filemap.c revision c855ff3718e5f667b463b20b9de516b4cd7625ad
1/*
2 *	linux/mm/filemap.c
3 *
4 * Copyright (C) 1994-1999  Linus Torvalds
5 */
6
7/*
8 * This file handles the generic file mmap semantics used by
9 * most "normal" filesystems (but you don't /have/ to use this:
10 * the NFS filesystem used to do this differently, for example)
11 */
12#include <linux/module.h>
13#include <linux/slab.h>
14#include <linux/compiler.h>
15#include <linux/fs.h>
16#include <linux/uaccess.h>
17#include <linux/aio.h>
18#include <linux/capability.h>
19#include <linux/kernel_stat.h>
20#include <linux/mm.h>
21#include <linux/swap.h>
22#include <linux/mman.h>
23#include <linux/pagemap.h>
24#include <linux/file.h>
25#include <linux/uio.h>
26#include <linux/hash.h>
27#include <linux/writeback.h>
28#include <linux/pagevec.h>
29#include <linux/blkdev.h>
30#include <linux/security.h>
31#include <linux/syscalls.h>
32#include <linux/cpuset.h>
33#include "filemap.h"
34#include "internal.h"
35
36/*
37 * FIXME: remove all knowledge of the buffer layer from the core VM
38 */
39#include <linux/buffer_head.h> /* for generic_osync_inode */
40
41#include <asm/mman.h>
42
43static ssize_t
44generic_file_direct_IO(int rw, struct kiocb *iocb, const struct iovec *iov,
45	loff_t offset, unsigned long nr_segs);
46
47/*
48 * Shared mappings implemented 30.11.1994. It's not fully working yet,
49 * though.
50 *
51 * Shared mappings now work. 15.8.1995  Bruno.
52 *
53 * finished 'unifying' the page and buffer cache and SMP-threaded the
54 * page-cache, 21.05.1999, Ingo Molnar <mingo@redhat.com>
55 *
56 * SMP-threaded pagemap-LRU 1999, Andrea Arcangeli <andrea@suse.de>
57 */
58
59/*
60 * Lock ordering:
61 *
62 *  ->i_mmap_lock		(vmtruncate)
63 *    ->private_lock		(__free_pte->__set_page_dirty_buffers)
64 *      ->swap_lock		(exclusive_swap_page, others)
65 *        ->mapping->tree_lock
66 *
67 *  ->i_mutex
68 *    ->i_mmap_lock		(truncate->unmap_mapping_range)
69 *
70 *  ->mmap_sem
71 *    ->i_mmap_lock
72 *      ->page_table_lock or pte_lock	(various, mainly in memory.c)
73 *        ->mapping->tree_lock	(arch-dependent flush_dcache_mmap_lock)
74 *
75 *  ->mmap_sem
76 *    ->lock_page		(access_process_vm)
77 *
78 *  ->i_mutex			(generic_file_buffered_write)
79 *    ->mmap_sem		(fault_in_pages_readable->do_page_fault)
80 *
81 *  ->i_mutex
82 *    ->i_alloc_sem             (various)
83 *
84 *  ->inode_lock
85 *    ->sb_lock			(fs/fs-writeback.c)
86 *    ->mapping->tree_lock	(__sync_single_inode)
87 *
88 *  ->i_mmap_lock
89 *    ->anon_vma.lock		(vma_adjust)
90 *
91 *  ->anon_vma.lock
92 *    ->page_table_lock or pte_lock	(anon_vma_prepare and various)
93 *
94 *  ->page_table_lock or pte_lock
95 *    ->swap_lock		(try_to_unmap_one)
96 *    ->private_lock		(try_to_unmap_one)
97 *    ->tree_lock		(try_to_unmap_one)
98 *    ->zone.lru_lock		(follow_page->mark_page_accessed)
99 *    ->zone.lru_lock		(check_pte_range->isolate_lru_page)
100 *    ->private_lock		(page_remove_rmap->set_page_dirty)
101 *    ->tree_lock		(page_remove_rmap->set_page_dirty)
102 *    ->inode_lock		(page_remove_rmap->set_page_dirty)
103 *    ->inode_lock		(zap_pte_range->set_page_dirty)
104 *    ->private_lock		(zap_pte_range->__set_page_dirty_buffers)
105 *
106 *  ->task->proc_lock
107 *    ->dcache_lock		(proc_pid_lookup)
108 */
109
110/*
111 * Remove a page from the page cache and free it. Caller has to make
112 * sure the page is locked and that nobody else uses it - or that usage
113 * is safe.  The caller must hold a write_lock on the mapping's tree_lock.
114 */
115void __remove_from_page_cache(struct page *page)
116{
117	struct address_space *mapping = page->mapping;
118
119	radix_tree_delete(&mapping->page_tree, page->index);
120	page->mapping = NULL;
121	mapping->nrpages--;
122	__dec_zone_page_state(page, NR_FILE_PAGES);
123}
124
125void remove_from_page_cache(struct page *page)
126{
127	struct address_space *mapping = page->mapping;
128
129	BUG_ON(!PageLocked(page));
130
131	write_lock_irq(&mapping->tree_lock);
132	__remove_from_page_cache(page);
133	write_unlock_irq(&mapping->tree_lock);
134}
135
136static int sync_page(void *word)
137{
138	struct address_space *mapping;
139	struct page *page;
140
141	page = container_of((unsigned long *)word, struct page, flags);
142
143	/*
144	 * page_mapping() is being called without PG_locked held.
145	 * Some knowledge of the state and use of the page is used to
146	 * reduce the requirements down to a memory barrier.
147	 * The danger here is of a stale page_mapping() return value
148	 * indicating a struct address_space different from the one it's
149	 * associated with when it is associated with one.
150	 * After smp_mb(), it's either the correct page_mapping() for
151	 * the page, or an old page_mapping() and the page's own
152	 * page_mapping() has gone NULL.
153	 * The ->sync_page() address_space operation must tolerate
154	 * page_mapping() going NULL. By an amazing coincidence,
155	 * this comes about because none of the users of the page
156	 * in the ->sync_page() methods make essential use of the
157	 * page_mapping(), merely passing the page down to the backing
158	 * device's unplug functions when it's non-NULL, which in turn
159	 * ignore it for all cases but swap, where only page_private(page) is
160	 * of interest. When page_mapping() does go NULL, the entire
161	 * call stack gracefully ignores the page and returns.
162	 * -- wli
163	 */
164	smp_mb();
165	mapping = page_mapping(page);
166	if (mapping && mapping->a_ops && mapping->a_ops->sync_page)
167		mapping->a_ops->sync_page(page);
168	io_schedule();
169	return 0;
170}
171
172/**
173 * __filemap_fdatawrite_range - start writeback on mapping dirty pages in range
174 * @mapping:	address space structure to write
175 * @start:	offset in bytes where the range starts
176 * @end:	offset in bytes where the range ends (inclusive)
177 * @sync_mode:	enable synchronous operation
178 *
179 * Start writeback against all of a mapping's dirty pages that lie
180 * within the byte offsets <start, end> inclusive.
181 *
182 * If sync_mode is WB_SYNC_ALL then this is a "data integrity" operation, as
183 * opposed to a regular memory cleansing writeback.  The difference between
184 * these two operations is that if a dirty page/buffer is encountered, it must
185 * be waited upon, and not just skipped over.
186 */
187int __filemap_fdatawrite_range(struct address_space *mapping, loff_t start,
188				loff_t end, int sync_mode)
189{
190	int ret;
191	struct writeback_control wbc = {
192		.sync_mode = sync_mode,
193		.nr_to_write = mapping->nrpages * 2,
194		.range_start = start,
195		.range_end = end,
196	};
197
198	if (!mapping_cap_writeback_dirty(mapping))
199		return 0;
200
201	ret = do_writepages(mapping, &wbc);
202	return ret;
203}
204
205static inline int __filemap_fdatawrite(struct address_space *mapping,
206	int sync_mode)
207{
208	return __filemap_fdatawrite_range(mapping, 0, LLONG_MAX, sync_mode);
209}
210
211int filemap_fdatawrite(struct address_space *mapping)
212{
213	return __filemap_fdatawrite(mapping, WB_SYNC_ALL);
214}
215EXPORT_SYMBOL(filemap_fdatawrite);
216
217static int filemap_fdatawrite_range(struct address_space *mapping, loff_t start,
218				loff_t end)
219{
220	return __filemap_fdatawrite_range(mapping, start, end, WB_SYNC_ALL);
221}
222
223/**
224 * filemap_flush - mostly a non-blocking flush
225 * @mapping:	target address_space
226 *
227 * This is a mostly non-blocking flush.  Not suitable for data-integrity
228 * purposes - I/O may not be started against all dirty pages.
229 */
230int filemap_flush(struct address_space *mapping)
231{
232	return __filemap_fdatawrite(mapping, WB_SYNC_NONE);
233}
234EXPORT_SYMBOL(filemap_flush);
235
236/**
237 * wait_on_page_writeback_range - wait for writeback to complete
238 * @mapping:	target address_space
239 * @start:	beginning page index
240 * @end:	ending page index
241 *
242 * Wait for writeback to complete against pages indexed by start->end
243 * inclusive
244 */
245int wait_on_page_writeback_range(struct address_space *mapping,
246				pgoff_t start, pgoff_t end)
247{
248	struct pagevec pvec;
249	int nr_pages;
250	int ret = 0;
251	pgoff_t index;
252
253	if (end < start)
254		return 0;
255
256	pagevec_init(&pvec, 0);
257	index = start;
258	while ((index <= end) &&
259			(nr_pages = pagevec_lookup_tag(&pvec, mapping, &index,
260			PAGECACHE_TAG_WRITEBACK,
261			min(end - index, (pgoff_t)PAGEVEC_SIZE-1) + 1)) != 0) {
262		unsigned i;
263
264		for (i = 0; i < nr_pages; i++) {
265			struct page *page = pvec.pages[i];
266
267			/* until radix tree lookup accepts end_index */
268			if (page->index > end)
269				continue;
270
271			wait_on_page_writeback(page);
272			if (PageError(page))
273				ret = -EIO;
274		}
275		pagevec_release(&pvec);
276		cond_resched();
277	}
278
279	/* Check for outstanding write errors */
280	if (test_and_clear_bit(AS_ENOSPC, &mapping->flags))
281		ret = -ENOSPC;
282	if (test_and_clear_bit(AS_EIO, &mapping->flags))
283		ret = -EIO;
284
285	return ret;
286}
287
288/**
289 * sync_page_range - write and wait on all pages in the passed range
290 * @inode:	target inode
291 * @mapping:	target address_space
292 * @pos:	beginning offset in pages to write
293 * @count:	number of bytes to write
294 *
295 * Write and wait upon all the pages in the passed range.  This is a "data
296 * integrity" operation.  It waits upon in-flight writeout before starting and
297 * waiting upon new writeout.  If there was an IO error, return it.
