filemap.c revision c25ec8f5684cb3c5dde6a67c1bbc33a449eefbe2
1/*
2 *	linux/mm/filemap.c
3 *
4 * Copyright (C) 1994-1999  Linus Torvalds
5 */
6
7/*
8 * This file handles the generic file mmap semantics used by
9 * most "normal" filesystems (but you don't /have/ to use this:
10 * the NFS filesystem used to do this differently, for example)
11 */
12#include <linux/config.h>
13#include <linux/module.h>
14#include <linux/slab.h>
15#include <linux/compiler.h>
16#include <linux/fs.h>
17#include <linux/aio.h>
18#include <linux/capability.h>
19#include <linux/kernel_stat.h>
20#include <linux/mm.h>
21#include <linux/swap.h>
22#include <linux/mman.h>
23#include <linux/pagemap.h>
24#include <linux/file.h>
25#include <linux/uio.h>
26#include <linux/hash.h>
27#include <linux/writeback.h>
28#include <linux/pagevec.h>
29#include <linux/blkdev.h>
30#include <linux/security.h>
31#include <linux/syscalls.h>
32#include "filemap.h"
33/*
34 * FIXME: remove all knowledge of the buffer layer from the core VM
35 */
36#include <linux/buffer_head.h> /* for generic_osync_inode */
37
38#include <asm/uaccess.h>
39#include <asm/mman.h>
40
41static ssize_t
42generic_file_direct_IO(int rw, struct kiocb *iocb, const struct iovec *iov,
43	loff_t offset, unsigned long nr_segs);
44
45/*
46 * Shared mappings implemented 30.11.1994. It's not fully working yet,
47 * though.
48 *
49 * Shared mappings now work. 15.8.1995  Bruno.
50 *
51 * finished 'unifying' the page and buffer cache and SMP-threaded the
52 * page-cache, 21.05.1999, Ingo Molnar <mingo@redhat.com>
53 *
54 * SMP-threaded pagemap-LRU 1999, Andrea Arcangeli <andrea@suse.de>
55 */
56
57/*
58 * Lock ordering:
59 *
60 *  ->i_mmap_lock		(vmtruncate)
61 *    ->private_lock		(__free_pte->__set_page_dirty_buffers)
62 *      ->swap_lock		(exclusive_swap_page, others)
63 *        ->mapping->tree_lock
64 *
65 *  ->i_mutex
66 *    ->i_mmap_lock		(truncate->unmap_mapping_range)
67 *
68 *  ->mmap_sem
69 *    ->i_mmap_lock
70 *      ->page_table_lock or pte_lock	(various, mainly in memory.c)
71 *        ->mapping->tree_lock	(arch-dependent flush_dcache_mmap_lock)
72 *
73 *  ->mmap_sem
74 *    ->lock_page		(access_process_vm)
75 *
76 *  ->mmap_sem
77 *    ->i_mutex			(msync)
78 *
79 *  ->i_mutex
80 *    ->i_alloc_sem             (various)
81 *
82 *  ->inode_lock
83 *    ->sb_lock			(fs/fs-writeback.c)
84 *    ->mapping->tree_lock	(__sync_single_inode)
85 *
86 *  ->i_mmap_lock
87 *    ->anon_vma.lock		(vma_adjust)
88 *
89 *  ->anon_vma.lock
90 *    ->page_table_lock or pte_lock	(anon_vma_prepare and various)
91 *
92 *  ->page_table_lock or pte_lock
93 *    ->swap_lock		(try_to_unmap_one)
94 *    ->private_lock		(try_to_unmap_one)
95 *    ->tree_lock		(try_to_unmap_one)
96 *    ->zone.lru_lock		(follow_page->mark_page_accessed)
97 *    ->zone.lru_lock		(check_pte_range->isolate_lru_page)
98 *    ->private_lock		(page_remove_rmap->set_page_dirty)
99 *    ->tree_lock		(page_remove_rmap->set_page_dirty)
100 *    ->inode_lock		(page_remove_rmap->set_page_dirty)
101 *    ->inode_lock		(zap_pte_range->set_page_dirty)
102 *    ->private_lock		(zap_pte_range->__set_page_dirty_buffers)
103 *
104 *  ->task->proc_lock
105 *    ->dcache_lock		(proc_pid_lookup)
106 */
107
108/*
109 * Remove a page from the page cache and free it. Caller has to make
110 * sure the page is locked and that nobody else uses it - or that usage
111 * is safe.  The caller must hold a write_lock on the mapping's tree_lock.
112 */
113void __remove_from_page_cache(struct page *page)
114{
115	struct address_space *mapping = page->mapping;
116
117	radix_tree_delete(&mapping->page_tree, page->index);
118	page->mapping = NULL;
119	mapping->nrpages--;
120	pagecache_acct(-1);
121}
122
123void remove_from_page_cache(struct page *page)
124{
125	struct address_space *mapping = page->mapping;
126
127	BUG_ON(!PageLocked(page));
128
129	write_lock_irq(&mapping->tree_lock);
130	__remove_from_page_cache(page);
131	write_unlock_irq(&mapping->tree_lock);
132}
133
134static int sync_page(void *word)
135{
136	struct address_space *mapping;
137	struct page *page;
138
139	page = container_of((unsigned long *)word, struct page, flags);
140
141	/*
142	 * page_mapping() is being called without PG_locked held.
143	 * Some knowledge of the state and use of the page is used to
144	 * reduce the requirements down to a memory barrier.
145	 * The danger here is of a stale page_mapping() return value
146	 * indicating a struct address_space different from the one it's
147	 * associated with when it is associated with one.
148	 * After smp_mb(), it's either the correct page_mapping() for
149	 * the page, or an old page_mapping() and the page's own
150	 * page_mapping() has gone NULL.
151	 * The ->sync_page() address_space operation must tolerate
152	 * page_mapping() going NULL. By an amazing coincidence,
153	 * this comes about because none of the users of the page
154	 * in the ->sync_page() methods make essential use of the
155	 * page_mapping(), merely passing the page down to the backing
156	 * device's unplug functions when it's non-NULL, which in turn
157	 * ignore it for all cases but swap, where only page_private(page) is
158	 * of interest. When page_mapping() does go NULL, the entire
159	 * call stack gracefully ignores the page and returns.
160	 * -- wli
161	 */
162	smp_mb();
163	mapping = page_mapping(page);
164	if (mapping && mapping->a_ops && mapping->a_ops->sync_page)
165		mapping->a_ops->sync_page(page);
166	io_schedule();
167	return 0;
168}
169
170/**
171 * filemap_fdatawrite_range - start writeback against all of a mapping's
172 * dirty pages that lie within the byte offsets <start, end>
173 * @mapping:	address space structure to write
174 * @start:	offset in bytes where the range starts
175 * @end:	offset in bytes where the range ends
176 * @sync_mode:	enable synchronous operation
177 *
178 * If sync_mode is WB_SYNC_ALL then this is a "data integrity" operation, as
179 * opposed to a regular memory * cleansing writeback.  The difference between
180 * these two operations is that if a dirty page/buffer is encountered, it must
181 * be waited upon, and not just skipped over.
182 */
183static int __filemap_fdatawrite_range(struct address_space *mapping,
184	loff_t start, loff_t end, int sync_mode)
185{
186	int ret;
187	struct writeback_control wbc = {
188		.sync_mode = sync_mode,
189		.nr_to_write = mapping->nrpages * 2,
190		.start = start,
191		.end = end,
192	};
193
194	if (!mapping_cap_writeback_dirty(mapping))
195		return 0;
196
197	ret = do_writepages(mapping, &wbc);
198	return ret;
199}
200
201static inline int __filemap_fdatawrite(struct address_space *mapping,
202	int sync_mode)
203{
204	return __filemap_fdatawrite_range(mapping, 0, 0, sync_mode);
205}
206
207int filemap_fdatawrite(struct address_space *mapping)
208{
209	return __filemap_fdatawrite(mapping, WB_SYNC_ALL);
210}
211EXPORT_SYMBOL(filemap_fdatawrite);
212
213static int filemap_fdatawrite_range(struct address_space *mapping,
214	loff_t start, loff_t end)
215{
216	return __filemap_fdatawrite_range(mapping, start, end, WB_SYNC_ALL);
217}
218
219/*
220 * This is a mostly non-blocking flush.  Not suitable for data-integrity
221 * purposes - I/O may not be started against all dirty pages.
222 */
223int filemap_flush(struct address_space *mapping)
224{
225	return __filemap_fdatawrite(mapping, WB_SYNC_NONE);
226}
227EXPORT_SYMBOL(filemap_flush);
228
229/*
230 * Wait for writeback to complete against pages indexed by start->end
231 * inclusive
232 */
233static int wait_on_page_writeback_range(struct address_space *mapping,
234				pgoff_t start, pgoff_t end)
235{
236	struct pagevec pvec;
237	int nr_pages;
238	int ret = 0;
239	pgoff_t index;
240
241	if (end < start)
242		return 0;
243
244	pagevec_init(&pvec, 0);
245	index = start;
246	while ((index <= end) &&
247			(nr_pages = pagevec_lookup_tag(&pvec, mapping, &index,
248			PAGECACHE_TAG_WRITEBACK,
249			min(end - index, (pgoff_t)PAGEVEC_SIZE-1) + 1)) != 0) {
250		unsigned i;
251
252		for (i = 0; i < nr_pages; i++) {
253			struct page *page = pvec.pages[i];
254
255			/* until radix tree lookup accepts end_index */
256			if (page->index > end)
257				continue;
258
259			wait_on_page_writeback(page);
260			if (PageError(page))
261				ret = -EIO;
262		}
263		pagevec_release(&pvec);
264		cond_resched();
265	}
266
267	/* Check for outstanding write errors */
268	if (test_and_clear_bit(AS_ENOSPC, &mapping->flags))
269		ret = -ENOSPC;
270	if (test_and_clear_bit(AS_EIO, &mapping->flags))
271		ret = -EIO;
272
273	return ret;
274}
275
276/*
277 * Write and wait upon all the pages in the passed range.  This is a "data
278 * integrity" operation.  It waits upon in-flight writeout before starting and
279 * waiting upon new writeout.  If there was an IO error, return it.
