filemap.c revision c0ff7453bb5c7c98e0885fb94279f2571946f280
1/*
2 *	linux/mm/filemap.c
3 *
4 * Copyright (C) 1994-1999  Linus Torvalds
5 */
6
7/*
8 * This file handles the generic file mmap semantics used by
9 * most "normal" filesystems (but you don't /have/ to use this:
10 * the NFS filesystem used to do this differently, for example)
11 */
12#include <linux/module.h>
13#include <linux/compiler.h>
14#include <linux/fs.h>
15#include <linux/uaccess.h>
16#include <linux/aio.h>
17#include <linux/capability.h>
18#include <linux/kernel_stat.h>
19#include <linux/gfp.h>
20#include <linux/mm.h>
21#include <linux/swap.h>
22#include <linux/mman.h>
23#include <linux/pagemap.h>
24#include <linux/file.h>
25#include <linux/uio.h>
26#include <linux/hash.h>
27#include <linux/writeback.h>
28#include <linux/backing-dev.h>
29#include <linux/pagevec.h>
30#include <linux/blkdev.h>
31#include <linux/security.h>
32#include <linux/syscalls.h>
33#include <linux/cpuset.h>
34#include <linux/hardirq.h> /* for BUG_ON(!in_atomic()) only */
35#include <linux/memcontrol.h>
36#include <linux/mm_inline.h> /* for page_is_file_cache() */
37#include "internal.h"
38
39/*
40 * FIXME: remove all knowledge of the buffer layer from the core VM
41 */
42#include <linux/buffer_head.h> /* for try_to_free_buffers */
43
44#include <asm/mman.h>
45
46/*
47 * Shared mappings implemented 30.11.1994. It's not fully working yet,
48 * though.
49 *
50 * Shared mappings now work. 15.8.1995  Bruno.
51 *
52 * finished 'unifying' the page and buffer cache and SMP-threaded the
53 * page-cache, 21.05.1999, Ingo Molnar <mingo@redhat.com>
54 *
55 * SMP-threaded pagemap-LRU 1999, Andrea Arcangeli <andrea@suse.de>
56 */
57
58/*
59 * Lock ordering:
60 *
61 *  ->i_mmap_lock		(truncate_pagecache)
62 *    ->private_lock		(__free_pte->__set_page_dirty_buffers)
63 *      ->swap_lock		(exclusive_swap_page, others)
64 *        ->mapping->tree_lock
65 *
66 *  ->i_mutex
67 *    ->i_mmap_lock		(truncate->unmap_mapping_range)
68 *
69 *  ->mmap_sem
70 *    ->i_mmap_lock
71 *      ->page_table_lock or pte_lock	(various, mainly in memory.c)
72 *        ->mapping->tree_lock	(arch-dependent flush_dcache_mmap_lock)
73 *
74 *  ->mmap_sem
75 *    ->lock_page		(access_process_vm)
76 *
77 *  ->i_mutex			(generic_file_buffered_write)
78 *    ->mmap_sem		(fault_in_pages_readable->do_page_fault)
79 *
80 *  ->i_mutex
81 *    ->i_alloc_sem             (various)
82 *
83 *  ->inode_lock
84 *    ->sb_lock			(fs/fs-writeback.c)
85 *    ->mapping->tree_lock	(__sync_single_inode)
86 *
87 *  ->i_mmap_lock
88 *    ->anon_vma.lock		(vma_adjust)
89 *
90 *  ->anon_vma.lock
91 *    ->page_table_lock or pte_lock	(anon_vma_prepare and various)
92 *
93 *  ->page_table_lock or pte_lock
94 *    ->swap_lock		(try_to_unmap_one)
95 *    ->private_lock		(try_to_unmap_one)
96 *    ->tree_lock		(try_to_unmap_one)
97 *    ->zone.lru_lock		(follow_page->mark_page_accessed)
98 *    ->zone.lru_lock		(check_pte_range->isolate_lru_page)
99 *    ->private_lock		(page_remove_rmap->set_page_dirty)
100 *    ->tree_lock		(page_remove_rmap->set_page_dirty)
101 *    ->inode_lock		(page_remove_rmap->set_page_dirty)
102 *    ->inode_lock		(zap_pte_range->set_page_dirty)
103 *    ->private_lock		(zap_pte_range->__set_page_dirty_buffers)
104 *
105 *  ->task->proc_lock
106 *    ->dcache_lock		(proc_pid_lookup)
107 *
108 *  (code doesn't rely on that order, so you could switch it around)
109 *  ->tasklist_lock             (memory_failure, collect_procs_ao)
110 *    ->i_mmap_lock
111 */
112
113/*
114 * Remove a page from the page cache and free it. Caller has to make
115 * sure the page is locked and that nobody else uses it - or that usage
116 * is safe.  The caller must hold the mapping's tree_lock.
117 */
118void __remove_from_page_cache(struct page *page)
119{
120	struct address_space *mapping = page->mapping;
121
122	radix_tree_delete(&mapping->page_tree, page->index);
123	page->mapping = NULL;
124	mapping->nrpages--;
125	__dec_zone_page_state(page, NR_FILE_PAGES);
126	if (PageSwapBacked(page))
127		__dec_zone_page_state(page, NR_SHMEM);
128	BUG_ON(page_mapped(page));
129
130	/*
131	 * Some filesystems seem to re-dirty the page even after
132	 * the VM has canceled the dirty bit (eg ext3 journaling).
133	 *
134	 * Fix it up by doing a final dirty accounting check after
135	 * having removed the page entirely.
136	 */
137	if (PageDirty(page) && mapping_cap_account_dirty(mapping)) {
138		dec_zone_page_state(page, NR_FILE_DIRTY);
139		dec_bdi_stat(mapping->backing_dev_info, BDI_RECLAIMABLE);
140	}
141}
142
143void remove_from_page_cache(struct page *page)
144{
145	struct address_space *mapping = page->mapping;
146
147	BUG_ON(!PageLocked(page));
148
149	spin_lock_irq(&mapping->tree_lock);
150	__remove_from_page_cache(page);
151	spin_unlock_irq(&mapping->tree_lock);
152	mem_cgroup_uncharge_cache_page(page);
153}
154
155static int sync_page(void *word)
156{
157	struct address_space *mapping;
158	struct page *page;
159
160	page = container_of((unsigned long *)word, struct page, flags);
161
162	/*
163	 * page_mapping() is being called without PG_locked held.
164	 * Some knowledge of the state and use of the page is used to
165	 * reduce the requirements down to a memory barrier.
166	 * The danger here is of a stale page_mapping() return value
167	 * indicating a struct address_space different from the one it's
168	 * associated with when it is associated with one.
169	 * After smp_mb(), it's either the correct page_mapping() for
170	 * the page, or an old page_mapping() and the page's own
171	 * page_mapping() has gone NULL.
172	 * The ->sync_page() address_space operation must tolerate
173	 * page_mapping() going NULL. By an amazing coincidence,
174	 * this comes about because none of the users of the page
175	 * in the ->sync_page() methods make essential use of the
176	 * page_mapping(), merely passing the page down to the backing
177	 * device's unplug functions when it's non-NULL, which in turn
178	 * ignore it for all cases but swap, where only page_private(page) is
179	 * of interest. When page_mapping() does go NULL, the entire
180	 * call stack gracefully ignores the page and returns.
181	 * -- wli
182	 */
183	smp_mb();
184	mapping = page_mapping(page);
185	if (mapping && mapping->a_ops && mapping->a_ops->sync_page)
186		mapping->a_ops->sync_page(page);
187	io_schedule();
188	return 0;
189}
190
191static int sync_page_killable(void *word)
192{
193	sync_page(word);
194	return fatal_signal_pending(current) ? -EINTR : 0;
195}
196
197/**
198 * __filemap_fdatawrite_range - start writeback on mapping dirty pages in range
199 * @mapping:	address space structure to write
200 * @start:	offset in bytes where the range starts
201 * @end:	offset in bytes where the range ends (inclusive)
202 * @sync_mode:	enable synchronous operation
203 *
204 * Start writeback against all of a mapping's dirty pages that lie
205 * within the byte offsets <start, end> inclusive.
206 *
207 * If sync_mode is WB_SYNC_ALL then this is a "data integrity" operation, as
208 * opposed to a regular memory cleansing writeback.  The difference between
209 * these two operations is that if a dirty page/buffer is encountered, it must
210 * be waited upon, and not just skipped over.
211 */
212int __filemap_fdatawrite_range(struct address_space *mapping, loff_t start,
213				loff_t end, int sync_mode)
214{
215	int ret;
216	struct writeback_control wbc = {
217		.sync_mode = sync_mode,
218		.nr_to_write = LONG_MAX,
219		.range_start = start,
220		.range_end = end,
221	};
222
223	if (!mapping_cap_writeback_dirty(mapping))
224		return 0;
225
226	ret = do_writepages(mapping, &wbc);
227	return ret;
228}
229
230static inline int __filemap_fdatawrite(struct address_space *mapping,
231	int sync_mode)
232{
233	return __filemap_fdatawrite_range(mapping, 0, LLONG_MAX, sync_mode);
234}
235
236int filemap_fdatawrite(struct address_space *mapping)
237{
238	return __filemap_fdatawrite(mapping, WB_SYNC_ALL);
239}
240EXPORT_SYMBOL(filemap_fdatawrite);
241
242int filemap_fdatawrite_range(struct address_space *mapping, loff_t start,
243				loff_t end)
244{
245	return __filemap_fdatawrite_range(mapping, start, end, WB_SYNC_ALL);
246}
247EXPORT_SYMBOL(filemap_fdatawrite_range);
248
249/**
250 * filemap_flush - mostly a non-blocking flush
251 * @mapping:	target address_space
252 *
253 * This is a mostly non-blocking flush.  Not suitable for data-integrity
254 * purposes - I/O may not be started against all dirty pages.
255 */
256int filemap_flush(struct address_space *mapping)
257{
258	return __filemap_fdatawrite(mapping, WB_SYNC_NONE);
259}
260EXPORT_SYMBOL(filemap_flush);
261
262/**
263 * filemap_fdatawait_range - wait for writeback to complete
264 * @mapping:		address space structure to wait for
265 * @start_byte:		offset in bytes where the range starts
266 * @end_byte:		offset in bytes where the range ends (inclusive)
267 *
268 * Walk the list of under-writeback pages of the given address space
269 * in the given range and wait for all of them.