298 *
299 * We need to re-take i_mutex during the generic_osync_inode list walk because
300 * it is otherwise livelockable.
301 */
302int sync_page_range(struct inode *inode, struct address_space *mapping,
303			loff_t pos, loff_t count)
304{
305	pgoff_t start = pos >> PAGE_CACHE_SHIFT;
306	pgoff_t end = (pos + count - 1) >> PAGE_CACHE_SHIFT;
307	int ret;
308
309	if (!mapping_cap_writeback_dirty(mapping) || !count)
310		return 0;
311	ret = filemap_fdatawrite_range(mapping, pos, pos + count - 1);
312	if (ret == 0) {
313		mutex_lock(&inode->i_mutex);
314		ret = generic_osync_inode(inode, mapping, OSYNC_METADATA);
315		mutex_unlock(&inode->i_mutex);
316	}
317	if (ret == 0)
318		ret = wait_on_page_writeback_range(mapping, start, end);
319	return ret;
320}
321EXPORT_SYMBOL(sync_page_range);
322
323/**
324 * sync_page_range_nolock
325 * @inode:	target inode
326 * @mapping:	target address_space
327 * @pos:	beginning offset in pages to write
328 * @count:	number of bytes to write
329 *
330 * Note: Holding i_mutex across sync_page_range_nolock() is not a good idea
331 * as it forces O_SYNC writers to different parts of the same file
332 * to be serialised right until io completion.
333 */
334int sync_page_range_nolock(struct inode *inode, struct address_space *mapping,
335			   loff_t pos, loff_t count)
336{
337	pgoff_t start = pos >> PAGE_CACHE_SHIFT;
338	pgoff_t end = (pos + count - 1) >> PAGE_CACHE_SHIFT;
339	int ret;
340
341	if (!mapping_cap_writeback_dirty(mapping) || !count)
342		return 0;
343	ret = filemap_fdatawrite_range(mapping, pos, pos + count - 1);
344	if (ret == 0)
345		ret = generic_osync_inode(inode, mapping, OSYNC_METADATA);
346	if (ret == 0)
347		ret = wait_on_page_writeback_range(mapping, start, end);
348	return ret;
349}
350EXPORT_SYMBOL(sync_page_range_nolock);
351
352/**
353 * filemap_fdatawait - wait for all under-writeback pages to complete
354 * @mapping: address space structure to wait for
355 *
356 * Walk the list of under-writeback pages of the given address space
357 * and wait for all of them.
358 */
359int filemap_fdatawait(struct address_space *mapping)
360{
361	loff_t i_size = i_size_read(mapping->host);
362
363	if (i_size == 0)
364		return 0;
365
366	return wait_on_page_writeback_range(mapping, 0,
367				(i_size - 1) >> PAGE_CACHE_SHIFT);
368}
369EXPORT_SYMBOL(filemap_fdatawait);
370
371int filemap_write_and_wait(struct address_space *mapping)
372{
373	int err = 0;
374
375	if (mapping->nrpages) {
376		err = filemap_fdatawrite(mapping);
377		/*
378		 * Even if the above returned error, the pages may be
379		 * written partially (e.g. -ENOSPC), so we wait for it.
380		 * But the -EIO is special case, it may indicate the worst
381		 * thing (e.g. bug) happened, so we avoid waiting for it.
382		 */
383		if (err != -EIO) {
384			int err2 = filemap_fdatawait(mapping);
385			if (!err)
386				err = err2;
387		}
388	}
389	return err;
390}
391EXPORT_SYMBOL(filemap_write_and_wait);
392
393/**
394 * filemap_write_and_wait_range - write out & wait on a file range
395 * @mapping:	the address_space for the pages
396 * @lstart:	offset in bytes where the range starts
397 * @lend:	offset in bytes where the range ends (inclusive)
398 *
399 * Write out and wait upon file offsets lstart->lend, inclusive.
400 *
401 * Note that `lend' is inclusive (describes the last byte to be written) so
402 * that this function can be used to write to the very end-of-file (end = -1).
403 */
404int filemap_write_and_wait_range(struct address_space *mapping,
405				 loff_t lstart, loff_t lend)
406{
407	int err = 0;
408
409	if (mapping->nrpages) {
410		err = __filemap_fdatawrite_range(mapping, lstart, lend,
411						 WB_SYNC_ALL);
412		/* See comment of filemap_write_and_wait() */
413		if (err != -EIO) {
414			int err2 = wait_on_page_writeback_range(mapping,
415						lstart >> PAGE_CACHE_SHIFT,
416						lend >> PAGE_CACHE_SHIFT);
417			if (!err)
418				err = err2;
419		}
420	}
421	return err;
422}
423
424/**
425 * add_to_page_cache - add newly allocated pagecache pages
426 * @page:	page to add
427 * @mapping:	the page's address_space
428 * @offset:	page index
429 * @gfp_mask:	page allocation mode
430 *
431 * This function is used to add newly allocated pagecache pages;
432 * the page is new, so we can just run SetPageLocked() against it.
433 * The other page state flags were set by rmqueue().
434 *
435 * This function does not add the page to the LRU.  The caller must do that.
436 */
437int add_to_page_cache(struct page *page, struct address_space *mapping,
438		pgoff_t offset, gfp_t gfp_mask)
439{
440	int error = radix_tree_preload(gfp_mask & ~__GFP_HIGHMEM);
441
442	if (error == 0) {
443		write_lock_irq(&mapping->tree_lock);
444		error = radix_tree_insert(&mapping->page_tree, offset, page);
445		if (!error) {
446			page_cache_get(page);
447			SetPageLocked(page);
448			page->mapping = mapping;
449			page->index = offset;
450			mapping->nrpages++;
451			__inc_zone_page_state(page, NR_FILE_PAGES);
452		}
453		write_unlock_irq(&mapping->tree_lock);
454		radix_tree_preload_end();
455	}
456	return error;
457}
458EXPORT_SYMBOL(add_to_page_cache);
459
460int add_to_page_cache_lru(struct page *page, struct address_space *mapping,
461				pgoff_t offset, gfp_t gfp_mask)
462{
463	int ret = add_to_page_cache(page, mapping, offset, gfp_mask);
464	if (ret == 0)
465		lru_cache_add(page);
466	return ret;
467}
468
469#ifdef CONFIG_NUMA
470struct page *__page_cache_alloc(gfp_t gfp)
471{
472	if (cpuset_do_page_mem_spread()) {
473		int n = cpuset_mem_spread_node();
474		return alloc_pages_node(n, gfp, 0);
475	}
476	return alloc_pages(gfp, 0);
477}
478EXPORT_SYMBOL(__page_cache_alloc);
479#endif
480
481static int __sleep_on_page_lock(void *word)
482{
483	io_schedule();
484	return 0;
485}
486
487/*
488 * In order to wait for pages to become available there must be
489 * waitqueues associated with pages. By using a hash table of
490 * waitqueues where the bucket discipline is to maintain all
491 * waiters on the same queue and wake all when any of the pages
492 * become available, and for the woken contexts to check to be
493 * sure the appropriate page became available, this saves space
494 * at a cost of "thundering herd" phenomena during rare hash
495 * collisions.
496 */
497static wait_queue_head_t *page_waitqueue(struct page *page)
498{
499	const struct zone *zone = page_zone(page);
500
501	return &zone->wait_table[hash_ptr(page, zone->wait_table_bits)];
502}
503
504static inline void wake_up_page(struct page *page, int bit)
505{
506	__wake_up_bit(page_waitqueue(page), &page->flags, bit);
507}
508
509void fastcall wait_on_page_bit(struct page *page, int bit_nr)
510{
511	DEFINE_WAIT_BIT(wait, &page->flags, bit_nr);
512
513	if (test_bit(bit_nr, &page->flags))
514		__wait_on_bit(page_waitqueue(page), &wait, sync_page,
515							TASK_UNINTERRUPTIBLE);
516}
517EXPORT_SYMBOL(wait_on_page_bit);
518
519/**
520 * unlock_page - unlock a locked page
521 * @page: the page
522 *
523 * Unlocks the page and wakes up sleepers in ___wait_on_page_locked().
524 * Also wakes sleepers in wait_on_page_writeback() because the wakeup
525 * mechananism between PageLocked pages and PageWriteback pages is shared.
526 * But that's OK - sleepers in wait_on_page_writeback() just go back to sleep.
527 *
528 * The first mb is necessary to safely close the critical section opened by the
529 * TestSetPageLocked(), the second mb is necessary to enforce ordering between
530 * the clear_bit and the read of the waitqueue (to avoid SMP races with a
531 * parallel wait_on_page_locked()).
532 */
533void fastcall unlock_page(struct page *page)
534{
535	smp_mb__before_clear_bit();
536	if (!TestClearPageLocked(page))
537		BUG();
538	smp_mb__after_clear_bit();
539	wake_up_page(page, PG_locked);
540}
541EXPORT_SYMBOL(unlock_page);
542
543/**
544 * end_page_writeback - end writeback against a page
545 * @page: the page
546 */
547void end_page_writeback(struct page *page)
548{
549	if (!TestClearPageReclaim(page) || rotate_reclaimable_page(page)) {
550		if (!test_clear_page_writeback(page))
551			BUG();
552	}
553	smp_mb__after_clear_bit();
554	wake_up_page(page, PG_writeback);
555}
556EXPORT_SYMBOL(end_page_writeback);
557
558/**
559 * __lock_page - get a lock on the page, assuming we need to sleep to get it
560 * @page: the page to lock
561 *
562 * Ugly. Running sync_page() in state TASK_UNINTERRUPTIBLE is scary.  If some
563 * random driver's requestfn sets TASK_RUNNING, we could busywait.  However
564 * chances are that on the second loop, the block layer's plug list is empty,
565 * so sync_page() will then return in state TASK_UNINTERRUPTIBLE.
566 */
567void fastcall __lock_page(struct page *page)
568{
569	DEFINE_WAIT_BIT(wait, &page->flags, PG_locked);
570
571	__wait_on_bit_lock(page_waitqueue(page), &wait, sync_page,
572							TASK_UNINTERRUPTIBLE);
573}
574EXPORT_SYMBOL(__lock_page);
575
576/*
577 * Variant of lock_page that does not require the caller to hold a reference
578 * on the page's mapping.
579 */
580void fastcall __lock_page_nosync(struct page *page)
581{
582	DEFINE_WAIT_BIT(wait, &page->flags, PG_locked);
583	__wait_on_bit_lock(page_waitqueue(page), &wait, __sleep_on_page_lock,
584							TASK_UNINTERRUPTIBLE);
585}
586
587/**
588 * find_get_page - find and get a page reference
589 * @mapping: the address_space to search
590 * @offset: the page index
591 *
592 * Is there a pagecache struct page at the given (mapping, offset) tuple?