280 *
281 * We need to re-take i_mutex during the generic_osync_inode list walk because
282 * it is otherwise livelockable.
283 */
284int sync_page_range(struct inode *inode, struct address_space *mapping,
285			loff_t pos, loff_t count)
286{
287	pgoff_t start = pos >> PAGE_CACHE_SHIFT;
288	pgoff_t end = (pos + count - 1) >> PAGE_CACHE_SHIFT;
289	int ret;
290
291	if (!mapping_cap_writeback_dirty(mapping) || !count)
292		return 0;
293	ret = filemap_fdatawrite_range(mapping, pos, pos + count - 1);
294	if (ret == 0) {
295		mutex_lock(&inode->i_mutex);
296		ret = generic_osync_inode(inode, mapping, OSYNC_METADATA);
297		mutex_unlock(&inode->i_mutex);
298	}
299	if (ret == 0)
300		ret = wait_on_page_writeback_range(mapping, start, end);
301	return ret;
302}
303EXPORT_SYMBOL(sync_page_range);
304
305/*
306 * Note: Holding i_mutex across sync_page_range_nolock is not a good idea
307 * as it forces O_SYNC writers to different parts of the same file
308 * to be serialised right until io completion.
309 */
310int sync_page_range_nolock(struct inode *inode, struct address_space *mapping,
311			   loff_t pos, loff_t count)
312{
313	pgoff_t start = pos >> PAGE_CACHE_SHIFT;
314	pgoff_t end = (pos + count - 1) >> PAGE_CACHE_SHIFT;
315	int ret;
316
317	if (!mapping_cap_writeback_dirty(mapping) || !count)
318		return 0;
319	ret = filemap_fdatawrite_range(mapping, pos, pos + count - 1);
320	if (ret == 0)
321		ret = generic_osync_inode(inode, mapping, OSYNC_METADATA);
322	if (ret == 0)
323		ret = wait_on_page_writeback_range(mapping, start, end);
324	return ret;
325}
326EXPORT_SYMBOL(sync_page_range_nolock);
327
328/**
329 * filemap_fdatawait - walk the list of under-writeback pages of the given
330 *     address space and wait for all of them.
331 *
332 * @mapping: address space structure to wait for
333 */
334int filemap_fdatawait(struct address_space *mapping)
335{
336	loff_t i_size = i_size_read(mapping->host);
337
338	if (i_size == 0)
339		return 0;
340
341	return wait_on_page_writeback_range(mapping, 0,
342				(i_size - 1) >> PAGE_CACHE_SHIFT);
343}
344EXPORT_SYMBOL(filemap_fdatawait);
345
346int filemap_write_and_wait(struct address_space *mapping)
347{
348	int err = 0;
349
350	if (mapping->nrpages) {
351		err = filemap_fdatawrite(mapping);
352		/*
353		 * Even if the above returned error, the pages may be
354		 * written partially (e.g. -ENOSPC), so we wait for it.
355		 * But the -EIO is special case, it may indicate the worst
356		 * thing (e.g. bug) happened, so we avoid waiting for it.
357		 */
358		if (err != -EIO) {
359			int err2 = filemap_fdatawait(mapping);
360			if (!err)
361				err = err2;
362		}
363	}
364	return err;
365}
366EXPORT_SYMBOL(filemap_write_and_wait);
367
368int filemap_write_and_wait_range(struct address_space *mapping,
369				 loff_t lstart, loff_t lend)
370{
371	int err = 0;
372
373	if (mapping->nrpages) {
374		err = __filemap_fdatawrite_range(mapping, lstart, lend,
375						 WB_SYNC_ALL);
376		/* See comment of filemap_write_and_wait() */
377		if (err != -EIO) {
378			int err2 = wait_on_page_writeback_range(mapping,
379						lstart >> PAGE_CACHE_SHIFT,
380						lend >> PAGE_CACHE_SHIFT);
381			if (!err)
382				err = err2;
383		}
384	}
385	return err;
386}
387
388/*
389 * This function is used to add newly allocated pagecache pages:
390 * the page is new, so we can just run SetPageLocked() against it.
391 * The other page state flags were set by rmqueue().
392 *
393 * This function does not add the page to the LRU.  The caller must do that.
394 */
395int add_to_page_cache(struct page *page, struct address_space *mapping,
396		pgoff_t offset, gfp_t gfp_mask)
397{
398	int error = radix_tree_preload(gfp_mask & ~__GFP_HIGHMEM);
399
400	if (error == 0) {
401		write_lock_irq(&mapping->tree_lock);
402		error = radix_tree_insert(&mapping->page_tree, offset, page);
403		if (!error) {
404			page_cache_get(page);
405			SetPageLocked(page);
406			page->mapping = mapping;
407			page->index = offset;
408			mapping->nrpages++;
409			pagecache_acct(1);
410		}
411		write_unlock_irq(&mapping->tree_lock);
412		radix_tree_preload_end();
413	}
414	return error;
415}
416
417EXPORT_SYMBOL(add_to_page_cache);
418
419int add_to_page_cache_lru(struct page *page, struct address_space *mapping,
420				pgoff_t offset, gfp_t gfp_mask)
421{
422	int ret = add_to_page_cache(page, mapping, offset, gfp_mask);
423	if (ret == 0)
424		lru_cache_add(page);
425	return ret;
426}
427
428/*
429 * In order to wait for pages to become available there must be
430 * waitqueues associated with pages. By using a hash table of
431 * waitqueues where the bucket discipline is to maintain all
432 * waiters on the same queue and wake all when any of the pages
433 * become available, and for the woken contexts to check to be
434 * sure the appropriate page became available, this saves space
435 * at a cost of "thundering herd" phenomena during rare hash
436 * collisions.
437 */
438static wait_queue_head_t *page_waitqueue(struct page *page)
439{
440	const struct zone *zone = page_zone(page);
441
442	return &zone->wait_table[hash_ptr(page, zone->wait_table_bits)];
443}
444
445static inline void wake_up_page(struct page *page, int bit)
446{
447	__wake_up_bit(page_waitqueue(page), &page->flags, bit);
448}
449
450void fastcall wait_on_page_bit(struct page *page, int bit_nr)
451{
452	DEFINE_WAIT_BIT(wait, &page->flags, bit_nr);
453
454	if (test_bit(bit_nr, &page->flags))
455		__wait_on_bit(page_waitqueue(page), &wait, sync_page,
456							TASK_UNINTERRUPTIBLE);
457}
458EXPORT_SYMBOL(wait_on_page_bit);
459
460/**
461 * unlock_page() - unlock a locked page
462 *
463 * @page: the page
464 *
465 * Unlocks the page and wakes up sleepers in ___wait_on_page_locked().
466 * Also wakes sleepers in wait_on_page_writeback() because the wakeup
467 * mechananism between PageLocked pages and PageWriteback pages is shared.
468 * But that's OK - sleepers in wait_on_page_writeback() just go back to sleep.
469 *
470 * The first mb is necessary to safely close the critical section opened by the
471 * TestSetPageLocked(), the second mb is necessary to enforce ordering between
472 * the clear_bit and the read of the waitqueue (to avoid SMP races with a
473 * parallel wait_on_page_locked()).
474 */
475void fastcall unlock_page(struct page *page)
476{
477	smp_mb__before_clear_bit();
478	if (!TestClearPageLocked(page))
479		BUG();
480	smp_mb__after_clear_bit();
481	wake_up_page(page, PG_locked);
482}
483EXPORT_SYMBOL(unlock_page);
484
485/*
486 * End writeback against a page.
487 */
488void end_page_writeback(struct page *page)
489{
490	if (!TestClearPageReclaim(page) || rotate_reclaimable_page(page)) {
491		if (!test_clear_page_writeback(page))
492			BUG();
493	}
494	smp_mb__after_clear_bit();
495	wake_up_page(page, PG_writeback);
496}
497EXPORT_SYMBOL(end_page_writeback);
498
499/*
500 * Get a lock on the page, assuming we need to sleep to get it.
501 *
502 * Ugly: running sync_page() in state TASK_UNINTERRUPTIBLE is scary.  If some
503 * random driver's requestfn sets TASK_RUNNING, we could busywait.  However
504 * chances are that on the second loop, the block layer's plug list is empty,
505 * so sync_page() will then return in state TASK_UNINTERRUPTIBLE.
506 */
507void fastcall __lock_page(struct page *page)
508{
509	DEFINE_WAIT_BIT(wait, &page->flags, PG_locked);
510
511	__wait_on_bit_lock(page_waitqueue(page), &wait, sync_page,
512							TASK_UNINTERRUPTIBLE);
513}
514EXPORT_SYMBOL(__lock_page);
515
516/*
517 * a rather lightweight function, finding and getting a reference to a
518 * hashed page atomically.
519 */
520struct page * find_get_page(struct address_space *mapping, unsigned long offset)
521{
522	struct page *page;
523
524	read_lock_irq(&mapping->tree_lock);
525	page = radix_tree_lookup(&mapping->page_tree, offset);
526	if (page)
527		page_cache_get(page);
528	read_unlock_irq(&mapping->tree_lock);
529	return page;
530}
531
532EXPORT_SYMBOL(find_get_page);
533
534/*
535 * Same as above, but trylock it instead of incrementing the count.
536 */
537struct page *find_trylock_page(struct address_space *mapping, unsigned long offset)
538{
539	struct page *page;
540
541	read_lock_irq(&mapping->tree_lock);
542	page = radix_tree_lookup(&mapping->page_tree, offset);
543	if (page && TestSetPageLocked(page))
544		page = NULL;
545	read_unlock_irq(&mapping->tree_lock);
546	return page;
547}
548
549EXPORT_SYMBOL(find_trylock_page);
550
551/**
552 * find_lock_page - locate, pin and lock a pagecache page
553 *
554 * @mapping: the address_space to search
555 * @offset: the page index
556 *
557 * Locates the desired pagecache page, locks it, increments its reference
558 * count and returns its address.
