filemap.c revision d345734267dbec642f4e34a9d392d2fd85b5fa9b
1/*
2 *	linux/mm/filemap.c
3 *
4 * Copyright (C) 1994-1999  Linus Torvalds
5 */
6
7/*
8 * This file handles the generic file mmap semantics used by
9 * most "normal" filesystems (but you don't /have/ to use this:
10 * the NFS filesystem used to do this differently, for example)
11 */
12#include <linux/config.h>
13#include <linux/module.h>
14#include <linux/slab.h>
15#include <linux/compiler.h>
16#include <linux/fs.h>
17#include <linux/aio.h>
18#include <linux/kernel_stat.h>
19#include <linux/mm.h>
20#include <linux/swap.h>
21#include <linux/mman.h>
22#include <linux/pagemap.h>
23#include <linux/file.h>
24#include <linux/uio.h>
25#include <linux/hash.h>
26#include <linux/writeback.h>
27#include <linux/pagevec.h>
28#include <linux/blkdev.h>
29#include <linux/security.h>
30#include <linux/syscalls.h>
31/*
32 * This is needed for the following functions:
33 *  - try_to_release_page
34 *  - block_invalidatepage
35 *  - generic_osync_inode
36 *
37 * FIXME: remove all knowledge of the buffer layer from the core VM
38 */
39#include <linux/buffer_head.h> /* for generic_osync_inode */
40
41#include <asm/uaccess.h>
42#include <asm/mman.h>
43
44/*
45 * Shared mappings implemented 30.11.1994. It's not fully working yet,
46 * though.
47 *
48 * Shared mappings now work. 15.8.1995  Bruno.
49 *
50 * finished 'unifying' the page and buffer cache and SMP-threaded the
51 * page-cache, 21.05.1999, Ingo Molnar <mingo@redhat.com>
52 *
53 * SMP-threaded pagemap-LRU 1999, Andrea Arcangeli <andrea@suse.de>
54 */
55
56/*
57 * Lock ordering:
58 *
59 *  ->i_mmap_lock		(vmtruncate)
60 *    ->private_lock		(__free_pte->__set_page_dirty_buffers)
61 *      ->swap_list_lock
62 *        ->swap_device_lock	(exclusive_swap_page, others)
63 *          ->mapping->tree_lock
64 *
65 *  ->i_sem
66 *    ->i_mmap_lock		(truncate->unmap_mapping_range)
67 *
68 *  ->mmap_sem
69 *    ->i_mmap_lock
70 *      ->page_table_lock	(various places, mainly in mmap.c)
71 *        ->mapping->tree_lock	(arch-dependent flush_dcache_mmap_lock)
72 *
73 *  ->mmap_sem
74 *    ->lock_page		(access_process_vm)
75 *
76 *  ->mmap_sem
77 *    ->i_sem			(msync)
78 *
79 *  ->i_sem
80 *    ->i_alloc_sem             (various)
81 *
82 *  ->inode_lock
83 *    ->sb_lock			(fs/fs-writeback.c)
84 *    ->mapping->tree_lock	(__sync_single_inode)
85 *
86 *  ->i_mmap_lock
87 *    ->anon_vma.lock		(vma_adjust)
88 *
89 *  ->anon_vma.lock
90 *    ->page_table_lock		(anon_vma_prepare and various)
91 *
92 *  ->page_table_lock
93 *    ->swap_device_lock	(try_to_unmap_one)
94 *    ->private_lock		(try_to_unmap_one)
95 *    ->tree_lock		(try_to_unmap_one)
96 *    ->zone.lru_lock		(follow_page->mark_page_accessed)
97 *    ->private_lock		(page_remove_rmap->set_page_dirty)
98 *    ->tree_lock		(page_remove_rmap->set_page_dirty)
99 *    ->inode_lock		(page_remove_rmap->set_page_dirty)
100 *    ->inode_lock		(zap_pte_range->set_page_dirty)
101 *    ->private_lock		(zap_pte_range->__set_page_dirty_buffers)
102 *
103 *  ->task->proc_lock
104 *    ->dcache_lock		(proc_pid_lookup)
105 */
106
107/*
108 * Remove a page from the page cache and free it. Caller has to make
109 * sure the page is locked and that nobody else uses it - or that usage
110 * is safe.  The caller must hold a write_lock on the mapping's tree_lock.
111 */
112void __remove_from_page_cache(struct page *page)
113{
114	struct address_space *mapping = page->mapping;
115
116	radix_tree_delete(&mapping->page_tree, page->index);
117	page->mapping = NULL;
118	mapping->nrpages--;
119	pagecache_acct(-1);
120}
121
122void remove_from_page_cache(struct page *page)
123{
124	struct address_space *mapping = page->mapping;
125
126	if (unlikely(!PageLocked(page)))
127		PAGE_BUG(page);
128
129	write_lock_irq(&mapping->tree_lock);
130	__remove_from_page_cache(page);
131	write_unlock_irq(&mapping->tree_lock);
132}
133
134static int sync_page(void *word)
135{
136	struct address_space *mapping;
137	struct page *page;
138
139	page = container_of((page_flags_t *)word, struct page, flags);
140
141	/*
142	 * FIXME, fercrissake.  What is this barrier here for?
143	 */
144	smp_mb();
145	mapping = page_mapping(page);
146	if (mapping && mapping->a_ops && mapping->a_ops->sync_page)
147		mapping->a_ops->sync_page(page);
148	io_schedule();
149	return 0;
150}
151
152/**
153 * filemap_fdatawrite_range - start writeback against all of a mapping's
154 * dirty pages that lie within the byte offsets <start, end>
155 * @mapping: address space structure to write
156 * @start: offset in bytes where the range starts
157 * @end : offset in bytes where the range ends
158 *
159 * If sync_mode is WB_SYNC_ALL then this is a "data integrity" operation, as
160 * opposed to a regular memory * cleansing writeback.  The difference between
161 * these two operations is that if a dirty page/buffer is encountered, it must
162 * be waited upon, and not just skipped over.
163 */
164static int __filemap_fdatawrite_range(struct address_space *mapping,
165	loff_t start, loff_t end, int sync_mode)
166{
167	int ret;
168	struct writeback_control wbc = {
169		.sync_mode = sync_mode,
170		.nr_to_write = mapping->nrpages * 2,
171		.start = start,
172		.end = end,
173	};
174
175	if (!mapping_cap_writeback_dirty(mapping))
176		return 0;
177
178	ret = do_writepages(mapping, &wbc);
179	return ret;
180}
181
182static inline int __filemap_fdatawrite(struct address_space *mapping,
183	int sync_mode)
184{
185	return __filemap_fdatawrite_range(mapping, 0, 0, sync_mode);
186}
187
188int filemap_fdatawrite(struct address_space *mapping)
189{
190	return __filemap_fdatawrite(mapping, WB_SYNC_ALL);
191}
192EXPORT_SYMBOL(filemap_fdatawrite);
193
194static int filemap_fdatawrite_range(struct address_space *mapping,
195	loff_t start, loff_t end)
196{
197	return __filemap_fdatawrite_range(mapping, start, end, WB_SYNC_ALL);
198}
199
200/*
201 * This is a mostly non-blocking flush.  Not suitable for data-integrity
202 * purposes - I/O may not be started against all dirty pages.
203 */
204int filemap_flush(struct address_space *mapping)
205{
206	return __filemap_fdatawrite(mapping, WB_SYNC_NONE);
207}
208EXPORT_SYMBOL(filemap_flush);
209
210/*
211 * Wait for writeback to complete against pages indexed by start->end
212 * inclusive
213 */
214static int wait_on_page_writeback_range(struct address_space *mapping,
215				pgoff_t start, pgoff_t end)
216{
217	struct pagevec pvec;
218	int nr_pages;
219	int ret = 0;
220	pgoff_t index;
221
222	if (end < start)
223		return 0;
224
225	pagevec_init(&pvec, 0);
226	index = start;
227	while ((index <= end) &&
228			(nr_pages = pagevec_lookup_tag(&pvec, mapping, &index,
229			PAGECACHE_TAG_WRITEBACK,
230			min(end - index, (pgoff_t)PAGEVEC_SIZE-1) + 1)) != 0) {
231		unsigned i;
232
233		for (i = 0; i < nr_pages; i++) {
234			struct page *page = pvec.pages[i];
235
236			/* until radix tree lookup accepts end_index */
237			if (page->index > end)
238				continue;
239
240			wait_on_page_writeback(page);
241			if (PageError(page))
242				ret = -EIO;
243		}
244		pagevec_release(&pvec);
245		cond_resched();
246	}
247
248	/* Check for outstanding write errors */
249	if (test_and_clear_bit(AS_ENOSPC, &mapping->flags))
250		ret = -ENOSPC;
251	if (test_and_clear_bit(AS_EIO, &mapping->flags))
252		ret = -EIO;
253
254	return ret;
255}
256
257/*
258 * Write and wait upon all the pages in the passed range.  This is a "data
259 * integrity" operation.  It waits upon in-flight writeout before starting and
260 * waiting upon new writeout.  If there was an IO error, return it.
261 *
262 * We need to re-take i_sem during the generic_osync_inode list walk because
263 * it is otherwise livelockable.
264 */
265int sync_page_range(struct inode *inode, struct address_space *mapping,
266			loff_t pos, size_t count)
267{
268	pgoff_t start = pos >> PAGE_CACHE_SHIFT;
269	pgoff_t end = (pos + count - 1) >> PAGE_CACHE_SHIFT;
270	int ret;
271
272	if (!mapping_cap_writeback_dirty(mapping) || !count)
273		return 0;
274	ret = filemap_fdatawrite_range(mapping, pos, pos + count - 1);
275	if (ret == 0) {
276		down(&inode->i_sem);
277		ret = generic_osync_inode(inode, mapping, OSYNC_METADATA);
278		up(&inode->i_sem);
279	}
280	if (ret == 0)
281		ret = wait_on_page_writeback_range(mapping, start, end);
282	return ret;
283}
284EXPORT_SYMBOL(sync_page_range);
285
286/*
287 * Note: Holding i_sem across sync_page_range_nolock is not a good idea
288 * as it forces O_SYNC writers to different parts of the same file
289 * to be serialised right until io completion.