593 * If yes, increment its refcount and return it; if no, return NULL.
594 */
595struct page * find_get_page(struct address_space *mapping, unsigned long offset)
596{
597	struct page *page;
598
599	read_lock_irq(&mapping->tree_lock);
600	page = radix_tree_lookup(&mapping->page_tree, offset);
601	if (page)
602		page_cache_get(page);
603	read_unlock_irq(&mapping->tree_lock);
604	return page;
605}
606EXPORT_SYMBOL(find_get_page);
607
608/**
609 * find_lock_page - locate, pin and lock a pagecache page
610 * @mapping: the address_space to search
611 * @offset: the page index
612 *
613 * Locates the desired pagecache page, locks it, increments its reference
614 * count and returns its address.
615 *
616 * Returns zero if the page was not present. find_lock_page() may sleep.
617 */
618struct page *find_lock_page(struct address_space *mapping,
619				unsigned long offset)
620{
621	struct page *page;
622
623	read_lock_irq(&mapping->tree_lock);
624repeat:
625	page = radix_tree_lookup(&mapping->page_tree, offset);
626	if (page) {
627		page_cache_get(page);
628		if (TestSetPageLocked(page)) {
629			read_unlock_irq(&mapping->tree_lock);
630			__lock_page(page);
631			read_lock_irq(&mapping->tree_lock);
632
633			/* Has the page been truncated while we slept? */
634			if (unlikely(page->mapping != mapping ||
635				     page->index != offset)) {
636				unlock_page(page);
637				page_cache_release(page);
638				goto repeat;
639			}
640		}
641	}
642	read_unlock_irq(&mapping->tree_lock);
643	return page;
644}
645EXPORT_SYMBOL(find_lock_page);
646
647/**
648 * find_or_create_page - locate or add a pagecache page
649 * @mapping: the page's address_space
650 * @index: the page's index into the mapping
651 * @gfp_mask: page allocation mode
652 *
653 * Locates a page in the pagecache.  If the page is not present, a new page
654 * is allocated using @gfp_mask and is added to the pagecache and to the VM's
655 * LRU list.  The returned page is locked and has its reference count
656 * incremented.
657 *
658 * find_or_create_page() may sleep, even if @gfp_flags specifies an atomic
659 * allocation!
660 *
661 * find_or_create_page() returns the desired page's address, or zero on
662 * memory exhaustion.
663 */
664struct page *find_or_create_page(struct address_space *mapping,
665		unsigned long index, gfp_t gfp_mask)
666{
667	struct page *page, *cached_page = NULL;
668	int err;
669repeat:
670	page = find_lock_page(mapping, index);
671	if (!page) {
672		if (!cached_page) {
673			cached_page = alloc_page(gfp_mask);
674			if (!cached_page)
675				return NULL;
676		}
677		err = add_to_page_cache_lru(cached_page, mapping,
678					index, gfp_mask);
679		if (!err) {
680			page = cached_page;
681			cached_page = NULL;
682		} else if (err == -EEXIST)
683			goto repeat;
684	}
685	if (cached_page)
686		page_cache_release(cached_page);
687	return page;
688}
689EXPORT_SYMBOL(find_or_create_page);
690
691/**
692 * find_get_pages - gang pagecache lookup
693 * @mapping:	The address_space to search
694 * @start:	The starting page index
695 * @nr_pages:	The maximum number of pages
696 * @pages:	Where the resulting pages are placed
697 *
698 * find_get_pages() will search for and return a group of up to
699 * @nr_pages pages in the mapping.  The pages are placed at @pages.
700 * find_get_pages() takes a reference against the returned pages.
701 *
702 * The search returns a group of mapping-contiguous pages with ascending
703 * indexes.  There may be holes in the indices due to not-present pages.
704 *
705 * find_get_pages() returns the number of pages which were found.
706 */
707unsigned find_get_pages(struct address_space *mapping, pgoff_t start,
708			    unsigned int nr_pages, struct page **pages)
709{
710	unsigned int i;
711	unsigned int ret;
712
713	read_lock_irq(&mapping->tree_lock);
714	ret = radix_tree_gang_lookup(&mapping->page_tree,
715				(void **)pages, start, nr_pages);
716	for (i = 0; i < ret; i++)
717		page_cache_get(pages[i]);
718	read_unlock_irq(&mapping->tree_lock);
719	return ret;
720}
721
722/**
723 * find_get_pages_contig - gang contiguous pagecache lookup
724 * @mapping:	The address_space to search
725 * @index:	The starting page index
726 * @nr_pages:	The maximum number of pages
727 * @pages:	Where the resulting pages are placed
728 *
729 * find_get_pages_contig() works exactly like find_get_pages(), except
730 * that the returned number of pages are guaranteed to be contiguous.
731 *
732 * find_get_pages_contig() returns the number of pages which were found.
733 */
734unsigned find_get_pages_contig(struct address_space *mapping, pgoff_t index,
735			       unsigned int nr_pages, struct page **pages)
736{
737	unsigned int i;
738	unsigned int ret;
739
740	read_lock_irq(&mapping->tree_lock);
741	ret = radix_tree_gang_lookup(&mapping->page_tree,
742				(void **)pages, index, nr_pages);
743	for (i = 0; i < ret; i++) {
744		if (pages[i]->mapping == NULL || pages[i]->index != index)
745			break;
746
747		page_cache_get(pages[i]);
748		index++;
749	}
750	read_unlock_irq(&mapping->tree_lock);
751	return i;
752}
753EXPORT_SYMBOL(find_get_pages_contig);
754
755/**
756 * find_get_pages_tag - find and return pages that match @tag
757 * @mapping:	the address_space to search
758 * @index:	the starting page index
759 * @tag:	the tag index
760 * @nr_pages:	the maximum number of pages
761 * @pages:	where the resulting pages are placed
762 *
763 * Like find_get_pages, except we only return pages which are tagged with
764 * @tag.   We update @index to index the next page for the traversal.
765 */
766unsigned find_get_pages_tag(struct address_space *mapping, pgoff_t *index,
767			int tag, unsigned int nr_pages, struct page **pages)
768{
769	unsigned int i;
770	unsigned int ret;
771
772	read_lock_irq(&mapping->tree_lock);
773	ret = radix_tree_gang_lookup_tag(&mapping->page_tree,
774				(void **)pages, *index, nr_pages, tag);
775	for (i = 0; i < ret; i++)
776		page_cache_get(pages[i]);
777	if (ret)
778		*index = pages[ret - 1]->index + 1;
779	read_unlock_irq(&mapping->tree_lock);
780	return ret;
781}
782EXPORT_SYMBOL(find_get_pages_tag);
783
784/**
785 * grab_cache_page_nowait - returns locked page at given index in given cache
786 * @mapping: target address_space
787 * @index: the page index
788 *
789 * Same as grab_cache_page(), but do not wait if the page is unavailable.
790 * This is intended for speculative data generators, where the data can
791 * be regenerated if the page couldn't be grabbed.  This routine should
792 * be safe to call while holding the lock for another page.
793 *
794 * Clear __GFP_FS when allocating the page to avoid recursion into the fs
795 * and deadlock against the caller's locked page.
796 */
797struct page *
798grab_cache_page_nowait(struct address_space *mapping, unsigned long index)
799{
800	struct page *page = find_get_page(mapping, index);
801
802	if (page) {
803		if (!TestSetPageLocked(page))
804			return page;
805		page_cache_release(page);
806		return NULL;
807	}
808	page = __page_cache_alloc(mapping_gfp_mask(mapping) & ~__GFP_FS);
809	if (page && add_to_page_cache_lru(page, mapping, index, GFP_KERNEL)) {
810		page_cache_release(page);
811		page = NULL;
812	}
813	return page;
814}
815EXPORT_SYMBOL(grab_cache_page_nowait);
816
817/*
818 * CD/DVDs are error prone. When a medium error occurs, the driver may fail
819 * a _large_ part of the i/o request. Imagine the worst scenario:
820 *
821 *      ---R__________________________________________B__________
822 *         ^ reading here                             ^ bad block(assume 4k)
823 *
824 * read(R) => miss => readahead(R...B) => media error => frustrating retries
825 * => failing the whole request => read(R) => read(R+1) =>
826 * readahead(R+1...B+1) => bang => read(R+2) => read(R+3) =>
827 * readahead(R+3...B+2) => bang => read(R+3) => read(R+4) =>
828 * readahead(R+4...B+3) => bang => read(R+4) => read(R+5) => ......
829 *
830 * It is going insane. Fix it by quickly scaling down the readahead size.
831 */
832static void shrink_readahead_size_eio(struct file *filp,
833					struct file_ra_state *ra)
834{
835	if (!ra->ra_pages)
836		return;
837
838	ra->ra_pages /= 4;
839}
840
841/**
842 * do_generic_mapping_read - generic file read routine
843 * @mapping:	address_space to be read
844 * @_ra:	file's readahead state
845 * @filp:	the file to read
846 * @ppos:	current file position
847 * @desc:	read_descriptor
848 * @actor:	read method
849 *
850 * This is a generic file read routine, and uses the
851 * mapping->a_ops->readpage() function for the actual low-level stuff.
852 *
853 * This is really ugly. But the goto's actually try to clarify some
854 * of the logic when it comes to error handling etc.
855 *
856 * Note the struct file* is only passed for the use of readpage.
857 * It may be NULL.
858 */
859void do_generic_mapping_read(struct address_space *mapping,
860			     struct file_ra_state *_ra,
861			     struct file *filp,
862			     loff_t *ppos,
863			     read_descriptor_t *desc,
864			     read_actor_t actor)
865{
866	struct inode *inode = mapping->host;
867	unsigned long index;
868	unsigned long end_index;
869	unsigned long offset;
870	unsigned long last_index;
871	unsigned long next_index;
872	unsigned long prev_index;
873	unsigned int prev_offset;
874	loff_t isize;
875	struct page *cached_page;
876	int error;
877	struct file_ra_state ra = *_ra;
878
879	cached_page = NULL;
880	index = *ppos >> PAGE_CACHE_SHIFT;
881	next_index = index;
882	prev_index = ra.prev_index;
883	prev_offset = ra.prev_offset;
884	last_index = (*ppos + desc->count + PAGE_CACHE_SIZE-1) >> PAGE_CACHE_SHIFT;
885	offset = *ppos & ~PAGE_CACHE_MASK;
886
887	isize = i_size_read(inode);
888	if (!isize)
889		goto out;
890
891	end_index = (isize - 1) >> PAGE_CACHE_SHIFT;
892	for (;;) {
893		struct page *page;
894		unsigned long nr, ret;
895
896		/* nr is the maximum number of bytes to copy from this page */
897		nr = PAGE_CACHE_SIZE;
898		if (index >= end_index) {
899			if (index > end_index)
900				goto out;
901			nr = ((isize - 1) & ~PAGE_CACHE_MASK) + 1;
902			if (nr <= offset) {
903				goto out;
904			}
905		}
906		nr = nr - offset;
907
908		cond_resched();
909		if (index == next_index)
910			next_index = page_cache_readahead(mapping, &ra, filp,
911					index, last_index - index);
912
913find_page:
914		page = find_get_page(mapping, index);
915		if (unlikely(page == NULL)) {
916			handle_ra_miss(mapping, &ra, index);
917			goto no_cached_page;
918		}
919		if (!PageUptodate(page))
920			goto page_not_up_to_date;
921page_ok:
922
923		/* If users can be writing to this page using arbitrary
924		 * virtual addresses, take care about potential aliasing
925		 * before reading the page on the kernel side.