559 *
560 * Returns zero if the page was not present. find_lock_page() may sleep.
561 */
562struct page *find_lock_page(struct address_space *mapping,
563				unsigned long offset)
564{
565	struct page *page;
566
567	read_lock_irq(&mapping->tree_lock);
568repeat:
569	page = radix_tree_lookup(&mapping->page_tree, offset);
570	if (page) {
571		page_cache_get(page);
572		if (TestSetPageLocked(page)) {
573			read_unlock_irq(&mapping->tree_lock);
574			__lock_page(page);
575			read_lock_irq(&mapping->tree_lock);
576
577			/* Has the page been truncated while we slept? */
578			if (unlikely(page->mapping != mapping ||
579				     page->index != offset)) {
580				unlock_page(page);
581				page_cache_release(page);
582				goto repeat;
583			}
584		}
585	}
586	read_unlock_irq(&mapping->tree_lock);
587	return page;
588}
589
590EXPORT_SYMBOL(find_lock_page);
591
592/**
593 * find_or_create_page - locate or add a pagecache page
594 *
595 * @mapping: the page's address_space
596 * @index: the page's index into the mapping
597 * @gfp_mask: page allocation mode
598 *
599 * Locates a page in the pagecache.  If the page is not present, a new page
600 * is allocated using @gfp_mask and is added to the pagecache and to the VM's
601 * LRU list.  The returned page is locked and has its reference count
602 * incremented.
603 *
604 * find_or_create_page() may sleep, even if @gfp_flags specifies an atomic
605 * allocation!
606 *
607 * find_or_create_page() returns the desired page's address, or zero on
608 * memory exhaustion.
609 */
610struct page *find_or_create_page(struct address_space *mapping,
611		unsigned long index, gfp_t gfp_mask)
612{
613	struct page *page, *cached_page = NULL;
614	int err;
615repeat:
616	page = find_lock_page(mapping, index);
617	if (!page) {
618		if (!cached_page) {
619			cached_page = alloc_page(gfp_mask);
620			if (!cached_page)
621				return NULL;
622		}
623		err = add_to_page_cache_lru(cached_page, mapping,
624					index, gfp_mask);
625		if (!err) {
626			page = cached_page;
627			cached_page = NULL;
628		} else if (err == -EEXIST)
629			goto repeat;
630	}
631	if (cached_page)
632		page_cache_release(cached_page);
633	return page;
634}
635
636EXPORT_SYMBOL(find_or_create_page);
637
638/**
639 * find_get_pages - gang pagecache lookup
640 * @mapping:	The address_space to search
641 * @start:	The starting page index
642 * @nr_pages:	The maximum number of pages
643 * @pages:	Where the resulting pages are placed
644 *
645 * find_get_pages() will search for and return a group of up to
646 * @nr_pages pages in the mapping.  The pages are placed at @pages.
647 * find_get_pages() takes a reference against the returned pages.
648 *
649 * The search returns a group of mapping-contiguous pages with ascending
650 * indexes.  There may be holes in the indices due to not-present pages.
651 *
652 * find_get_pages() returns the number of pages which were found.
653 */
654unsigned find_get_pages(struct address_space *mapping, pgoff_t start,
655			    unsigned int nr_pages, struct page **pages)
656{
657	unsigned int i;
658	unsigned int ret;
659
660	read_lock_irq(&mapping->tree_lock);
661	ret = radix_tree_gang_lookup(&mapping->page_tree,
662				(void **)pages, start, nr_pages);
663	for (i = 0; i < ret; i++)
664		page_cache_get(pages[i]);
665	read_unlock_irq(&mapping->tree_lock);
666	return ret;
667}
668
669/*
670 * Like find_get_pages, except we only return pages which are tagged with
671 * `tag'.   We update *index to index the next page for the traversal.
672 */
673unsigned find_get_pages_tag(struct address_space *mapping, pgoff_t *index,
674			int tag, unsigned int nr_pages, struct page **pages)
675{
676	unsigned int i;
677	unsigned int ret;
678
679	read_lock_irq(&mapping->tree_lock);
680	ret = radix_tree_gang_lookup_tag(&mapping->page_tree,
681				(void **)pages, *index, nr_pages, tag);
682	for (i = 0; i < ret; i++)
683		page_cache_get(pages[i]);
684	if (ret)
685		*index = pages[ret - 1]->index + 1;
686	read_unlock_irq(&mapping->tree_lock);
687	return ret;
688}
689
690/*
691 * Same as grab_cache_page, but do not wait if the page is unavailable.
692 * This is intended for speculative data generators, where the data can
693 * be regenerated if the page couldn't be grabbed.  This routine should
694 * be safe to call while holding the lock for another page.
695 *
696 * Clear __GFP_FS when allocating the page to avoid recursion into the fs
697 * and deadlock against the caller's locked page.
698 */
699struct page *
700grab_cache_page_nowait(struct address_space *mapping, unsigned long index)
701{
702	struct page *page = find_get_page(mapping, index);
703	gfp_t gfp_mask;
704
705	if (page) {
706		if (!TestSetPageLocked(page))
707			return page;
708		page_cache_release(page);
709		return NULL;
710	}
711	gfp_mask = mapping_gfp_mask(mapping) & ~__GFP_FS;
712	page = alloc_pages(gfp_mask, 0);
713	if (page && add_to_page_cache_lru(page, mapping, index, gfp_mask)) {
714		page_cache_release(page);
715		page = NULL;
716	}
717	return page;
718}
719
720EXPORT_SYMBOL(grab_cache_page_nowait);
721
722/*
723 * This is a generic file read routine, and uses the
724 * mapping->a_ops->readpage() function for the actual low-level
725 * stuff.
726 *
727 * This is really ugly. But the goto's actually try to clarify some
728 * of the logic when it comes to error handling etc.
729 *
730 * Note the struct file* is only passed for the use of readpage.  It may be
731 * NULL.
732 */
733void do_generic_mapping_read(struct address_space *mapping,
734			     struct file_ra_state *_ra,
735			     struct file *filp,
736			     loff_t *ppos,
737			     read_descriptor_t *desc,
738			     read_actor_t actor)
739{
740	struct inode *inode = mapping->host;
741	unsigned long index;
742	unsigned long end_index;
743	unsigned long offset;
744	unsigned long last_index;
745	unsigned long next_index;
746	unsigned long prev_index;
747	loff_t isize;
748	struct page *cached_page;
749	int error;
750	struct file_ra_state ra = *_ra;
751
752	cached_page = NULL;
753	index = *ppos >> PAGE_CACHE_SHIFT;
754	next_index = index;
755	prev_index = ra.prev_page;
756	last_index = (*ppos + desc->count + PAGE_CACHE_SIZE-1) >> PAGE_CACHE_SHIFT;
757	offset = *ppos & ~PAGE_CACHE_MASK;
758
759	isize = i_size_read(inode);
760	if (!isize)
761		goto out;
762
763	end_index = (isize - 1) >> PAGE_CACHE_SHIFT;
764	for (;;) {
765		struct page *page;
766		unsigned long nr, ret;
767
768		/* nr is the maximum number of bytes to copy from this page */
769		nr = PAGE_CACHE_SIZE;
770		if (index >= end_index) {
771			if (index > end_index)
772				goto out;
773			nr = ((isize - 1) & ~PAGE_CACHE_MASK) + 1;
774			if (nr <= offset) {
775				goto out;
776			}
777		}
778		nr = nr - offset;
779
780		cond_resched();
781		if (index == next_index)
782			next_index = page_cache_readahead(mapping, &ra, filp,
783					index, last_index - index);
784
785find_page:
786		page = find_get_page(mapping, index);
787		if (unlikely(page == NULL)) {
788			handle_ra_miss(mapping, &ra, index);
789			goto no_cached_page;
790		}
791		if (!PageUptodate(page))
792			goto page_not_up_to_date;
793page_ok:
794
795		/* If users can be writing to this page using arbitrary
796		 * virtual addresses, take care about potential aliasing
797		 * before reading the page on the kernel side.
798		 */
799		if (mapping_writably_mapped(mapping))
800			flush_dcache_page(page);
801
802		/*
803		 * When (part of) the same page is read multiple times
804		 * in succession, only mark it as accessed the first time.
805		 */
806		if (prev_index != index)
807			mark_page_accessed(page);
808		prev_index = index;
809
810		/*
811		 * Ok, we have the page, and it's up-to-date, so
812		 * now we can copy it to user space...
813		 *
814		 * The actor routine returns how many bytes were actually used..
815		 * NOTE! This may not be the same as how much of a user buffer
816		 * we filled up (we may be padding etc), so we can only update
817		 * "pos" here (the actor routine has to update the user buffer
818		 * pointers and the remaining count).
819		 */
820		ret = actor(desc, page, offset, nr);
821		offset += ret;
822		index += offset >> PAGE_CACHE_SHIFT;
823		offset &= ~PAGE_CACHE_MASK;
824
825		page_cache_release(page);
826		if (ret == nr && desc->count)
827			continue;
828		goto out;
829
830page_not_up_to_date:
831		/* Get exclusive access to the page ... */
832		lock_page(page);
833
834		/* Did it get unhashed before we got the lock? */
835		if (!page->mapping) {
836			unlock_page(page);
837			page_cache_release(page);
838			continue;
839		}
840
841		/* Did somebody else fill it already? */
842		if (PageUptodate(page)) {
843			unlock_page(page);
844			goto page_ok;
845		}
846
847readpage:
848		/* Start the actual read. The read will unlock the page. */
849		error = mapping->a_ops->readpage(filp, page);
850
851		if (unlikely(error)) {
852			if (error == AOP_TRUNCATED_PAGE) {
853				page_cache_release(page);
854				goto find_page;
855			}
856			goto readpage_error;
857		}
858
859		if (!PageUptodate(page)) {
860			lock_page(page);
861			if (!PageUptodate(page)) {
862				if (page->mapping == NULL) {
863					/*
864					 * invalidate_inode_pages got it
865					 */
866					unlock_page(page);
867					page_cache_release(page);
868					goto find_page;
869				}
870				unlock_page(page);
871				error = -EIO;
872				goto readpage_error;
873			}
874			unlock_page(page);
875		}
876
877		/*
878		 * i_size must be checked after we have done ->readpage.