290 */
291int sync_page_range_nolock(struct inode *inode, struct address_space *mapping,
292			loff_t pos, size_t count)
293{
294	pgoff_t start = pos >> PAGE_CACHE_SHIFT;
295	pgoff_t end = (pos + count - 1) >> PAGE_CACHE_SHIFT;
296	int ret;
297
298	if (!mapping_cap_writeback_dirty(mapping) || !count)
299		return 0;
300	ret = filemap_fdatawrite_range(mapping, pos, pos + count - 1);
301	if (ret == 0)
302		ret = generic_osync_inode(inode, mapping, OSYNC_METADATA);
303	if (ret == 0)
304		ret = wait_on_page_writeback_range(mapping, start, end);
305	return ret;
306}
307EXPORT_SYMBOL(sync_page_range_nolock);
308
309/**
310 * filemap_fdatawait - walk the list of under-writeback pages of the given
311 *     address space and wait for all of them.
312 *
313 * @mapping: address space structure to wait for
314 */
315int filemap_fdatawait(struct address_space *mapping)
316{
317	loff_t i_size = i_size_read(mapping->host);
318
319	if (i_size == 0)
320		return 0;
321
322	return wait_on_page_writeback_range(mapping, 0,
323				(i_size - 1) >> PAGE_CACHE_SHIFT);
324}
325EXPORT_SYMBOL(filemap_fdatawait);
326
327int filemap_write_and_wait(struct address_space *mapping)
328{
329	int retval = 0;
330
331	if (mapping->nrpages) {
332		retval = filemap_fdatawrite(mapping);
333		if (retval == 0)
334			retval = filemap_fdatawait(mapping);
335	}
336	return retval;
337}
338
339int filemap_write_and_wait_range(struct address_space *mapping,
340				 loff_t lstart, loff_t lend)
341{
342	int retval = 0;
343
344	if (mapping->nrpages) {
345		retval = __filemap_fdatawrite_range(mapping, lstart, lend,
346						    WB_SYNC_ALL);
347		if (retval == 0)
348			retval = wait_on_page_writeback_range(mapping,
349						    lstart >> PAGE_CACHE_SHIFT,
350						    lend >> PAGE_CACHE_SHIFT);
351	}
352	return retval;
353}
354
355/*
356 * This function is used to add newly allocated pagecache pages:
357 * the page is new, so we can just run SetPageLocked() against it.
358 * The other page state flags were set by rmqueue().
359 *
360 * This function does not add the page to the LRU.  The caller must do that.
361 */
362int add_to_page_cache(struct page *page, struct address_space *mapping,
363		pgoff_t offset, int gfp_mask)
364{
365	int error = radix_tree_preload(gfp_mask & ~__GFP_HIGHMEM);
366
367	if (error == 0) {
368		write_lock_irq(&mapping->tree_lock);
369		error = radix_tree_insert(&mapping->page_tree, offset, page);
370		if (!error) {
371			page_cache_get(page);
372			SetPageLocked(page);
373			page->mapping = mapping;
374			page->index = offset;
375			mapping->nrpages++;
376			pagecache_acct(1);
377		}
378		write_unlock_irq(&mapping->tree_lock);
379		radix_tree_preload_end();
380	}
381	return error;
382}
383
384EXPORT_SYMBOL(add_to_page_cache);
385
386int add_to_page_cache_lru(struct page *page, struct address_space *mapping,
387				pgoff_t offset, int gfp_mask)
388{
389	int ret = add_to_page_cache(page, mapping, offset, gfp_mask);
390	if (ret == 0)
391		lru_cache_add(page);
392	return ret;
393}
394
395/*
396 * In order to wait for pages to become available there must be
397 * waitqueues associated with pages. By using a hash table of
398 * waitqueues where the bucket discipline is to maintain all
399 * waiters on the same queue and wake all when any of the pages
400 * become available, and for the woken contexts to check to be
401 * sure the appropriate page became available, this saves space
402 * at a cost of "thundering herd" phenomena during rare hash
403 * collisions.
404 */
405static wait_queue_head_t *page_waitqueue(struct page *page)
406{
407	const struct zone *zone = page_zone(page);
408
409	return &zone->wait_table[hash_ptr(page, zone->wait_table_bits)];
410}
411
412static inline void wake_up_page(struct page *page, int bit)
413{
414	__wake_up_bit(page_waitqueue(page), &page->flags, bit);
415}
416
417void fastcall wait_on_page_bit(struct page *page, int bit_nr)
418{
419	DEFINE_WAIT_BIT(wait, &page->flags, bit_nr);
420
421	if (test_bit(bit_nr, &page->flags))
422		__wait_on_bit(page_waitqueue(page), &wait, sync_page,
423							TASK_UNINTERRUPTIBLE);
424}
425EXPORT_SYMBOL(wait_on_page_bit);
426
427/**
428 * unlock_page() - unlock a locked page
429 *
430 * @page: the page
431 *
432 * Unlocks the page and wakes up sleepers in ___wait_on_page_locked().
433 * Also wakes sleepers in wait_on_page_writeback() because the wakeup
434 * mechananism between PageLocked pages and PageWriteback pages is shared.
435 * But that's OK - sleepers in wait_on_page_writeback() just go back to sleep.
436 *
437 * The first mb is necessary to safely close the critical section opened by the
438 * TestSetPageLocked(), the second mb is necessary to enforce ordering between
439 * the clear_bit and the read of the waitqueue (to avoid SMP races with a
440 * parallel wait_on_page_locked()).
441 */
442void fastcall unlock_page(struct page *page)
443{
444	smp_mb__before_clear_bit();
445	if (!TestClearPageLocked(page))
446		BUG();
447	smp_mb__after_clear_bit();
448	wake_up_page(page, PG_locked);
449}
450EXPORT_SYMBOL(unlock_page);
451
452/*
453 * End writeback against a page.
454 */
455void end_page_writeback(struct page *page)
456{
457	if (!TestClearPageReclaim(page) || rotate_reclaimable_page(page)) {
458		if (!test_clear_page_writeback(page))
459			BUG();
460	}
461	smp_mb__after_clear_bit();
462	wake_up_page(page, PG_writeback);
463}
464EXPORT_SYMBOL(end_page_writeback);
465
466/*
467 * Get a lock on the page, assuming we need to sleep to get it.
468 *
469 * Ugly: running sync_page() in state TASK_UNINTERRUPTIBLE is scary.  If some
470 * random driver's requestfn sets TASK_RUNNING, we could busywait.  However
471 * chances are that on the second loop, the block layer's plug list is empty,
472 * so sync_page() will then return in state TASK_UNINTERRUPTIBLE.
473 */
474void fastcall __lock_page(struct page *page)
475{
476	DEFINE_WAIT_BIT(wait, &page->flags, PG_locked);
477
478	__wait_on_bit_lock(page_waitqueue(page), &wait, sync_page,
479							TASK_UNINTERRUPTIBLE);
480}
481EXPORT_SYMBOL(__lock_page);
482
483/*
484 * a rather lightweight function, finding and getting a reference to a
485 * hashed page atomically.
486 */
487struct page * find_get_page(struct address_space *mapping, unsigned long offset)
488{
489	struct page *page;
490
491	read_lock_irq(&mapping->tree_lock);
492	page = radix_tree_lookup(&mapping->page_tree, offset);
493	if (page)
494		page_cache_get(page);
495	read_unlock_irq(&mapping->tree_lock);
496	return page;
497}
498
499EXPORT_SYMBOL(find_get_page);
500
501/*
502 * Same as above, but trylock it instead of incrementing the count.
503 */
504struct page *find_trylock_page(struct address_space *mapping, unsigned long offset)
505{
506	struct page *page;
507
508	read_lock_irq(&mapping->tree_lock);
509	page = radix_tree_lookup(&mapping->page_tree, offset);
510	if (page && TestSetPageLocked(page))
511		page = NULL;
512	read_unlock_irq(&mapping->tree_lock);
513	return page;
514}
515
516EXPORT_SYMBOL(find_trylock_page);
517
518/**
519 * find_lock_page - locate, pin and lock a pagecache page
520 *
521 * @mapping - the address_space to search
522 * @offset - the page index
523 *
524 * Locates the desired pagecache page, locks it, increments its reference
525 * count and returns its address.
526 *
527 * Returns zero if the page was not present. find_lock_page() may sleep.
528 */
529struct page *find_lock_page(struct address_space *mapping,
530				unsigned long offset)
531{
532	struct page *page;
533
534	read_lock_irq(&mapping->tree_lock);
535repeat:
536	page = radix_tree_lookup(&mapping->page_tree, offset);
537	if (page) {
538		page_cache_get(page);
539		if (TestSetPageLocked(page)) {
540			read_unlock_irq(&mapping->tree_lock);
541			lock_page(page);
542			read_lock_irq(&mapping->tree_lock);
543
544			/* Has the page been truncated while we slept? */
545			if (page->mapping != mapping || page->index != offset) {
546				unlock_page(page);
547				page_cache_release(page);
548				goto repeat;
549			}
550		}
551	}
552	read_unlock_irq(&mapping->tree_lock);
553	return page;
554}
555
556EXPORT_SYMBOL(find_lock_page);
557
558/**
559 * find_or_create_page - locate or add a pagecache page
560 *
561 * @mapping - the page's address_space
562 * @index - the page's index into the mapping
563 * @gfp_mask - page allocation mode
564 *
565 * Locates a page in the pagecache.  If the page is not present, a new page
566 * is allocated using @gfp_mask and is added to the pagecache and to the VM's
567 * LRU list.  The returned page is locked and has its reference count
568 * incremented.