926		 */
927		if (mapping_writably_mapped(mapping))
928			flush_dcache_page(page);
929
930		/*
931		 * When a sequential read accesses a page several times,
932		 * only mark it as accessed the first time.
933		 */
934		if (prev_index != index || offset != prev_offset)
935			mark_page_accessed(page);
936		prev_index = index;
937
938		/*
939		 * Ok, we have the page, and it's up-to-date, so
940		 * now we can copy it to user space...
941		 *
942		 * The actor routine returns how many bytes were actually used..
943		 * NOTE! This may not be the same as how much of a user buffer
944		 * we filled up (we may be padding etc), so we can only update
945		 * "pos" here (the actor routine has to update the user buffer
946		 * pointers and the remaining count).
947		 */
948		ret = actor(desc, page, offset, nr);
949		offset += ret;
950		index += offset >> PAGE_CACHE_SHIFT;
951		offset &= ~PAGE_CACHE_MASK;
952		prev_offset = offset;
953		ra.prev_offset = offset;
954
955		page_cache_release(page);
956		if (ret == nr && desc->count)
957			continue;
958		goto out;
959
960page_not_up_to_date:
961		/* Get exclusive access to the page ... */
962		lock_page(page);
963
964		/* Did it get truncated before we got the lock? */
965		if (!page->mapping) {
966			unlock_page(page);
967			page_cache_release(page);
968			continue;
969		}
970
971		/* Did somebody else fill it already? */
972		if (PageUptodate(page)) {
973			unlock_page(page);
974			goto page_ok;
975		}
976
977readpage:
978		/* Start the actual read. The read will unlock the page. */
979		error = mapping->a_ops->readpage(filp, page);
980
981		if (unlikely(error)) {
982			if (error == AOP_TRUNCATED_PAGE) {
983				page_cache_release(page);
984				goto find_page;
985			}
986			goto readpage_error;
987		}
988
989		if (!PageUptodate(page)) {
990			lock_page(page);
991			if (!PageUptodate(page)) {
992				if (page->mapping == NULL) {
993					/*
994					 * invalidate_inode_pages got it
995					 */
996					unlock_page(page);
997					page_cache_release(page);
998					goto find_page;
999				}
1000				unlock_page(page);
1001				error = -EIO;
1002				shrink_readahead_size_eio(filp, &ra);
1003				goto readpage_error;
1004			}
1005			unlock_page(page);
1006		}
1007
1008		/*
1009		 * i_size must be checked after we have done ->readpage.
1010		 *
1011		 * Checking i_size after the readpage allows us to calculate
1012		 * the correct value for "nr", which means the zero-filled
1013		 * part of the page is not copied back to userspace (unless
1014		 * another truncate extends the file - this is desired though).
1015		 */
1016		isize = i_size_read(inode);
1017		end_index = (isize - 1) >> PAGE_CACHE_SHIFT;
1018		if (unlikely(!isize || index > end_index)) {
1019			page_cache_release(page);
1020			goto out;
1021		}
1022
1023		/* nr is the maximum number of bytes to copy from this page */
1024		nr = PAGE_CACHE_SIZE;
1025		if (index == end_index) {
1026			nr = ((isize - 1) & ~PAGE_CACHE_MASK) + 1;
1027			if (nr <= offset) {
1028				page_cache_release(page);
1029				goto out;
1030			}
1031		}
1032		nr = nr - offset;
1033		goto page_ok;
1034
1035readpage_error:
1036		/* UHHUH! A synchronous read error occurred. Report it */
1037		desc->error = error;
1038		page_cache_release(page);
1039		goto out;
1040
1041no_cached_page:
1042		/*
1043		 * Ok, it wasn't cached, so we need to create a new
1044		 * page..
1045		 */
1046		if (!cached_page) {
1047			cached_page = page_cache_alloc_cold(mapping);
1048			if (!cached_page) {
1049				desc->error = -ENOMEM;
1050				goto out;
1051			}
1052		}
1053		error = add_to_page_cache_lru(cached_page, mapping,
1054						index, GFP_KERNEL);
1055		if (error) {
1056			if (error == -EEXIST)
1057				goto find_page;
1058			desc->error = error;
1059			goto out;
1060		}
1061		page = cached_page;
1062		cached_page = NULL;
1063		goto readpage;
1064	}
1065
1066out:
1067	*_ra = ra;
1068
1069	*ppos = ((loff_t) index << PAGE_CACHE_SHIFT) + offset;
1070	if (cached_page)
1071		page_cache_release(cached_page);
1072	if (filp)
1073		file_accessed(filp);
1074}
1075EXPORT_SYMBOL(do_generic_mapping_read);
1076
1077int file_read_actor(read_descriptor_t *desc, struct page *page,
1078			unsigned long offset, unsigned long size)
1079{
1080	char *kaddr;
1081	unsigned long left, count = desc->count;
1082
1083	if (size > count)
1084		size = count;
1085
1086	/*
1087	 * Faults on the destination of a read are common, so do it before
1088	 * taking the kmap.
1089	 */
1090	if (!fault_in_pages_writeable(desc->arg.buf, size)) {
1091		kaddr = kmap_atomic(page, KM_USER0);
1092		left = __copy_to_user_inatomic(desc->arg.buf,
1093						kaddr + offset, size);
1094		kunmap_atomic(kaddr, KM_USER0);
1095		if (left == 0)
1096			goto success;
1097	}
1098
1099	/* Do it the slow way */
1100	kaddr = kmap(page);
1101	left = __copy_to_user(desc->arg.buf, kaddr + offset, size);
1102	kunmap(page);
1103
1104	if (left) {
1105		size -= left;
1106		desc->error = -EFAULT;
1107	}
1108success:
1109	desc->count = count - size;
1110	desc->written += size;
1111	desc->arg.buf += size;
1112	return size;
1113}
1114
1115/*
1116 * Performs necessary checks before doing a write
1117 * @iov:	io vector request
1118 * @nr_segs:	number of segments in the iovec
1119 * @count:	number of bytes to write
1120 * @access_flags: type of access: %VERIFY_READ or %VERIFY_WRITE
1121 *
1122 * Adjust number of segments and amount of bytes to write (nr_segs should be
1123 * properly initialized first). Returns appropriate error code that caller
1124 * should return or zero in case that write should be allowed.
1125 */
1126int generic_segment_checks(const struct iovec *iov,
1127			unsigned long *nr_segs, size_t *count, int access_flags)
1128{
1129	unsigned long   seg;
1130	size_t cnt = 0;
1131	for (seg = 0; seg < *nr_segs; seg++) {
1132		const struct iovec *iv = &iov[seg];
1133
1134		/*
1135		 * If any segment has a negative length, or the cumulative
1136		 * length ever wraps negative then return -EINVAL.
1137		 */
1138		cnt += iv->iov_len;
1139		if (unlikely((ssize_t)(cnt|iv->iov_len) < 0))
1140			return -EINVAL;
1141		if (access_ok(access_flags, iv->iov_base, iv->iov_len))
1142			continue;
1143		if (seg == 0)
1144			return -EFAULT;
1145		*nr_segs = seg;
1146		cnt -= iv->iov_len;	/* This segment is no good */
1147		break;
1148	}
1149	*count = cnt;
1150	return 0;
1151}
1152EXPORT_SYMBOL(generic_segment_checks);
1153
1154/**
1155 * generic_file_aio_read - generic filesystem read routine
1156 * @iocb:	kernel I/O control block
1157 * @iov:	io vector request
1158 * @nr_segs:	number of segments in the iovec
1159 * @pos:	current file position
1160 *
1161 * This is the "read()" routine for all filesystems
1162 * that can use the page cache directly.