879		 *
880		 * Checking i_size after the readpage allows us to calculate
881		 * the correct value for "nr", which means the zero-filled
882		 * part of the page is not copied back to userspace (unless
883		 * another truncate extends the file - this is desired though).
884		 */
885		isize = i_size_read(inode);
886		end_index = (isize - 1) >> PAGE_CACHE_SHIFT;
887		if (unlikely(!isize || index > end_index)) {
888			page_cache_release(page);
889			goto out;
890		}
891
892		/* nr is the maximum number of bytes to copy from this page */
893		nr = PAGE_CACHE_SIZE;
894		if (index == end_index) {
895			nr = ((isize - 1) & ~PAGE_CACHE_MASK) + 1;
896			if (nr <= offset) {
897				page_cache_release(page);
898				goto out;
899			}
900		}
901		nr = nr - offset;
902		goto page_ok;
903
904readpage_error:
905		/* UHHUH! A synchronous read error occurred. Report it */
906		desc->error = error;
907		page_cache_release(page);
908		goto out;
909
910no_cached_page:
911		/*
912		 * Ok, it wasn't cached, so we need to create a new
913		 * page..
914		 */
915		if (!cached_page) {
916			cached_page = page_cache_alloc_cold(mapping);
917			if (!cached_page) {
918				desc->error = -ENOMEM;
919				goto out;
920			}
921		}
922		error = add_to_page_cache_lru(cached_page, mapping,
923						index, GFP_KERNEL);
924		if (error) {
925			if (error == -EEXIST)
926				goto find_page;
927			desc->error = error;
928			goto out;
929		}
930		page = cached_page;
931		cached_page = NULL;
932		goto readpage;
933	}
934
935out:
936	*_ra = ra;
937
938	*ppos = ((loff_t) index << PAGE_CACHE_SHIFT) + offset;
939	if (cached_page)
940		page_cache_release(cached_page);
941	if (filp)
942		file_accessed(filp);
943}
944
945EXPORT_SYMBOL(do_generic_mapping_read);
946
947int file_read_actor(read_descriptor_t *desc, struct page *page,
948			unsigned long offset, unsigned long size)
949{
950	char *kaddr;
951	unsigned long left, count = desc->count;
952
953	if (size > count)
954		size = count;
955
956	/*
957	 * Faults on the destination of a read are common, so do it before
958	 * taking the kmap.
959	 */
960	if (!fault_in_pages_writeable(desc->arg.buf, size)) {
961		kaddr = kmap_atomic(page, KM_USER0);
962		left = __copy_to_user_inatomic(desc->arg.buf,
963						kaddr + offset, size);
964		kunmap_atomic(kaddr, KM_USER0);
965		if (left == 0)
966			goto success;
967	}
968
969	/* Do it the slow way */
970	kaddr = kmap(page);
971	left = __copy_to_user(desc->arg.buf, kaddr + offset, size);
972	kunmap(page);
973
974	if (left) {
975		size -= left;
976		desc->error = -EFAULT;
977	}
978success:
979	desc->count = count - size;
980	desc->written += size;
981	desc->arg.buf += size;
982	return size;
983}
984EXPORT_SYMBOL(file_read_actor);
985
986/*
987 * This is the "read()" routine for all filesystems
988 * that can use the page cache directly.
989 */
990ssize_t
991__generic_file_aio_read(struct kiocb *iocb, const struct iovec *iov,
992		unsigned long nr_segs, loff_t *ppos)
993{
994	struct file *filp = iocb->ki_filp;
995	ssize_t retval;
996	unsigned long seg;
997	size_t count;
998
999	count = 0;
1000	for (seg = 0; seg < nr_segs; seg++) {
1001		const struct iovec *iv = &iov[seg];
1002
1003		/*
1004		 * If any segment has a negative length, or the cumulative
1005		 * length ever wraps negative then return -EINVAL.
1006		 */
1007		count += iv->iov_len;
1008		if (unlikely((ssize_t)(count|iv->iov_len) < 0))
1009			return -EINVAL;
1010		if (access_ok(VERIFY_WRITE, iv->iov_base, iv->iov_len))
1011			continue;
1012		if (seg == 0)
1013			return -EFAULT;
1014		nr_segs = seg;
1015		count -= iv->iov_len;	/* This segment is no good */
1016		break;
1017	}
1018
1019	/* coalesce the iovecs and go direct-to-BIO for O_DIRECT */
1020	if (filp->f_flags & O_DIRECT) {
1021		loff_t pos = *ppos, size;
1022		struct address_space *mapping;
1023		struct inode *inode;
1024
1025		mapping = filp->f_mapping;
1026		inode = mapping->host;
1027		retval = 0;
1028		if (!count)
1029			goto out; /* skip atime */
1030		size = i_size_read(inode);
1031		if (pos < size) {
1032			retval = generic_file_direct_IO(READ, iocb,
1033						iov, pos, nr_segs);
1034			if (retval > 0 && !is_sync_kiocb(iocb))
1035				retval = -EIOCBQUEUED;
1036			if (retval > 0)
1037				*ppos = pos + retval;
1038		}
1039		file_accessed(filp);
1040		goto out;
1041	}
1042
1043	retval = 0;
1044	if (count) {
1045		for (seg = 0; seg < nr_segs; seg++) {
1046			read_descriptor_t desc;
1047
1048			desc.written = 0;
1049			desc.arg.buf = iov[seg].iov_base;
1050			desc.count = iov[seg].iov_len;
1051			if (desc.count == 0)
1052				continue;
1053			desc.error = 0;
1054			do_generic_file_read(filp,ppos,&desc,file_read_actor);
1055			retval += desc.written;
1056			if (desc.error) {
1057				retval = retval ?: desc.error;
1058				break;
1059			}
1060		}
1061	}
1062out:
1063	return retval;
1064}
1065
1066EXPORT_SYMBOL(__generic_file_aio_read);
1067
1068ssize_t
1069generic_file_aio_read(struct kiocb *iocb, char __user *buf, size_t count, loff_t pos)
1070{
1071	struct iovec local_iov = { .iov_base = buf, .iov_len = count };
1072
1073	BUG_ON(iocb->ki_pos != pos);
1074	return __generic_file_aio_read(iocb, &local_iov, 1, &iocb->ki_pos);
1075}
1076
1077EXPORT_SYMBOL(generic_file_aio_read);
1078
1079ssize_t
1080generic_file_read(struct file *filp, char __user *buf, size_t count, loff_t *ppos)
1081{
1082	struct iovec local_iov = { .iov_base = buf, .iov_len = count };
1083	struct kiocb kiocb;
1084	ssize_t ret;
1085
1086	init_sync_kiocb(&kiocb, filp);
1087	ret = __generic_file_aio_read(&kiocb, &local_iov, 1, ppos);
1088	if (-EIOCBQUEUED == ret)
1089		ret = wait_on_sync_kiocb(&kiocb);
1090	return ret;
1091}
1092
1093EXPORT_SYMBOL(generic_file_read);
1094
1095int file_send_actor(read_descriptor_t * desc, struct page *page, unsigned long offset, unsigned long size)
1096{
1097	ssize_t written;
1098	unsigned long count = desc->count;
1099	struct file *file = desc->arg.data;
1100
1101	if (size > count)
1102		size = count;
1103
1104	written = file->f_op->sendpage(file, page, offset,
1105				       size, &file->f_pos, size<count);
1106	if (written < 0) {
1107		desc->error = written;
1108		written = 0;
1109	}
1110	desc->count = count - written;
1111	desc->written += written;
1112	return written;
1113}
1114
1115ssize_t generic_file_sendfile(struct file *in_file, loff_t *ppos,
1116			 size_t count, read_actor_t actor, void *target)
1117{
1118	read_descriptor_t desc;
1119
1120	if (!count)
1121		return 0;
1122
1123	desc.written = 0;
1124	desc.count = count;
1125	desc.arg.data = target;
1126	desc.error = 0;
1127
1128	do_generic_file_read(in_file, ppos, &desc, actor);
1129	if (desc.written)
1130		return desc.written;
1131	return desc.error;
1132}
1133
1134EXPORT_SYMBOL(generic_file_sendfile);
1135
1136static ssize_t
1137do_readahead(struct address_space *mapping, struct file *filp,
1138	     unsigned long index, unsigned long nr)
1139{
1140	if (!mapping || !mapping->a_ops || !mapping->a_ops->readpage)
1141		return -EINVAL;
1142
1143	force_page_cache_readahead(mapping, filp, index,
1144					max_sane_readahead(nr));
1145	return 0;
1146}
1147
1148asmlinkage ssize_t sys_readahead(int fd, loff_t offset, size_t count)
1149{
1150	ssize_t ret;
1151	struct file *file;
1152
1153	ret = -EBADF;
1154	file = fget(fd);
1155	if (file) {
1156		if (file->f_mode & FMODE_READ) {
1157			struct address_space *mapping = file->f_mapping;
1158			unsigned long start = offset >> PAGE_CACHE_SHIFT;
1159			unsigned long end = (offset + count - 1) >> PAGE_CACHE_SHIFT;
1160			unsigned long len = end - start + 1;
1161			ret = do_readahead(mapping, file, start, len);
1162		}
1163		fput(file);
1164	}
1165	return ret;
1166}
1167
1168#ifdef CONFIG_MMU
1169/*
1170 * This adds the requested page to the page cache if it isn't already there,
1171 * and schedules an I/O to read in its contents from disk.