270 */
271int filemap_fdatawait_range(struct address_space *mapping, loff_t start_byte,
272			    loff_t end_byte)
273{
274	pgoff_t index = start_byte >> PAGE_CACHE_SHIFT;
275	pgoff_t end = end_byte >> PAGE_CACHE_SHIFT;
276	struct pagevec pvec;
277	int nr_pages;
278	int ret = 0;
279
280	if (end_byte < start_byte)
281		return 0;
282
283	pagevec_init(&pvec, 0);
284	while ((index <= end) &&
285			(nr_pages = pagevec_lookup_tag(&pvec, mapping, &index,
286			PAGECACHE_TAG_WRITEBACK,
287			min(end - index, (pgoff_t)PAGEVEC_SIZE-1) + 1)) != 0) {
288		unsigned i;
289
290		for (i = 0; i < nr_pages; i++) {
291			struct page *page = pvec.pages[i];
292
293			/* until radix tree lookup accepts end_index */
294			if (page->index > end)
295				continue;
296
297			wait_on_page_writeback(page);
298			if (PageError(page))
299				ret = -EIO;
300		}
301		pagevec_release(&pvec);
302		cond_resched();
303	}
304
305	/* Check for outstanding write errors */
306	if (test_and_clear_bit(AS_ENOSPC, &mapping->flags))
307		ret = -ENOSPC;
308	if (test_and_clear_bit(AS_EIO, &mapping->flags))
309		ret = -EIO;
310
311	return ret;
312}
313EXPORT_SYMBOL(filemap_fdatawait_range);
314
315/**
316 * filemap_fdatawait - wait for all under-writeback pages to complete
317 * @mapping: address space structure to wait for
318 *
319 * Walk the list of under-writeback pages of the given address space
320 * and wait for all of them.
321 */
322int filemap_fdatawait(struct address_space *mapping)
323{
324	loff_t i_size = i_size_read(mapping->host);
325
326	if (i_size == 0)
327		return 0;
328
329	return filemap_fdatawait_range(mapping, 0, i_size - 1);
330}
331EXPORT_SYMBOL(filemap_fdatawait);
332
333int filemap_write_and_wait(struct address_space *mapping)
334{
335	int err = 0;
336
337	if (mapping->nrpages) {
338		err = filemap_fdatawrite(mapping);
339		/*
340		 * Even if the above returned error, the pages may be
341		 * written partially (e.g. -ENOSPC), so we wait for it.
342		 * But the -EIO is special case, it may indicate the worst
343		 * thing (e.g. bug) happened, so we avoid waiting for it.
344		 */
345		if (err != -EIO) {
346			int err2 = filemap_fdatawait(mapping);
347			if (!err)
348				err = err2;
349		}
350	}
351	return err;
352}
353EXPORT_SYMBOL(filemap_write_and_wait);
354
355/**
356 * filemap_write_and_wait_range - write out & wait on a file range
357 * @mapping:	the address_space for the pages
358 * @lstart:	offset in bytes where the range starts
359 * @lend:	offset in bytes where the range ends (inclusive)
360 *
361 * Write out and wait upon file offsets lstart->lend, inclusive.
362 *
363 * Note that `lend' is inclusive (describes the last byte to be written) so
364 * that this function can be used to write to the very end-of-file (end = -1).
365 */
366int filemap_write_and_wait_range(struct address_space *mapping,
367				 loff_t lstart, loff_t lend)
368{
369	int err = 0;
370
371	if (mapping->nrpages) {
372		err = __filemap_fdatawrite_range(mapping, lstart, lend,
373						 WB_SYNC_ALL);
374		/* See comment of filemap_write_and_wait() */
375		if (err != -EIO) {
376			int err2 = filemap_fdatawait_range(mapping,
377						lstart, lend);
378			if (!err)
379				err = err2;
380		}
381	}
382	return err;
383}
384EXPORT_SYMBOL(filemap_write_and_wait_range);
385
386/**
387 * add_to_page_cache_locked - add a locked page to the pagecache
388 * @page:	page to add
389 * @mapping:	the page's address_space
390 * @offset:	page index
391 * @gfp_mask:	page allocation mode
392 *
393 * This function is used to add a page to the pagecache. It must be locked.
394 * This function does not add the page to the LRU.  The caller must do that.
395 */
396int add_to_page_cache_locked(struct page *page, struct address_space *mapping,
397		pgoff_t offset, gfp_t gfp_mask)
398{
399	int error;
400
401	VM_BUG_ON(!PageLocked(page));
402
403	error = mem_cgroup_cache_charge(page, current->mm,
404					gfp_mask & GFP_RECLAIM_MASK);
405	if (error)
406		goto out;
407
408	error = radix_tree_preload(gfp_mask & ~__GFP_HIGHMEM);
409	if (error == 0) {
410		page_cache_get(page);
411		page->mapping = mapping;
412		page->index = offset;
413
414		spin_lock_irq(&mapping->tree_lock);
415		error = radix_tree_insert(&mapping->page_tree, offset, page);
416		if (likely(!error)) {
417			mapping->nrpages++;
418			__inc_zone_page_state(page, NR_FILE_PAGES);
419			if (PageSwapBacked(page))
420				__inc_zone_page_state(page, NR_SHMEM);
421			spin_unlock_irq(&mapping->tree_lock);
422		} else {
423			page->mapping = NULL;
424			spin_unlock_irq(&mapping->tree_lock);
425			mem_cgroup_uncharge_cache_page(page);
426			page_cache_release(page);
427		}
428		radix_tree_preload_end();
429	} else
430		mem_cgroup_uncharge_cache_page(page);
431out:
432	return error;
433}
434EXPORT_SYMBOL(add_to_page_cache_locked);
435
436int add_to_page_cache_lru(struct page *page, struct address_space *mapping,
437				pgoff_t offset, gfp_t gfp_mask)
438{
439	int ret;
440
441	/*
442	 * Splice_read and readahead add shmem/tmpfs pages into the page cache
443	 * before shmem_readpage has a chance to mark them as SwapBacked: they
444	 * need to go on the anon lru below, and mem_cgroup_cache_charge
445	 * (called in add_to_page_cache) needs to know where they're going too.
446	 */
447	if (mapping_cap_swap_backed(mapping))
448		SetPageSwapBacked(page);
449
450	ret = add_to_page_cache(page, mapping, offset, gfp_mask);
451	if (ret == 0) {
452		if (page_is_file_cache(page))
453			lru_cache_add_file(page);
454		else
455			lru_cache_add_anon(page);
456	}
457	return ret;
458}
459EXPORT_SYMBOL_GPL(add_to_page_cache_lru);
460
461#ifdef CONFIG_NUMA
462struct page *__page_cache_alloc(gfp_t gfp)
463{
464	int n;
465	struct page *page;
466
467	if (cpuset_do_page_mem_spread()) {
468		get_mems_allowed();
469		n = cpuset_mem_spread_node();
470		page = alloc_pages_exact_node(n, gfp, 0);
471		put_mems_allowed();
472		return page;
473	}
474	return alloc_pages(gfp, 0);
475}
476EXPORT_SYMBOL(__page_cache_alloc);
477#endif
478
479static int __sleep_on_page_lock(void *word)
480{
481	io_schedule();
482	return 0;
483}
484
485/*
486 * In order to wait for pages to become available there must be
487 * waitqueues associated with pages. By using a hash table of
488 * waitqueues where the bucket discipline is to maintain all
489 * waiters on the same queue and wake all when any of the pages
490 * become available, and for the woken contexts to check to be
491 * sure the appropriate page became available, this saves space
492 * at a cost of "thundering herd" phenomena during rare hash
493 * collisions.
494 */
495static wait_queue_head_t *page_waitqueue(struct page *page)
496{
497	const struct zone *zone = page_zone(page);
498
499	return &zone->wait_table[hash_ptr(page, zone->wait_table_bits)];
500}
501
502static inline void wake_up_page(struct page *page, int bit)
503{
504	__wake_up_bit(page_waitqueue(page), &page->flags, bit);
505}
506
507void wait_on_page_bit(struct page *page, int bit_nr)
508{
509	DEFINE_WAIT_BIT(wait, &page->flags, bit_nr);
510
511	if (test_bit(bit_nr, &page->flags))
512		__wait_on_bit(page_waitqueue(page), &wait, sync_page,
513							TASK_UNINTERRUPTIBLE);
514}
515EXPORT_SYMBOL(wait_on_page_bit);
516
517/**
518 * add_page_wait_queue - Add an arbitrary waiter to a page's wait queue
519 * @page: Page defining the wait queue of interest
520 * @waiter: Waiter to add to the queue
521 *
522 * Add an arbitrary @waiter to the wait queue for the nominated @page.
523 */
524void add_page_wait_queue(struct page *page, wait_queue_t *waiter)
525{
526	wait_queue_head_t *q = page_waitqueue(page);
527	unsigned long flags;
528
529	spin_lock_irqsave(&q->lock, flags);
530	__add_wait_queue(q, waiter);
531	spin_unlock_irqrestore(&q->lock, flags);
532}
533EXPORT_SYMBOL_GPL(add_page_wait_queue);
534
535/**
536 * unlock_page - unlock a locked page
537 * @page: the page
538 *
539 * Unlocks the page and wakes up sleepers in ___wait_on_page_locked().
540 * Also wakes sleepers in wait_on_page_writeback() because the wakeup
541 * mechananism between PageLocked pages and PageWriteback pages is shared.
542 * But that's OK - sleepers in wait_on_page_writeback() just go back to sleep.
543 *
544 * The mb is necessary to enforce ordering between the clear_bit and the read
545 * of the waitqueue (to avoid SMP races with a parallel wait_on_page_locked()).
546 */
547void unlock_page(struct page *page)
548{
549	VM_BUG_ON(!PageLocked(page));
550	clear_bit_unlock(PG_locked, &page->flags);
551	smp_mb__after_clear_bit();
552	wake_up_page(page, PG_locked);
553}
554EXPORT_SYMBOL(unlock_page);
555
556/**
557 * end_page_writeback - end writeback against a page
558 * @page: the page
559 */
560void end_page_writeback(struct page *page)
561{
562	if (TestClearPageReclaim(page))
563		rotate_reclaimable_page(page);
564
565	if (!test_clear_page_writeback(page))
566		BUG();
567
568	smp_mb__after_clear_bit();
569	wake_up_page(page, PG_writeback);
570}
571EXPORT_SYMBOL(end_page_writeback);
572
573/**
574 * __lock_page - get a lock on the page, assuming we need to sleep to get it
575 * @page: the page to lock
576 *
577 * Ugly. Running sync_page() in state TASK_UNINTERRUPTIBLE is scary.  If some
578 * random driver's requestfn sets TASK_RUNNING, we could busywait.  However
579 * chances are that on the second loop, the block layer's plug list is empty,
580 * so sync_page() will then return in state TASK_UNINTERRUPTIBLE.
581 */
582void __lock_page(struct page *page)
583{
584	DEFINE_WAIT_BIT(wait, &page->flags, PG_locked);
585
586	__wait_on_bit_lock(page_waitqueue(page), &wait, sync_page,
587							TASK_UNINTERRUPTIBLE);
588}
589EXPORT_SYMBOL(__lock_page);
590
591int __lock_page_killable(struct page *page)
592{
593	DEFINE_WAIT_BIT(wait, &page->flags, PG_locked);
594
595	return __wait_on_bit_lock(page_waitqueue(page), &wait,
596					sync_page_killable, TASK_KILLABLE);
597}
598EXPORT_SYMBOL_GPL(__lock_page_killable);
599
600/**
601 * __lock_page_nosync - get a lock on the page, without calling sync_page()
602 * @page: the page to lock
603 *
604 * Variant of lock_page that does not require the caller to hold a reference
605 * on the page's mapping.