569 *
570 * find_or_create_page() may sleep, even if @gfp_flags specifies an atomic
571 * allocation!
572 *
573 * find_or_create_page() returns the desired page's address, or zero on
574 * memory exhaustion.
575 */
576struct page *find_or_create_page(struct address_space *mapping,
577		unsigned long index, unsigned int gfp_mask)
578{
579	struct page *page, *cached_page = NULL;
580	int err;
581repeat:
582	page = find_lock_page(mapping, index);
583	if (!page) {
584		if (!cached_page) {
585			cached_page = alloc_page(gfp_mask);
586			if (!cached_page)
587				return NULL;
588		}
589		err = add_to_page_cache_lru(cached_page, mapping,
590					index, gfp_mask);
591		if (!err) {
592			page = cached_page;
593			cached_page = NULL;
594		} else if (err == -EEXIST)
595			goto repeat;
596	}
597	if (cached_page)
598		page_cache_release(cached_page);
599	return page;
600}
601
602EXPORT_SYMBOL(find_or_create_page);
603
604/**
605 * find_get_pages - gang pagecache lookup
606 * @mapping:	The address_space to search
607 * @start:	The starting page index
608 * @nr_pages:	The maximum number of pages
609 * @pages:	Where the resulting pages are placed
610 *
611 * find_get_pages() will search for and return a group of up to
612 * @nr_pages pages in the mapping.  The pages are placed at @pages.
613 * find_get_pages() takes a reference against the returned pages.
614 *
615 * The search returns a group of mapping-contiguous pages with ascending
616 * indexes.  There may be holes in the indices due to not-present pages.
617 *
618 * find_get_pages() returns the number of pages which were found.
619 */
620unsigned find_get_pages(struct address_space *mapping, pgoff_t start,
621			    unsigned int nr_pages, struct page **pages)
622{
623	unsigned int i;
624	unsigned int ret;
625
626	read_lock_irq(&mapping->tree_lock);
627	ret = radix_tree_gang_lookup(&mapping->page_tree,
628				(void **)pages, start, nr_pages);
629	for (i = 0; i < ret; i++)
630		page_cache_get(pages[i]);
631	read_unlock_irq(&mapping->tree_lock);
632	return ret;
633}
634
635/*
636 * Like find_get_pages, except we only return pages which are tagged with
637 * `tag'.   We update *index to index the next page for the traversal.
638 */
639unsigned find_get_pages_tag(struct address_space *mapping, pgoff_t *index,
640			int tag, unsigned int nr_pages, struct page **pages)
641{
642	unsigned int i;
643	unsigned int ret;
644
645	read_lock_irq(&mapping->tree_lock);
646	ret = radix_tree_gang_lookup_tag(&mapping->page_tree,
647				(void **)pages, *index, nr_pages, tag);
648	for (i = 0; i < ret; i++)
649		page_cache_get(pages[i]);
650	if (ret)
651		*index = pages[ret - 1]->index + 1;
652	read_unlock_irq(&mapping->tree_lock);
653	return ret;
654}
655
656/*
657 * Same as grab_cache_page, but do not wait if the page is unavailable.
658 * This is intended for speculative data generators, where the data can
659 * be regenerated if the page couldn't be grabbed.  This routine should
660 * be safe to call while holding the lock for another page.
661 *
662 * Clear __GFP_FS when allocating the page to avoid recursion into the fs
663 * and deadlock against the caller's locked page.
664 */
665struct page *
666grab_cache_page_nowait(struct address_space *mapping, unsigned long index)
667{
668	struct page *page = find_get_page(mapping, index);
669	unsigned int gfp_mask;
670
671	if (page) {
672		if (!TestSetPageLocked(page))
673			return page;
674		page_cache_release(page);
675		return NULL;
676	}
677	gfp_mask = mapping_gfp_mask(mapping) & ~__GFP_FS;
678	page = alloc_pages(gfp_mask, 0);
679	if (page && add_to_page_cache_lru(page, mapping, index, gfp_mask)) {
680		page_cache_release(page);
681		page = NULL;
682	}
683	return page;
684}
685
686EXPORT_SYMBOL(grab_cache_page_nowait);
687
688/*
689 * This is a generic file read routine, and uses the
690 * mapping->a_ops->readpage() function for the actual low-level
691 * stuff.
692 *
693 * This is really ugly. But the goto's actually try to clarify some
694 * of the logic when it comes to error handling etc.
695 *
696 * Note the struct file* is only passed for the use of readpage.  It may be
697 * NULL.
698 */
699void do_generic_mapping_read(struct address_space *mapping,
700			     struct file_ra_state *_ra,
701			     struct file *filp,
702			     loff_t *ppos,
703			     read_descriptor_t *desc,
704			     read_actor_t actor)
705{
706	struct inode *inode = mapping->host;
707	unsigned long index;
708	unsigned long end_index;
709	unsigned long offset;
710	unsigned long last_index;
711	unsigned long next_index;
712	unsigned long prev_index;
713	loff_t isize;
714	struct page *cached_page;
715	int error;
716	struct file_ra_state ra = *_ra;
717
718	cached_page = NULL;
719	index = *ppos >> PAGE_CACHE_SHIFT;
720	next_index = index;
721	prev_index = ra.prev_page;
722	last_index = (*ppos + desc->count + PAGE_CACHE_SIZE-1) >> PAGE_CACHE_SHIFT;
723	offset = *ppos & ~PAGE_CACHE_MASK;
724
725	isize = i_size_read(inode);
726	if (!isize)
727		goto out;
728
729	end_index = (isize - 1) >> PAGE_CACHE_SHIFT;
730	for (;;) {
731		struct page *page;
732		unsigned long nr, ret;
733
734		/* nr is the maximum number of bytes to copy from this page */
735		nr = PAGE_CACHE_SIZE;
736		if (index >= end_index) {
737			if (index > end_index)
738				goto out;
739			nr = ((isize - 1) & ~PAGE_CACHE_MASK) + 1;
740			if (nr <= offset) {
741				goto out;
742			}
743		}
744		nr = nr - offset;
745
746		cond_resched();
747		if (index == next_index)
748			next_index = page_cache_readahead(mapping, &ra, filp,
749					index, last_index - index);
750
751find_page:
752		page = find_get_page(mapping, index);
753		if (unlikely(page == NULL)) {
754			handle_ra_miss(mapping, &ra, index);
755			goto no_cached_page;
756		}
757		if (!PageUptodate(page))
758			goto page_not_up_to_date;
759page_ok:
760
761		/* If users can be writing to this page using arbitrary
762		 * virtual addresses, take care about potential aliasing
763		 * before reading the page on the kernel side.
764		 */
765		if (mapping_writably_mapped(mapping))
766			flush_dcache_page(page);
767
768		/*
769		 * When (part of) the same page is read multiple times
770		 * in succession, only mark it as accessed the first time.
771		 */
772		if (prev_index != index)
773			mark_page_accessed(page);
774		prev_index = index;
775
776		/*
777		 * Ok, we have the page, and it's up-to-date, so
778		 * now we can copy it to user space...
779		 *
780		 * The actor routine returns how many bytes were actually used..
781		 * NOTE! This may not be the same as how much of a user buffer
782		 * we filled up (we may be padding etc), so we can only update
783		 * "pos" here (the actor routine has to update the user buffer
784		 * pointers and the remaining count).
785		 */
786		ret = actor(desc, page, offset, nr);
787		offset += ret;
788		index += offset >> PAGE_CACHE_SHIFT;
789		offset &= ~PAGE_CACHE_MASK;
790
791		page_cache_release(page);
792		if (ret == nr && desc->count)
793			continue;
794		goto out;
795
796page_not_up_to_date:
797		/* Get exclusive access to the page ... */
798		lock_page(page);
799
800		/* Did it get unhashed before we got the lock? */
801		if (!page->mapping) {
802			unlock_page(page);
803			page_cache_release(page);
804			continue;
805		}
806
807		/* Did somebody else fill it already? */
808		if (PageUptodate(page)) {
809			unlock_page(page);
810			goto page_ok;
811		}
812
813readpage:
814		/* Start the actual read. The read will unlock the page. */
815		error = mapping->a_ops->readpage(filp, page);
816
817		if (unlikely(error))
818			goto readpage_error;
819
820		if (!PageUptodate(page)) {
821			lock_page(page);
822			if (!PageUptodate(page)) {
823				if (page->mapping == NULL) {
824					/*
825					 * invalidate_inode_pages got it
826					 */
827					unlock_page(page);
828					page_cache_release(page);
829					goto find_page;
830				}
831				unlock_page(page);
832				error = -EIO;
833				goto readpage_error;
834			}
835			unlock_page(page);
836		}
837
838		/*
839		 * i_size must be checked after we have done ->readpage.
840		 *
841		 * Checking i_size after the readpage allows us to calculate
842		 * the correct value for "nr", which means the zero-filled
843		 * part of the page is not copied back to userspace (unless
844		 * another truncate extends the file - this is desired though).
845		 */
846		isize = i_size_read(inode);
847		end_index = (isize - 1) >> PAGE_CACHE_SHIFT;
848		if (unlikely(!isize || index > end_index)) {
849			page_cache_release(page);
850			goto out;
851		}
852
853		/* nr is the maximum number of bytes to copy from this page */
854		nr = PAGE_CACHE_SIZE;
855		if (index == end_index) {
856			nr = ((isize - 1) & ~PAGE_CACHE_MASK) + 1;
857			if (nr <= offset) {
858				page_cache_release(page);
859				goto out;
860			}
861		}
862		nr = nr - offset;
863		goto page_ok;
864
865readpage_error:
866		/* UHHUH! A synchronous read error occurred. Report it */
867		desc->error = error;
868		page_cache_release(page);
869		goto out;
870
871no_cached_page:
872		/*
873		 * Ok, it wasn't cached, so we need to create a new
874		 * page..
