, copy);
1730		copied += copy;
1731		bytes -= copy;
1732		vaddr += copy;
1733		iov++;
1734
1735		if (unlikely(left)) {
1736			/* zero the rest of the target like __copy_from_user */
1737			if (bytes)
1738				memset(vaddr, 0, bytes);
1739			break;
1740		}
1741	}
1742	return copied - left;
1743}
1744
1745/*
1746 * Performs necessary checks before doing a write
1747 *
1748 * Can adjust writing position aor amount of bytes to write.
1749 * Returns appropriate error code that caller should return or
1750 * zero in case that write should be allowed.
1751 */
1752inline int generic_write_checks(struct file *file, loff_t *pos, size_t *count, int isblk)
1753{
1754	struct inode *inode = file->f_mapping->host;
1755	unsigned long limit = current->signal->rlim[RLIMIT_FSIZE].rlim_cur;
1756
1757        if (unlikely(*pos < 0))
1758                return -EINVAL;
1759
1760	if (!isblk) {
1761		/* FIXME: this is for backwards compatibility with 2.4 */
1762		if (file->f_flags & O_APPEND)
1763                        *pos = i_size_read(inode);
1764
1765		if (limit != RLIM_INFINITY) {
1766			if (*pos >= limit) {
1767				send_sig(SIGXFSZ, current, 0);
1768				return -EFBIG;
1769			}
1770			if (*count > limit - (typeof(limit))*pos) {
1771				*count = limit - (typeof(limit))*pos;
1772			}
1773		}
1774	}
1775
1776	/*
1777	 * LFS rule
1778	 */
1779	if (unlikely(*pos + *count > MAX_NON_LFS &&
1780				!(file->f_flags & O_LARGEFILE))) {
1781		if (*pos >= MAX_NON_LFS) {
1782			send_sig(SIGXFSZ, current, 0);
1783			return -EFBIG;
1784		}
1785		if (*count > MAX_NON_LFS - (unsigned long)*pos) {
1786			*count = MAX_NON_LFS - (unsigned long)*pos;
1787		}
1788	}
1789
1790	/*
1791	 * Are we about to exceed the fs block limit ?
1792	 *
1793	 * If we have written data it becomes a short write.  If we have
1794	 * exceeded without writing data we send a signal and return EFBIG.
1795	 * Linus frestrict idea will clean these up nicely..
1796	 */
1797	if (likely(!isblk)) {
1798		if (unlikely(*pos >= inode->i_sb->s_maxbytes)) {
1799			if (*count || *pos > inode->i_sb->s_maxbytes) {
1800				send_sig(SIGXFSZ, current, 0);
1801				return -EFBIG;
1802			}
1803			/* zero-length writes at ->s_maxbytes are OK */
1804		}
1805
1806		if (unlikely(*pos + *count > inode->i_sb->s_maxbytes))
1807			*count = inode->i_sb->s_maxbytes - *pos;
1808	} else {
1809		loff_t isize;
1810		if (bdev_read_only(I_BDEV(inode)))
1811			return -EPERM;
1812		isize = i_size_read(inode);
1813		if (*pos >= isize) {
1814			if (*count || *pos > isize)
1815				return -ENOSPC;
1816		}
1817
1818		if (*pos + *count > isize)
1819			*count = isize - *pos;
1820	}
1821	return 0;
1822}
1823EXPORT_SYMBOL(generic_write_checks);
1824
1825ssize_t
1826generic_file_direct_write(struct kiocb *iocb, const struct iovec *iov,
1827		unsigned long *nr_segs, loff_t pos, loff_t *ppos,
1828		size_t count, size_t ocount)
1829{
1830	struct file	*file = iocb->ki_filp;
1831	struct address_space *mapping = file->f_mapping;
1832	struct inode	*inode = mapping->host;
1833	ssize_t		written;
1834
1835	if (count != ocount)
1836		*nr_segs = iov_shorten((struct iovec *)iov, *nr_segs, count);
1837
1838	written = generic_file_direct_IO(WRITE, iocb, iov, pos, *nr_segs);
1839	if (written > 0) {
1840		loff_t end = pos + written;
1841		if (end > i_size_read(inode) && !S_ISBLK(inode->i_mode)) {
1842			i_size_write(inode,  end);
1843			mark_inode_dirty(inode);
1844		}
1845		*ppos = end;
1846	}
1847
1848	/*
1849	 * Sync the fs metadata but not the minor inode changes and
1850	 * of course not the data as we did direct DMA for the IO.