1163 */
1164ssize_t
1165generic_file_aio_read(struct kiocb *iocb, const struct iovec *iov,
1166		unsigned long nr_segs, loff_t pos)
1167{
1168	struct file *filp = iocb->ki_filp;
1169	ssize_t retval;
1170	unsigned long seg;
1171	size_t count;
1172	loff_t *ppos = &iocb->ki_pos;
1173
1174	count = 0;
1175	retval = generic_segment_checks(iov, &nr_segs, &count, VERIFY_WRITE);
1176	if (retval)
1177		return retval;
1178
1179	/* coalesce the iovecs and go direct-to-BIO for O_DIRECT */
1180	if (filp->f_flags & O_DIRECT) {
1181		loff_t size;
1182		struct address_space *mapping;
1183		struct inode *inode;
1184
1185		mapping = filp->f_mapping;
1186		inode = mapping->host;
1187		retval = 0;
1188		if (!count)
1189			goto out; /* skip atime */
1190		size = i_size_read(inode);
1191		if (pos < size) {
1192			retval = generic_file_direct_IO(READ, iocb,
1193						iov, pos, nr_segs);
1194			if (retval > 0)
1195				*ppos = pos + retval;
1196		}
1197		if (likely(retval != 0)) {
1198			file_accessed(filp);
1199			goto out;
1200		}
1201	}
1202
1203	retval = 0;
1204	if (count) {
1205		for (seg = 0; seg < nr_segs; seg++) {
1206			read_descriptor_t desc;
1207
1208			desc.written = 0;
1209			desc.arg.buf = iov[seg].iov_base;
1210			desc.count = iov[seg].iov_len;
1211			if (desc.count == 0)
1212				continue;
1213			desc.error = 0;
1214			do_generic_file_read(filp,ppos,&desc,file_read_actor);
1215			retval += desc.written;
1216			if (desc.error) {
1217				retval = retval ?: desc.error;
1218				break;
1219			}
1220		}
1221	}
1222out:
1223	return retval;
1224}
1225EXPORT_SYMBOL(generic_file_aio_read);
1226
1227int file_send_actor(read_descriptor_t * desc, struct page *page, unsigned long offset, unsigned long size)
1228{
1229	ssize_t written;
1230	unsigned long count = desc->count;
1231	struct file *file = desc->arg.data;
1232
1233	if (size > count)
1234		size = count;
1235
1236	written = file->f_op->sendpage(file, page, offset,
1237				       size, &file->f_pos, size<count);
1238	if (written < 0) {
1239		desc->error = written;
1240		written = 0;
1241	}
1242	desc->count = count - written;
1243	desc->written += written;
1244	return written;
1245}
1246
1247ssize_t generic_file_sendfile(struct file *in_file, loff_t *ppos,
1248			 size_t count, read_actor_t actor, void *target)
1249{
1250	read_descriptor_t desc;
1251
1252	if (!count)
1253		return 0;
1254
1255	desc.written = 0;
1256	desc.count = count;
1257	desc.arg.data = target;
1258	desc.error = 0;
1259
1260	do_generic_file_read(in_file, ppos, &desc, actor);
1261	if (desc.written)
1262		return desc.written;
1263	return desc.error;
1264}
1265EXPORT_SYMBOL(generic_file_sendfile);
1266
1267static ssize_t
1268do_readahead(struct address_space *mapping, struct file *filp,
1269	     unsigned long index, unsigned long nr)
1270{
1271	if (!mapping || !mapping->a_ops || !mapping->a_ops->readpage)
1272		return -EINVAL;
1273
1274	force_page_cache_readahead(mapping, filp, index,
1275					max_sane_readahead(nr));
1276	return 0;
1277}
1278
1279asmlinkage ssize_t sys_readahead(int fd, loff_t offset, size_t count)
1280{
1281	ssize_t ret;
1282	struct file *file;
1283
1284	ret = -EBADF;
1285	file = fget(fd);
1286	if (file) {
1287		if (file->f_mode & FMODE_READ) {
1288			struct address_space *mapping = file->f_mapping;
1289			unsigned long start = offset >> PAGE_CACHE_SHIFT;
1290			unsigned long end = (offset + count - 1) >> PAGE_CACHE_SHIFT;
1291			unsigned long len = end - start + 1;
1292			ret = do_readahead(mapping, file, start, len);
1293		}
1294		fput(file);
1295	}
1296	return ret;
1297}
1298
1299#ifdef CONFIG_MMU
1300static int FASTCALL(page_cache_read(struct file * file, unsigned long offset));
1301/**
1302 * page_cache_read - adds requested page to the page cache if not already there
1303 * @file:	file to read
1304 * @offset:	page index
1305 *
1306 * This adds the requested page to the page cache if it isn't already there,
1307 * and schedules an I/O to read in its contents from disk.
1308 */
1309static int fastcall page_cache_read(struct file * file, unsigned long offset)
1310{
1311	struct address_space *mapping = file->f_mapping;
1312	struct page *page;
1313	int ret;
1314
1315	do {
1316		page = page_cache_alloc_cold(mapping);
1317		if (!page)
1318			return -ENOMEM;
1319
1320		ret = add_to_page_cache_lru(page, mapping, offset, GFP_KERNEL);
1321		if (ret == 0)
1322			ret = mapping->a_ops->readpage(file, page);
1323		else if (ret == -EEXIST)
1324			ret = 0; /* losing race to add is OK */
1325
1326		page_cache_release(page);
1327
1328	} while (ret == AOP_TRUNCATED_PAGE);
1329
1330	return ret;
1331}
1332
1333#define MMAP_LOTSAMISS  (100)
1334
1335/**
1336 * filemap_nopage - read in file data for page fault handling
1337 * @area:	the applicable vm_area
1338 * @address:	target address to read in
1339 * @type:	returned with VM_FAULT_{MINOR,MAJOR} if not %NULL
1340 *
1341 * filemap_nopage() is invoked via the vma operations vector for a
1342 * mapped memory region to read in file data during a page fault.
1343 *
1344 * The goto's are kind of ugly, but this streamlines the normal case of having
1345 * it in the page cache, and handles the special cases reasonably without
1346 * having a lot of duplicated code.
1347 */
1348struct page *filemap_nopage(struct vm_area_struct *area,
1349				unsigned long address, int *type)
1350{
1351	int error;
1352	struct file *file = area->vm_file;
1353	struct address_space *mapping = file->f_mapping;
1354	struct file_ra_state *ra = &file->f_ra;
1355	struct inode *inode = mapping->host;
1356	struct page *page;
1357	unsigned long size, pgoff;
1358	int did_readaround = 0, majmin = VM_FAULT_MINOR;
1359
1360	pgoff = ((address-area->vm_start) >> PAGE_CACHE_SHIFT) + area->vm_pgoff;
1361
1362retry_all:
1363	size = (i_size_read(inode) + PAGE_CACHE_SIZE - 1) >> PAGE_CACHE_SHIFT;
1364	if (pgoff >= size)
1365		goto outside_data_content;
1366
1367	/* If we don't want any read-ahead, don't bother */
1368	if (VM_RandomReadHint(area))
1369		goto no_cached_page;
1370
1371	/*
1372	 * The readahead code wants to be told about each and every page
1373	 * so it can build and shrink its windows appropriately
1374	 *
1375	 * For sequential accesses, we use the generic readahead logic.
1376	 */
1377	if (VM_SequentialReadHint(area))
1378		page_cache_readahead(mapping, ra, file, pgoff, 1);
1379
1380	/*
1381	 * Do we have something in the page cache already?
1382	 */
1383retry_find:
1384	page = find_get_page(mapping, pgoff);
1385	if (!page) {
1386		unsigned long ra_pages;
1387
1388		if (VM_SequentialReadHint(area)) {
1389			handle_ra_miss(mapping, ra, pgoff);
1390			goto no_cached_page;
1391		}
1392		ra->mmap_miss++;
1393
1394		/*
1395		 * Do we miss much more than hit in this file? If so,
1396		 * stop bothering with read-ahead. It will only hurt.
1397		 */
1398		if (ra->mmap_miss > ra->mmap_hit + MMAP_LOTSAMISS)
1399			goto no_cached_page;
1400
1401		/*
1402		 * To keep the pgmajfault counter straight, we need to
1403		 * check did_readaround, as this is an inner loop.
1404		 */
1405		if (!did_readaround) {
1406			majmin = VM_FAULT_MAJOR;
1407			count_vm_event(PGMAJFAULT);
1408		}
1409		did_readaround = 1;
1410		ra_pages = max_sane_readahead(file->f_ra.ra_pages);
1411		if (ra_pages) {
1412			pgoff_t start = 0;
1413
1414			if (pgoff > ra_pages / 2)
1415				start = pgoff - ra_pages / 2;
1416			do_page_cache_readahead(mapping, file, start, ra_pages);
1417		}
1418		page = find_get_page(mapping, pgoff);
1419		if (!page)
1420			goto no_cached_page;
1421	}
1422
1423	if (!did_readaround)
1424		ra->mmap_hit++;
1425
1426	/*
1427	 * Ok, found a page in the page cache, now we need to check
1428	 * that it's up-to-date.
1429	 */
1430	if (!PageUptodate(page))
1431		goto page_not_uptodate;
1432
1433success:
1434	/*
1435	 * Found the page and have a reference on it.
1436	 */
1437	mark_page_accessed(page);
1438	if (type)
1439		*type = majmin;
1440	return page;
1441
1442outside_data_content:
1443	/*
1444	 * An external ptracer can access pages that normally aren't
1445	 * accessible..
1446	 */
1447	if (area->vm_mm == current->mm)
1448		return NOPAGE_SIGBUS;
1449	/* Fall through to the non-read-ahead case */
1450no_cached_page:
1451	/*
1452	 * We're only likely to ever get here if MADV_RANDOM is in
1453	 * effect.
1454	 */
1455	error = page_cache_read(file, pgoff);
1456
1457	/*
1458	 * The page we want has now been added to the page cache.
1459	 * In the unlikely event that someone removed it in the
1460	 * meantime, we'll just come back here and read it again.
1461	 */
1462	if (error >= 0)
1463		goto retry_find;
1464
1465	/*
1466	 * An error return from page_cache_read can result if the
1467	 * system is low on memory, or a problem occurs while trying
1468	 * to schedule I/O.
1469	 */
1470	if (error == -ENOMEM)
1471		return NOPAGE_OOM;
1472	return NOPAGE_SIGBUS;
1473
1474page_not_uptodate:
1475	if (!did_readaround) {
1476		majmin = VM_FAULT_MAJOR;
1477		count_vm_event(PGMAJFAULT);
1478	}
1479
1480	/*
1481	 * Umm, take care of errors if the page isn't up-to-date.
1482	 * Try to re-read it _once_. We do this synchronously,
1483	 * because there really aren't any performance issues here
1484	 * and we need to check for errors.
1485	 */
1486	lock_page(page);
1487
1488	/* Somebody truncated the page on us? */
1489	if (!page->mapping) {
1490		unlock_page(page);
1491		page_cache_release(page);
1492		goto retry_all;
1493	}
1494
1495	/* Somebody else successfully read it in? */
1496	if (PageUptodate(page)) {
1497		unlock_page(page);
1498		goto success;
1499	}
1500	ClearPageError(page);
1501	error = mapping->a_ops->readpage(file, page);
1502	if (!error) {
1503		wait_on_page_locked(page);
1504		if (PageUptodate(page))
1505			goto success;
1506	} else if (error == AOP_TRUNCATED_PAGE) {
1507		page_cache_release(page);
1508		goto retry_find;
1509	}
1510
1511	/*
1512	 * Things didn't work out. Return zero to tell the
1513	 * mm layer so, possibly freeing the page cache page first.
1514	 */
1515	shrink_readahead_size_eio(file, ra);
1516	page_cache_release(page);
1517	return NOPAGE_SIGBUS;
1518}
1519EXPORT_SYMBOL(filemap_nopage);
1520
1521static struct page * filemap_getpage(struct file *file, unsigned long pgoff,
1522					int nonblock)
1523{
1524	struct address_space *mapping = file->f_mapping;
1525	struct page *page;
1526	int error;
1527
1528	/*
1529	 * Do we have something in the page cache already?
1530	 */
1531retry_find:
1532	page = find_get_page(mapping, pgoff);
1533	if (!page) {
1534		if (nonblock)
1535			return NULL;
1536		goto no_cached_page;
1537	}
1538
1539	/*
1540	 * Ok, found a page in the page cache, now we need to check
1541	 * that it's up-to-date.
1542	 */
1543	if (!PageUptodate(page)) {
1544		if (nonblock) {
1545			page_cache_release(page);
1546			return NULL;
1547		}
1548		goto page_not_uptodate;
1549	}
1550
1551success:
1552	/*
1553	 * Found the page and have a reference on it.
1554	 */
1555	mark_page_accessed(page);
1556	return page;
1557
1558no_cached_page:
1559	error = page_cache_read(file, pgoff);
1560
1561	/*
1562	 * The page we want has now been added to the page cache.