875		 */
876		if (!cached_page) {
877			cached_page = page_cache_alloc_cold(mapping);
878			if (!cached_page) {
879				desc->error = -ENOMEM;
880				goto out;
881			}
882		}
883		error = add_to_page_cache_lru(cached_page, mapping,
884						index, GFP_KERNEL);
885		if (error) {
886			if (error == -EEXIST)
887				goto find_page;
888			desc->error = error;
889			goto out;
890		}
891		page = cached_page;
892		cached_page = NULL;
893		goto readpage;
894	}
895
896out:
897	*_ra = ra;
898
899	*ppos = ((loff_t) index << PAGE_CACHE_SHIFT) + offset;
900	if (cached_page)
901		page_cache_release(cached_page);
902	if (filp)
903		file_accessed(filp);
904}
905
906EXPORT_SYMBOL(do_generic_mapping_read);
907
908int file_read_actor(read_descriptor_t *desc, struct page *page,
909			unsigned long offset, unsigned long size)
910{
911	char *kaddr;
912	unsigned long left, count = desc->count;
913
914	if (size > count)
915		size = count;
916
917	/*
918	 * Faults on the destination of a read are common, so do it before
919	 * taking the kmap.
920	 */
921	if (!fault_in_pages_writeable(desc->arg.buf, size)) {
922		kaddr = kmap_atomic(page, KM_USER0);
923		left = __copy_to_user_inatomic(desc->arg.buf,
924						kaddr + offset, size);
925		kunmap_atomic(kaddr, KM_USER0);
926		if (left == 0)
927			goto success;
928	}
929
930	/* Do it the slow way */
931	kaddr = kmap(page);
932	left = __copy_to_user(desc->arg.buf, kaddr + offset, size);
933	kunmap(page);
934
935	if (left) {
936		size -= left;
937		desc->error = -EFAULT;
938	}
939success:
940	desc->count = count - size;
941	desc->written += size;
942	desc->arg.buf += size;
943	return size;
944}
945
946/*
947 * This is the "read()" routine for all filesystems
948 * that can use the page cache directly.
949 */
950ssize_t
951__generic_file_aio_read(struct kiocb *iocb, const struct iovec *iov,
952		unsigned long nr_segs, loff_t *ppos)
953{
954	struct file *filp = iocb->ki_filp;
955	ssize_t retval;
956	unsigned long seg;
957	size_t count;
958
959	count = 0;
960	for (seg = 0; seg < nr_segs; seg++) {
961		const struct iovec *iv = &iov[seg];
962
963		/*
964		 * If any segment has a negative length, or the cumulative
965		 * length ever wraps negative then return -EINVAL.
966		 */
967		count += iv->iov_len;
968		if (unlikely((ssize_t)(count|iv->iov_len) < 0))
969			return -EINVAL;
970		if (access_ok(VERIFY_WRITE, iv->iov_base, iv->iov_len))
971			continue;
972		if (seg == 0)
973			return -EFAULT;
974		nr_segs = seg;
975		count -= iv->iov_len;	/* This segment is no good */
976		break;
977	}
978
979	/* coalesce the iovecs and go direct-to-BIO for O_DIRECT */
980	if (filp->f_flags & O_DIRECT) {
981		loff_t pos = *ppos, size;
982		struct address_space *mapping;
983		struct inode *inode;
984
985		mapping = filp->f_mapping;
986		inode = mapping->host;
987		retval = 0;
988		if (!count)
989			goto out; /* skip atime */
990		size = i_size_read(inode);
991		if (pos < size) {
992			retval = generic_file_direct_IO(READ, iocb,
993						iov, pos, nr_segs);
994			if (retval >= 0 && !is_sync_kiocb(iocb))
995				retval = -EIOCBQUEUED;
996			if (retval > 0)
997				*ppos = pos + retval;
998		}
999		file_accessed(filp);
1000		goto out;
1001	}
1002
1003	retval = 0;
1004	if (count) {
1005		for (seg = 0; seg < nr_segs; seg++) {
1006			read_descriptor_t desc;
1007
1008			desc.written = 0;
1009			desc.arg.buf = iov[seg].iov_base;
1010			desc.count = iov[seg].iov_len;
1011			if (desc.count == 0)
1012				continue;
1013			desc.error = 0;
1014			do_generic_file_read(filp,ppos,&desc,file_read_actor);
1015			retval += desc.written;
1016			if (!retval) {
1017				retval = desc.error;
1018				break;
1019			}
1020		}
1021	}
1022out:
1023	return retval;
1024}
1025
1026EXPORT_SYMBOL(__generic_file_aio_read);
1027
1028ssize_t
1029generic_file_aio_read(struct kiocb *iocb, char __user *buf, size_t count, loff_t pos)
1030{
1031	struct iovec local_iov = { .iov_base = buf, .iov_len = count };
1032
1033	BUG_ON(iocb->ki_pos != pos);
1034	return __generic_file_aio_read(iocb, &local_iov, 1, &iocb->ki_pos);
1035}
1036
1037EXPORT_SYMBOL(generic_file_aio_read);
1038
1039ssize_t
1040generic_file_read(struct file *filp, char __user *buf, size_t count, loff_t *ppos)
1041{
1042	struct iovec local_iov = { .iov_base = buf, .iov_len = count };
1043	struct kiocb kiocb;
1044	ssize_t ret;
1045
1046	init_sync_kiocb(&kiocb, filp);
1047	ret = __generic_file_aio_read(&kiocb, &local_iov, 1, ppos);
1048	if (-EIOCBQUEUED == ret)
1049		ret = wait_on_sync_kiocb(&kiocb);
1050	return ret;
1051}
1052
1053EXPORT_SYMBOL(generic_file_read);
1054
1055int file_send_actor(read_descriptor_t * desc, struct page *page, unsigned long offset, unsigned long size)
1056{
1057	ssize_t written;
1058	unsigned long count = desc->count;
1059	struct file *file = desc->arg.data;
1060
1061	if (size > count)
1062		size = count;
1063
1064	written = file->f_op->sendpage(file, page, offset,
1065				       size, &file->f_pos, size<count);
1066	if (written < 0) {
1067		desc->error = written;
1068		written = 0;
1069	}
1070	desc->count = count - written;
1071	desc->written += written;
1072	return written;
1073}
1074
1075ssize_t generic_file_sendfile(struct file *in_file, loff_t *ppos,
1076			 size_t count, read_actor_t actor, void *target)
1077{
1078	read_descriptor_t desc;
1079
1080	if (!count)
1081		return 0;
1082
1083	desc.written = 0;
1084	desc.count = count;
1085	desc.arg.data = target;
1086	desc.error = 0;
1087
1088	do_generic_file_read(in_file, ppos, &desc, actor);
1089	if (desc.written)
1090		return desc.written;
1091	return desc.error;
1092}
1093
1094EXPORT_SYMBOL(generic_file_sendfile);
1095
1096static ssize_t
1097do_readahead(struct address_space *mapping, struct file *filp,
1098	     unsigned long index, unsigned long nr)
1099{
1100	if (!mapping || !mapping->a_ops || !mapping->a_ops->readpage)
1101		return -EINVAL;
1102
1103	force_page_cache_readahead(mapping, filp, index,
1104					max_sane_readahead(nr));
1105	return 0;
1106}
1107
1108asmlinkage ssize_t sys_readahead(int fd, loff_t offset, size_t count)
1109{
1110	ssize_t ret;
1111	struct file *file;
1112
1113	ret = -EBADF;
1114	file = fget(fd);
1115	if (file) {
1116		if (file->f_mode & FMODE_READ) {
1117			struct address_space *mapping = file->f_mapping;
1118			unsigned long start = offset >> PAGE_CACHE_SHIFT;
1119			unsigned long end = (offset + count - 1) >> PAGE_CACHE_SHIFT;
1120			unsigned long len = end - start + 1;
1121			ret = do_readahead(mapping, file, start, len);
1122		}
1123		fput(file);
1124	}
1125	return ret;
1126}
1127
1128#ifdef CONFIG_MMU
1129/*
1130 * This adds the requested page to the page cache if it isn't already there,
1131 * and schedules an I/O to read in its contents from disk.
1132 */
1133static int FASTCALL(page_cache_read(struct file * file, unsigned long offset));
1134static int fastcall page_cache_read(struct file * file, unsigned long offset)
1135{
1136	struct address_space *mapping = file->f_mapping;
1137	struct page *page;
1138	int error;
1139
1140	page = page_cache_alloc_cold(mapping);
1141	if (!page)
1142		return -ENOMEM;
1143
1144	error = add_to_page_cache_lru(page, mapping, offset, GFP_KERNEL);
1145	if (!error) {
1146		error = mapping->a_ops->readpage(file, page);
1147		page_cache_release(page);
1148		return error;
1149	}
1150
1151	/*
1152	 * We arrive here in the unlikely event that someone
1153	 * raced with us and added our page to the cache first
1154	 * or we are out of memory for radix-tree nodes.
1155	 */
1156	page_cache_release(page);
1157	return error == -EEXIST ? 0 : error;
1158}
1159
1160#define MMAP_LOTSAMISS  (100)
1161
1162/*
1163 * filemap_nopage() is invoked via the vma operations vector for a
1164 * mapped memory region to read in file data during a page fault.
1165 *
1166 * The goto's are kind of ugly, but this streamlines the normal case of having
1167 * it in the page cache, and handles the special cases reasonably without
1168 * having a lot of duplicated code.