1851	 * i_sem is held, which protects generic_osync_inode() from
1852	 * livelocking.
1853	 */
1854	if (written >= 0 && ((file->f_flags & O_SYNC) || IS_SYNC(inode))) {
1855		int err = generic_osync_inode(inode, mapping, OSYNC_METADATA);
1856		if (err < 0)
1857			written = err;
1858	}
1859	if (written == count && !is_sync_kiocb(iocb))
1860		written = -EIOCBQUEUED;
1861	return written;
1862}
1863EXPORT_SYMBOL(generic_file_direct_write);
1864
1865ssize_t
1866generic_file_buffered_write(struct kiocb *iocb, const struct iovec *iov,
1867		unsigned long nr_segs, loff_t pos, loff_t *ppos,
1868		size_t count, ssize_t written)
1869{
1870	struct file *file = iocb->ki_filp;
1871	struct address_space * mapping = file->f_mapping;
1872	struct address_space_operations *a_ops = mapping->a_ops;
1873	struct inode 	*inode = mapping->host;
1874	long		status = 0;
1875	struct page	*page;
1876	struct page	*cached_page = NULL;
1877	size_t		bytes;
1878	struct pagevec	lru_pvec;
1879	const struct iovec *cur_iov = iov; /* current iovec */
1880	size_t		iov_base = 0;	   /* offset in the current iovec */
1881	char __user	*buf;
1882
1883	pagevec_init(&lru_pvec, 0);
1884
1885	/*
1886	 * handle partial DIO write.  Adjust cur_iov if needed.
1887	 */
1888	if (likely(nr_segs == 1))
1889		buf = iov->iov_base + written;
1890	else {
1891		filemap_set_next_iovec(&cur_iov, &iov_base, written);
1892		buf = cur_iov->iov_base + iov_base;
1893	}
1894
1895	do {
1896		unsigned long index;
1897		unsigned long offset;
1898		unsigned long maxlen;
1899		size_t copied;
1900
1901		offset = (pos & (PAGE_CACHE_SIZE -1)); /* Within page */
1902		index = pos >> PAGE_CACHE_SHIFT;
1903		bytes = PAGE_CACHE_SIZE - offset;
1904		if (bytes > count)
1905			bytes = count;
1906
1907		/*
1908		 * Bring in the user page that we will copy from _first_.
1909		 * Otherwise there's a nasty deadlock on copying from the
1910		 * same page as we're writing to, without it being marked
1911		 * up-to-date.
1912		 */
1913		maxlen = cur_iov->iov_len - iov_base;
1914		if (maxlen > bytes)
1915			maxlen = bytes;
1916		fault_in_pages_readable(buf, maxlen);
1917
1918		page = __grab_cache_page(mapping,index,&cached_page,&lru_pvec);
1919		if (!page) {
1920			status = -ENOMEM;
1921			break;
1922		}
1923
1924		status = a_ops->prepare_write(file, page, offset, offset+bytes);
1925		if (unlikely(status)) {
1926			loff_t isize = i_size_read(inode);
1927			/*
1928			 * prepare_write() may have instantiated a few blocks
1929			 * outside i_size.  Trim these off again.