1563	 * In the unlikely event that someone removed it in the
1564	 * meantime, we'll just come back here and read it again.
1565	 */
1566	if (error >= 0)
1567		goto retry_find;
1568
1569	/*
1570	 * An error return from page_cache_read can result if the
1571	 * system is low on memory, or a problem occurs while trying
1572	 * to schedule I/O.
1573	 */
1574	return NULL;
1575
1576page_not_uptodate:
1577	lock_page(page);
1578
1579	/* Did it get truncated while we waited for it? */
1580	if (!page->mapping) {
1581		unlock_page(page);
1582		goto err;
1583	}
1584
1585	/* Did somebody else get it up-to-date? */
1586	if (PageUptodate(page)) {
1587		unlock_page(page);
1588		goto success;
1589	}
1590
1591	error = mapping->a_ops->readpage(file, page);
1592	if (!error) {
1593		wait_on_page_locked(page);
1594		if (PageUptodate(page))
1595			goto success;
1596	} else if (error == AOP_TRUNCATED_PAGE) {
1597		page_cache_release(page);
1598		goto retry_find;
1599	}
1600
1601	/*
1602	 * Umm, take care of errors if the page isn't up-to-date.
1603	 * Try to re-read it _once_. We do this synchronously,
1604	 * because there really aren't any performance issues here
1605	 * and we need to check for errors.
1606	 */
1607	lock_page(page);
1608
1609	/* Somebody truncated the page on us? */
1610	if (!page->mapping) {
1611		unlock_page(page);
1612		goto err;
1613	}
1614	/* Somebody else successfully read it in? */
1615	if (PageUptodate(page)) {
1616		unlock_page(page);
1617		goto success;
1618	}
1619
1620	ClearPageError(page);
1621	error = mapping->a_ops->readpage(file, page);
1622	if (!error) {
1623		wait_on_page_locked(page);
1624		if (PageUptodate(page))
1625			goto success;
1626	} else if (error == AOP_TRUNCATED_PAGE) {
1627		page_cache_release(page);
1628		goto retry_find;
1629	}
1630
1631	/*
1632	 * Things didn't work out. Return zero to tell the
1633	 * mm layer so, possibly freeing the page cache page first.
1634	 */
1635err:
1636	page_cache_release(page);
1637
1638	return NULL;
1639}
1640
1641int filemap_populate(struct vm_area_struct *vma, unsigned long addr,
1642		unsigned long len, pgprot_t prot, unsigned long pgoff,
1643		int nonblock)
1644{
1645	struct file *file = vma->vm_file;
1646	struct address_space *mapping = file->f_mapping;
1647	struct inode *inode = mapping->host;
1648	unsigned long size;
1649	struct mm_struct *mm = vma->vm_mm;
1650	struct page *page;
1651	int err;
1652
1653	if (!nonblock)
1654		force_page_cache_readahead(mapping, vma->vm_file,
1655					pgoff, len >> PAGE_CACHE_SHIFT);
1656
1657repeat:
1658	size = (i_size_read(inode) + PAGE_CACHE_SIZE - 1) >> PAGE_CACHE_SHIFT;
1659	if (pgoff + (len >> PAGE_CACHE_SHIFT) > size)
1660		return -EINVAL;
1661
1662	page = filemap_getpage(file, pgoff, nonblock);
1663
1664	/* XXX: This is wrong, a filesystem I/O error may have happened. Fix that as
1665	 * done in shmem_populate calling shmem_getpage */
1666	if (!page && !nonblock)
1667		return -ENOMEM;
1668
1669	if (page) {
1670		err = install_page(mm, vma, addr, page, prot);
1671		if (err) {
1672			page_cache_release(page);
1673			return err;
1674		}
1675	} else if (vma->vm_flags & VM_NONLINEAR) {
1676		/* No page was found just because we can't read it in now (being
1677		 * here implies nonblock != 0), but the page may exist, so set
1678		 * the PTE to fault it in later. */
1679		err = install_file_pte(mm, vma, addr, pgoff, prot);
1680		if (err)
1681			return err;
1682	}
1683
1684	len -= PAGE_SIZE;
1685	addr += PAGE_SIZE;
1686	pgoff++;
1687	if (len)
1688		goto repeat;
1689
1690	return 0;
1691}
1692EXPORT_SYMBOL(filemap_populate);
1693
1694struct vm_operations_struct generic_file_vm_ops = {
1695	.nopage		= filemap_nopage,
1696	.populate	= filemap_populate,
1697};
1698
1699/* This is used for a general mmap of a disk file */
1700
1701int generic_file_mmap(struct file * file, struct vm_area_struct * vma)
1702{
1703	struct address_space *mapping = file->f_mapping;
1704
1705	if (!mapping->a_ops->readpage)
1706		return -ENOEXEC;
1707	file_accessed(file);
1708	vma->vm_ops = &generic_file_vm_ops;
1709	return 0;
1710}
1711
1712/*
1713 * This is for filesystems which do not implement ->writepage.
1714 */
1715int generic_file_readonly_mmap(struct file *file, struct vm_area_struct *vma)
1716{
1717	if ((vma->vm_flags & VM_SHARED) && (vma->vm_flags & VM_MAYWRITE))
1718		return -EINVAL;
1719	return generic_file_mmap(file, vma);
1720}
1721#else
1722int generic_file_mmap(struct file * file, struct vm_area_struct * vma)
1723{
1724	return -ENOSYS;
1725}
1726int generic_file_readonly_mmap(struct file * file, struct vm_area_struct * vma)
1727{
1728	return -ENOSYS;
1729}
1730#endif /* CONFIG_MMU */
1731
1732EXPORT_SYMBOL(generic_file_mmap);
1733EXPORT_SYMBOL(generic_file_readonly_mmap);
1734
1735static struct page *__read_cache_page(struct address_space *mapping,
1736				unsigned long index,
1737				int (*filler)(void *,struct page*),
1738				void *data)
1739{
1740	struct page *page, *cached_page = NULL;
1741	int err;
1742repeat:
1743	page = find_get_page(mapping, index);
1744	if (!page) {
1745		if (!cached_page) {
1746			cached_page = page_cache_alloc_cold(mapping);
1747			if (!cached_page)
1748				return ERR_PTR(-ENOMEM);
1749		}
1750		err = add_to_page_cache_lru(cached_page, mapping,
1751					index, GFP_KERNEL);
1752		if (err == -EEXIST)
1753			goto repeat;
1754		if (err < 0) {
1755			/* Presumably ENOMEM for radix tree node */
1756			page_cache_release(cached_page);
1757			return ERR_PTR(err);
1758		}
1759		page = cached_page;
1760		cached_page = NULL;
1761		err = filler(data, page);
1762		if (err < 0) {
1763			page_cache_release(page);
1764			page = ERR_PTR(err);
1765		}
1766	}
1767	if (cached_page)
1768		page_cache_release(cached_page);
1769	return page;
1770}
1771
1772/*
1773 * Same as read_cache_page, but don't wait for page to become unlocked
1774 * after submitting it to the filler.
1775 */
1776struct page *read_cache_page_async(struct address_space *mapping,
1777				unsigned long index,
1778				int (*filler)(void *,struct page*),
1779				void *data)
1780{
1781	struct page *page;
1782	int err;
1783
1784retry:
1785	page = __read_cache_page(mapping, index, filler, data);
1786	if (IS_ERR(page))
1787		return page;
1788	mark_page_accessed(page);
1789	if (PageUptodate(page))
1790		goto out;
1791
1792	lock_page(page);
1793	if (!page->mapping) {
1794		unlock_page(page);
1795		page_cache_release(page);
1796		goto retry;
1797	}
1798	if (PageUptodate(page)) {
1799		unlock_page(page);
1800		goto out;
1801	}
1802	err = filler(data, page);
1803	if (err < 0) {
1804		page_cache_release(page);
1805		return ERR_PTR(err);
1806	}
1807out:
1808	mark_page_accessed(page);
1809	return page;
1810}
1811EXPORT_SYMBOL(read_cache_page_async);
1812
1813/**
1814 * read_cache_page - read into page cache, fill it if needed
1815 * @mapping:	the page's address_space
1816 * @index:	the page index
1817 * @filler:	function to perform the read
1818 * @data:	destination for read data
1819 *
1820 * Read into the page cache. If a page already exists, and PageUptodate() is
1821 * not set, try to fill the page then wait for it to become unlocked.
1822 *
1823 * If the page does not get brought uptodate, return -EIO.
1824 */
1825struct page *read_cache_page(struct address_space *mapping,
1826				unsigned long index,
1827				int (*filler)(void *,struct page*),
1828				void *data)
1829{
1830	struct page *page;
1831
1832	page = read_cache_page_async(mapping, index, filler, data);
1833	if (IS_ERR(page))
1834		goto out;
1835	wait_on_page_locked(page);
1836	if (!PageUptodate(page)) {
1837		page_cache_release(page);
1838		page = ERR_PTR(-EIO);
1839	}
1840 out:
1841	return page;
1842}
1843EXPORT_SYMBOL(read_cache_page);
1844
1845/*
1846 * If the page was newly created, increment its refcount and add it to the
1847 * caller's lru-buffering pagevec.  This function is specifically for
1848 * generic_file_write().
1849 */
1850static inline struct page *
1851__grab_cache_page(struct address_space *mapping, unsigned long index,
1852			struct page **cached_page, struct pagevec *lru_pvec)
1853{
1854	int err;
1855	struct page *page;
1856repeat:
1857	page = find_lock_page(mapping, index);
1858	if (!page) {
1859		if (!*cached_page) {
1860			*cached_page = page_cache_alloc(mapping);
1861			if (!*cached_page)
1862				return NULL;
1863		}
1864		err = add_to_page_cache(*cached_page, mapping,
1865					index, GFP_KERNEL);
1866		if (err == -EEXIST)
1867			goto repeat;
1868		if (err == 0) {
1869			page = *cached_page;
1870			page_cache_get(page);
1871			if (!pagevec_add(lru_pvec, page))
1872				__pagevec_lru_add(lru_pvec);
1873			*cached_page = NULL;
1874		}
1875	}
1876	return page;
1877}
1878
1879/*
1880 * The logic we want is
1881 *
1882 *	if suid or (sgid and xgrp)
1883 *		remove privs
1884 */
1885int should_remove_suid(struct dentry *dentry)
1886{
1887	mode_t mode = dentry->d_inode->i_mode;
1888	int kill = 0;
1889
1890	/* suid always must be killed */
1891	if (unlikely(mode & S_ISUID))
1892		kill = ATTR_KILL_SUID;
1893
1894	/*
1895	 * sgid without any exec bits is just a mandatory locking mark; leave
1896	 * it alone.  If some exec bits are set, it's a real sgid; kill it.