1169 */
1170struct page *filemap_nopage(struct vm_area_struct *area,
1171				unsigned long address, int *type)
1172{
1173	int error;
1174	struct file *file = area->vm_file;
1175	struct address_space *mapping = file->f_mapping;
1176	struct file_ra_state *ra = &file->f_ra;
1177	struct inode *inode = mapping->host;
1178	struct page *page;
1179	unsigned long size, pgoff;
1180	int did_readaround = 0, majmin = VM_FAULT_MINOR;
1181
1182	pgoff = ((address-area->vm_start) >> PAGE_CACHE_SHIFT) + area->vm_pgoff;
1183
1184retry_all:
1185	size = (i_size_read(inode) + PAGE_CACHE_SIZE - 1) >> PAGE_CACHE_SHIFT;
1186	if (pgoff >= size)
1187		goto outside_data_content;
1188
1189	/* If we don't want any read-ahead, don't bother */
1190	if (VM_RandomReadHint(area))
1191		goto no_cached_page;
1192
1193	/*
1194	 * The readahead code wants to be told about each and every page
1195	 * so it can build and shrink its windows appropriately
1196	 *
1197	 * For sequential accesses, we use the generic readahead logic.
1198	 */
1199	if (VM_SequentialReadHint(area))
1200		page_cache_readahead(mapping, ra, file, pgoff, 1);
1201
1202	/*
1203	 * Do we have something in the page cache already?
1204	 */
1205retry_find:
1206	page = find_get_page(mapping, pgoff);
1207	if (!page) {
1208		unsigned long ra_pages;
1209
1210		if (VM_SequentialReadHint(area)) {
1211			handle_ra_miss(mapping, ra, pgoff);
1212			goto no_cached_page;
1213		}
1214		ra->mmap_miss++;
1215
1216		/*
1217		 * Do we miss much more than hit in this file? If so,
1218		 * stop bothering with read-ahead. It will only hurt.
1219		 */
1220		if (ra->mmap_miss > ra->mmap_hit + MMAP_LOTSAMISS)
1221			goto no_cached_page;
1222
1223		/*
1224		 * To keep the pgmajfault counter straight, we need to
1225		 * check did_readaround, as this is an inner loop.
1226		 */
1227		if (!did_readaround) {
1228			majmin = VM_FAULT_MAJOR;
1229			inc_page_state(pgmajfault);
1230		}
1231		did_readaround = 1;
1232		ra_pages = max_sane_readahead(file->f_ra.ra_pages);
1233		if (ra_pages) {
1234			pgoff_t start = 0;
1235
1236			if (pgoff > ra_pages / 2)
1237				start = pgoff - ra_pages / 2;
1238			do_page_cache_readahead(mapping, file, start, ra_pages);
1239		}
1240		page = find_get_page(mapping, pgoff);
1241		if (!page)
1242			goto no_cached_page;
1243	}
1244
1245	if (!did_readaround)
1246		ra->mmap_hit++;
1247
1248	/*
1249	 * Ok, found a page in the page cache, now we need to check
1250	 * that it's up-to-date.
1251	 */
1252	if (!PageUptodate(page))
1253		goto page_not_uptodate;
1254
1255success:
1256	/*
1257	 * Found the page and have a reference on it.
1258	 */
1259	mark_page_accessed(page);
1260	if (type)
1261		*type = majmin;
1262	return page;
1263
1264outside_data_content:
1265	/*
1266	 * An external ptracer can access pages that normally aren't
1267	 * accessible..
1268	 */
1269	if (area->vm_mm == current->mm)
1270		return NULL;
1271	/* Fall through to the non-read-ahead case */
1272no_cached_page:
1273	/*
1274	 * We're only likely to ever get here if MADV_RANDOM is in
1275	 * effect.
1276	 */
1277	error = page_cache_read(file, pgoff);
1278	grab_swap_token();
1279
1280	/*
1281	 * The page we want has now been added to the page cache.
1282	 * In the unlikely event that someone removed it in the
1283	 * meantime, we'll just come back here and read it again.
1284	 */
1285	if (error >= 0)
1286		goto retry_find;
1287
1288	/*
1289	 * An error return from page_cache_read can result if the
1290	 * system is low on memory, or a problem occurs while trying
1291	 * to schedule I/O.
1292	 */
1293	if (error == -ENOMEM)
1294		return NOPAGE_OOM;
1295	return NULL;
1296
1297page_not_uptodate:
1298	if (!did_readaround) {
1299		majmin = VM_FAULT_MAJOR;
1300		inc_page_state(pgmajfault);
1301	}
1302	lock_page(page);
1303
1304	/* Did it get unhashed while we waited for it? */
1305	if (!page->mapping) {
1306		unlock_page(page);
1307		page_cache_release(page);
1308		goto retry_all;
1309	}
1310
1311	/* Did somebody else get it up-to-date? */
1312	if (PageUptodate(page)) {
1313		unlock_page(page);
1314		goto success;
1315	}
1316
1317	if (!mapping->a_ops->readpage(file, page)) {
1318		wait_on_page_locked(page);
1319		if (PageUptodate(page))
1320			goto success;
1321	}
1322
1323	/*
1324	 * Umm, take care of errors if the page isn't up-to-date.
1325	 * Try to re-read it _once_. We do this synchronously,
1326	 * because there really aren't any performance issues here
1327	 * and we need to check for errors.
1328	 */
1329	lock_page(page);
1330
1331	/* Somebody truncated the page on us? */
1332	if (!page->mapping) {
1333		unlock_page(page);
1334		page_cache_release(page);
1335		goto retry_all;
1336	}
1337
1338	/* Somebody else successfully read it in? */
1339	if (PageUptodate(page)) {
1340		unlock_page(page);
1341		goto success;
1342	}
1343	ClearPageError(page);
1344	if (!mapping->a_ops->readpage(file, page)) {
1345		wait_on_page_locked(page);
1346		if (PageUptodate(page))
1347			goto success;
1348	}
1349
1350	/*
1351	 * Things didn't work out. Return zero to tell the
1352	 * mm layer so, possibly freeing the page cache page first.
1353	 */
1354	page_cache_release(page);
1355	return NULL;
1356}
1357
1358EXPORT_SYMBOL(filemap_nopage);
1359
1360static struct page * filemap_getpage(struct file *file, unsigned long pgoff,
1361					int nonblock)
1362{
1363	struct address_space *mapping = file->f_mapping;
1364	struct page *page;
1365	int error;
1366
1367	/*
1368	 * Do we have something in the page cache already?
1369	 */
1370retry_find:
1371	page = find_get_page(mapping, pgoff);
1372	if (!page) {
1373		if (nonblock)
1374			return NULL;
1375		goto no_cached_page;
1376	}
1377
1378	/*
1379	 * Ok, found a page in the page cache, now we need to check
1380	 * that it's up-to-date.
1381	 */
1382	if (!PageUptodate(page)) {
1383		if (nonblock) {
1384			page_cache_release(page);
1385			return NULL;
1386		}
1387		goto page_not_uptodate;
1388	}
1389
1390success:
1391	/*
1392	 * Found the page and have a reference on it.
1393	 */
1394	mark_page_accessed(page);
1395	return page;
1396
1397no_cached_page:
1398	error = page_cache_read(file, pgoff);
1399
1400	/*
1401	 * The page we want has now been added to the page cache.
1402	 * In the unlikely event that someone removed it in the
1403	 * meantime, we'll just come back here and read it again.
1404	 */
1405	if (error >= 0)
1406		goto retry_find;
1407
1408	/*
1409	 * An error return from page_cache_read can result if the
1410	 * system is low on memory, or a problem occurs while trying
1411	 * to schedule I/O.
1412	 */
1413	return NULL;
1414
1415page_not_uptodate:
1416	lock_page(page);
1417
1418	/* Did it get unhashed while we waited for it? */
1419	if (!page->mapping) {
1420		unlock_page(page);
1421		goto err;
1422	}
1423
1424	/* Did somebody else get it up-to-date? */
1425	if (PageUptodate(page)) {
1426		unlock_page(page);
1427		goto success;
1428	}
1429
1430	if (!mapping->a_ops->readpage(file, page)) {
1431		wait_on_page_locked(page);
1432		if (PageUptodate(page))
1433			goto success;
1434	}
1435
1436	/*
1437	 * Umm, take care of errors if the page isn't up-to-date.
1438	 * Try to re-read it _once_. We do this synchronously,
1439	 * because there really aren't any performance issues here
1440	 * and we need to check for errors.
1441	 */
1442	lock_page(page);
1443
1444	/* Somebody truncated the page on us? */
1445	if (!page->mapping) {
1446		unlock_page(page);
1447		goto err;
1448	}
1449	/* Somebody else successfully read it in? */
1450	if (PageUptodate(page)) {
1451		unlock_page(page);
1452		goto success;
1453	}
1454
1455	ClearPageError(page);
1456	if (!mapping->a_ops->readpage(file, page)) {
1457		wait_on_page_locked(page);
1458		if (PageUptodate(page))
1459			goto success;
1460	}
1461
1462	/*
1463	 * Things didn't work out. Return zero to tell the
1464	 * mm layer so, possibly freeing the page cache page first.