1930			 */
1931			unlock_page(page);
1932			page_cache_release(page);
1933			if (pos + bytes > isize)
1934				vmtruncate(inode, isize);
1935			break;
1936		}
1937		if (likely(nr_segs == 1))
1938			copied = filemap_copy_from_user(page, offset,
1939							buf, bytes);
1940		else
1941			copied = filemap_copy_from_user_iovec(page, offset,
1942						cur_iov, iov_base, bytes);
1943		flush_dcache_page(page);
1944		status = a_ops->commit_write(file, page, offset, offset+bytes);
1945		if (likely(copied > 0)) {
1946			if (!status)
1947				status = copied;
1948
1949			if (status >= 0) {
1950				written += status;
1951				count -= status;
1952				pos += status;
1953				buf += status;
1954				if (unlikely(nr_segs > 1)) {
1955					filemap_set_next_iovec(&cur_iov,
1956							&iov_base, status);
1957					if (count)
1958						buf = cur_iov->iov_base +
1959							iov_base;
1960				} else {
1961					iov_base += status;
1962				}
1963			}
1964		}
1965		if (unlikely(copied != bytes))
1966			if (status >= 0)
1967				status = -EFAULT;
1968		unlock_page(page);
1969		mark_page_accessed(page);
1970		page_cache_release(page);
1971		if (status < 0)
1972			break;
1973		balance_dirty_pages_ratelimited(mapping);
1974		cond_resched();
1975	} while (count);
1976	*ppos = pos;
1977
1978	if (cached_page)
1979		page_cache_release(cached_page);
1980
1981	/*
1982	 * For now, when the user asks for O_SYNC, we'll actually give O_DSYNC
1983	 */
1984	if (likely(status >= 0)) {
1985		if (unlikely((file->f_flags & O_SYNC) || IS_SYNC(inode))) {
1986			if (!a_ops->writepage || !is_sync_kiocb(iocb))
1987				status = generic_osync_inode(inode, mapping,
1988						OSYNC_METADATA|OSYNC_DATA);
1989		}
1990  	}
1991
1992	/*
1993	 * If we get here for O_DIRECT writes then we must have fallen through
1994	 * to buffered writes (block instantiation inside i_size).  So we sync
1995	 * the file data here, to try to honour O_DIRECT expectations.
1996	 */
1997	if (unlikely(file->f_flags & O_DIRECT) && written)
1998		status = filemap_write_and_wait(mapping);
1999
2000	pagevec_lru_add(&lru_pvec);
2001	return written ? written : status;
2002}
2003EXPORT_SYMBOL(generic_file_buffered_write);
2004
2005ssize_t
2006__generic_file_aio_write_nolock(struct kiocb *iocb, const struct iovec *iov,
2007				unsigned long nr_segs, loff_t *ppos)
2008{
2009	struct file *file = iocb->ki_filp;
2010	struct address_space * mapping = file->f_mapping;
2011	size_t ocount;		/* original count */
2012	size_t count;		/* after file limit checks */
2013	struct inode 	*inode = mapping->host;
2014	unsigned long	seg;
2015	loff_t		pos;
2016	ssize_t		written;
2017	ssize_t		err;
2018
2019	ocount = 0;
2020	for (seg = 0; seg < nr_segs; seg++) {
2021		const struct iovec *iv = &iov[seg];
2022
2023		/*
2024		 * If any segment has a negative length, or the cumulative
2025		 * length ever wraps negative then return -EINVAL.
2026		 */
2027		ocount += iv->iov_len;
2028		if (unlikely((ssize_t)(ocount|iv->iov_len) < 0))
2029			return -EINVAL;
2030		if (access_ok(VERIFY_READ, iv->iov_base, iv->iov_len))
2031			continue;
2032		if (seg == 0)
2033			return -EFAULT;
2034		nr_segs = seg;
2035		ocount -= iv->iov_len;	/* This segment is no good */
2036		break;
2037	}
2038
2039	count = ocount;
2040	pos = *ppos;
2041
2042	vfs_check_frozen(inode->i_sb, SB_FREEZE_WRITE);
2043
2044	/* We can write back this queue in page reclaim */
2045	current->backing_dev_info = mapping->backing_dev_info;
2046	written = 0;
2047
2048	err = generic_write_checks(file, &pos, &count, S_ISBLK(inode->i_mode));
2049	if (err)
2050		goto out;
2051
2052	if (count == 0)
2053		goto out;
2054
2055	err = remove_suid(file->f_dentry);
2056	if (err)
2057		goto out;
2058
2059	inode_update_time(inode, 1);
2060
2061	/* coalesce the iovecs and go direct-to-BIO for O_DIRECT */
2062	if (unlikely(file->f_flags & O_DIRECT)) {
2063		written = generic_file_direct_write(iocb, iov,
2064				&nr_segs, pos, ppos, count, ocount);
2065		if (written < 0 || written == count)
2066			goto out;
2067		/*
2068		 * direct-io write to a hole: fall through to buffered I/O
2069		 * for completing the rest of the request.