606 */
607void __lock_page_nosync(struct page *page)
608{
609	DEFINE_WAIT_BIT(wait, &page->flags, PG_locked);
610	__wait_on_bit_lock(page_waitqueue(page), &wait, __sleep_on_page_lock,
611							TASK_UNINTERRUPTIBLE);
612}
613
614/**
615 * find_get_page - find and get a page reference
616 * @mapping: the address_space to search
617 * @offset: the page index
618 *
619 * Is there a pagecache struct page at the given (mapping, offset) tuple?
620 * If yes, increment its refcount and return it; if no, return NULL.
621 */
622struct page *find_get_page(struct address_space *mapping, pgoff_t offset)
623{
624	void **pagep;
625	struct page *page;
626
627	rcu_read_lock();
628repeat:
629	page = NULL;
630	pagep = radix_tree_lookup_slot(&mapping->page_tree, offset);
631	if (pagep) {
632		page = radix_tree_deref_slot(pagep);
633		if (unlikely(!page || page == RADIX_TREE_RETRY))
634			goto repeat;
635
636		if (!page_cache_get_speculative(page))
637			goto repeat;
638
639		/*
640		 * Has the page moved?
641		 * This is part of the lockless pagecache protocol. See
642		 * include/linux/pagemap.h for details.
643		 */
644		if (unlikely(page != *pagep)) {
645			page_cache_release(page);
646			goto repeat;
647		}
648	}
649	rcu_read_unlock();
650
651	return page;
652}
653EXPORT_SYMBOL(find_get_page);
654
655/**
656 * find_lock_page - locate, pin and lock a pagecache page
657 * @mapping: the address_space to search
658 * @offset: the page index
659 *
660 * Locates the desired pagecache page, locks it, increments its reference
661 * count and returns its address.
662 *
663 * Returns zero if the page was not present. find_lock_page() may sleep.
664 */
665struct page *find_lock_page(struct address_space *mapping, pgoff_t offset)
666{
667	struct page *page;
668
669repeat:
670	page = find_get_page(mapping, offset);
671	if (page) {
672		lock_page(page);
673		/* Has the page been truncated? */
674		if (unlikely(page->mapping != mapping)) {
675			unlock_page(page);
676			page_cache_release(page);
677			goto repeat;
678		}
679		VM_BUG_ON(page->index != offset);
680	}
681	return page;
682}
683EXPORT_SYMBOL(find_lock_page);
684
685/**
686 * find_or_create_page - locate or add a pagecache page
687 * @mapping: the page's address_space
688 * @index: the page's index into the mapping
689 * @gfp_mask: page allocation mode
690 *
691 * Locates a page in the pagecache.  If the page is not present, a new page
692 * is allocated using @gfp_mask and is added to the pagecache and to the VM's
693 * LRU list.  The returned page is locked and has its reference count
694 * incremented.
695 *
696 * find_or_create_page() may sleep, even if @gfp_flags specifies an atomic
697 * allocation!
698 *
699 * find_or_create_page() returns the desired page's address, or zero on
700 * memory exhaustion.
701 */
702struct page *find_or_create_page(struct address_space *mapping,
703		pgoff_t index, gfp_t gfp_mask)
704{
705	struct page *page;
706	int err;
707repeat:
708	page = find_lock_page(mapping, index);
709	if (!page) {
710		page = __page_cache_alloc(gfp_mask);
711		if (!page)
712			return NULL;
713		/*
714		 * We want a regular kernel memory (not highmem or DMA etc)
715		 * allocation for the radix tree nodes, but we need to honour
716		 * the context-specific requirements the caller has asked for.
717		 * GFP_RECLAIM_MASK collects those requirements.
718		 */
719		err = add_to_page_cache_lru(page, mapping, index,
720			(gfp_mask & GFP_RECLAIM_MASK));
721		if (unlikely(err)) {
722			page_cache_release(page);
723			page = NULL;
724			if (err == -EEXIST)
725				goto repeat;
726		}
727	}
728	return page;
729}
730EXPORT_SYMBOL(find_or_create_page);
731
732/**
733 * find_get_pages - gang pagecache lookup
734 * @mapping:	The address_space to search
735 * @start:	The starting page index
736 * @nr_pages:	The maximum number of pages
737 * @pages:	Where the resulting pages are placed
738 *
739 * find_get_pages() will search for and return a group of up to
740 * @nr_pages pages in the mapping.  The pages are placed at @pages.
741 * find_get_pages() takes a reference against the returned pages.
742 *
743 * The search returns a group of mapping-contiguous pages with ascending
744 * indexes.  There may be holes in the indices due to not-present pages.
745 *
746 * find_get_pages() returns the number of pages which were found.
747 */
748unsigned find_get_pages(struct address_space *mapping, pgoff_t start,
749			    unsigned int nr_pages, struct page **pages)
750{
751	unsigned int i;
752	unsigned int ret;
753	unsigned int nr_found;
754
755	rcu_read_lock();
756restart:
757	nr_found = radix_tree_gang_lookup_slot(&mapping->page_tree,
758				(void ***)pages, start, nr_pages);
759	ret = 0;
760	for (i = 0; i < nr_found; i++) {
761		struct page *page;
762repeat:
763		page = radix_tree_deref_slot((void **)pages[i]);
764		if (unlikely(!page))
765			continue;
766		/*
767		 * this can only trigger if nr_found == 1, making livelock
768		 * a non issue.
769		 */
770		if (unlikely(page == RADIX_TREE_RETRY))
771			goto restart;
772
773		if (!page_cache_get_speculative(page))
774			goto repeat;
775
776		/* Has the page moved? */
777		if (unlikely(page != *((void **)pages[i]))) {
778			page_cache_release(page);
779			goto repeat;
780		}
781
782		pages[ret] = page;
783		ret++;
784	}
785	rcu_read_unlock();
786	return ret;
787}
788
789/**
790 * find_get_pages_contig - gang contiguous pagecache lookup
791 * @mapping:	The address_space to search
792 * @index:	The starting page index
793 * @nr_pages:	The maximum number of pages
794 * @pages:	Where the resulting pages are placed
795 *
796 * find_get_pages_contig() works exactly like find_get_pages(), except
797 * that the returned number of pages are guaranteed to be contiguous.
798 *
799 * find_get_pages_contig() returns the number of pages which were found.
800 */
801unsigned find_get_pages_contig(struct address_space *mapping, pgoff_t index,
802			       unsigned int nr_pages, struct page **pages)
803{
804	unsigned int i;
805	unsigned int ret;
806	unsigned int nr_found;
807
808	rcu_read_lock();
809restart:
810	nr_found = radix_tree_gang_lookup_slot(&mapping->page_tree,
811				(void ***)pages, index, nr_pages);
812	ret = 0;
813	for (i = 0; i < nr_found; i++) {
814		struct page *page;
815repeat:
816		page = radix_tree_deref_slot((void **)pages[i]);
817		if (unlikely(!page))
818			continue;
819		/*
820		 * this can only trigger if nr_found == 1, making livelock
821		 * a non issue.
822		 */
823		if (unlikely(page == RADIX_TREE_RETRY))
824			goto restart;
825
826		if (page->mapping == NULL || page->index != index)
827			break;
828
829		if (!page_cache_get_speculative(page))
830			goto repeat;
831
832		/* Has the page moved? */
833		if (unlikely(page != *((void **)pages[i]))) {
834			page_cache_release(page);
835			goto repeat;
836		}
837
838		pages[ret] = page;
839		ret++;
840		index++;
841	}
842	rcu_read_unlock();
843	return ret;
844}
845EXPORT_SYMBOL(find_get_pages_contig);
846
847/**
848 * find_get_pages_tag - find and return pages that match @tag
849 * @mapping:	the address_space to search
850 * @index:	the starting page index
851 * @tag:	the tag index
852 * @nr_pages:	the maximum number of pages
853 * @pages:	where the resulting pages are placed
854 *
855 * Like find_get_pages, except we only return pages which are tagged with
856 * @tag.   We update @index to index the next page for the traversal.
857 */
858unsigned find_get_pages_tag(struct address_space *mapping, pgoff_t *index,
859			int tag, unsigned int nr_pages, struct page **pages)
860{
861	unsigned int i;
862	unsigned int ret;
863	unsigned int nr_found;
864
865	rcu_read_lock();
866restart:
867	nr_found = radix_tree_gang_lookup_tag_slot(&mapping->page_tree,
868				(void ***)pages, *index, nr_pages, tag);
869	ret = 0;
870	for (i = 0; i < nr_found; i++) {
871		struct page *page;
872repeat:
873		page = radix_tree_deref_slot((void **)pages[i]);
874		if (unlikely(!page))
875			continue;
876		/*
877		 * this can only trigger if nr_found == 1, making livelock
878		 * a non issue.
879		 */
880		if (unlikely(page == RADIX_TREE_RETRY))
881			goto restart;
882
883		if (!page_cache_get_speculative(page))
884			goto repeat;
885
886		/* Has the page moved? */
887		if (unlikely(page != *((void **)pages[i]))) {
888			page_cache_release(page);
889			goto repeat;
890		}
891
892		pages[ret] = page;
893		ret++;
894	}
895	rcu_read_unlock();
896
897	if (ret)
898		*index = pages[ret - 1]->index + 1;
899
900	return ret;
901}
902EXPORT_SYMBOL(find_get_pages_tag);
903
904/**
905 * grab_cache_page_nowait - returns locked page at given index in given cache
906 * @mapping: target address_space
907 * @index: the page index
908 *
909 * Same as grab_cache_page(), but do not wait if the page is unavailable.
910 * This is intended for speculative data generators, where the data can
911 * be regenerated if the page couldn't be grabbed.  This routine should
912 * be safe to call while holding the lock for another page.
913 *
914 * Clear __GFP_FS when allocating the page to avoid recursion into the fs
915 * and deadlock against the caller's locked page.
916 */
917struct page *
918grab_cache_page_nowait(struct address_space *mapping, pgoff_t index)
919{
920	struct page *page = find_get_page(mapping, index);
921
922	if (page) {
923		if (trylock_page(page))
924			return page;
925		page_cache_release(page);
926		return NULL;
927	}
928	page = __page_cache_alloc(mapping_gfp_mask(mapping) & ~__GFP_FS);
929	if (page && add_to_page_cache_lru(page, mapping, index, GFP_NOFS)) {
930		page_cache_release(page);
931		page = NULL;
932	}
933	return page;
934}
935EXPORT_SYMBOL(grab_cache_page_nowait);
936
937/*
938 * CD/DVDs are error prone. When a medium error occurs, the driver may fail
939 * a _large_ part of the i/o request. Imagine the worst scenario:
940 *
941 *      ---R__________________________________________B__________
942 *         ^ reading here                             ^ bad block(assume 4k)
943 *
944 * read(R) => miss => readahead(R...B) => media error => frustrating retries
945 * => failing the whole request => read(R) => read(R+1) =>
946 * readahead(R+1...B+1) => bang => read(R+2) => read(R+3) =>
947 * readahead(R+3...B+2) => bang => read(R+3) => read(R+4) =>
948 * readahead(R+4...B+3) => bang => read(R+4) => read(R+5) => ......