1897	 */
1898	if (unlikely((mode & S_ISGID) && (mode & S_IXGRP)))
1899		kill |= ATTR_KILL_SGID;
1900
1901	if (unlikely(kill && !capable(CAP_FSETID)))
1902		return kill;
1903
1904	return 0;
1905}
1906EXPORT_SYMBOL(should_remove_suid);
1907
1908int __remove_suid(struct dentry *dentry, int kill)
1909{
1910	struct iattr newattrs;
1911
1912	newattrs.ia_valid = ATTR_FORCE | kill;
1913	return notify_change(dentry, &newattrs);
1914}
1915
1916int remove_suid(struct dentry *dentry)
1917{
1918	int kill = should_remove_suid(dentry);
1919
1920	if (unlikely(kill))
1921		return __remove_suid(dentry, kill);
1922
1923	return 0;
1924}
1925EXPORT_SYMBOL(remove_suid);
1926
1927size_t
1928__filemap_copy_from_user_iovec_inatomic(char *vaddr,
1929			const struct iovec *iov, size_t base, size_t bytes)
1930{
1931	size_t copied = 0, left = 0;
1932
1933	while (bytes) {
1934		char __user *buf = iov->iov_base + base;
1935		int copy = min(bytes, iov->iov_len - base);
1936
1937		base = 0;
1938		left = __copy_from_user_inatomic_nocache(vaddr, buf, copy);
1939		copied += copy;
1940		bytes -= copy;
1941		vaddr += copy;
1942		iov++;
1943
1944		if (unlikely(left))
1945			break;
1946	}
1947	return copied - left;
1948}
1949
1950/*
1951 * Performs necessary checks before doing a write
1952 *
1953 * Can adjust writing position or amount of bytes to write.
1954 * Returns appropriate error code that caller should return or
1955 * zero in case that write should be allowed.
1956 */
1957inline int generic_write_checks(struct file *file, loff_t *pos, size_t *count, int isblk)
1958{
1959	struct inode *inode = file->f_mapping->host;
1960	unsigned long limit = current->signal->rlim[RLIMIT_FSIZE].rlim_cur;
1961
1962        if (unlikely(*pos < 0))
1963                return -EINVAL;
1964
1965	if (!isblk) {
1966		/* FIXME: this is for backwards compatibility with 2.4 */
1967		if (file->f_flags & O_APPEND)
1968                        *pos = i_size_read(inode);
1969
1970		if (limit != RLIM_INFINITY) {
1971			if (*pos >= limit) {
1972				send_sig(SIGXFSZ, current, 0);
1973				return -EFBIG;
1974			}
1975			if (*count > limit - (typeof(limit))*pos) {
1976				*count = limit - (typeof(limit))*pos;
1977			}
1978		}
1979	}
1980
1981	/*
1982	 * LFS rule
1983	 */
1984	if (unlikely(*pos + *count > MAX_NON_LFS &&
1985				!(file->f_flags & O_LARGEFILE))) {
1986		if (*pos >= MAX_NON_LFS) {
1987			send_sig(SIGXFSZ, current, 0);
1988			return -EFBIG;
1989		}
1990		if (*count > MAX_NON_LFS - (unsigned long)*pos) {
1991			*count = MAX_NON_LFS - (unsigned long)*pos;
1992		}
1993	}
1994
1995	/*
1996	 * Are we about to exceed the fs block limit ?
1997	 *
1998	 * If we have written data it becomes a short write.  If we have
1999	 * exceeded without writing data we send a signal and return EFBIG.
2000	 * Linus frestrict idea will clean these up nicely..
2001	 */
2002	if (likely(!isblk)) {
2003		if (unlikely(*pos >= inode->i_sb->s_maxbytes)) {
2004			if (*count || *pos > inode->i_sb->s_maxbytes) {
2005				send_sig(SIGXFSZ, current, 0);
2006				return -EFBIG;
2007			}
2008			/* zero-length writes at ->s_maxbytes are OK */
2009		}
2010
2011		if (unlikely(*pos + *count > inode->i_sb->s_maxbytes))
2012			*count = inode->i_sb->s_maxbytes - *pos;
2013	} else {
2014#ifdef CONFIG_BLOCK
2015		loff_t isize;
2016		if (bdev_read_only(I_BDEV(inode)))
2017			return -EPERM;
2018		isize = i_size_read(inode);
2019		if (*pos >= isize) {
2020			if (*count || *pos > isize)
2021				return -ENOSPC;
2022		}
2023
2024		if (*pos + *count > isize)
2025			*count = isize - *pos;
2026#else
2027		return -EPERM;
2028#endif
2029	}
2030	return 0;
2031}
2032EXPORT_SYMBOL(generic_write_checks);
2033
2034ssize_t
2035generic_file_direct_write(struct kiocb *iocb, const struct iovec *iov,
2036		unsigned long *nr_segs, loff_t pos, loff_t *ppos,
2037		size_t count, size_t ocount)
2038{
2039	struct file	*file = iocb->ki_filp;
2040	struct address_space *mapping = file->f_mapping;
2041	struct inode	*inode = mapping->host;
2042	ssize_t		written;
2043
2044	if (count != ocount)
2045		*nr_segs = iov_shorten((struct iovec *)iov, *nr_segs, count);
2046
2047	written = generic_file_direct_IO(WRITE, iocb, iov, pos, *nr_segs);
2048	if (written > 0) {
2049		loff_t end = pos + written;
2050		if (end > i_size_read(inode) && !S_ISBLK(inode->i_mode)) {
2051			i_size_write(inode,  end);
2052			mark_inode_dirty(inode);
2053		}
2054		*ppos = end;
2055	}
2056
2057	/*
2058	 * Sync the fs metadata but not the minor inode changes and
2059	 * of course not the data as we did direct DMA for the IO.
2060	 * i_mutex is held, which protects generic_osync_inode() from
2061	 * livelocking.  AIO O_DIRECT ops attempt to sync metadata here.
2062	 */
2063	if ((written >= 0 || written == -EIOCBQUEUED) &&
2064	    ((file->f_flags & O_SYNC) || IS_SYNC(inode))) {
2065		int err = generic_osync_inode(inode, mapping, OSYNC_METADATA);
2066		if (err < 0)
2067			written = err;
2068	}
2069	return written;
2070}
2071EXPORT_SYMBOL(generic_file_direct_write);
2072
2073ssize_t
2074generic_file_buffered_write(struct kiocb *iocb, const struct iovec *iov,
2075		unsigned long nr_segs, loff_t pos, loff_t *ppos,
2076		size_t count, ssize_t written)
2077{
2078	struct file *file = iocb->ki_filp;
2079	struct address_space * mapping = file->f_mapping;
2080	const struct address_space_operations *a_ops = mapping->a_ops;
2081	struct inode 	*inode = mapping->host;
2082	long		status = 0;
2083	struct page	*page;
2084	struct page	*cached_page = NULL;
2085	size_t		bytes;
2086	struct pagevec	lru_pvec;
2087	const struct iovec *cur_iov = iov; /* current iovec */
2088	size_t		iov_base = 0;	   /* offset in the current iovec */
2089	char __user	*buf;
2090
2091	pagevec_init(&lru_pvec, 0);
2092
2093	/*
2094	 * handle partial DIO write.  Adjust cur_iov if needed.
2095	 */
2096	if (likely(nr_segs == 1))
2097		buf = iov->iov_base + written;
2098	else {
2099		filemap_set_next_iovec(&cur_iov, &iov_base, written);
2100		buf = cur_iov->iov_base + iov_base;
2101	}
2102
2103	do {
2104		unsigned long index;
2105		unsigned long offset;
2106		size_t copied;
2107
2108		offset = (pos & (PAGE_CACHE_SIZE -1)); /* Within page */
2109		index = pos >> PAGE_CACHE_SHIFT;
2110		bytes = PAGE_CACHE_SIZE - offset;
2111
2112		/* Limit the size of the copy to the caller's write size */
2113		bytes = min(bytes, count);
2114
2115		/* We only need to worry about prefaulting when writes are from
2116		 * user-space.  NFSd uses vfs_writev with several non-aligned
2117		 * segments in the vector, and limiting to one segment a time is
2118		 * a noticeable performance for re-write
2119		 */
2120		if (!segment_eq(get_fs(), KERNEL_DS)) {
2121			/*
2122			 * Limit the size of the copy to that of the current
2123			 * segment, because fault_in_pages_readable() doesn't
2124			 * know how to walk segments.
2125			 */
2126			bytes = min(bytes, cur_iov->iov_len - iov_base);
2127
2128			/*
2129			 * Bring in the user page that we will copy from
2130			 * _first_.  Otherwise there's a nasty deadlock on
2131			 * copying from the same page as we're writing to,
2132			 * without it being marked up-to-date.
2133			 */
2134			fault_in_pages_readable(buf, bytes);
2135		}
2136		page = __grab_cache_page(mapping,index,&cached_page,&lru_pvec);
2137		if (!page) {
2138			status = -ENOMEM;
2139			break;
2140		}
2141
2142		if (unlikely(bytes == 0)) {
2143			status = 0;
2144			copied = 0;
2145			goto zero_length_segment;
2146		}
2147
2148		status = a_ops->prepare_write(file, page, offset, offset+bytes);
2149		if (unlikely(status)) {
2150			loff_t isize = i_size_read(inode);
2151
2152			if (status != AOP_TRUNCATED_PAGE)
2153				unlock_page(page);
2154			page_cache_release(page);
2155			if (status == AOP_TRUNCATED_PAGE)
2156				continue;
2157			/*
2158			 * prepare_write() may have instantiated a few blocks
2159			 * outside i_size.  Trim these off again.
2160			 */
2161			if (pos + bytes > isize)
2162				vmtruncate(inode, isize);
2163			break;
2164		}
2165		if (likely(nr_segs == 1))
2166			copied = filemap_copy_from_user(page, offset,
2167							buf, bytes);
2168		else
2169			copied = filemap_copy_from_user_iovec(page, offset,
2170						cur_iov, iov_base, bytes);
2171		flush_dcache_page(page);
2172		status = a_ops->commit_write(file, page, offset, offset+bytes);
2173		if (status == AOP_TRUNCATED_PAGE) {
2174			page_cache_release(page);
2175			continue;
2176		}
2177zero_length_segment:
2178		if (likely(copied >= 0)) {
2179			if (!status)
2180				status = copied;
2181
2182			if (status >= 0) {
2183				written += status;
2184				count -= status;
2185				pos += status;
2186				buf += status;
2187				if (unlikely(nr_segs > 1)) {
2188					filemap_set_next_iovec(&cur_iov,
2189							&iov_base, status);
2190					if (count)
2191						buf = cur_iov->iov_base +
2192							iov_base;
2193				} else {
2194					iov_base += status;
2195				}
2196			}
2197		}
2198		if (unlikely(copied != bytes))
2199			if (status >= 0)
2200				status = -EFAULT;
2201		unlock_page(page);
2202		mark_page_accessed(page);
2203		page_cache_release(page);
2204		if (status < 0)
2205			break;
2206		balance_dirty_pages_ratelimited(mapping);
2207		cond_resched();
2208	} while (count);
2209	*ppos = pos;
2210
2211	if (cached_page)
2212		page_cache_release(cached_page);
2213
2214	/*
2215	 * For now, when the user asks for O_SYNC, we'll actually give O_DSYNC
2216	 */
2217	if (likely(status >= 0)) {
2218		if (unlikely((file->f_flags & O_SYNC) || IS_SYNC(inode))) {
2219			if (!a_ops->writepage || !is_sync_kiocb(iocb))
2220				status = generic_osync_inode(inode, mapping,
2221						OSYNC_METADATA|OSYNC_DATA);
2222		}
2223  	}
2224
2225	/*
2226	 * If we get here for O_DIRECT writes then we must have fallen through
2227	 * to buffered writes (block instantiation inside i_size).  So we sync
2228	 * the file data here, to try to honour O_DIRECT expectations.