2070		 */
2071		pos += written;
2072		count -= written;
2073	}
2074
2075	written = generic_file_buffered_write(iocb, iov, nr_segs,
2076			pos, ppos, count, written);
2077out:
2078	current->backing_dev_info = NULL;
2079	return written ? written : err;
2080}
2081EXPORT_SYMBOL(generic_file_aio_write_nolock);
2082
2083ssize_t
2084generic_file_aio_write_nolock(struct kiocb *iocb, const struct iovec *iov,
2085				unsigned long nr_segs, loff_t *ppos)
2086{
2087	struct file *file = iocb->ki_filp;
2088	struct address_space *mapping = file->f_mapping;
2089	struct inode *inode = mapping->host;
2090	ssize_t ret;
2091	loff_t pos = *ppos;
2092
2093	ret = __generic_file_aio_write_nolock(iocb, iov, nr_segs, ppos);
2094
2095	if (ret > 0 && ((file->f_flags & O_SYNC) || IS_SYNC(inode))) {
2096		int err;
2097
2098		err = sync_page_range_nolock(inode, mapping, pos, ret);
2099		if (err < 0)
2100			ret = err;
2101	}
2102	return ret;
2103}
2104
2105ssize_t
2106__generic_file_write_nolock(struct file *file, const struct iovec *iov,
2107				unsigned long nr_segs, loff_t *ppos)
2108{
2109	struct kiocb kiocb;
2110	ssize_t ret;
2111
2112	init_sync_kiocb(&kiocb, file);
2113	ret = __generic_file_aio_write_nolock(&kiocb, iov, nr_segs, ppos);
2114	if (ret == -EIOCBQUEUED)
2115		ret = wait_on_sync_kiocb(&kiocb);
2116	return ret;
2117}
2118
2119ssize_t
2120generic_file_write_nolock(struct file *file, const struct iovec *iov,
2121				unsigned long nr_segs, loff_t *ppos)
2122{
2123	struct kiocb kiocb;
2124	ssize_t ret;
2125
2126	init_sync_kiocb(&kiocb, file);
2127	ret = generic_file_aio_write_nolock(&kiocb, iov, nr_segs, ppos);
2128	if (-EIOCBQUEUED == ret)
2129		ret = wait_on_sync_kiocb(&kiocb);
2130	return ret;
2131}
2132EXPORT_SYMBOL(generic_file_write_nolock);
2133
2134ssize_t generic_file_aio_write(struct kiocb *iocb, const char __user *buf,
2135			       size_t count, loff_t pos)
2136{
2137	struct file *file = iocb->ki_filp;
2138	struct address_space *mapping = file->f_mapping;
2139	struct inode *inode = mapping->host;
2140	ssize_t ret;
2141	struct iovec local_iov = { .iov_base = (void __user *)buf,
2142					.iov_len = count };
2143
2144	BUG_ON(iocb->ki_pos != pos);
2145
2146	down(&inode->i_sem);
2147	ret = __generic_file_aio_write_nolock(iocb, &local_iov, 1,
2148						&iocb->ki_pos);
2149	up(&inode->i_sem);
2150
2151	if (ret > 0 && ((file->f_flags & O_SYNC) || IS_SYNC(inode))) {
2152		ssize_t err;
2153
2154		err = sync_page_range(inode, mapping, pos, ret);
2155		if (err < 0)
2156			ret = err;
2157	}
2158	return ret;
2159}
2160EXPORT_SYMBOL(generic_file_aio_write);
2161
2162ssize_t generic_file_write(struct file *file, const char __user *buf,
2163			   size_t count, loff_t *ppos)
2164{
2165	struct address_space *mapping = file->f_mapping;
2166	struct inode *inode = mapping->host;
2167	ssize_t	ret;