1172 */
1173static int FASTCALL(page_cache_read(struct file * file, unsigned long offset));
1174static int fastcall page_cache_read(struct file * file, unsigned long offset)
1175{
1176	struct address_space *mapping = file->f_mapping;
1177	struct page *page;
1178	int ret;
1179
1180	do {
1181		page = page_cache_alloc_cold(mapping);
1182		if (!page)
1183			return -ENOMEM;
1184
1185		ret = add_to_page_cache_lru(page, mapping, offset, GFP_KERNEL);
1186		if (ret == 0)
1187			ret = mapping->a_ops->readpage(file, page);
1188		else if (ret == -EEXIST)
1189			ret = 0; /* losing race to add is OK */
1190
1191		page_cache_release(page);
1192
1193	} while (ret == AOP_TRUNCATED_PAGE);
1194
1195	return ret;
1196}
1197
1198#define MMAP_LOTSAMISS  (100)
1199
1200/*
1201 * filemap_nopage() is invoked via the vma operations vector for a
1202 * mapped memory region to read in file data during a page fault.
1203 *
1204 * The goto's are kind of ugly, but this streamlines the normal case of having
1205 * it in the page cache, and handles the special cases reasonably without
1206 * having a lot of duplicated code.
1207 */
1208struct page *filemap_nopage(struct vm_area_struct *area,
1209				unsigned long address, int *type)
1210{
1211	int error;
1212	struct file *file = area->vm_file;
1213	struct address_space *mapping = file->f_mapping;
1214	struct file_ra_state *ra = &file->f_ra;
1215	struct inode *inode = mapping->host;
1216	struct page *page;
1217	unsigned long size, pgoff;
1218	int did_readaround = 0, majmin = VM_FAULT_MINOR;
1219
1220	pgoff = ((address-area->vm_start) >> PAGE_CACHE_SHIFT) + area->vm_pgoff;
1221
1222retry_all:
1223	size = (i_size_read(inode) + PAGE_CACHE_SIZE - 1) >> PAGE_CACHE_SHIFT;
1224	if (pgoff >= size)
1225		goto outside_data_content;
1226
1227	/* If we don't want any read-ahead, don't bother */
1228	if (VM_RandomReadHint(area))
1229		goto no_cached_page;
1230
1231	/*
1232	 * The readahead code wants to be told about each and every page
1233	 * so it can build and shrink its windows appropriately
1234	 *
1235	 * For sequential accesses, we use the generic readahead logic.
1236	 */
1237	if (VM_SequentialReadHint(area))
1238		page_cache_readahead(mapping, ra, file, pgoff, 1);
1239
1240	/*
1241	 * Do we have something in the page cache already?
1242	 */
1243retry_find:
1244	page = find_get_page(mapping, pgoff);
1245	if (!page) {
1246		unsigned long ra_pages;
1247
1248		if (VM_SequentialReadHint(area)) {
1249			handle_ra_miss(mapping, ra, pgoff);
1250			goto no_cached_page;
1251		}
1252		ra->mmap_miss++;
1253
1254		/*
1255		 * Do we miss much more than hit in this file? If so,
1256		 * stop bothering with read-ahead. It will only hurt.
1257		 */
1258		if (ra->mmap_miss > ra->mmap_hit + MMAP_LOTSAMISS)
1259			goto no_cached_page;
1260
1261		/*
1262		 * To keep the pgmajfault counter straight, we need to
1263		 * check did_readaround, as this is an inner loop.
1264		 */
1265		if (!did_readaround) {
1266			majmin = VM_FAULT_MAJOR;
1267			inc_page_state(pgmajfault);
1268		}
1269		did_readaround = 1;
1270		ra_pages = max_sane_readahead(file->f_ra.ra_pages);
1271		if (ra_pages) {
1272			pgoff_t start = 0;
1273
1274			if (pgoff > ra_pages / 2)
1275				start = pgoff - ra_pages / 2;
1276			do_page_cache_readahead(mapping, file, start, ra_pages);
1277		}
1278		page = find_get_page(mapping, pgoff);
1279		if (!page)
1280			goto no_cached_page;
1281	}
1282
1283	if (!did_readaround)
1284		ra->mmap_hit++;
1285
1286	/*
1287	 * Ok, found a page in the page cache, now we need to check
1288	 * that it's up-to-date.
1289	 */
1290	if (!PageUptodate(page))
1291		goto page_not_uptodate;
1292
1293success:
1294	/*
1295	 * Found the page and have a reference on it.
1296	 */
1297	mark_page_accessed(page);
1298	if (type)
1299		*type = majmin;
1300	return page;
1301
1302outside_data_content:
1303	/*
1304	 * An external ptracer can access pages that normally aren't
1305	 * accessible..
1306	 */
1307	if (area->vm_mm == current->mm)
1308		return NULL;
1309	/* Fall through to the non-read-ahead case */
1310no_cached_page:
1311	/*
1312	 * We're only likely to ever get here if MADV_RANDOM is in
1313	 * effect.
1314	 */
1315	error = page_cache_read(file, pgoff);
1316	grab_swap_token();
1317
1318	/*
1319	 * The page we want has now been added to the page cache.
1320	 * In the unlikely event that someone removed it in the
1321	 * meantime, we'll just come back here and read it again.
1322	 */
1323	if (error >= 0)
1324		goto retry_find;
1325
1326	/*
1327	 * An error return from page_cache_read can result if the
1328	 * system is low on memory, or a problem occurs while trying
1329	 * to schedule I/O.
1330	 */
1331	if (error == -ENOMEM)
1332		return NOPAGE_OOM;
1333	return NULL;
1334
1335page_not_uptodate:
1336	if (!did_readaround) {
1337		majmin = VM_FAULT_MAJOR;
1338		inc_page_state(pgmajfault);
1339	}
1340	lock_page(page);
1341
1342	/* Did it get unhashed while we waited for it? */
1343	if (!page->mapping) {
1344		unlock_page(page);
1345		page_cache_release(page);
1346		goto retry_all;
1347	}
1348
1349	/* Did somebody else get it up-to-date? */
1350	if (PageUptodate(page)) {
1351		unlock_page(page);
1352		goto success;
1353	}
1354
1355	error = mapping->a_ops->readpage(file, page);
1356	if (!error) {
1357		wait_on_page_locked(page);
1358		if (PageUptodate(page))
1359			goto success;
1360	} else if (error == AOP_TRUNCATED_PAGE) {
1361		page_cache_release(page);
1362		goto retry_find;
1363	}
1364
1365	/*
1366	 * Umm, take care of errors if the page isn't up-to-date.
1367	 * Try to re-read it _once_. We do this synchronously,
1368	 * because there really aren't any performance issues here
1369	 * and we need to check for errors.
1370	 */
1371	lock_page(page);
1372
1373	/* Somebody truncated the page on us? */
1374	if (!page->mapping) {
1375		unlock_page(page);
1376		page_cache_release(page);
1377		goto retry_all;
1378	}
1379
1380	/* Somebody else successfully read it in? */
1381	if (PageUptodate(page)) {
1382		unlock_page(page);
1383		goto success;
1384	}
1385	ClearPageError(page);
1386	error = mapping->a_ops->readpage(file, page);
1387	if (!error) {
1388		wait_on_page_locked(page);
1389		if (PageUptodate(page))
1390			goto success;
1391	} else if (error == AOP_TRUNCATED_PAGE) {
1392		page_cache_release(page);
1393		goto retry_find;
1394	}
1395
1396	/*
1397	 * Things didn't work out. Return zero to tell the
1398	 * mm layer so, possibly freeing the page cache page first.
1399	 */
1400	page_cache_release(page);
1401	return NULL;
1402}
1403
1404EXPORT_SYMBOL(filemap_nopage);
1405
1406static struct page * filemap_getpage(struct file *file, unsigned long pgoff,
1407					int nonblock)
1408{
1409	struct address_space *mapping = file->f_mapping;
1410	struct page *page;
1411	int error;
1412
1413	/*
1414	 * Do we have something in the page cache already?
1415	 */
1416retry_find:
1417	page = find_get_page(mapping, pgoff);
1418	if (!page) {
1419		if (nonblock)
1420			return NULL;
1421		goto no_cached_page;
1422	}
1423
1424	/*
1425	 * Ok, found a page in the page cache, now we need to check
1426	 * that it's up-to-date.
1427	 */
1428	if (!PageUptodate(page)) {
1429		if (nonblock) {
1430			page_cache_release(page);
1431			return NULL;
1432		}
1433		goto page_not_uptodate;
1434	}
1435
1436success:
1437	/*
1438	 * Found the page and have a reference on it.
1439	 */
1440	mark_page_accessed(page);
1441	return page;
1442
1443no_cached_page:
1444	error = page_cache_read(file, pgoff);
1445
1446	/*
1447	 * The page we want has now been added to the page cache.
1448	 * In the unlikely event that someone removed it in the
1449	 * meantime, we'll just come back here and read it again.
1450	 */
1451	if (error >= 0)
1452		goto retry_find;
1453
1454	/*
1455	 * An error return from page_cache_read can result if the
1456	 * system is low on memory, or a problem occurs while trying
1457	 * to schedule I/O.
1458	 */
1459	return NULL;
1460
1461page_not_uptodate:
1462	lock_page(page);
1463
1464	/* Did it get unhashed while we waited for it? */
1465	if (!page->mapping) {
1466		unlock_page(page);
1467		goto err;
1468	}
1469
1470	/* Did somebody else get it up-to-date? */
1471	if (PageUptodate(page)) {
1472		unlock_page(page);
1473		goto success;
1474	}
1475
1476	error = mapping->a_ops->readpage(file, page);
1477	if (!error) {
1478		wait_on_page_locked(page);
1479		if (PageUptodate(page))
1480			goto success;
1481	} else if (error == AOP_TRUNCATED_PAGE) {
1482		page_cache_release(page);
1483		goto retry_find;
1484	}
1485
1486	/*
1487	 * Umm, take care of errors if the page isn't up-to-date.
