filemap.c revision e6f67b8c05f5e129e126f4409ddac6f25f58ffcb
1/*
2 *	linux/mm/filemap.c
3 *
4 * Copyright (C) 1994-1999  Linus Torvalds
5 */
6
7/*
8 * This file handles the generic file mmap semantics used by
9 * most "normal" filesystems (but you don't /have/ to use this:
10 * the NFS filesystem used to do this differently, for example)
11 */
12#include <linux/export.h>
13#include <linux/compiler.h>
14#include <linux/fs.h>
15#include <linux/uaccess.h>
16#include <linux/aio.h>
17#include <linux/capability.h>
18#include <linux/kernel_stat.h>
19#include <linux/gfp.h>
20#include <linux/mm.h>
21#include <linux/swap.h>
22#include <linux/mman.h>
23#include <linux/pagemap.h>
24#include <linux/file.h>
25#include <linux/uio.h>
26#include <linux/hash.h>
27#include <linux/writeback.h>
28#include <linux/backing-dev.h>
29#include <linux/pagevec.h>
30#include <linux/blkdev.h>
31#include <linux/security.h>
32#include <linux/syscalls.h>
33#include <linux/cpuset.h>
34#include <linux/hardirq.h> /* for BUG_ON(!in_atomic()) only */
35#include <linux/memcontrol.h>
36#include <linux/cleancache.h>
37#include "internal.h"
38
39/*
40 * FIXME: remove all knowledge of the buffer layer from the core VM
41 */
42#include <linux/buffer_head.h> /* for try_to_free_buffers */
43
44#include <asm/mman.h>
45
46/*
47 * Shared mappings implemented 30.11.1994. It's not fully working yet,
48 * though.
49 *
50 * Shared mappings now work. 15.8.1995  Bruno.
51 *
52 * finished 'unifying' the page and buffer cache and SMP-threaded the
53 * page-cache, 21.05.1999, Ingo Molnar <mingo@redhat.com>
54 *
55 * SMP-threaded pagemap-LRU 1999, Andrea Arcangeli <andrea@suse.de>
56 */
57
58/*
59 * Lock ordering:
60 *
61 *  ->i_mmap_mutex		(truncate_pagecache)
62 *    ->private_lock		(__free_pte->__set_page_dirty_buffers)
63 *      ->swap_lock		(exclusive_swap_page, others)
64 *        ->mapping->tree_lock
65 *
66 *  ->i_mutex
67 *    ->i_mmap_mutex		(truncate->unmap_mapping_range)
68 *
69 *  ->mmap_sem
70 *    ->i_mmap_mutex
71 *      ->page_table_lock or pte_lock	(various, mainly in memory.c)
72 *        ->mapping->tree_lock	(arch-dependent flush_dcache_mmap_lock)
73 *
74 *  ->mmap_sem
75 *    ->lock_page		(access_process_vm)
76 *
77 *  ->i_mutex			(generic_file_buffered_write)
78 *    ->mmap_sem		(fault_in_pages_readable->do_page_fault)
79 *
80 *  bdi->wb.list_lock
81 *    sb_lock			(fs/fs-writeback.c)
82 *    ->mapping->tree_lock	(__sync_single_inode)
83 *
84 *  ->i_mmap_mutex
85 *    ->anon_vma.lock		(vma_adjust)
86 *
87 *  ->anon_vma.lock
88 *    ->page_table_lock or pte_lock	(anon_vma_prepare and various)
89 *
90 *  ->page_table_lock or pte_lock
91 *    ->swap_lock		(try_to_unmap_one)
92 *    ->private_lock		(try_to_unmap_one)
93 *    ->tree_lock		(try_to_unmap_one)
94 *    ->zone.lru_lock		(follow_page->mark_page_accessed)
95 *    ->zone.lru_lock		(check_pte_range->isolate_lru_page)
96 *    ->private_lock		(page_remove_rmap->set_page_dirty)
97 *    ->tree_lock		(page_remove_rmap->set_page_dirty)
98 *    bdi.wb->list_lock		(page_remove_rmap->set_page_dirty)
99 *    ->inode->i_lock		(page_remove_rmap->set_page_dirty)
100 *    bdi.wb->list_lock		(zap_pte_range->set_page_dirty)
101 *    ->inode->i_lock		(zap_pte_range->set_page_dirty)
102 *    ->private_lock		(zap_pte_range->__set_page_dirty_buffers)
103 *
104 *  (code doesn't rely on that order, so you could switch it around)
105 *  ->tasklist_lock             (memory_failure, collect_procs_ao)
106 *    ->i_mmap_mutex
107 */
108
109/*
110 * Delete a page from the page cache and free it. Caller has to make
111 * sure the page is locked and that nobody else uses it - or that usage
112 * is safe.  The caller must hold the mapping's tree_lock.
113 */
114void __delete_from_page_cache(struct page *page)
115{
116	struct address_space *mapping = page->mapping;
117
118	/*
119	 * if we're uptodate, flush out into the cleancache, otherwise
120	 * invalidate any existing cleancache entries.  We can't leave
121	 * stale data around in the cleancache once our page is gone
122	 */
123	if (PageUptodate(page) && PageMappedToDisk(page))
124		cleancache_put_page(page);
125	else
126		cleancache_flush_page(mapping, page);
127
128	radix_tree_delete(&mapping->page_tree, page->index);
129	page->mapping = NULL;
130	/* Leave page->index set: truncation lookup relies upon it */
131	mapping->nrpages--;
132	__dec_zone_page_state(page, NR_FILE_PAGES);
133	if (PageSwapBacked(page))
134		__dec_zone_page_state(page, NR_SHMEM);
135	BUG_ON(page_mapped(page));
136
137	/*
138	 * Some filesystems seem to re-dirty the page even after
139	 * the VM has canceled the dirty bit (eg ext3 journaling).