949 *
950 * It is going insane. Fix it by quickly scaling down the readahead size.
951 */
952static void shrink_readahead_size_eio(struct file *filp,
953					struct file_ra_state *ra)
954{
955	ra->ra_pages /= 4;
956}
957
958/**
959 * do_generic_file_read - generic file read routine
960 * @filp:	the file to read
961 * @ppos:	current file position
962 * @desc:	read_descriptor
963 * @actor:	read method
964 *
965 * This is a generic file read routine, and uses the
966 * mapping->a_ops->readpage() function for the actual low-level stuff.
967 *
968 * This is really ugly. But the goto's actually try to clarify some
969 * of the logic when it comes to error handling etc.
970 */
971static void do_generic_file_read(struct file *filp, loff_t *ppos,
972		read_descriptor_t *desc, read_actor_t actor)
973{
974	struct address_space *mapping = filp->f_mapping;
975	struct inode *inode = mapping->host;
976	struct file_ra_state *ra = &filp->f_ra;
977	pgoff_t index;
978	pgoff_t last_index;
979	pgoff_t prev_index;
980	unsigned long offset;      /* offset into pagecache page */
981	unsigned int prev_offset;
982	int error;
983
984	index = *ppos >> PAGE_CACHE_SHIFT;
985	prev_index = ra->prev_pos >> PAGE_CACHE_SHIFT;
986	prev_offset = ra->prev_pos & (PAGE_CACHE_SIZE-1);
987	last_index = (*ppos + desc->count + PAGE_CACHE_SIZE-1) >> PAGE_CACHE_SHIFT;
988	offset = *ppos & ~PAGE_CACHE_MASK;
989
990	for (;;) {
991		struct page *page;
992		pgoff_t end_index;
993		loff_t isize;
994		unsigned long nr, ret;
995
996		cond_resched();
997find_page:
998		page = find_get_page(mapping, index);
999		if (!page) {
1000			page_cache_sync_readahead(mapping,
1001					ra, filp,
1002					index, last_index - index);
1003			page = find_get_page(mapping, index);
1004			if (unlikely(page == NULL))
1005				goto no_cached_page;
1006		}
1007		if (PageReadahead(page)) {
1008			page_cache_async_readahead(mapping,
1009					ra, filp, page,
1010					index, last_index - index);
1011		}
1012		if (!PageUptodate(page)) {
1013			if (inode->i_blkbits == PAGE_CACHE_SHIFT ||
1014					!mapping->a_ops->is_partially_uptodate)
1015				goto page_not_up_to_date;
1016			if (!trylock_page(page))
1017				goto page_not_up_to_date;
1018			if (!mapping->a_ops->is_partially_uptodate(page,
1019								desc, offset))
1020				goto page_not_up_to_date_locked;
1021			unlock_page(page);
1022		}
1023page_ok:
1024		/*
1025		 * i_size must be checked after we know the page is Uptodate.
1026		 *
1027		 * Checking i_size after the check allows us to calculate
1028		 * the correct value for "nr", which means the zero-filled
1029		 * part of the page is not copied back to userspace (unless
1030		 * another truncate extends the file - this is desired though).
1031		 */
1032
1033		isize = i_size_read(inode);
1034		end_index = (isize - 1) >> PAGE_CACHE_SHIFT;
1035		if (unlikely(!isize || index > end_index)) {
1036			page_cache_release(page);
1037			goto out;
1038		}
1039
1040		/* nr is the maximum number of bytes to copy from this page */
1041		nr = PAGE_CACHE_SIZE;
1042		if (index == end_index) {
1043			nr = ((isize - 1) & ~PAGE_CACHE_MASK) + 1;
1044			if (nr <= offset) {
1045				page_cache_release(page);
1046				goto out;
1047			}
1048		}
1049		nr = nr - offset;
1050
1051		/* If users can be writing to this page using arbitrary
1052		 * virtual addresses, take care about potential aliasing
1053		 * before reading the page on the kernel side.
1054		 */
1055		if (mapping_writably_mapped(mapping))
1056			flush_dcache_page(page);
1057
1058		/*
1059		 * When a sequential read accesses a page several times,
1060		 * only mark it as accessed the first time.
1061		 */
1062		if (prev_index != index || offset != prev_offset)
1063			mark_page_accessed(page);
1064		prev_index = index;
1065
1066		/*
1067		 * Ok, we have the page, and it's up-to-date, so
1068		 * now we can copy it to user space...
1069		 *
1070		 * The actor routine returns how many bytes were actually used..
1071		 * NOTE! This may not be the same as how much of a user buffer
1072		 * we filled up (we may be padding etc), so we can only update
1073		 * "pos" here (the actor routine has to update the user buffer
1074		 * pointers and the remaining count).
1075		 */
1076		ret = actor(desc, page, offset, nr);
1077		offset += ret;
1078		index += offset >> PAGE_CACHE_SHIFT;
1079		offset &= ~PAGE_CACHE_MASK;
1080		prev_offset = offset;
1081
1082		page_cache_release(page);
1083		if (ret == nr && desc->count)
1084			continue;
1085		goto out;
1086
1087page_not_up_to_date:
1088		/* Get exclusive access to the page ... */
1089		error = lock_page_killable(page);
1090		if (unlikely(error))
1091			goto readpage_error;
1092
1093page_not_up_to_date_locked:
1094		/* Did it get truncated before we got the lock? */
1095		if (!page->mapping) {
1096			unlock_page(page);
1097			page_cache_release(page);
1098			continue;
1099		}
1100
1101		/* Did somebody else fill it already? */
1102		if (PageUptodate(page)) {
1103			unlock_page(page);
1104			goto page_ok;
1105		}
1106
1107readpage:
1108		/* Start the actual read. The read will unlock the page. */
1109		error = mapping->a_ops->readpage(filp, page);
1110
1111		if (unlikely(error)) {
1112			if (error == AOP_TRUNCATED_PAGE) {
1113				page_cache_release(page);
1114				goto find_page;
1115			}
1116			goto readpage_error;
1117		}
1118
1119		if (!PageUptodate(page)) {
1120			error = lock_page_killable(page);
1121			if (unlikely(error))
1122				goto readpage_error;
1123			if (!PageUptodate(page)) {
1124				if (page->mapping == NULL) {
1125					/*
1126					 * invalidate_mapping_pages got it
1127					 */
1128					unlock_page(page);
1129					page_cache_release(page);
1130					goto find_page;
1131				}
1132				unlock_page(page);
1133				shrink_readahead_size_eio(filp, ra);
1134				error = -EIO;
1135				goto readpage_error;
1136			}
1137			unlock_page(page);
1138		}
1139
1140		goto page_ok;
1141
1142readpage_error:
1143		/* UHHUH! A synchronous read error occurred. Report it */
1144		desc->error = error;
1145		page_cache_release(page);
1146		goto out;
1147
1148no_cached_page:
1149		/*
1150		 * Ok, it wasn't cached, so we need to create a new
1151		 * page..
1152		 */
1153		page = page_cache_alloc_cold(mapping);
1154		if (!page) {
1155			desc->error = -ENOMEM;
1156			goto out;
1157		}
1158		error = add_to_page_cache_lru(page, mapping,
1159						index, GFP_KERNEL);
1160		if (error) {
1161			page_cache_release(page);
1162			if (error == -EEXIST)
1163				goto find_page;
1164			desc->error = error;
1165			goto out;
1166		}
1167		goto readpage;
1168	}
1169
1170out:
1171	ra->prev_pos = prev_index;
1172	ra->prev_pos <<= PAGE_CACHE_SHIFT;
1173	ra->prev_pos |= prev_offset;
1174
1175	*ppos = ((loff_t)index << PAGE_CACHE_SHIFT) + offset;
1176	file_accessed(filp);
1177}
1178
1179int file_read_actor(read_descriptor_t *desc, struct page *page,
1180			unsigned long offset, unsigned long size)
1181{
1182	char *kaddr;
1183	unsigned long left, count = desc->count;
1184
1185	if (size > count)
1186		size = count;
1187
1188	/*
1189	 * Faults on the destination of a read are common, so do it before
1190	 * taking the kmap.
1191	 */
1192	if (!fault_in_pages_writeable(desc->arg.buf, size)) {
1193		kaddr = kmap_atomic(page, KM_USER0);
1194		left = __copy_to_user_inatomic(desc->arg.buf,
1195						kaddr + offset, size);
1196		kunmap_atomic(kaddr, KM_USER0);
1197		if (left == 0)
1198			goto success;
1199	}
1200
1201	/* Do it the slow way */
1202	kaddr = kmap(page);
1203	left = __copy_to_user(desc->arg.buf, kaddr + offset, size);
1204	kunmap(page);
1205
1206	if (left) {
1207		size -= left;
1208		desc->error = -EFAULT;
1209	}
1210success:
1211	desc->count = count - size;
1212	desc->written += size;
1213	desc->arg.buf += size;
1214	return size;
1215}
1216
1217/*
1218 * Performs necessary checks before doing a write
1219 * @iov:	io vector request
1220 * @nr_segs:	number of segments in the iovec
1221 * @count:	number of bytes to write
1222 * @access_flags: type of access: %VERIFY_READ or %VERIFY_WRITE
1223 *
1224 * Adjust number of segments and amount of bytes to write (nr_segs should be
1225 * properly initialized first). Returns appropriate error code that caller
1226 * should return or zero in case that write should be allowed.
1227 */
1228int generic_segment_checks(const struct iovec *iov,
1229			unsigned long *nr_segs, size_t *count, int access_flags)
1230{
1231	unsigned long   seg;
1232	size_t cnt = 0;
1233	for (seg = 0; seg < *nr_segs; seg++) {
1234		const struct iovec *iv = &iov[seg];
1235
1236		/*
1237		 * If any segment has a negative length, or the cumulative
1238		 * length ever wraps negative then return -EINVAL.
1239		 */
1240		cnt += iv->iov_len;
1241		if (unlikely((ssize_t)(cnt|iv->iov_len) < 0))
1242			return -EINVAL;
1243		if (access_ok(access_flags, iv->iov_base, iv->iov_len))
1244			continue;
1245		if (seg == 0)
1246			return -EFAULT;
1247		*nr_segs = seg;
1248		cnt -= iv->iov_len;	/* This segment is no good */
1249		break;
1250	}
1251	*count = cnt;
1252	return 0;
1253}
1254EXPORT_SYMBOL(generic_segment_checks);
1255
1256/**
1257 * generic_file_aio_read - generic filesystem read routine
1258 * @iocb:	kernel I/O control block
1259 * @iov:	io vector request
1260 * @nr_segs:	number of segments in the iovec
1261 * @pos:	current file position
1262 *
1263 * This is the "read()" routine for all filesystems
1264 * that can use the page cache directly.