2168	struct iovec local_iov = { .iov_base = (void __user *)buf,
2169					.iov_len = count };
2170
2171	down(&inode->i_sem);
2172	ret = __generic_file_write_nolock(file, &local_iov, 1, ppos);
2173	up(&inode->i_sem);
2174
2175	if (ret > 0 && ((file->f_flags & O_SYNC) || IS_SYNC(inode))) {
2176		ssize_t err;
2177
2178		err = sync_page_range(inode, mapping, *ppos - ret, ret);
2179		if (err < 0)
2180			ret = err;
2181	}
2182	return ret;
2183}
2184EXPORT_SYMBOL(generic_file_write);
2185
2186ssize_t generic_file_readv(struct file *filp, const struct iovec *iov,
2187			unsigned long nr_segs, loff_t *ppos)
2188{
2189	struct kiocb kiocb;
2190	ssize_t ret;
2191
2192	init_sync_kiocb(&kiocb, filp);
2193	ret = __generic_file_aio_read(&kiocb, iov, nr_segs, ppos);
2194	if (-EIOCBQUEUED == ret)
2195		ret = wait_on_sync_kiocb(&kiocb);
2196	return ret;
2197}
2198EXPORT_SYMBOL(generic_file_readv);
2199
2200ssize_t generic_file_writev(struct file *file, const struct iovec *iov,
2201			unsigned long nr_segs, loff_t *ppos)
2202{
2203	struct address_space *mapping = file->f_mapping;
2204	struct inode *inode = mapping->host;
2205	ssize_t ret;
2206
2207	down(&inode->i_sem);
2208	ret = __generic_file_write_nolock(file, iov, nr_segs, ppos);
2209	up(&inode->i_sem);
2210
2211	if (ret > 0 && ((file->f_flags & O_SYNC) || IS_SYNC(inode))) {
2212		int err;
2213
2214		err = sync_page_range(inode, mapping, *ppos - ret, ret);
2215		if (err < 0)
2216			ret = err;
2217	}
2218	return ret;
2219}
2220EXPORT_SYMBOL(generic_file_writev);
2221
2222/*
2223 * Called under i_sem for writes to S_ISREG files.   Returns -EIO if something
2224 * went wrong during pagecache shootdown.
2225 */
2226ssize_t
2227generic_file_direct_IO(int rw, struct kiocb *iocb, const struct iovec *iov,
2228	loff_t offset, unsigned long nr_segs)
2229{
2230	struct file *file = iocb->ki_filp;
2231	struct address_space *mapping = file->f_mapping;
2232	ssize_t retval;
2233	size_t write_len = 0;
2234
2235	/*
2236	 * If it's a write, unmap all mmappings of the file up-front.  This
2237	 * will cause any pte dirty bits to be propagated into the pageframes
2238	 * for the subsequent filemap_write_and_wait().
2239	 */
2240	if (rw == WRITE) {
2241		write_len = iov_length(iov, nr_segs);
2242	       	if (mapping_mapped(mapping))
2243			unmap_mapping_range(mapping, offset, write_len, 0);
2244	}
2245
2246	retval = filemap_write_and_wait(mapping);
2247	if (retval == 0) {
2248		retval = mapping->a_ops->direct_IO(rw, iocb, iov,
2249						offset, nr_segs);
2250		if (rw == WRITE && mapping->nrpages) {
2251			pgoff_t end = (offset + write_len - 1)
2252						>> PAGE_CACHE_SHIFT;
2253			int err = invalidate_inode_pages2_range(mapping,
2254					offset >> PAGE_CACHE_SHIFT, end);
2255			if (err)
2256				retval = err;
2257		}
2258	}
2259	return retval;
2260}
2261EXPORT_SYMBOL_GPL(generic_file_direct_IO);
2262