1488	 * Try to re-read it _once_. We do this synchronously,
1489	 * because there really aren't any performance issues here
1490	 * and we need to check for errors.
1491	 */
1492	lock_page(page);
1493
1494	/* Somebody truncated the page on us? */
1495	if (!page->mapping) {
1496		unlock_page(page);
1497		goto err;
1498	}
1499	/* Somebody else successfully read it in? */
1500	if (PageUptodate(page)) {
1501		unlock_page(page);
1502		goto success;
1503	}
1504
1505	ClearPageError(page);
1506	error = mapping->a_ops->readpage(file, page);
1507	if (!error) {
1508		wait_on_page_locked(page);
1509		if (PageUptodate(page))
1510			goto success;
1511	} else if (error == AOP_TRUNCATED_PAGE) {
1512		page_cache_release(page);
1513		goto retry_find;
1514	}
1515
1516	/*
1517	 * Things didn't work out. Return zero to tell the
1518	 * mm layer so, possibly freeing the page cache page first.
1519	 */
1520err:
1521	page_cache_release(page);
1522
1523	return NULL;
1524}
1525
1526int filemap_populate(struct vm_area_struct *vma, unsigned long addr,
1527		unsigned long len, pgprot_t prot, unsigned long pgoff,
1528		int nonblock)
1529{
1530	struct file *file = vma->vm_file;
1531	struct address_space *mapping = file->f_mapping;
1532	struct inode *inode = mapping->host;
1533	unsigned long size;
1534	struct mm_struct *mm = vma->vm_mm;
1535	struct page *page;
1536	int err;
1537
1538	if (!nonblock)
1539		force_page_cache_readahead(mapping, vma->vm_file,
1540					pgoff, len >> PAGE_CACHE_SHIFT);
1541
1542repeat:
1543	size = (i_size_read(inode) + PAGE_CACHE_SIZE - 1) >> PAGE_CACHE_SHIFT;
1544	if (pgoff + (len >> PAGE_CACHE_SHIFT) > size)
1545		return -EINVAL;
1546
1547	page = filemap_getpage(file, pgoff, nonblock);
1548
1549	/* XXX: This is wrong, a filesystem I/O error may have happened. Fix that as
1550	 * done in shmem_populate calling shmem_getpage */
1551	if (!page && !nonblock)
1552		return -ENOMEM;
1553
1554	if (page) {
1555		err = install_page(mm, vma, addr, page, prot);
1556		if (err) {
1557			page_cache_release(page);
1558			return err;
1559		}
1560	} else if (vma->vm_flags & VM_NONLINEAR) {
1561		/* No page was found just because we can't read it in now (being
1562		 * here implies nonblock != 0), but the page may exist, so set
1563		 * the PTE to fault it in later. */
1564		err = install_file_pte(mm, vma, addr, pgoff, prot);
1565		if (err)
1566			return err;
1567	}
1568
1569	len -= PAGE_SIZE;
1570	addr += PAGE_SIZE;
1571	pgoff++;
1572	if (len)
1573		goto repeat;
1574
1575	return 0;
1576}
1577EXPORT_SYMBOL(filemap_populate);
1578
1579struct vm_operations_struct generic_file_vm_ops = {
1580	.nopage		= filemap_nopage,
1581	.populate	= filemap_populate,
1582};
1583
1584/* This is used for a general mmap of a disk file */
1585
1586int generic_file_mmap(struct file * file, struct vm_area_struct * vma)
1587{
1588	struct address_space *mapping = file->f_mapping;
1589
1590	if (!mapping->a_ops->readpage)
1591		return -ENOEXEC;
1592	file_accessed(file);
1593	vma->vm_ops = &generic_file_vm_ops;
1594	return 0;
1595}
1596
1597/*
1598 * This is for filesystems which do not implement ->writepage.
1599 */
1600int generic_file_readonly_mmap(struct file *file, struct vm_area_struct *vma)
1601{
1602	if ((vma->vm_flags & VM_SHARED) && (vma->vm_flags & VM_MAYWRITE))
1603		return -EINVAL;
1604	return generic_file_mmap(file, vma);
1605}
1606#else
1607int generic_file_mmap(struct file * file, struct vm_area_struct * vma)
1608{
1609	return -ENOSYS;
1610}
1611int generic_file_readonly_mmap(struct file * file, struct vm_area_struct * vma)
1612{
1613	return -ENOSYS;
1614}
1615#endif /* CONFIG_MMU */
1616
1617EXPORT_SYMBOL(generic_file_mmap);
1618EXPORT_SYMBOL(generic_file_readonly_mmap);
1619
1620static inline struct page *__read_cache_page(struct address_space *mapping,
1621				unsigned long index,
1622				int (*filler)(void *,struct page*),
1623				void *data)
1624{
1625	struct page *page, *cached_page = NULL;
1626	int err;
1627repeat:
1628	page = find_get_page(mapping, index);
1629	if (!page) {
1630		if (!cached_page) {
1631			cached_page = page_cache_alloc_cold(mapping);
1632			if (!cached_page)
1633				return ERR_PTR(-ENOMEM);
1634		}
1635		err = add_to_page_cache_lru(cached_page, mapping,
1636					index, GFP_KERNEL);
1637		if (err == -EEXIST)
1638			goto repeat;
1639		if (err < 0) {
1640			/* Presumably ENOMEM for radix tree node */
1641			page_cache_release(cached_page);
1642			return ERR_PTR(err);
1643		}
1644		page = cached_page;
1645		cached_page = NULL;
1646		err = filler(data, page);
1647		if (err < 0) {
1648			page_cache_release(page);
1649			page = ERR_PTR(err);
1650		}
1651	}
1652	if (cached_page)
1653		page_cache_release(cached_page);
1654	return page;
1655}
1656
1657/*
1658 * Read into the page cache. If a page already exists,
1659 * and PageUptodate() is not set, try to fill the page.
1660 */
1661struct page *read_cache_page(struct address_space *mapping,
1662				unsigned long index,
1663				int (*filler)(void *,struct page*),
1664				void *data)
1665{
1666	struct page *page;
1667	int err;
1668
1669retry:
1670	page = __read_cache_page(mapping, index, filler, data);
1671	if (IS_ERR(page))
1672		goto out;
1673	mark_page_accessed(page);
1674	if (PageUptodate(page))
1675		goto out;
1676
1677	lock_page(page);
1678	if (!page->mapping) {
1679		unlock_page(page);
1680		page_cache_release(page);
1681		goto retry;
1682	}
1683	if (PageUptodate(page)) {
1684		unlock_page(page);
1685		goto out;
1686	}
1687	err = filler(data, page);
1688	if (err < 0) {
1689		page_cache_release(page);
1690		page = ERR_PTR(err);
1691	}
1692 out:
1693	return page;
1694}
1695
1696EXPORT_SYMBOL(read_cache_page);
1697
1698/*
1699 * If the page was newly created, increment its refcount and add it to the
1700 * caller's lru-buffering pagevec.  This function is specifically for
1701 * generic_file_write().
1702 */
1703static inline struct page *
1704__grab_cache_page(struct address_space *mapping, unsigned long index,
1705			struct page **cached_page, struct pagevec *lru_pvec)
1706{
1707	int err;
1708	struct page *page;
1709repeat:
1710	page = find_lock_page(mapping, index);
1711	if (!page) {
1712		if (!*cached_page) {
1713			*cached_page = page_cache_alloc(mapping);
1714			if (!*cached_page)
1715				return NULL;
1716		}
1717		err = add_to_page_cache(*cached_page, mapping,
1718					index, GFP_KERNEL);
1719		if (err == -EEXIST)
1720			goto repeat;
1721		if (err == 0) {
1722			page = *cached_page;
1723			page_cache_get(page);
1724			if (!pagevec_add(lru_pvec, page))
1725				__pagevec_lru_add(lru_pvec);
1726			*cached_page = NULL;
1727		}
1728	}
1729	return page;
1730}
1731
1732/*
1733 * The logic we want is
1734 *
1735 *	if suid or (sgid and xgrp)
1736 *		remove privs
1737 */
1738int remove_suid(struct dentry *dentry)
1739{
1740	mode_t mode = dentry->d_inode->i_mode;
1741	int kill = 0;
1742	int result = 0;
1743
1744	/* suid always must be killed */
1745	if (unlikely(mode & S_ISUID))
1746		kill = ATTR_KILL_SUID;
1747
1748	/*
1749	 * sgid without any exec bits is just a mandatory locking mark; leave
1750	 * it alone.  If some exec bits are set, it's a real sgid; kill it.
1751	 */
1752	if (unlikely((mode & S_ISGID) && (mode & S_IXGRP)))
1753		kill |= ATTR_KILL_SGID;
1754
1755	if (unlikely(kill && !capable(CAP_FSETID))) {
1756		struct iattr newattrs;
1757
1758		newattrs.ia_valid = ATTR_FORCE | kill;
1759		result = notify_change(dentry, &newattrs);
1760	}
1761	return result;
1762}
1763EXPORT_SYMBOL(remove_suid);
1764
1765size_t
1766__filemap_copy_from_user_iovec(char *vaddr,
1767			const struct iovec *iov, size_t base, size_t bytes)
1768{
1769	size_t copied = 0, left = 0;
1770
1771	while (bytes) {
1772		char __user *buf = iov->iov_base + base;
1773		int copy = min(bytes, iov->iov_len - base);
1774
1775		base = 0;
1776		left = __copy_from_user_inatomic(vaddr, buf, copy);
1777		copied += copy;
1778		bytes -= copy;
1779		vaddr += copy;
1780		iov++;
1781
1782		if (unlikely(left)) {
1783			/* zero the rest of the target like __copy_from_user */
1784			if (bytes)
1785				memset(vaddr, 0, bytes);
1786			break;
1787		}
1788	}
1789	return copied - left;
1790}
1791
1792/*
1793 * Performs necessary checks before doing a write
1794 *
1795 * Can adjust writing position aor amount of bytes to write.