1265 */
1266ssize_t
1267generic_file_aio_read(struct kiocb *iocb, const struct iovec *iov,
1268		unsigned long nr_segs, loff_t pos)
1269{
1270	struct file *filp = iocb->ki_filp;
1271	ssize_t retval;
1272	unsigned long seg;
1273	size_t count;
1274	loff_t *ppos = &iocb->ki_pos;
1275
1276	count = 0;
1277	retval = generic_segment_checks(iov, &nr_segs, &count, VERIFY_WRITE);
1278	if (retval)
1279		return retval;
1280
1281	/* coalesce the iovecs and go direct-to-BIO for O_DIRECT */
1282	if (filp->f_flags & O_DIRECT) {
1283		loff_t size;
1284		struct address_space *mapping;
1285		struct inode *inode;
1286
1287		mapping = filp->f_mapping;
1288		inode = mapping->host;
1289		if (!count)
1290			goto out; /* skip atime */
1291		size = i_size_read(inode);
1292		if (pos < size) {
1293			retval = filemap_write_and_wait_range(mapping, pos,
1294					pos + iov_length(iov, nr_segs) - 1);
1295			if (!retval) {
1296				retval = mapping->a_ops->direct_IO(READ, iocb,
1297							iov, pos, nr_segs);
1298			}
1299			if (retval > 0)
1300				*ppos = pos + retval;
1301			if (retval) {
1302				file_accessed(filp);
1303				goto out;
1304			}
1305		}
1306	}
1307
1308	for (seg = 0; seg < nr_segs; seg++) {
1309		read_descriptor_t desc;
1310
1311		desc.written = 0;
1312		desc.arg.buf = iov[seg].iov_base;
1313		desc.count = iov[seg].iov_len;
1314		if (desc.count == 0)
1315			continue;
1316		desc.error = 0;
1317		do_generic_file_read(filp, ppos, &desc, file_read_actor);
1318		retval += desc.written;
1319		if (desc.error) {
1320			retval = retval ?: desc.error;
1321			break;
1322		}
1323		if (desc.count > 0)
1324			break;
1325	}
1326out:
1327	return retval;
1328}
1329EXPORT_SYMBOL(generic_file_aio_read);
1330
1331static ssize_t
1332do_readahead(struct address_space *mapping, struct file *filp,
1333	     pgoff_t index, unsigned long nr)
1334{
1335	if (!mapping || !mapping->a_ops || !mapping->a_ops->readpage)
1336		return -EINVAL;
1337
1338	force_page_cache_readahead(mapping, filp, index, nr);
1339	return 0;
1340}
1341
1342SYSCALL_DEFINE(readahead)(int fd, loff_t offset, size_t count)
1343{
1344	ssize_t ret;
1345	struct file *file;
1346
1347	ret = -EBADF;
1348	file = fget(fd);
1349	if (file) {
1350		if (file->f_mode & FMODE_READ) {
1351			struct address_space *mapping = file->f_mapping;
1352			pgoff_t start = offset >> PAGE_CACHE_SHIFT;
1353			pgoff_t end = (offset + count - 1) >> PAGE_CACHE_SHIFT;
1354			unsigned long len = end - start + 1;
1355			ret = do_readahead(mapping, file, start, len);
1356		}
1357		fput(file);
1358	}
1359	return ret;
1360}
1361#ifdef CONFIG_HAVE_SYSCALL_WRAPPERS
1362asmlinkage long SyS_readahead(long fd, loff_t offset, long count)
1363{
1364	return SYSC_readahead((int) fd, offset, (size_t) count);
1365}
1366SYSCALL_ALIAS(sys_readahead, SyS_readahead);
1367#endif
1368
1369#ifdef CONFIG_MMU
1370/**
1371 * page_cache_read - adds requested page to the page cache if not already there
1372 * @file:	file to read
1373 * @offset:	page index
1374 *
1375 * This adds the requested page to the page cache if it isn't already there,
1376 * and schedules an I/O to read in its contents from disk.
1377 */
1378static int page_cache_read(struct file *file, pgoff_t offset)
1379{
1380	struct address_space *mapping = file->f_mapping;
1381	struct page *page;
1382	int ret;
1383
1384	do {
1385		page = page_cache_alloc_cold(mapping);
1386		if (!page)
1387			return -ENOMEM;
1388
1389		ret = add_to_page_cache_lru(page, mapping, offset, GFP_KERNEL);
1390		if (ret == 0)
1391			ret = mapping->a_ops->readpage(file, page);
1392		else if (ret == -EEXIST)
1393			ret = 0; /* losing race to add is OK */
1394
1395		page_cache_release(page);
1396
1397	} while (ret == AOP_TRUNCATED_PAGE);
1398
1399	return ret;
1400}
1401
1402#define MMAP_LOTSAMISS  (100)
1403
1404/*
1405 * Synchronous readahead happens when we don't even find
1406 * a page in the page cache at all.
1407 */
1408static void do_sync_mmap_readahead(struct vm_area_struct *vma,
1409				   struct file_ra_state *ra,
1410				   struct file *file,
1411				   pgoff_t offset)
1412{
1413	unsigned long ra_pages;
1414	struct address_space *mapping = file->f_mapping;
1415
1416	/* If we don't want any read-ahead, don't bother */
1417	if (VM_RandomReadHint(vma))
1418		return;
1419
1420	if (VM_SequentialReadHint(vma) ||
1421			offset - 1 == (ra->prev_pos >> PAGE_CACHE_SHIFT)) {
1422		page_cache_sync_readahead(mapping, ra, file, offset,
1423					  ra->ra_pages);
1424		return;
1425	}
1426
1427	if (ra->mmap_miss < INT_MAX)
1428		ra->mmap_miss++;
1429
1430	/*
1431	 * Do we miss much more than hit in this file? If so,
1432	 * stop bothering with read-ahead. It will only hurt.
1433	 */
1434	if (ra->mmap_miss > MMAP_LOTSAMISS)
1435		return;
1436
1437	/*
1438	 * mmap read-around
1439	 */
1440	ra_pages = max_sane_readahead(ra->ra_pages);
1441	if (ra_pages) {
1442		ra->start = max_t(long, 0, offset - ra_pages/2);
1443		ra->size = ra_pages;
1444		ra->async_size = 0;
1445		ra_submit(ra, mapping, file);
1446	}
1447}
1448
1449/*
1450 * Asynchronous readahead happens when we find the page and PG_readahead,
1451 * so we want to possibly extend the readahead further..
1452 */
1453static void do_async_mmap_readahead(struct vm_area_struct *vma,
1454				    struct file_ra_state *ra,
1455				    struct file *file,
1456				    struct page *page,
1457				    pgoff_t offset)
1458{
1459	struct address_space *mapping = file->f_mapping;
1460
1461	/* If we don't want any read-ahead, don't bother */
1462	if (VM_RandomReadHint(vma))
1463		return;
1464	if (ra->mmap_miss > 0)
1465		ra->mmap_miss--;
1466	if (PageReadahead(page))
1467		page_cache_async_readahead(mapping, ra, file,
1468					   page, offset, ra->ra_pages);
1469}
1470
1471/**
1472 * filemap_fault - read in file data for page fault handling
1473 * @vma:	vma in which the fault was taken
1474 * @vmf:	struct vm_fault containing details of the fault
1475 *
1476 * filemap_fault() is invoked via the vma operations vector for a
1477 * mapped memory region to read in file data during a page fault.
1478 *
1479 * The goto's are kind of ugly, but this streamlines the normal case of having
1480 * it in the page cache, and handles the special cases reasonably without
1481 * having a lot of duplicated code.
1482 */
1483int filemap_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
1484{
1485	int error;
1486	struct file *file = vma->vm_file;
1487	struct address_space *mapping = file->f_mapping;
1488	struct file_ra_state *ra = &file->f_ra;
1489	struct inode *inode = mapping->host;
1490	pgoff_t offset = vmf->pgoff;
1491	struct page *page;
1492	pgoff_t size;
1493	int ret = 0;
1494
1495	size = (i_size_read(inode) + PAGE_CACHE_SIZE - 1) >> PAGE_CACHE_SHIFT;
1496	if (offset >= size)
1497		return VM_FAULT_SIGBUS;
1498
1499	/*
1500	 * Do we have something in the page cache already?
1501	 */
1502	page = find_get_page(mapping, offset);
1503	if (likely(page)) {
1504		/*
1505		 * We found the page, so try async readahead before
1506		 * waiting for the lock.
1507		 */
1508		do_async_mmap_readahead(vma, ra, file, page, offset);
1509		lock_page(page);
1510
1511		/* Did it get truncated? */
1512		if (unlikely(page->mapping != mapping)) {
1513			unlock_page(page);
1514			put_page(page);
1515			goto no_cached_page;
1516		}
1517	} else {
1518		/* No page in the page cache at all */
1519		do_sync_mmap_readahead(vma, ra, file, offset);
1520		count_vm_event(PGMAJFAULT);
1521		ret = VM_FAULT_MAJOR;
1522retry_find:
1523		page = find_lock_page(mapping, offset);
1524		if (!page)
1525			goto no_cached_page;
1526	}
1527
1528	/*
1529	 * We have a locked page in the page cache, now we need to check
1530	 * that it's up-to-date. If not, it is going to be due to an error.
1531	 */
1532	if (unlikely(!PageUptodate(page)))
1533		goto page_not_uptodate;
1534
1535	/*
1536	 * Found the page and have a reference on it.
1537	 * We must recheck i_size under page lock.
1538	 */
1539	size = (i_size_read(inode) + PAGE_CACHE_SIZE - 1) >> PAGE_CACHE_SHIFT;
1540	if (unlikely(offset >= size)) {
1541		unlock_page(page);
1542		page_cache_release(page);
1543		return VM_FAULT_SIGBUS;
1544	}
1545
1546	ra->prev_pos = (loff_t)offset << PAGE_CACHE_SHIFT;
1547	vmf->page = page;
1548	return ret | VM_FAULT_LOCKED;
1549
1550no_cached_page:
1551	/*
1552	 * We're only likely to ever get here if MADV_RANDOM is in
1553	 * effect.
1554	 */
1555	error = page_cache_read(file, offset);
1556
1557	/*
1558	 * The page we want has now been added to the page cache.
1559	 * In the unlikely event that someone removed it in the
1560	 * meantime, we'll just come back here and read it again.
1561	 */
1562	if (error >= 0)
1563		goto retry_find;
1564
1565	/*
1566	 * An error return from page_cache_read can result if the
1567	 * system is low on memory, or a problem occurs while trying
1568	 * to schedule I/O.