1465	 */
1466err:
1467	page_cache_release(page);
1468
1469	return NULL;
1470}
1471
1472int filemap_populate(struct vm_area_struct *vma, unsigned long addr,
1473		unsigned long len, pgprot_t prot, unsigned long pgoff,
1474		int nonblock)
1475{
1476	struct file *file = vma->vm_file;
1477	struct address_space *mapping = file->f_mapping;
1478	struct inode *inode = mapping->host;
1479	unsigned long size;
1480	struct mm_struct *mm = vma->vm_mm;
1481	struct page *page;
1482	int err;
1483
1484	if (!nonblock)
1485		force_page_cache_readahead(mapping, vma->vm_file,
1486					pgoff, len >> PAGE_CACHE_SHIFT);
1487
1488repeat:
1489	size = (i_size_read(inode) + PAGE_CACHE_SIZE - 1) >> PAGE_CACHE_SHIFT;
1490	if (pgoff + (len >> PAGE_CACHE_SHIFT) > size)
1491		return -EINVAL;
1492
1493	page = filemap_getpage(file, pgoff, nonblock);
1494	if (!page && !nonblock)
1495		return -ENOMEM;
1496	if (page) {
1497		err = install_page(mm, vma, addr, page, prot);
1498		if (err) {
1499			page_cache_release(page);
1500			return err;
1501		}
1502	} else {
1503		err = install_file_pte(mm, vma, addr, pgoff, prot);
1504		if (err)
1505			return err;
1506	}
1507
1508	len -= PAGE_SIZE;
1509	addr += PAGE_SIZE;
1510	pgoff++;
1511	if (len)
1512		goto repeat;
1513
1514	return 0;
1515}
1516
1517struct vm_operations_struct generic_file_vm_ops = {
1518	.nopage		= filemap_nopage,
1519	.populate	= filemap_populate,
1520};
1521
1522/* This is used for a general mmap of a disk file */
1523
1524int generic_file_mmap(struct file * file, struct vm_area_struct * vma)
1525{
1526	struct address_space *mapping = file->f_mapping;
1527
1528	if (!mapping->a_ops->readpage)
1529		return -ENOEXEC;
1530	file_accessed(file);
1531	vma->vm_ops = &generic_file_vm_ops;
1532	return 0;
1533}
1534EXPORT_SYMBOL(filemap_populate);
1535
1536/*
1537 * This is for filesystems which do not implement ->writepage.
1538 */
1539int generic_file_readonly_mmap(struct file *file, struct vm_area_struct *vma)
1540{
1541	if ((vma->vm_flags & VM_SHARED) && (vma->vm_flags & VM_MAYWRITE))
1542		return -EINVAL;
1543	return generic_file_mmap(file, vma);
1544}
1545#else
1546int generic_file_mmap(struct file * file, struct vm_area_struct * vma)
1547{
1548	return -ENOSYS;
1549}
1550int generic_file_readonly_mmap(struct file * file, struct vm_area_struct * vma)
1551{
1552	return -ENOSYS;
1553}
1554#endif /* CONFIG_MMU */
1555
1556EXPORT_SYMBOL(generic_file_mmap);
1557EXPORT_SYMBOL(generic_file_readonly_mmap);
1558
1559static inline struct page *__read_cache_page(struct address_space *mapping,
1560				unsigned long index,
1561				int (*filler)(void *,struct page*),
1562				void *data)
1563{
1564	struct page *page, *cached_page = NULL;
1565	int err;
1566repeat:
1567	page = find_get_page(mapping, index);
1568	if (!page) {
1569		if (!cached_page) {
1570			cached_page = page_cache_alloc_cold(mapping);
1571			if (!cached_page)
1572				return ERR_PTR(-ENOMEM);
1573		}
1574		err = add_to_page_cache_lru(cached_page, mapping,
1575					index, GFP_KERNEL);
1576		if (err == -EEXIST)
1577			goto repeat;
1578		if (err < 0) {
1579			/* Presumably ENOMEM for radix tree node */
1580			page_cache_release(cached_page);
1581			return ERR_PTR(err);
1582		}
1583		page = cached_page;
1584		cached_page = NULL;
1585		err = filler(data, page);
1586		if (err < 0) {
1587			page_cache_release(page);
1588			page = ERR_PTR(err);
1589		}
1590	}
1591	if (cached_page)
1592		page_cache_release(cached_page);
1593	return page;
1594}
1595
1596/*
1597 * Read into the page cache. If a page already exists,
1598 * and PageUptodate() is not set, try to fill the page.
1599 */
1600struct page *read_cache_page(struct address_space *mapping,
1601				unsigned long index,
1602				int (*filler)(void *,struct page*),
1603				void *data)
1604{
1605	struct page *page;
1606	int err;
1607
1608retry:
1609	page = __read_cache_page(mapping, index, filler, data);
1610	if (IS_ERR(page))
1611		goto out;
1612	mark_page_accessed(page);
1613	if (PageUptodate(page))
1614		goto out;
1615
1616	lock_page(page);
1617	if (!page->mapping) {
1618		unlock_page(page);
1619		page_cache_release(page);
1620		goto retry;
1621	}
1622	if (PageUptodate(page)) {
1623		unlock_page(page);
1624		goto out;
1625	}
1626	err = filler(data, page);
1627	if (err < 0) {
1628		page_cache_release(page);
1629		page = ERR_PTR(err);
1630	}
1631 out:
1632	return page;
1633}
1634
1635EXPORT_SYMBOL(read_cache_page);
1636
1637/*
1638 * If the page was newly created, increment its refcount and add it to the
1639 * caller's lru-buffering pagevec.  This function is specifically for
1640 * generic_file_write().
1641 */
1642static inline struct page *
1643__grab_cache_page(struct address_space *mapping, unsigned long index,
1644			struct page **cached_page, struct pagevec *lru_pvec)
1645{
1646	int err;
1647	struct page *page;
1648repeat:
1649	page = find_lock_page(mapping, index);
1650	if (!page) {
1651		if (!*cached_page) {
1652			*cached_page = page_cache_alloc(mapping);
1653			if (!*cached_page)
1654				return NULL;
1655		}
1656		err = add_to_page_cache(*cached_page, mapping,
1657					index, GFP_KERNEL);
1658		if (err == -EEXIST)
1659			goto repeat;
1660		if (err == 0) {
1661			page = *cached_page;
1662			page_cache_get(page);
1663			if (!pagevec_add(lru_pvec, page))
1664				__pagevec_lru_add(lru_pvec);
1665			*cached_page = NULL;
1666		}
1667	}
1668	return page;
1669}
1670
1671/*
1672 * The logic we want is
1673 *
1674 *	if suid or (sgid and xgrp)
1675 *		remove privs
1676 */
1677int remove_suid(struct dentry *dentry)
1678{
1679	mode_t mode = dentry->d_inode->i_mode;
1680	int kill = 0;
1681	int result = 0;
1682
1683	/* suid always must be killed */
1684	if (unlikely(mode & S_ISUID))
1685		kill = ATTR_KILL_SUID;
1686
1687	/*
1688	 * sgid without any exec bits is just a mandatory locking mark; leave
1689	 * it alone.  If some exec bits are set, it's a real sgid; kill it.
1690	 */
1691	if (unlikely((mode & S_ISGID) && (mode & S_IXGRP)))
1692		kill |= ATTR_KILL_SGID;
1693
1694	if (unlikely(kill && !capable(CAP_FSETID))) {
1695		struct iattr newattrs;
1696
1697		newattrs.ia_valid = ATTR_FORCE | kill;
1698		result = notify_change(dentry, &newattrs);
1699	}
1700	return result;
1701}
1702EXPORT_SYMBOL(remove_suid);
1703
1704/*
1705 * Copy as much as we can into the page and return the number of bytes which
1706 * were sucessfully copied.  If a fault is encountered then clear the page
1707 * out to (offset+bytes) and return the number of bytes which were copied.
1708 */
1709static inline size_t
1710filemap_copy_from_user(struct page *page, unsigned long offset,
1711			const char __user *buf, unsigned bytes)
1712{
1713	char *kaddr;
1714	int left;
1715
1716	kaddr = kmap_atomic(page, KM_USER0);
1717	left = __copy_from_user_inatomic(kaddr + offset, buf, bytes);
1718	kunmap_atomic(kaddr, KM_USER0);
1719
1720	if (left != 0) {
1721		/* Do it the slow way */
1722		kaddr = kmap(page);
1723		left = __copy_from_user(kaddr + offset, buf, bytes);
1724		kunmap(page);
1725	}
1726	return bytes - left;
1727}
1728
1729static size_t
1730__filemap_copy_from_user_iovec(char *vaddr,
1731			const struct iovec *iov, size_t base, size_t bytes)
1732{
1733	size_t copied = 0, left = 0;
1734
1735	while (bytes) {
1736		char __user *buf = iov->iov_base + base;
1737		int copy = min(bytes, iov->iov_len - base);
1738
1739		base = 0;
1740		left = __copy_from_user_inatomic(vaddr, buf, copy);
1741		copied += copy;
1742		bytes -= copy;
1743		vaddr += copy;
1744		iov++;
1745
1746		if (unlikely(left)) {
1747			/* zero the rest of the target like __copy_from_user */
1748			if (bytes)
1749				memset(vaddr, 0, bytes);
1750			break;
1751		}
1752	}
1753	return copied - left;
1754}
1755
1756/*
1757 * This has the same sideeffects and return value as filemap_copy_from_user().
1758 * The difference is that on a fault we need to memset the remainder of the
1759 * page (out to offset+bytes), to emulate filemap_copy_from_user()'s
1760 * single-segment behaviour.
1761 */
1762static inline size_t
1763filemap_copy_from_user_iovec(struct page *page, unsigned long offset,
1764			const struct iovec *iov, size_t base, size_t bytes)
1765{
1766	char *kaddr;
1767	size_t copied;
1768
1769	kaddr = kmap_atomic(page, KM_USER0);
1770	copied = __filemap_copy_from_user_iovec(kaddr + offset, iov,
1771						base, bytes);
1772	kunmap_atomic(kaddr, KM_USER0);
1773	if (copied != bytes) {
1774		kaddr = kmap(page);
1775		copied = __filemap_copy_from_user_iovec(kaddr + offset, iov,
1776							base, bytes);
1777		kunmap(page);
1778	}
1779	return copied;
1780}
1781
1782static inline void
1783filemap_set_next_iovec(const struct iovec **iovp, size_t *basep, size_t bytes)
1784{
1785	const struct iovec *iov = *iovp;
1786	size_t base = *basep;
1787
1788	while (bytes) {
1789		int copy = min(bytes, iov->iov_len - base);
1790
1791		bytes -= copy;
1792		base += copy;
1793		if (iov->iov_len == base) {
1794			iov++;
1795			base = 0;
1796		}
1797	}
1798	*iovp = iov;
1799	*basep = base;
1800}
1801
1802/*
1803 * Performs necessary checks before doing a write
1804 *
1805 * Can adjust writing position aor amount of bytes to write.