1796 * Returns appropriate error code that caller should return or
1797 * zero in case that write should be allowed.
1798 */
1799inline int generic_write_checks(struct file *file, loff_t *pos, size_t *count, int isblk)
1800{
1801	struct inode *inode = file->f_mapping->host;
1802	unsigned long limit = current->signal->rlim[RLIMIT_FSIZE].rlim_cur;
1803
1804        if (unlikely(*pos < 0))
1805                return -EINVAL;
1806
1807	if (!isblk) {
1808		/* FIXME: this is for backwards compatibility with 2.4 */
1809		if (file->f_flags & O_APPEND)
1810                        *pos = i_size_read(inode);
1811
1812		if (limit != RLIM_INFINITY) {
1813			if (*pos >= limit) {
1814				send_sig(SIGXFSZ, current, 0);
1815				return -EFBIG;
1816			}
1817			if (*count > limit - (typeof(limit))*pos) {
1818				*count = limit - (typeof(limit))*pos;
1819			}
1820		}
1821	}
1822
1823	/*
1824	 * LFS rule
1825	 */
1826	if (unlikely(*pos + *count > MAX_NON_LFS &&
1827				!(file->f_flags & O_LARGEFILE))) {
1828		if (*pos >= MAX_NON_LFS) {
1829			send_sig(SIGXFSZ, current, 0);
1830			return -EFBIG;
1831		}
1832		if (*count > MAX_NON_LFS - (unsigned long)*pos) {
1833			*count = MAX_NON_LFS - (unsigned long)*pos;
1834		}
1835	}
1836
1837	/*
1838	 * Are we about to exceed the fs block limit ?
1839	 *
1840	 * If we have written data it becomes a short write.  If we have
1841	 * exceeded without writing data we send a signal and return EFBIG.
1842	 * Linus frestrict idea will clean these up nicely..
1843	 */
1844	if (likely(!isblk)) {
1845		if (unlikely(*pos >= inode->i_sb->s_maxbytes)) {
1846			if (*count || *pos > inode->i_sb->s_maxbytes) {
1847				send_sig(SIGXFSZ, current, 0);
1848				return -EFBIG;
1849			}
1850			/* zero-length writes at ->s_maxbytes are OK */
1851		}
1852
1853		if (unlikely(*pos + *count > inode->i_sb->s_maxbytes))
1854			*count = inode->i_sb->s_maxbytes - *pos;
1855	} else {
1856		loff_t isize;
1857		if (bdev_read_only(I_BDEV(inode)))
1858			return -EPERM;
1859		isize = i_size_read(inode);
1860		if (*pos >= isize) {
1861			if (*count || *pos > isize)
1862				return -ENOSPC;
1863		}
1864
1865		if (*pos + *count > isize)
1866			*count = isize - *pos;
1867	}
1868	return 0;
1869}
1870EXPORT_SYMBOL(generic_write_checks);
1871
1872ssize_t
1873generic_file_direct_write(struct kiocb *iocb, const struct iovec *iov,
1874		unsigned long *nr_segs, loff_t pos, loff_t *ppos,
1875		size_t count, size_t ocount)
1876{
1877	struct file	*file = iocb->ki_filp;
1878	struct address_space *mapping = file->f_mapping;
1879	struct inode	*inode = mapping->host;
1880	ssize_t		written;
1881
1882	if (count != ocount)
1883		*nr_segs = iov_shorten((struct iovec *)iov, *nr_segs, count);
1884
1885	written = generic_file_direct_IO(WRITE, iocb, iov, pos, *nr_segs);
1886	if (written > 0) {
1887		loff_t end = pos + written;
1888		if (end > i_size_read(inode) && !S_ISBLK(inode->i_mode)) {
1889			i_size_write(inode,  end);
1890			mark_inode_dirty(inode);
1891		}
1892		*ppos = end;
1893	}
1894
1895	/*
1896	 * Sync the fs metadata but not the minor inode changes and
1897	 * of course not the data as we did direct DMA for the IO.
1898	 * i_mutex is held, which protects generic_osync_inode() from
1899	 * livelocking.
1900	 */
1901	if (written >= 0 && ((file->f_flags & O_SYNC) || IS_SYNC(inode))) {
1902		int err = generic_osync_inode(inode, mapping, OSYNC_METADATA);
1903		if (err < 0)
1904			written = err;
1905	}
1906	if (written == count && !is_sync_kiocb(iocb))
1907		written = -EIOCBQUEUED;
1908	return written;
1909}
1910EXPORT_SYMBOL(generic_file_direct_write);
1911
1912ssize_t
1913generic_file_buffered_write(struct kiocb *iocb, const struct iovec *iov,
1914		unsigned long nr_segs, loff_t pos, loff_t *ppos,
1915		size_t count, ssize_t written)
1916{
1917	struct file *file = iocb->ki_filp;
1918	struct address_space * mapping = file->f_mapping;
1919	struct address_space_operations *a_ops = mapping->a_ops;
1920	struct inode 	*inode = mapping->host;
1921	long		status = 0;
1922	struct page	*page;
1923	struct page	*cached_page = NULL;
1924	size_t		bytes;
1925	struct pagevec	lru_pvec;
1926	const struct iovec *cur_iov = iov; /* current iovec */
1927	size_t		iov_base = 0;	   /* offset in the current iovec */
1928	char __user	*buf;
1929
1930	pagevec_init(&lru_pvec, 0);
1931
1932	/*
1933	 * handle partial DIO write.  Adjust cur_iov if needed.
1934	 */
1935	if (likely(nr_segs == 1))
1936		buf = iov->iov_base + written;
1937	else {
1938		filemap_set_next_iovec(&cur_iov, &iov_base, written);
1939		buf = cur_iov->iov_base + iov_base;
1940	}
1941
1942	do {
1943		unsigned long index;
1944		unsigned long offset;
1945		unsigned long maxlen;
1946		size_t copied;
1947
1948		offset = (pos & (PAGE_CACHE_SIZE -1)); /* Within page */
1949		index = pos >> PAGE_CACHE_SHIFT;
1950		bytes = PAGE_CACHE_SIZE - offset;
1951		if (bytes > count)
1952			bytes = count;
1953
1954		/*
1955		 * Bring in the user page that we will copy from _first_.
1956		 * Otherwise there's a nasty deadlock on copying from the
1957		 * same page as we're writing to, without it being marked
1958		 * up-to-date.
1959		 */
1960		maxlen = cur_iov->iov_len - iov_base;
1961		if (maxlen > bytes)
1962			maxlen = bytes;
1963		fault_in_pages_readable(buf, maxlen);
1964
1965		page = __grab_cache_page(mapping,index,&cached_page,&lru_pvec);
1966		if (!page) {
1967			status = -ENOMEM;
1968			break;
1969		}
1970
1971		status = a_ops->prepare_write(file, page, offset, offset+bytes);
1972		if (unlikely(status)) {
1973			loff_t isize = i_size_read(inode);
1974
1975			if (status != AOP_TRUNCATED_PAGE)
1976				unlock_page(page);
1977			page_cache_release(page);
1978			if (status == AOP_TRUNCATED_PAGE)
1979				continue;
1980			/*
1981			 * prepare_write() may have instantiated a few blocks
1982			 * outside i_size.  Trim these off again.
1983			 */
1984			if (pos + bytes > isize)
1985				vmtruncate(inode, isize);
1986			break;
1987		}
1988		if (likely(nr_segs == 1))
1989			copied = filemap_copy_from_user(page, offset,
1990							buf, bytes);
1991		else
1992			copied = filemap_copy_from_user_iovec(page, offset,
1993						cur_iov, iov_base, bytes);
1994		flush_dcache_page(page);
1995		status = a_ops->commit_write(file, page, offset, offset+bytes);
1996		if (status == AOP_TRUNCATED_PAGE) {
1997			page_cache_release(page);
1998			continue;
1999		}
2000		if (likely(copied > 0)) {
2001			if (!status)
2002				status = copied;
2003
2004			if (status >= 0) {
2005				written += status;
2006				count -= status;
2007				pos += status;
2008				buf += status;
2009				if (unlikely(nr_segs > 1)) {
2010					filemap_set_next_iovec(&cur_iov,
2011							&iov_base, status);
2012					if (count)
2013						buf = cur_iov->iov_base +
2014							iov_base;
2015				} else {
2016					iov_base += status;
2017				}
2018			}
2019		}
2020		if (unlikely(copied != bytes))
2021			if (status >= 0)
2022				status = -EFAULT;
2023		unlock_page(page);
2024		mark_page_accessed(page);
2025		page_cache_release(page);
2026		if (status < 0)
2027			break;
2028		balance_dirty_pages_ratelimited(mapping);
2029		cond_resched();
2030	} while (count);
2031	*ppos = pos;
2032
2033	if (cached_page)
2034		page_cache_release(cached_page);
2035
2036	/*
2037	 * For now, when the user asks for O_SYNC, we'll actually give O_DSYNC
2038	 */
2039	if (likely(status >= 0)) {
2040		if (unlikely((file->f_flags & O_SYNC) || IS_SYNC(inode))) {
2041			if (!a_ops->writepage || !is_sync_kiocb(iocb))
2042				status = generic_osync_inode(inode, mapping,
2043						OSYNC_METADATA|OSYNC_DATA);
2044		}
2045  	}
2046
2047	/*
2048	 * If we get here for O_DIRECT writes then we must have fallen through
2049	 * to buffered writes (block instantiation inside i_size).  So we sync
2050	 * the file data here, to try to honour O_DIRECT expectations.