1569	 */
1570	if (error == -ENOMEM)
1571		return VM_FAULT_OOM;
1572	return VM_FAULT_SIGBUS;
1573
1574page_not_uptodate:
1575	/*
1576	 * Umm, take care of errors if the page isn't up-to-date.
1577	 * Try to re-read it _once_. We do this synchronously,
1578	 * because there really aren't any performance issues here
1579	 * and we need to check for errors.
1580	 */
1581	ClearPageError(page);
1582	error = mapping->a_ops->readpage(file, page);
1583	if (!error) {
1584		wait_on_page_locked(page);
1585		if (!PageUptodate(page))
1586			error = -EIO;
1587	}
1588	page_cache_release(page);
1589
1590	if (!error || error == AOP_TRUNCATED_PAGE)
1591		goto retry_find;
1592
1593	/* Things didn't work out. Return zero to tell the mm layer so. */
1594	shrink_readahead_size_eio(file, ra);
1595	return VM_FAULT_SIGBUS;
1596}
1597EXPORT_SYMBOL(filemap_fault);
1598
1599const struct vm_operations_struct generic_file_vm_ops = {
1600	.fault		= filemap_fault,
1601};
1602
1603/* This is used for a general mmap of a disk file */
1604
1605int generic_file_mmap(struct file * file, struct vm_area_struct * vma)
1606{
1607	struct address_space *mapping = file->f_mapping;
1608
1609	if (!mapping->a_ops->readpage)
1610		return -ENOEXEC;
1611	file_accessed(file);
1612	vma->vm_ops = &generic_file_vm_ops;
1613	vma->vm_flags |= VM_CAN_NONLINEAR;
1614	return 0;
1615}
1616
1617/*
1618 * This is for filesystems which do not implement ->writepage.
1619 */
1620int generic_file_readonly_mmap(struct file *file, struct vm_area_struct *vma)
1621{
1622	if ((vma->vm_flags & VM_SHARED) && (vma->vm_flags & VM_MAYWRITE))
1623		return -EINVAL;
1624	return generic_file_mmap(file, vma);
1625}
1626#else
1627int generic_file_mmap(struct file * file, struct vm_area_struct * vma)
1628{
1629	return -ENOSYS;
1630}
1631int generic_file_readonly_mmap(struct file * file, struct vm_area_struct * vma)
1632{
1633	return -ENOSYS;
1634}
1635#endif /* CONFIG_MMU */
1636
1637EXPORT_SYMBOL(generic_file_mmap);
1638EXPORT_SYMBOL(generic_file_readonly_mmap);
1639
1640static struct page *__read_cache_page(struct address_space *mapping,
1641				pgoff_t index,
1642				int (*filler)(void *,struct page*),
1643				void *data,
1644				gfp_t gfp)
1645{
1646	struct page *page;
1647	int err;
1648repeat:
1649	page = find_get_page(mapping, index);
1650	if (!page) {
1651		page = __page_cache_alloc(gfp | __GFP_COLD);
1652		if (!page)
1653			return ERR_PTR(-ENOMEM);
1654		err = add_to_page_cache_lru(page, mapping, index, GFP_KERNEL);
1655		if (unlikely(err)) {
1656			page_cache_release(page);
1657			if (err == -EEXIST)
1658				goto repeat;
1659			/* Presumably ENOMEM for radix tree node */
1660			return ERR_PTR(err);
1661		}
1662		err = filler(data, page);
1663		if (err < 0) {
1664			page_cache_release(page);
1665			page = ERR_PTR(err);
1666		}
1667	}
1668	return page;
1669}
1670
1671static struct page *do_read_cache_page(struct address_space *mapping,
1672				pgoff_t index,
1673				int (*filler)(void *,struct page*),
1674				void *data,
1675				gfp_t gfp)
1676
1677{
1678	struct page *page;
1679	int err;
1680
1681retry:
1682	page = __read_cache_page(mapping, index, filler, data, gfp);
1683	if (IS_ERR(page))
1684		return page;
1685	if (PageUptodate(page))
1686		goto out;
1687
1688	lock_page(page);
1689	if (!page->mapping) {
1690		unlock_page(page);
1691		page_cache_release(page);
1692		goto retry;
1693	}
1694	if (PageUptodate(page)) {
1695		unlock_page(page);
1696		goto out;
1697	}
1698	err = filler(data, page);
1699	if (err < 0) {
1700		page_cache_release(page);
1701		return ERR_PTR(err);
1702	}
1703out:
1704	mark_page_accessed(page);
1705	return page;
1706}
1707
1708/**
1709 * read_cache_page_async - read into page cache, fill it if needed
1710 * @mapping:	the page's address_space
1711 * @index:	the page index
1712 * @filler:	function to perform the read
1713 * @data:	destination for read data
1714 *
1715 * Same as read_cache_page, but don't wait for page to become unlocked
1716 * after submitting it to the filler.
1717 *
1718 * Read into the page cache. If a page already exists, and PageUptodate() is
1719 * not set, try to fill the page but don't wait for it to become unlocked.
1720 *
1721 * If the page does not get brought uptodate, return -EIO.
1722 */
1723struct page *read_cache_page_async(struct address_space *mapping,
1724				pgoff_t index,
1725				int (*filler)(void *,struct page*),
1726				void *data)
1727{
1728	return do_read_cache_page(mapping, index, filler, data, mapping_gfp_mask(mapping));
1729}
1730EXPORT_SYMBOL(read_cache_page_async);
1731
1732static struct page *wait_on_page_read(struct page *page)
1733{
1734	if (!IS_ERR(page)) {
1735		wait_on_page_locked(page);
1736		if (!PageUptodate(page)) {
1737			page_cache_release(page);
1738			page = ERR_PTR(-EIO);
1739		}
1740	}
1741	return page;
1742}
1743
1744/**
1745 * read_cache_page_gfp - read into page cache, using specified page allocation flags.
1746 * @mapping:	the page's address_space
1747 * @index:	the page index
1748 * @gfp:	the page allocator flags to use if allocating
1749 *
1750 * This is the same as "read_mapping_page(mapping, index, NULL)", but with
1751 * any new page allocations done using the specified allocation flags. Note
1752 * that the Radix tree operations will still use GFP_KERNEL, so you can't
1753 * expect to do this atomically or anything like that - but you can pass in
1754 * other page requirements.
1755 *
1756 * If the page does not get brought uptodate, return -EIO.
1757 */
1758struct page *read_cache_page_gfp(struct address_space *mapping,
1759				pgoff_t index,
1760				gfp_t gfp)
1761{
1762	filler_t *filler = (filler_t *)mapping->a_ops->readpage;
1763
1764	return wait_on_page_read(do_read_cache_page(mapping, index, filler, NULL, gfp));
1765}
1766EXPORT_SYMBOL(read_cache_page_gfp);
1767
1768/**
1769 * read_cache_page - read into page cache, fill it if needed
1770 * @mapping:	the page's address_space
1771 * @index:	the page index
1772 * @filler:	function to perform the read
1773 * @data:	destination for read data
1774 *
1775 * Read into the page cache. If a page already exists, and PageUptodate() is
1776 * not set, try to fill the page then wait for it to become unlocked.
1777 *
1778 * If the page does not get brought uptodate, return -EIO.
1779 */
1780struct page *read_cache_page(struct address_space *mapping,
1781				pgoff_t index,
1782				int (*filler)(void *,struct page*),
1783				void *data)
1784{
1785	return wait_on_page_read(read_cache_page_async(mapping, index, filler, data));
1786}
1787EXPORT_SYMBOL(read_cache_page);
1788
1789/*
1790 * The logic we want is
1791 *
1792 *	if suid or (sgid and xgrp)
1793 *		remove privs
1794 */
1795int should_remove_suid(struct dentry *dentry)
1796{
1797	mode_t mode = dentry->d_inode->i_mode;
1798	int kill = 0;
1799
1800	/* suid always must be killed */
1801	if (unlikely(mode & S_ISUID))
1802		kill = ATTR_KILL_SUID;
1803
1804	/*
1805	 * sgid without any exec bits is just a mandatory locking mark; leave
1806	 * it alone.  If some exec bits are set, it's a real sgid; kill it.
1807	 */
1808	if (unlikely((mode & S_ISGID) && (mode & S_IXGRP)))
1809		kill |= ATTR_KILL_SGID;
1810
1811	if (unlikely(kill && !capable(CAP_FSETID) && S_ISREG(mode)))
1812		return kill;
1813
1814	return 0;
1815}
1816EXPORT_SYMBOL(should_remove_suid);
1817
1818static int __remove_suid(struct dentry *dentry, int kill)
1819{
1820	struct iattr newattrs;
1821
1822	newattrs.ia_valid = ATTR_FORCE | kill;
1823	return notify_change(dentry, &newattrs);
1824}
1825
1826int file_remove_suid(struct file *file)
1827{
1828	struct dentry *dentry = file->f_path.dentry;
1829	int killsuid = should_remove_suid(dentry);
1830	int killpriv = security_inode_need_killpriv(dentry);
1831	int error = 0;
1832
1833	if (killpriv < 0)
1834		return killpriv;
1835	if (killpriv)
1836		error = security_inode_killpriv(dentry);
1837	if (!error && killsuid)
1838		error = __remove_suid(dentry, killsuid);
1839
1840	return error;
1841}
1842EXPORT_SYMBOL(file_remove_suid);
1843
1844static size_t __iovec_copy_from_user_inatomic(char *vaddr,
1845			const struct iovec *iov, size_t base, size_t bytes)
1846{
1847	size_t copied = 0, left = 0;
1848
1849	while (bytes) {
1850		char __user *buf = iov->iov_base + base;
1851		int copy = min(bytes, iov->iov_len - base);
1852
1853		base = 0;
1854		left = __copy_from_user_inatomic(vaddr, buf, copy);
1855		copied += copy;
1856		bytes -= copy;
1857		vaddr += copy;
1858		iov++;
1859
1860		if (unlikely(left))
1861			break;
1862	}
1863	return copied - left;
1864}
1865
1866/*
1867 * Copy as much as we can into the page and return the number of bytes which
1868 * were successfully copied.  If a fault is encountered then return the number of
1869 * bytes which were copied.
1870 */
1871size_t iov_iter_copy_from_user_atomic(struct page *page,
1872		struct iov_iter *i, unsigned long offset, size_t bytes)
1873{
1874	char *kaddr;
1875	size_t copied;
1876
1877	BUG_ON(!in_atomic());
1878	kaddr = kmap_atomic(page, KM_USER0);
1879	if (likely(i->nr_segs == 1)) {
1880		int left;
1881		char __user *buf = i->iov->iov_base + i->iov_offset;
1882		left = __copy_from_user_inatomic(kaddr + offset, buf, bytes);
1883		copied = bytes - left;
1884	} else {
1885		copied = __iovec_copy_from_user_inatomic(kaddr + offset,
1886						i->iov, i->iov_offset, bytes);
1887	}
1888	kunmap_atomic(kaddr, KM_USER0);
1889
1890	return copied;
1891}
1892EXPORT_SYMBOL(iov_iter_copy_from_user_atomic);
1893
1894/*
1895 * This has the same sideeffects and return value as
1896 * iov_iter_copy_from_user_atomic().