1806 * Returns appropriate error code that caller should return or
1807 * zero in case that write should be allowed.
1808 */
1809inline int generic_write_checks(struct file *file, loff_t *pos, size_t *count, int isblk)
1810{
1811	struct inode *inode = file->f_mapping->host;
1812	unsigned long limit = current->signal->rlim[RLIMIT_FSIZE].rlim_cur;
1813
1814        if (unlikely(*pos < 0))
1815                return -EINVAL;
1816
1817        if (unlikely(file->f_error)) {
1818                int err = file->f_error;
1819                file->f_error = 0;
1820                return err;
1821        }
1822
1823	if (!isblk) {
1824		/* FIXME: this is for backwards compatibility with 2.4 */
1825		if (file->f_flags & O_APPEND)
1826                        *pos = i_size_read(inode);
1827
1828		if (limit != RLIM_INFINITY) {
1829			if (*pos >= limit) {
1830				send_sig(SIGXFSZ, current, 0);
1831				return -EFBIG;
1832			}
1833			if (*count > limit - (typeof(limit))*pos) {
1834				*count = limit - (typeof(limit))*pos;
1835			}
1836		}
1837	}
1838
1839	/*
1840	 * LFS rule
1841	 */
1842	if (unlikely(*pos + *count > MAX_NON_LFS &&
1843				!(file->f_flags & O_LARGEFILE))) {
1844		if (*pos >= MAX_NON_LFS) {
1845			send_sig(SIGXFSZ, current, 0);
1846			return -EFBIG;
1847		}
1848		if (*count > MAX_NON_LFS - (unsigned long)*pos) {
1849			*count = MAX_NON_LFS - (unsigned long)*pos;
1850		}
1851	}
1852
1853	/*
1854	 * Are we about to exceed the fs block limit ?
1855	 *
1856	 * If we have written data it becomes a short write.  If we have
1857	 * exceeded without writing data we send a signal and return EFBIG.
1858	 * Linus frestrict idea will clean these up nicely..
1859	 */
1860	if (likely(!isblk)) {
1861		if (unlikely(*pos >= inode->i_sb->s_maxbytes)) {
1862			if (*count || *pos > inode->i_sb->s_maxbytes) {
1863				send_sig(SIGXFSZ, current, 0);
1864				return -EFBIG;
1865			}
1866			/* zero-length writes at ->s_maxbytes are OK */
1867		}
1868
1869		if (unlikely(*pos + *count > inode->i_sb->s_maxbytes))
1870			*count = inode->i_sb->s_maxbytes - *pos;
1871	} else {
1872		loff_t isize;
1873		if (bdev_read_only(I_BDEV(inode)))
1874			return -EPERM;
1875		isize = i_size_read(inode);
1876		if (*pos >= isize) {
1877			if (*count || *pos > isize)
1878				return -ENOSPC;
1879		}
1880
1881		if (*pos + *count > isize)
1882			*count = isize - *pos;
1883	}
1884	return 0;
1885}
1886EXPORT_SYMBOL(generic_write_checks);
1887
1888ssize_t
1889generic_file_direct_write(struct kiocb *iocb, const struct iovec *iov,
1890		unsigned long *nr_segs, loff_t pos, loff_t *ppos,
1891		size_t count, size_t ocount)
1892{
1893	struct file	*file = iocb->ki_filp;
1894	struct address_space *mapping = file->f_mapping;
1895	struct inode	*inode = mapping->host;
1896	ssize_t		written;
1897
1898	if (count != ocount)
1899		*nr_segs = iov_shorten((struct iovec *)iov, *nr_segs, count);
1900
1901	written = generic_file_direct_IO(WRITE, iocb, iov, pos, *nr_segs);
1902	if (written > 0) {
1903		loff_t end = pos + written;
1904		if (end > i_size_read(inode) && !S_ISBLK(inode->i_mode)) {
1905			i_size_write(inode,  end);
1906			mark_inode_dirty(inode);
1907		}
1908		*ppos = end;
1909	}
1910
1911	/*
1912	 * Sync the fs metadata but not the minor inode changes and
1913	 * of course not the data as we did direct DMA for the IO.
1914	 * i_sem is held, which protects generic_osync_inode() from
1915	 * livelocking.
1916	 */
1917	if (written >= 0 && file->f_flags & O_SYNC)
1918		generic_osync_inode(inode, mapping, OSYNC_METADATA);
1919	if (written == count && !is_sync_kiocb(iocb))
1920		written = -EIOCBQUEUED;
1921	return written;
1922}
1923EXPORT_SYMBOL(generic_file_direct_write);
1924
1925ssize_t
1926generic_file_buffered_write(struct kiocb *iocb, const struct iovec *iov,
1927		unsigned long nr_segs, loff_t pos, loff_t *ppos,
1928		size_t count, ssize_t written)
1929{
1930	struct file *file = iocb->ki_filp;
1931	struct address_space * mapping = file->f_mapping;
1932	struct address_space_operations *a_ops = mapping->a_ops;
1933	struct inode 	*inode = mapping->host;
1934	long		status = 0;
1935	struct page	*page;
1936	struct page	*cached_page = NULL;
1937	size_t		bytes;
1938	struct pagevec	lru_pvec;
1939	const struct iovec *cur_iov = iov; /* current iovec */
1940	size_t		iov_base = 0;	   /* offset in the current iovec */
1941	char __user	*buf;
1942
1943	pagevec_init(&lru_pvec, 0);
1944
1945	/*
1946	 * handle partial DIO write.  Adjust cur_iov if needed.
1947	 */
1948	if (likely(nr_segs == 1))
1949		buf = iov->iov_base + written;
1950	else {
1951		filemap_set_next_iovec(&cur_iov, &iov_base, written);
1952		buf = iov->iov_base + iov_base;
1953	}
1954
1955	do {
1956		unsigned long index;
1957		unsigned long offset;
1958		size_t copied;
1959
1960		offset = (pos & (PAGE_CACHE_SIZE -1)); /* Within page */
1961		index = pos >> PAGE_CACHE_SHIFT;
1962		bytes = PAGE_CACHE_SIZE - offset;
1963		if (bytes > count)
1964			bytes = count;
1965
1966		/*
1967		 * Bring in the user page that we will copy from _first_.
1968		 * Otherwise there's a nasty deadlock on copying from the
1969		 * same page as we're writing to, without it being marked
1970		 * up-to-date.
1971		 */
1972		fault_in_pages_readable(buf, bytes);
1973
1974		page = __grab_cache_page(mapping,index,&cached_page,&lru_pvec);
1975		if (!page) {
1976			status = -ENOMEM;
1977			break;
1978		}
1979
1980		status = a_ops->prepare_write(file, page, offset, offset+bytes);
1981		if (unlikely(status)) {
1982			loff_t isize = i_size_read(inode);
1983			/*
1984			 * prepare_write() may have instantiated a few blocks
1985			 * outside i_size.  Trim these off again.
1986			 */
1987			unlock_page(page);
1988			page_cache_release(page);
1989			if (pos + bytes > isize)
1990				vmtruncate(inode, isize);
1991			break;
1992		}
1993		if (likely(nr_segs == 1))
1994			copied = filemap_copy_from_user(page, offset,
1995							buf, bytes);
1996		else
1997			copied = filemap_copy_from_user_iovec(page, offset,
1998						cur_iov, iov_base, bytes);
1999		flush_dcache_page(page);
2000		status = a_ops->commit_write(file, page, offset, offset+bytes);
2001		if (likely(copied > 0)) {
2002			if (!status)
2003				status = copied;
2004
2005			if (status >= 0) {
2006				written += status;
2007				count -= status;
2008				pos += status;
2009				buf += status;
2010				if (unlikely(nr_segs > 1))
2011					filemap_set_next_iovec(&cur_iov,
2012							&iov_base, status);
2013			}
2014		}
2015		if (unlikely(copied != bytes))
2016			if (status >= 0)
2017				status = -EFAULT;
2018		unlock_page(page);
2019		mark_page_accessed(page);
2020		page_cache_release(page);
2021		if (status < 0)
2022			break;
2023		balance_dirty_pages_ratelimited(mapping);
2024		cond_resched();
2025	} while (count);
2026	*ppos = pos;
2027
2028	if (cached_page)
2029		page_cache_release(cached_page);
2030
2031	/*
2032	 * For now, when the user asks for O_SYNC, we'll actually give O_DSYNC
2033	 */
2034	if (likely(status >= 0)) {
2035		if (unlikely((file->f_flags & O_SYNC) || IS_SYNC(inode))) {
2036			if (!a_ops->writepage || !is_sync_kiocb(iocb))
2037				status = generic_osync_inode(inode, mapping,
2038						OSYNC_METADATA|OSYNC_DATA);
2039		}
2040  	}
2041
2042	/*
2043	 * If we get here for O_DIRECT writes then we must have fallen through
2044	 * to buffered writes (block instantiation inside i_size).  So we sync
2045	 * the file data here, to try to honour O_DIRECT expectations.