2051	 */
2052	if (unlikely(file->f_flags & O_DIRECT) && written)
2053		status = filemap_write_and_wait(mapping);
2054
2055	pagevec_lru_add(&lru_pvec);
2056	return written ? written : status;
2057}
2058EXPORT_SYMBOL(generic_file_buffered_write);
2059
2060static ssize_t
2061__generic_file_aio_write_nolock(struct kiocb *iocb, const struct iovec *iov,
2062				unsigned long nr_segs, loff_t *ppos)
2063{
2064	struct file *file = iocb->ki_filp;
2065	struct address_space * mapping = file->f_mapping;
2066	size_t ocount;		/* original count */
2067	size_t count;		/* after file limit checks */
2068	struct inode 	*inode = mapping->host;
2069	unsigned long	seg;
2070	loff_t		pos;
2071	ssize_t		written;
2072	ssize_t		err;
2073
2074	ocount = 0;
2075	for (seg = 0; seg < nr_segs; seg++) {
2076		const struct iovec *iv = &iov[seg];
2077
2078		/*
2079		 * If any segment has a negative length, or the cumulative
2080		 * length ever wraps negative then return -EINVAL.
2081		 */
2082		ocount += iv->iov_len;
2083		if (unlikely((ssize_t)(ocount|iv->iov_len) < 0))
2084			return -EINVAL;
2085		if (access_ok(VERIFY_READ, iv->iov_base, iv->iov_len))
2086			continue;
2087		if (seg == 0)
2088			return -EFAULT;
2089		nr_segs = seg;
2090		ocount -= iv->iov_len;	/* This segment is no good */
2091		break;
2092	}
2093
2094	count = ocount;
2095	pos = *ppos;
2096
2097	vfs_check_frozen(inode->i_sb, SB_FREEZE_WRITE);
2098
2099	/* We can write back this queue in page reclaim */
2100	current->backing_dev_info = mapping->backing_dev_info;
2101	written = 0;
2102
2103	err = generic_write_checks(file, &pos, &count, S_ISBLK(inode->i_mode));
2104	if (err)
2105		goto out;
2106
2107	if (count == 0)
2108		goto out;
2109
2110	err = remove_suid(file->f_dentry);
2111	if (err)
2112		goto out;
2113
2114	file_update_time(file);
2115
2116	/* coalesce the iovecs and go direct-to-BIO for O_DIRECT */
2117	if (unlikely(file->f_flags & O_DIRECT)) {
2118		written = generic_file_direct_write(iocb, iov,
2119				&nr_segs, pos, ppos, count, ocount);
2120		if (written < 0 || written == count)
2121			goto out;
2122		/*
2123		 * direct-io write to a hole: fall through to buffered I/O
2124		 * for completing the rest of the request.
2125		 */
2126		pos += written;
2127		count -= written;
2128	}
2129
2130	written = generic_file_buffered_write(iocb, iov, nr_segs,
2131			pos, ppos, count, written);
2132out:
2133	current->backing_dev_info = NULL;
2134	return written ? written : err;
2135}
2136EXPORT_SYMBOL(generic_file_aio_write_nolock);
2137
2138ssize_t
2139generic_file_aio_write_nolock(struct kiocb *iocb, const struct iovec *iov,
2140				unsigned long nr_segs, loff_t *ppos)
2141{
2142	struct file *file = iocb->ki_filp;
2143	struct address_space *mapping = file->f_mapping;
2144	struct inode *inode = mapping->host;
2145	ssize_t ret;
2146	loff_t pos = *ppos;
2147
2148	ret = __generic_file_aio_write_nolock(iocb, iov, nr_segs, ppos);
2149
2150	if (ret > 0 && ((file->f_flags & O_SYNC) || IS_SYNC(inode))) {
2151		int err;
2152
2153		err = sync_page_range_nolock(inode, mapping, pos, ret);
2154		if (err < 0)
2155			ret = err;
2156	}
2157	return ret;
2158}
2159
2160static ssize_t
2161__generic_file_write_nolock(struct file *file, const struct iovec *iov,
2162				unsigned long nr_segs, loff_t *ppos)
2163{
2164	struct kiocb kiocb;
2165	ssize_t ret;
2166
2167	init_sync_kiocb(&kiocb, file);
2168	ret = __generic_file_aio_write_nolock(&kiocb, iov, nr_segs, ppos);
2169	if (ret == -EIOCBQUEUED)
2170		ret = wait_on_sync_kiocb(&kiocb);
2171	return ret;
2172}
2173
2174ssize_t
2175generic_file_write_nolock(struct file *file, const struct iovec *iov,
2176				unsigned long nr_segs, loff_t *ppos)
2177{
2178	struct kiocb kiocb;
2179	ssize_t ret;
2180
2181	init_sync_kiocb(&kiocb, file);
2182	ret = generic_file_aio_write_nolock(&kiocb, iov, nr_segs, ppos);
2183	if (-EIOCBQUEUED == ret)
2184		ret = wait_on_sync_kiocb(&kiocb);
2185	return ret;
2186}
2187EXPORT_SYMBOL(generic_file_write_nolock);
2188
2189ssize_t generic_file_aio_write(struct kiocb *iocb, const char __user *buf,
2190			       size_t count, loff_t pos)
2191{
2192	struct file *file = iocb->ki_filp;
2193	struct address_space *mapping = file->f_mapping;
2194	struct inode *inode = mapping->host;
2195	ssize_t ret;
2196	struct iovec local_iov = { .iov_base = (void __user *)buf,
2197					.iov_len = count };
2198
2199	BUG_ON(iocb->ki_pos != pos);
2200
2201	mutex_lock(&inode->i_mutex);
2202	ret = __generic_file_aio_write_nolock(iocb, &local_iov, 1,
2203						&iocb->ki_pos);
2204	mutex_unlock(&inode->i_mutex);
2205
2206	if (ret > 0 && ((file->f_flags & O_SYNC) || IS_SYNC(inode))) {
2207		ssize_t err;
2208
2209		err = sync_page_range(inode, mapping, pos, ret);
2210		if (err < 0)
2211			ret = err;
2212	}
2213	return ret;
2214}
2215EXPORT_SYMBOL(generic_file_aio_write);
2216
2217ssize_t generic_file_write(struct file *file, const char __user *buf,
2218			   size_t count, loff_t *ppos)
2219{
2220	struct address_space *mapping = file->f_mapping;
2221	struct inode *inode = mapping->host;
2222	ssize_t	ret;
2223	struct iovec local_iov = { .iov_base = (void __user *)buf,
2224					.iov_len = count };
2225
2226	mutex_lock(&inode->i_mutex);
2227	ret = __generic_file_write_nolock(file, &local_iov, 1, ppos);
2228	mutex_unlock(&inode->i_mutex);
2229
2230	if (ret > 0 && ((file->f_flags & O_SYNC) || IS_SYNC(inode))) {
2231		ssize_t err;
2232
2233		err = sync_page_range(inode, mapping, *ppos - ret, ret);
2234		if (err < 0)
2235			ret = err;
2236	}
2237	return ret;
2238}
2239EXPORT_SYMBOL(generic_file_write);
2240
2241ssize_t generic_file_readv(struct file *filp, const struct iovec *iov,
2242			unsigned long nr_segs, loff_t *ppos)
2243{
2244	struct kiocb kiocb;
2245	ssize_t ret;
2246
2247	init_sync_kiocb(&kiocb, filp);
2248	ret = __generic_file_aio_read(&kiocb, iov, nr_segs, ppos);
2249	if (-EIOCBQUEUED == ret)
2250		ret = wait_on_sync_kiocb(&kiocb);
2251	return ret;
2252}
2253EXPORT_SYMBOL(generic_file_readv);
2254
2255ssize_t generic_file_writev(struct file *file, const struct iovec *iov,
2256			unsigned long nr_segs, loff_t *ppos)
2257{
2258	struct address_space *mapping = file->f_mapping;
2259	struct inode *inode = mapping->host;
2260	ssize_t ret;
2261
2262	mutex_lock(&inode->i_mutex);
2263	ret = __generic_file_write_nolock(file, iov, nr_segs, ppos);
2264	mutex_unlock(&inode->i_mutex);
2265
2266	if (ret > 0 && ((file->f_flags & O_SYNC) || IS_SYNC(inode))) {
2267		int err;
2268
2269		err = sync_page_range(inode, mapping, *ppos - ret, ret);
2270		if (err < 0)
2271			ret = err;
2272	}
2273	return ret;
2274}
2275EXPORT_SYMBOL(generic_file_writev);
2276
2277/*
2278 * Called under i_mutex for writes to S_ISREG files.   Returns -EIO if something
2279 * went wrong during pagecache shootdown.
2280 */
2281static ssize_t
2282generic_file_direct_IO(int rw, struct kiocb *iocb, const struct iovec *iov,
2283	loff_t offset, unsigned long nr_segs)
2284{
2285	struct file *file = iocb->ki_filp;
2286	struct address_space *mapping = file->f_mapping;
2287	ssize_t retval;
2288	size_t write_len = 0;
2289
2290	/*
2291	 * If it's a write, unmap all mmappings of the file up-front.  This
2292	 * will cause any pte dirty bits to be propagated into the pageframes
2293	 * for the subsequent filemap_write_and_wait().
2294	 */
2295	if (rw == WRITE) {
2296		write_len = iov_length(iov, nr_segs);
2297	       	if (mapping_mapped(mapping))
2298			unmap_mapping_range(mapping, offset, write_len, 0);
2299	}
2300
2301	retval = filemap_write_and_wait(mapping);
2302	if (retval == 0) {
2303		retval = mapping->a_ops->direct_IO(rw, iocb, iov,
2304						offset, nr_segs);
2305		if (rw == WRITE && mapping->nrpages) {
2306			pgoff_t end = (offset + write_len - 1)
2307						>> PAGE_CACHE_SHIFT;
2308			int err = invalidate_inode_pages2_range(mapping,
2309					offset >> PAGE_CACHE_SHIFT, end);
2310			if (err)
2311				retval = err;
2312		}
2313	}
2314	return retval;
2315}
2316