2229	 */
2230	if (unlikely(file->f_flags & O_DIRECT) && written)
2231		status = filemap_write_and_wait(mapping);
2232
2233	pagevec_lru_add(&lru_pvec);
2234	return written ? written : status;
2235}
2236EXPORT_SYMBOL(generic_file_buffered_write);
2237
2238static ssize_t
2239__generic_file_aio_write_nolock(struct kiocb *iocb, const struct iovec *iov,
2240				unsigned long nr_segs, loff_t *ppos)
2241{
2242	struct file *file = iocb->ki_filp;
2243	struct address_space * mapping = file->f_mapping;
2244	size_t ocount;		/* original count */
2245	size_t count;		/* after file limit checks */
2246	struct inode 	*inode = mapping->host;
2247	loff_t		pos;
2248	ssize_t		written;
2249	ssize_t		err;
2250
2251	ocount = 0;
2252	err = generic_segment_checks(iov, &nr_segs, &ocount, VERIFY_READ);
2253	if (err)
2254		return err;
2255
2256	count = ocount;
2257	pos = *ppos;
2258
2259	vfs_check_frozen(inode->i_sb, SB_FREEZE_WRITE);
2260
2261	/* We can write back this queue in page reclaim */
2262	current->backing_dev_info = mapping->backing_dev_info;
2263	written = 0;
2264
2265	err = generic_write_checks(file, &pos, &count, S_ISBLK(inode->i_mode));
2266	if (err)
2267		goto out;
2268
2269	if (count == 0)
2270		goto out;
2271
2272	err = remove_suid(file->f_path.dentry);
2273	if (err)
2274		goto out;
2275
2276	file_update_time(file);
2277
2278	/* coalesce the iovecs and go direct-to-BIO for O_DIRECT */
2279	if (unlikely(file->f_flags & O_DIRECT)) {
2280		loff_t endbyte;
2281		ssize_t written_buffered;
2282
2283		written = generic_file_direct_write(iocb, iov, &nr_segs, pos,
2284							ppos, count, ocount);
2285		if (written < 0 || written == count)
2286			goto out;
2287		/*
2288		 * direct-io write to a hole: fall through to buffered I/O
2289		 * for completing the rest of the request.
2290		 */
2291		pos += written;
2292		count -= written;
2293		written_buffered = generic_file_buffered_write(iocb, iov,
2294						nr_segs, pos, ppos, count,
2295						written);
2296		/*
2297		 * If generic_file_buffered_write() retuned a synchronous error
2298		 * then we want to return the number of bytes which were
2299		 * direct-written, or the error code if that was zero.  Note
2300		 * that this differs from normal direct-io semantics, which
2301		 * will return -EFOO even if some bytes were written.
2302		 */
2303		if (written_buffered < 0) {
2304			err = written_buffered;
2305			goto out;
2306		}
2307
2308		/*
2309		 * We need to ensure that the page cache pages are written to
2310		 * disk and invalidated to preserve the expected O_DIRECT
2311		 * semantics.
2312		 */
2313		endbyte = pos + written_buffered - written - 1;
2314		err = do_sync_mapping_range(file->f_mapping, pos, endbyte,
2315					    SYNC_FILE_RANGE_WAIT_BEFORE|
2316					    SYNC_FILE_RANGE_WRITE|
2317					    SYNC_FILE_RANGE_WAIT_AFTER);
2318		if (err == 0) {
2319			written = written_buffered;
2320			invalidate_mapping_pages(mapping,
2321						 pos >> PAGE_CACHE_SHIFT,
2322						 endbyte >> PAGE_CACHE_SHIFT);
2323		} else {
2324			/*
2325			 * We don't know how much we wrote, so just return
2326			 * the number of bytes which were direct-written
2327			 */
2328		}
2329	} else {
2330		written = generic_file_buffered_write(iocb, iov, nr_segs,
2331				pos, ppos, count, written);
2332	}
2333out:
2334	current->backing_dev_info = NULL;
2335	return written ? written : err;
2336}
2337
2338ssize_t generic_file_aio_write_nolock(struct kiocb *iocb,
2339		const struct iovec *iov, unsigned long nr_segs, loff_t pos)
2340{
2341	struct file *file = iocb->ki_filp;
2342	struct address_space *mapping = file->f_mapping;
2343	struct inode *inode = mapping->host;
2344	ssize_t ret;
2345
2346	BUG_ON(iocb->ki_pos != pos);
2347
2348	ret = __generic_file_aio_write_nolock(iocb, iov, nr_segs,
2349			&iocb->ki_pos);
2350
2351	if (ret > 0 && ((file->f_flags & O_SYNC) || IS_SYNC(inode))) {
2352		ssize_t err;
2353
2354		err = sync_page_range_nolock(inode, mapping, pos, ret);
2355		if (err < 0)
2356			ret = err;
2357	}
2358	return ret;
2359}
2360EXPORT_SYMBOL(generic_file_aio_write_nolock);
2361
2362ssize_t generic_file_aio_write(struct kiocb *iocb, const struct iovec *iov,
2363		unsigned long nr_segs, loff_t pos)
2364{
2365	struct file *file = iocb->ki_filp;
2366	struct address_space *mapping = file->f_mapping;
2367	struct inode *inode = mapping->host;
2368	ssize_t ret;
2369
2370	BUG_ON(iocb->ki_pos != pos);
2371
2372	mutex_lock(&inode->i_mutex);
2373	ret = __generic_file_aio_write_nolock(iocb, iov, nr_segs,
2374			&iocb->ki_pos);
2375	mutex_unlock(&inode->i_mutex);
2376
2377	if (ret > 0 && ((file->f_flags & O_SYNC) || IS_SYNC(inode))) {
2378		ssize_t err;
2379
2380		err = sync_page_range(inode, mapping, pos, ret);
2381		if (err < 0)
2382			ret = err;
2383	}
2384	return ret;
2385}
2386EXPORT_SYMBOL(generic_file_aio_write);
2387
2388/*
2389 * Called under i_mutex for writes to S_ISREG files.   Returns -EIO if something
2390 * went wrong during pagecache shootdown.
2391 */
2392static ssize_t
2393generic_file_direct_IO(int rw, struct kiocb *iocb, const struct iovec *iov,
2394	loff_t offset, unsigned long nr_segs)
2395{
2396	struct file *file = iocb->ki_filp;
2397	struct address_space *mapping = file->f_mapping;
2398	ssize_t retval;
2399	size_t write_len;
2400	pgoff_t end = 0; /* silence gcc */
2401
2402	/*
2403	 * If it's a write, unmap all mmappings of the file up-front.  This
2404	 * will cause any pte dirty bits to be propagated into the pageframes
2405	 * for the subsequent filemap_write_and_wait().
2406	 */
2407	if (rw == WRITE) {
2408		write_len = iov_length(iov, nr_segs);
2409		end = (offset + write_len - 1) >> PAGE_CACHE_SHIFT;
2410	       	if (mapping_mapped(mapping))
2411			unmap_mapping_range(mapping, offset, write_len, 0);
2412	}
2413
2414	retval = filemap_write_and_wait(mapping);
2415	if (retval)
2416		goto out;
2417
2418	/*
2419	 * After a write we want buffered reads to be sure to go to disk to get
2420	 * the new data.  We invalidate clean cached page from the region we're
2421	 * about to write.  We do this *before* the write so that we can return
2422	 * -EIO without clobbering -EIOCBQUEUED from ->direct_IO().
2423	 */
2424	if (rw == WRITE && mapping->nrpages) {
2425		retval = invalidate_inode_pages2_range(mapping,
2426					offset >> PAGE_CACHE_SHIFT, end);
2427		if (retval)
2428			goto out;
2429	}
2430
2431	retval = mapping->a_ops->direct_IO(rw, iocb, iov, offset, nr_segs);
2432	if (retval)
2433		goto out;
2434
2435	/*
2436	 * Finally, try again to invalidate clean pages which might have been
2437	 * faulted in by get_user_pages() if the source of the write was an
2438	 * mmap()ed region of the file we're writing.  That's a pretty crazy
2439	 * thing to do, so we don't support it 100%.  If this invalidation
2440	 * fails and we have -EIOCBQUEUED we ignore the failure.
2441	 */
2442	if (rw == WRITE && mapping->nrpages) {
2443		int err = invalidate_inode_pages2_range(mapping,
2444					      offset >> PAGE_CACHE_SHIFT, end);
2445		if (err && retval >= 0)
2446			retval = err;
2447	}
2448out:
2449	return retval;
2450}
2451
2452/**
2453 * try_to_release_page() - release old fs-specific metadata on a page
2454 *
2455 * @page: the page which the kernel is trying to free
2456 * @gfp_mask: memory allocation flags (and I/O mode)
2457 *
2458 * The address_space is to try to release any data against the page
2459 * (presumably at page->private).  If the release was successful, return `1'.
2460 * Otherwise return zero.
2461 *
2462 * The @gfp_mask argument specifies whether I/O may be performed to release
2463 * this page (__GFP_IO), and whether the call may block (__GFP_WAIT).
2464 *
2465 * NOTE: @gfp_mask may go away, and this function may become non-blocking.
2466 */
2467int try_to_release_page(struct page *page, gfp_t gfp_mask)
2468{
2469	struct address_space * const mapping = page->mapping;
2470
2471	BUG_ON(!PageLocked(page));
2472	if (PageWriteback(page))
2473		return 0;
2474
2475	if (mapping && mapping->a_ops->releasepage)
2476		return mapping->a_ops->releasepage(page, gfp_mask);
2477	return try_to_free_buffers(page);
2478}
2479
2480EXPORT_SYMBOL(try_to_release_page);
2481