2046	 */
2047	if (unlikely(file->f_flags & O_DIRECT) && written)
2048		status = filemap_write_and_wait(mapping);
2049
2050	pagevec_lru_add(&lru_pvec);
2051	return written ? written : status;
2052}
2053EXPORT_SYMBOL(generic_file_buffered_write);
2054
2055ssize_t
2056__generic_file_aio_write_nolock(struct kiocb *iocb, const struct iovec *iov,
2057				unsigned long nr_segs, loff_t *ppos)
2058{
2059	struct file *file = iocb->ki_filp;
2060	struct address_space * mapping = file->f_mapping;
2061	size_t ocount;		/* original count */
2062	size_t count;		/* after file limit checks */
2063	struct inode 	*inode = mapping->host;
2064	unsigned long	seg;
2065	loff_t		pos;
2066	ssize_t		written;
2067	ssize_t		err;
2068
2069	ocount = 0;
2070	for (seg = 0; seg < nr_segs; seg++) {
2071		const struct iovec *iv = &iov[seg];
2072
2073		/*
2074		 * If any segment has a negative length, or the cumulative
2075		 * length ever wraps negative then return -EINVAL.
2076		 */
2077		ocount += iv->iov_len;
2078		if (unlikely((ssize_t)(ocount|iv->iov_len) < 0))
2079			return -EINVAL;
2080		if (access_ok(VERIFY_READ, iv->iov_base, iv->iov_len))
2081			continue;
2082		if (seg == 0)
2083			return -EFAULT;
2084		nr_segs = seg;
2085		ocount -= iv->iov_len;	/* This segment is no good */
2086		break;
2087	}
2088
2089	count = ocount;
2090	pos = *ppos;
2091
2092	vfs_check_frozen(inode->i_sb, SB_FREEZE_WRITE);
2093
2094	/* We can write back this queue in page reclaim */
2095	current->backing_dev_info = mapping->backing_dev_info;
2096	written = 0;
2097
2098	err = generic_write_checks(file, &pos, &count, S_ISBLK(inode->i_mode));
2099	if (err)
2100		goto out;
2101
2102	if (count == 0)
2103		goto out;
2104
2105	err = remove_suid(file->f_dentry);
2106	if (err)
2107		goto out;
2108
2109	inode_update_time(inode, 1);
2110
2111	/* coalesce the iovecs and go direct-to-BIO for O_DIRECT */
2112	if (unlikely(file->f_flags & O_DIRECT)) {
2113		written = generic_file_direct_write(iocb, iov,
2114				&nr_segs, pos, ppos, count, ocount);
2115		if (written < 0 || written == count)
2116			goto out;
2117		/*
2118		 * direct-io write to a hole: fall through to buffered I/O
2119		 * for completing the rest of the request.
2120		 */
2121		pos += written;
2122		count -= written;
2123	}
2124
2125	written = generic_file_buffered_write(iocb, iov, nr_segs,
2126			pos, ppos, count, written);
2127out:
2128	current->backing_dev_info = NULL;
2129	return written ? written : err;
2130}
2131EXPORT_SYMBOL(generic_file_aio_write_nolock);
2132
2133ssize_t
2134generic_file_aio_write_nolock(struct kiocb *iocb, const struct iovec *iov,
2135				unsigned long nr_segs, loff_t *ppos)
2136{
2137	struct file *file = iocb->ki_filp;
2138	struct address_space *mapping = file->f_mapping;
2139	struct inode *inode = mapping->host;
2140	ssize_t ret;
2141	loff_t pos = *ppos;
2142
2143	ret = __generic_file_aio_write_nolock(iocb, iov, nr_segs, ppos);
2144
2145	if (ret > 0 && ((file->f_flags & O_SYNC) || IS_SYNC(inode))) {
2146		int err;
2147
2148		err = sync_page_range_nolock(inode, mapping, pos, ret);
2149		if (err < 0)
2150			ret = err;
2151	}
2152	return ret;
2153}
2154
2155ssize_t
2156__generic_file_write_nolock(struct file *file, const struct iovec *iov,
2157				unsigned long nr_segs, loff_t *ppos)
2158{
2159	struct kiocb kiocb;
2160	ssize_t ret;
2161
2162	init_sync_kiocb(&kiocb, file);
2163	ret = __generic_file_aio_write_nolock(&kiocb, iov, nr_segs, ppos);
2164	if (ret == -EIOCBQUEUED)
2165		ret = wait_on_sync_kiocb(&kiocb);
2166	return ret;
2167}
2168
2169ssize_t
2170generic_file_write_nolock(struct file *file, const struct iovec *iov,
2171				unsigned long nr_segs, loff_t *ppos)
2172{
2173	struct kiocb kiocb;
2174	ssize_t ret;
2175
2176	init_sync_kiocb(&kiocb, file);
2177	ret = generic_file_aio_write_nolock(&kiocb, iov, nr_segs, ppos);
2178	if (-EIOCBQUEUED == ret)
2179		ret = wait_on_sync_kiocb(&kiocb);
2180	return ret;
2181}
2182EXPORT_SYMBOL(generic_file_write_nolock);
2183
2184ssize_t generic_file_aio_write(struct kiocb *iocb, const char __user *buf,
2185			       size_t count, loff_t pos)
2186{
2187	struct file *file = iocb->ki_filp;
2188	struct address_space *mapping = file->f_mapping;
2189	struct inode *inode = mapping->host;
2190	ssize_t ret;
2191	struct iovec local_iov = { .iov_base = (void __user *)buf,
2192					.iov_len = count };
2193
2194	BUG_ON(iocb->ki_pos != pos);
2195
2196	down(&inode->i_sem);
2197	ret = __generic_file_aio_write_nolock(iocb, &local_iov, 1,
2198						&iocb->ki_pos);
2199	up(&inode->i_sem);
2200
2201	if (ret > 0 && ((file->f_flags & O_SYNC) || IS_SYNC(inode))) {
2202		ssize_t err;
2203
2204		err = sync_page_range(inode, mapping, pos, ret);
2205		if (err < 0)
2206			ret = err;
2207	}
2208	return ret;
2209}
2210EXPORT_SYMBOL(generic_file_aio_write);
2211
2212ssize_t generic_file_write(struct file *file, const char __user *buf,
2213			   size_t count, loff_t *ppos)
2214{
2215	struct address_space *mapping = file->f_mapping;
2216	struct inode *inode = mapping->host;
2217	ssize_t	ret;
2218	struct iovec local_iov = { .iov_base = (void __user *)buf,
2219					.iov_len = count };
2220
2221	down(&inode->i_sem);
2222	ret = __generic_file_write_nolock(file, &local_iov, 1, ppos);
2223	up(&inode->i_sem);
2224
2225	if (ret > 0 && ((file->f_flags & O_SYNC) || IS_SYNC(inode))) {
2226		ssize_t err;
2227
2228		err = sync_page_range(inode, mapping, *ppos - ret, ret);
2229		if (err < 0)
2230			ret = err;
2231	}
2232	return ret;
2233}
2234EXPORT_SYMBOL(generic_file_write);
2235
2236ssize_t generic_file_readv(struct file *filp, const struct iovec *iov,
2237			unsigned long nr_segs, loff_t *ppos)
2238{
2239	struct kiocb kiocb;
2240	ssize_t ret;
2241
2242	init_sync_kiocb(&kiocb, filp);
2243	ret = __generic_file_aio_read(&kiocb, iov, nr_segs, ppos);
2244	if (-EIOCBQUEUED == ret)
2245		ret = wait_on_sync_kiocb(&kiocb);
2246	return ret;
2247}
2248EXPORT_SYMBOL(generic_file_readv);
2249
2250ssize_t generic_file_writev(struct file *file, const struct iovec *iov,
2251			unsigned long nr_segs, loff_t *ppos)
2252{
2253	struct address_space *mapping = file->f_mapping;
2254	struct inode *inode = mapping->host;
2255	ssize_t ret;
2256
2257	down(&inode->i_sem);
2258	ret = __generic_file_write_nolock(file, iov, nr_segs, ppos);
2259	up(&inode->i_sem);
2260
2261	if (ret > 0 && ((file->f_flags & O_SYNC) || IS_SYNC(inode))) {
2262		int err;
2263
2264		err = sync_page_range(inode, mapping, *ppos - ret, ret);
2265		if (err < 0)
2266			ret = err;
2267	}
2268	return ret;
2269}
2270EXPORT_SYMBOL(generic_file_writev);
2271
2272/*
2273 * Called under i_sem for writes to S_ISREG files.   Returns -EIO if something
2274 * went wrong during pagecache shootdown.
2275 */
2276ssize_t
2277generic_file_direct_IO(int rw, struct kiocb *iocb, const struct iovec *iov,
2278	loff_t offset, unsigned long nr_segs)
2279{
2280	struct file *file = iocb->ki_filp;
2281	struct address_space *mapping = file->f_mapping;
2282	ssize_t retval;
2283	size_t write_len = 0;
2284
2285	/*
2286	 * If it's a write, unmap all mmappings of the file up-front.  This
2287	 * will cause any pte dirty bits to be propagated into the pageframes
2288	 * for the subsequent filemap_write_and_wait().
2289	 */
2290	if (rw == WRITE) {
2291		write_len = iov_length(iov, nr_segs);
2292	       	if (mapping_mapped(mapping))
2293			unmap_mapping_range(mapping, offset, write_len, 0);
2294	}
2295
2296	retval = filemap_write_and_wait(mapping);
2297	if (retval == 0) {
2298		retval = mapping->a_ops->direct_IO(rw, iocb, iov,
2299						offset, nr_segs);
2300		if (rw == WRITE && mapping->nrpages) {
2301			pgoff_t end = (offset + write_len - 1)
2302						>> PAGE_CACHE_SHIFT;
2303			int err = invalidate_inode_pages2_range(mapping,
2304					offset >> PAGE_CACHE_SHIFT, end);
2305			if (err)
2306				retval = err;
2307		}
2308	}
2309	return retval;
2310}
2311EXPORT_SYMBOL_GPL(generic_file_direct_IO);
2312