1897 * The difference is that it attempts to resolve faults.
1898 * Page must not be locked.
1899 */
1900size_t iov_iter_copy_from_user(struct page *page,
1901		struct iov_iter *i, unsigned long offset, size_t bytes)
1902{
1903	char *kaddr;
1904	size_t copied;
1905
1906	kaddr = kmap(page);
1907	if (likely(i->nr_segs == 1)) {
1908		int left;
1909		char __user *buf = i->iov->iov_base + i->iov_offset;
1910		left = __copy_from_user(kaddr + offset, buf, bytes);
1911		copied = bytes - left;
1912	} else {
1913		copied = __iovec_copy_from_user_inatomic(kaddr + offset,
1914						i->iov, i->iov_offset, bytes);
1915	}
1916	kunmap(page);
1917	return copied;
1918}
1919EXPORT_SYMBOL(iov_iter_copy_from_user);
1920
1921void iov_iter_advance(struct iov_iter *i, size_t bytes)
1922{
1923	BUG_ON(i->count < bytes);
1924
1925	if (likely(i->nr_segs == 1)) {
1926		i->iov_offset += bytes;
1927		i->count -= bytes;
1928	} else {
1929		const struct iovec *iov = i->iov;
1930		size_t base = i->iov_offset;
1931
1932		/*
1933		 * The !iov->iov_len check ensures we skip over unlikely
1934		 * zero-length segments (without overruning the iovec).
1935		 */
1936		while (bytes || unlikely(i->count && !iov->iov_len)) {
1937			int copy;
1938
1939			copy = min(bytes, iov->iov_len - base);
1940			BUG_ON(!i->count || i->count < copy);
1941			i->count -= copy;
1942			bytes -= copy;
1943			base += copy;
1944			if (iov->iov_len == base) {
1945				iov++;
1946				base = 0;
1947			}
1948		}
1949		i->iov = iov;
1950		i->iov_offset = base;
1951	}
1952}
1953EXPORT_SYMBOL(iov_iter_advance);
1954
1955/*
1956 * Fault in the first iovec of the given iov_iter, to a maximum length
1957 * of bytes. Returns 0 on success, or non-zero if the memory could not be
1958 * accessed (ie. because it is an invalid address).
1959 *
1960 * writev-intensive code may want this to prefault several iovecs -- that
1961 * would be possible (callers must not rely on the fact that _only_ the
1962 * first iovec will be faulted with the current implementation).
1963 */
1964int iov_iter_fault_in_readable(struct iov_iter *i, size_t bytes)
1965{
1966	char __user *buf = i->iov->iov_base + i->iov_offset;
1967	bytes = min(bytes, i->iov->iov_len - i->iov_offset);
1968	return fault_in_pages_readable(buf, bytes);
1969}
1970EXPORT_SYMBOL(iov_iter_fault_in_readable);
1971
1972/*
1973 * Return the count of just the current iov_iter segment.
1974 */
1975size_t iov_iter_single_seg_count(struct iov_iter *i)
1976{
1977	const struct iovec *iov = i->iov;
1978	if (i->nr_segs == 1)
1979		return i->count;
1980	else
1981		return min(i->count, iov->iov_len - i->iov_offset);
1982}
1983EXPORT_SYMBOL(iov_iter_single_seg_count);
1984
1985/*
1986 * Performs necessary checks before doing a write
1987 *
1988 * Can adjust writing position or amount of bytes to write.
1989 * Returns appropriate error code that caller should return or
1990 * zero in case that write should be allowed.
1991 */
1992inline int generic_write_checks(struct file *file, loff_t *pos, size_t *count, int isblk)
1993{
1994	struct inode *inode = file->f_mapping->host;
1995	unsigned long limit = rlimit(RLIMIT_FSIZE);
1996
1997        if (unlikely(*pos < 0))
1998                return -EINVAL;
1999
2000	if (!isblk) {
2001		/* FIXME: this is for backwards compatibility with 2.4 */
2002		if (file->f_flags & O_APPEND)
2003                        *pos = i_size_read(inode);
2004
2005		if (limit != RLIM_INFINITY) {
2006			if (*pos >= limit) {
2007				send_sig(SIGXFSZ, current, 0);
2008				return -EFBIG;
2009			}
2010			if (*count > limit - (typeof(limit))*pos) {
2011				*count = limit - (typeof(limit))*pos;
2012			}
2013		}
2014	}
2015
2016	/*
2017	 * LFS rule
2018	 */
2019	if (unlikely(*pos + *count > MAX_NON_LFS &&
2020				!(file->f_flags & O_LARGEFILE))) {
2021		if (*pos >= MAX_NON_LFS) {
2022			return -EFBIG;
2023		}
2024		if (*count > MAX_NON_LFS - (unsigned long)*pos) {
2025			*count = MAX_NON_LFS - (unsigned long)*pos;
2026		}
2027	}
2028
2029	/*
2030	 * Are we about to exceed the fs block limit ?
2031	 *
2032	 * If we have written data it becomes a short write.  If we have
2033	 * exceeded without writing data we send a signal and return EFBIG.
2034	 * Linus frestrict idea will clean these up nicely..
2035	 */
2036	if (likely(!isblk)) {
2037		if (unlikely(*pos >= inode->i_sb->s_maxbytes)) {
2038			if (*count || *pos > inode->i_sb->s_maxbytes) {
2039				return -EFBIG;
2040			}
2041			/* zero-length writes at ->s_maxbytes are OK */
2042		}
2043
2044		if (unlikely(*pos + *count > inode->i_sb->s_maxbytes))
2045			*count = inode->i_sb->s_maxbytes - *pos;
2046	} else {
2047#ifdef CONFIG_BLOCK
2048		loff_t isize;
2049		if (bdev_read_only(I_BDEV(inode)))
2050			return -EPERM;
2051		isize = i_size_read(inode);
2052		if (*pos >= isize) {
2053			if (*count || *pos > isize)
2054				return -ENOSPC;
2055		}
2056
2057		if (*pos + *count > isize)
2058			*count = isize - *pos;
2059#else
2060		return -EPERM;
2061#endif
2062	}
2063	return 0;
2064}
2065EXPORT_SYMBOL(generic_write_checks);
2066
2067int pagecache_write_begin(struct file *file, struct address_space *mapping,
2068				loff_t pos, unsigned len, unsigned flags,
2069				struct page **pagep, void **fsdata)
2070{
2071	const struct address_space_operations *aops = mapping->a_ops;
2072
2073	return aops->write_begin(file, mapping, pos, len, flags,
2074							pagep, fsdata);
2075}
2076EXPORT_SYMBOL(pagecache_write_begin);
2077
2078int pagecache_write_end(struct file *file, struct address_space *mapping,
2079				loff_t pos, unsigned len, unsigned copied,
2080				struct page *page, void *fsdata)
2081{
2082	const struct address_space_operations *aops = mapping->a_ops;
2083
2084	mark_page_accessed(page);
2085	return aops->write_end(file, mapping, pos, len, copied, page, fsdata);
2086}
2087EXPORT_SYMBOL(pagecache_write_end);
2088
2089ssize_t
2090generic_file_direct_write(struct kiocb *iocb, const struct iovec *iov,
2091		unsigned long *nr_segs, loff_t pos, loff_t *ppos,
2092		size_t count, size_t ocount)
2093{
2094	struct file	*file = iocb->ki_filp;
2095	struct address_space *mapping = file->f_mapping;
2096	struct inode	*inode = mapping->host;
2097	ssize_t		written;
2098	size_t		write_len;
2099	pgoff_t		end;
2100
2101	if (count != ocount)
2102		*nr_segs = iov_shorten((struct iovec *)iov, *nr_segs, count);
2103
2104	write_len = iov_length(iov, *nr_segs);
2105	end = (pos + write_len - 1) >> PAGE_CACHE_SHIFT;
2106
2107	written = filemap_write_and_wait_range(mapping, pos, pos + write_len - 1);
2108	if (written)
2109		goto out;
2110
2111	/*
2112	 * After a write we want buffered reads to be sure to go to disk to get
2113	 * the new data.  We invalidate clean cached page from the region we're
2114	 * about to write.  We do this *before* the write so that we can return
2115	 * without clobbering -EIOCBQUEUED from ->direct_IO().
2116	 */
2117	if (mapping->nrpages) {
2118		written = invalidate_inode_pages2_range(mapping,
2119					pos >> PAGE_CACHE_SHIFT, end);
2120		/*
2121		 * If a page can not be invalidated, return 0 to fall back
2122		 * to buffered write.
2123		 */
2124		if (written) {
2125			if (written == -EBUSY)
2126				return 0;
2127			goto out;
2128		}
2129	}
2130
2131	written = mapping->a_ops->direct_IO(WRITE, iocb, iov, pos, *nr_segs);
2132
2133	/*
2134	 * Finally, try again to invalidate clean pages which might have been
2135	 * cached by non-direct readahead, or faulted in by get_user_pages()
2136	 * if the source of the write was an mmap'ed region of the file
2137	 * we're writing.  Either one is a pretty crazy thing to do,
2138	 * so we don't support it 100%.  If this invalidation
2139	 * fails, tough, the write still worked...
2140	 */
2141	if (mapping->nrpages) {
2142		invalidate_inode_pages2_range(mapping,
2143					      pos >> PAGE_CACHE_SHIFT, end);
2144	}
2145
2146	if (written > 0) {
2147		loff_t end = pos + written;
2148		if (end > i_size_read(inode) && !S_ISBLK(inode->i_mode)) {
2149			i_size_write(inode,  end);
2150			mark_inode_dirty(inode);
2151		}
2152		*ppos = end;
2153	}
2154out:
2155	return written;
2156}
2157EXPORT_SYMBOL(generic_file_direct_write);
2158
2159/*
2160 * Find or create a page at the given pagecache position. Return the locked
2161 * page. This function is specifically for buffered writes.
2162 */
2163struct page *grab_cache_page_write_begin(struct address_space *mapping,
2164					pgoff_t index, unsigned flags)
2165{
2166	int status;
2167	struct page *page;
2168	gfp_t gfp_notmask = 0;
2169	if (flags & AOP_FLAG_NOFS)
2170		gfp_notmask = __GFP_FS;
2171repeat:
2172	page = find_lock_page(mapping, index);
2173	if (likely(page))
2174		return page;
2175
2176	page = __page_cache_alloc(mapping_gfp_mask(mapping) & ~gfp_notmask);
2177	if (!page)
2178		return NULL;
2179	status = add_to_page_cache_lru(page, mapping, index,
2180						GFP_KERNEL & ~gfp_notmask);
2181	if (unlikely(status)) {
2182		page_cache_release(page);
2183		if (status == -EEXIST)
2184			goto repeat;
2185		return NULL;
2186	}
2187	return page;
2188}
2189EXPORT_SYMBOL(grab_cache_page_write_begin);
2190
2191static ssize_t generic_perform_write(struct file *file,
2192				struct iov_iter *i, loff_t pos)
2193{
2194	struct address_space *mapping = file->f_mapping;
2195	const struct address_space_operations *a_ops = mapping->a_ops;
2196	long status = 0;
2197	ssize_t written = 0;
2198	unsigned int flags = 0;
2199
2200	/*
2201	 * Copies from kernel address space cannot fail (NFSD is a big user).
2202	 */
2203	if (segment_eq(get_fs(), KERNEL_DS))
2204		flags |= AOP_FLAG_UNINTERRUPTIBLE;
2205
2206	do {
2207		struct page *page;
2208		pgoff_t index;		/* Pagecache index for current page */
2209		unsigned long offset;	/* Offset into pagecache page */
2210		unsigned long bytes;	/* Bytes to write to page */
2211		size_t copied;		/* Bytes copied from user */
2212		void *fsdata;
2213
2214		offset = (pos & (PAGE_CACHE_SIZE - 1));
2215		index = pos >> PAGE_CACHE_SHIFT;
2216		bytes = min_t(unsigned long, PAGE_CACHE_SIZE - offset,
2217						iov_iter_count(i));
2218
2219again:
2220
2221		/*
2222		 * Bring in the user page that we will copy from _first_.
2223		 * Otherwise there's a nasty deadlock on copying from the
2224		 * same page as we're writing to, without it being marked
2225		 * up-to-date.
2226		 *
2227		 * Not only is this an optimisation, but it is also required
2228		 * to check that the address is actually valid, when atomic
2229		 * usercopies are used, below.
2230		 */
2231		if (unlikely(iov_iter_fault_in_readable(i, bytes))) {
2232			status = -EFAULT;
2233			break;
2234		}
2235
2236		status = a_ops->write_begin(file, mapping, pos, bytes, flags,
2237						&page, &fsdata);
2238		if (unlikely(status))
2239			break;
2240
2241		if (mapping_writably_mapped(mapping))
2242			flush_dcache_page(page);
2243
2244		pagefault_disable();
2245		copied = iov_iter_copy_from_user_atomic(page, i, offset, bytes);
2246		pagefault_enable();
2247		flush_dcache_page(page);
2248
2249		mark_page_accessed(page);
2250		status = a_ops->write_end(file, mapping, pos, bytes, copied,
2251						page, fsdata);
2252		if (unlikely(status < 0))
2253			break;
2254		copied = status;
2255
2256		cond_resched();
2257
2258		iov_iter_advance(i, copied);
2259		if (unlikely(copied == 0)) {
2260			/*
2261			 * If we were unable to copy any data at all, we must
2262			 * fall back to a single segment length write.
2263			 *
2264			 * If we didn't fallback here, we could livelock
2265			 * because not all segments in the iov can be copied at
2266			 * once without a pagefault.
2267			 */
2268			bytes = min_t(unsigned long, PAGE_CACHE_SIZE - offset,
2269						iov_iter_single_seg_count(i));
2270			goto again;
2271		}
2272		pos += copied;
2273		written += copied;
2274
2275		balance_dirty_pages_ratelimited(mapping);
2276
2277	} while (iov_iter_count(i));
2278
2279	return written ? written : status;
2280}
2281
2282ssize_t
2283generic_file_buffered_write(struct kiocb *iocb, const struct iovec *iov,
2284		unsigned long nr_segs, loff_t pos, loff_t *ppos,
2285		size_t count, ssize_t written)
2286{
2287	struct file *file = iocb->ki_filp;
2288	ssize_t status;
2289	struct iov_iter i;
2290
2291	iov_iter_init(&i, iov, nr_segs, count, written);
2292	status = generic_perform_write(file, &i, pos);
2293
2294	if (likely(status >= 0)) {
2295		written += status;
2296		*ppos = pos + status;
2297  	}
2298
2299	return written ? written : status;
2300}
2301EXPORT_SYMBOL(generic_file_buffered_write);
2302
2303/**
2304 * __generic_file_aio_write - write data to a file
2305 * @iocb:	IO state structure (file, offset, etc.)
2306 * @iov:	vector with data to write
2307 * @nr_segs:	number of segments in the vector
2308 * @ppos:	position where to write
2309 *
2310 * This function does all the work needed for actually writing data to a
2311 * file. It does all basic checks, removes SUID from the file, updates
2312 * modification times and calls proper subroutines depending on whether we
2313 * do direct IO or a standard buffered write.
2314 *
2315 * It expects i_mutex to be grabbed unless we work on a block device or similar
2316 * object which does not need locking at all.
2317 *
2318 * This function does *not* take care of syncing data in case of O_SYNC write.
2319 * A caller has to handle it. This is mainly due to the fact that we want to
2320 * avoid syncing under i_mutex.
2321 */
2322ssize_t __generic_file_aio_write(struct kiocb *iocb, const struct iovec *iov,
2323				 unsigned long nr_segs, loff_t *ppos)
2324{
2325	struct file *file = iocb->ki_filp;
2326	struct address_space * mapping = file->f_mapping;
2327	size_t ocount;		/* original count */
2328	size_t count;		/* after file limit checks */
2329	struct inode 	*inode = mapping->host;
2330	loff_t		pos;
2331	ssize_t		written;
2332	ssize_t		err;
2333
2334	ocount = 0;
2335	err = generic_segment_checks(iov, &nr_segs, &ocount, VERIFY_READ);
2336	if (err)
2337		return err;
2338
2339	count = ocount;
2340	pos = *ppos;
2341
2342	vfs_check_frozen(inode->i_sb, SB_FREEZE_WRITE);
2343
2344	/* We can write back this queue in page reclaim */
2345	current->backing_dev_info = mapping->backing_dev_info;
2346	written = 0;
2347
2348	err = generic_write_checks(file, &pos, &count, S_ISBLK(inode->i_mode));
2349	if (err)
2350		goto out;
2351
2352	if (count == 0)
2353		goto out;
2354
2355	err = file_remove_suid(file);
2356	if (err)
2357		goto out;
2358
2359	file_update_time(file);
2360
2361	/* coalesce the iovecs and go direct-to-BIO for O_DIRECT */
2362	if (unlikely(file->f_flags & O_DIRECT)) {
2363		loff_t endbyte;
2364		ssize_t written_buffered;
2365
2366		written = generic_file_direct_write(iocb, iov, &nr_segs, pos,
2367							ppos, count, ocount);
2368		if (written < 0 || written == count)
2369			goto out;
2370		/*
2371		 * direct-io write to a hole: fall through to buffered I/O
2372		 * for completing the rest of the request.
2373		 */
2374		pos += written;
2375		count -= written;
2376		written_buffered = generic_file_buffered_write(iocb, iov,
2377						nr_segs, pos, ppos, count,
2378						written);
2379		/*
2380		 * If generic_file_buffered_write() retuned a synchronous error
2381		 * then we want to return the number of bytes which were
2382		 * direct-written, or the error code if that was zero.  Note
2383		 * that this differs from normal direct-io semantics, which
2384		 * will return -EFOO even if some bytes were written.
2385		 */
2386		if (written_buffered < 0) {
2387			err = written_buffered;
2388			goto out;
2389		}
2390
2391		/*
2392		 * We need to ensure that the page cache pages are written to
2393		 * disk and invalidated to preserve the expected O_DIRECT
2394		 * semantics.
2395		 */
2396		endbyte = pos + written_buffered - written - 1;
2397		err = filemap_write_and_wait_range(file->f_mapping, pos, endbyte);
2398		if (err == 0) {
2399			written = written_buffered;
2400			invalidate_mapping_pages(mapping,
2401						 pos >> PAGE_CACHE_SHIFT,
2402						 endbyte >> PAGE_CACHE_SHIFT);
2403		} else {
2404			/*
2405			 * We don't know how much we wrote, so just return
2406			 * the number of bytes which were direct-written
2407			 */
2408		}
2409	} else {
2410		written = generic_file_buffered_write(iocb, iov, nr_segs,
2411				pos, ppos, count, written);
2412	}
2413out:
2414	current->backing_dev_info = NULL;
2415	return written ? written : err;
2416}
2417EXPORT_SYMBOL(__generic_file_aio_write);
2418
2419/**
2420 * generic_file_aio_write - write data to a file
2421 * @iocb:	IO state structure
2422 * @iov:	vector with data to write
2423 * @nr_segs:	number of segments in the vector
2424 * @pos:	position in file where to write
2425 *
2426 * This is a wrapper around __generic_file_aio_write() to be used by most
2427 * filesystems. It takes care of syncing the file in case of O_SYNC file
2428 * and acquires i_mutex as needed.
2429 */
2430ssize_t generic_file_aio_write(struct kiocb *iocb, const struct iovec *iov,
2431		unsigned long nr_segs, loff_t pos)
2432{
2433	struct file *file = iocb->ki_filp;
2434	struct inode *inode = file->f_mapping->host;
2435	ssize_t ret;
2436
2437	BUG_ON(iocb->ki_pos != pos);
2438
2439	mutex_lock(&inode->i_mutex);
2440	ret = __generic_file_aio_write(iocb, iov, nr_segs, &iocb->ki_pos);
2441	mutex_unlock(&inode->i_mutex);
2442
2443	if (ret > 0 || ret == -EIOCBQUEUED) {
2444		ssize_t err;
2445
2446		err = generic_write_sync(file, pos, ret);
2447		if (err < 0 && ret > 0)
2448			ret = err;
2449	}
2450	return ret;
2451}
2452EXPORT_SYMBOL(generic_file_aio_write);
2453
2454/**
2455 * try_to_release_page() - release old fs-specific metadata on a page
2456 *
2457 * @page: the page which the kernel is trying to free
2458 * @gfp_mask: memory allocation flags (and I/O mode)
2459 *
2460 * The address_space is to try to release any data against the page
2461 * (presumably at page->private).  If the release was successful, return `1'.
2462 * Otherwise return zero.
2463 *
2464 * This may also be called if PG_fscache is set on a page, indicating that the
2465 * page is known to the local caching routines.
2466 *
2467 * The @gfp_mask argument specifies whether I/O may be performed to release
2468 * this page (__GFP_IO), and whether the call may block (__GFP_WAIT & __GFP_FS).
2469 *
2470 */
2471int try_to_release_page(struct page *page, gfp_t gfp_mask)
2472{
2473	struct address_space * const mapping = page->mapping;
2474
2475	BUG_ON(!PageLocked(page));
2476	if (PageWriteback(page))
2477		return 0;
2478
2479	if (mapping && mapping->a_ops->releasepage)
2480		return mapping->a_ops->releasepage(page, gfp_mask);
2481	return try_to_free_buffers(page);
2482}
2483
2484EXPORT_SYMBOL(try_to_release_page);
2485