140	 *
141	 * Fix it up by doing a final dirty accounting check after
142	 * having removed the page entirely.
143	 */
144	if (PageDirty(page) && mapping_cap_account_dirty(mapping)) {
145		dec_zone_page_state(page, NR_FILE_DIRTY);
146		dec_bdi_stat(mapping->backing_dev_info, BDI_RECLAIMABLE);
147	}
148}
149
150/**
151 * delete_from_page_cache - delete page from page cache
152 * @page: the page which the kernel is trying to remove from page cache
153 *
154 * This must be called only on pages that have been verified to be in the page
155 * cache and locked.  It will never put the page into the free list, the caller
156 * has a reference on the page.
157 */
158void delete_from_page_cache(struct page *page)
159{
160	struct address_space *mapping = page->mapping;
161	void (*freepage)(struct page *);
162
163	BUG_ON(!PageLocked(page));
164
165	freepage = mapping->a_ops->freepage;
166	spin_lock_irq(&mapping->tree_lock);
167	__delete_from_page_cache(page);
168	spin_unlock_irq(&mapping->tree_lock);
169	mem_cgroup_uncharge_cache_page(page);
170
171	if (freepage)
172		freepage(page);
173	page_cache_release(page);
174}
175EXPORT_SYMBOL(delete_from_page_cache);
176
177static int sleep_on_page(void *word)
178{
179	io_schedule();
180	return 0;
181}
182
183static int sleep_on_page_killable(void *word)
184{
185	sleep_on_page(word);
186	return fatal_signal_pending(current) ? -EINTR : 0;
187}
188
189/**
190 * __filemap_fdatawrite_range - start writeback on mapping dirty pages in range
191 * @mapping:	address space structure to write
192 * @start:	offset in bytes where the range starts
193 * @end:	offset in bytes where the range ends (inclusive)
194 * @sync_mode:	enable synchronous operation
195 *
196 * Start writeback against all of a mapping's dirty pages that lie
197 * within the byte offsets <start, end> inclusive.
198 *
199 * If sync_mode is WB_SYNC_ALL then this is a "data integrity" operation, as
200 * opposed to a regular memory cleansing writeback.  The difference between
201 * these two operations is that if a dirty page/buffer is encountered, it must
202 * be waited upon, and not just skipped over.
203 */
204int __filemap_fdatawrite_range(struct address_space *mapping, loff_t start,
205				loff_t end, int sync_mode)
206{
207	int ret;
208	struct writeback_control wbc = {
209		.sync_mode = sync_mode,
210		.nr_to_write = LONG_MAX,
211		.range_start = start,
212		.range_end = end,
213	};
214
215	if (!mapping_cap_writeback_dirty(mapping))
216		return 0;
217
218	ret = do_writepages(mapping, &wbc);
219	return ret;
220}
221
222static inline int __filemap_fdatawrite(struct address_space *mapping,
223	int sync_mode)
224{
225	return __filemap_fdatawrite_range(mapping, 0, LLONG_MAX, sync_mode);
226}
227
228int filemap_fdatawrite(struct address_space *mapping)
229{
230	return __filemap_fdatawrite(mapping, WB_SYNC_ALL);
231}
232EXPORT_SYMBOL(filemap_fdatawrite);
233
234int filemap_fdatawrite_range(struct address_space *mapping, loff_t start,
235				loff_t end)
236{
237	return __filemap_fdatawrite_range(mapping, start, end, WB_SYNC_ALL);
238}
239EXPORT_SYMBOL(filemap_fdatawrite_range);
240
241/**
242 * filemap_flush - mostly a non-blocking flush
243 * @mapping:	target address_space
244 *
245 * This is a mostly non-blocking flush.  Not suitable for data-integrity
246 * purposes - I/O may not be started against all dirty pages.
247 */
248int filemap_flush(struct address_space *mapping)
249{
250	return __filemap_fdatawrite(mapping, WB_SYNC_NONE);
251}
252EXPORT_SYMBOL(filemap_flush);
253
254/**
255 * filemap_fdatawait_range - wait for writeback to complete
256 * @mapping:		address space structure to wait for
257 * @start_byte:		offset in bytes where the range starts
258 * @end_byte:		offset in bytes where the range ends (inclusive)
259 *
260 * Walk the list of under-writeback pages of the given address space
261 * in the given range and wait for all of them.
262 */
263int filemap_fdatawait_range(struct address_space *mapping, loff_t start_byte,
264			    loff_t end_byte)
265{
266	pgoff_t index = start_byte >> PAGE_CACHE_SHIFT;
267	pgoff_t end = end_byte >> PAGE_CACHE_SHIFT;
268	struct pagevec pvec;
269	int nr_pages;
270	int ret = 0;
271
272	if (end_byte < start_byte)
273		return 0;
274
275	pagevec_init(&pvec, 0);
276	while ((index <= end) &&
277			(nr_pages = pagevec_lookup_tag(&pvec, mapping, &index,
278			PAGECACHE_TAG_WRITEBACK,
279			min(end - index, (pgoff_t)PAGEVEC_SIZE-1) + 1)) != 0) {
280		unsigned i;
281
282		for (i = 0; i < nr_pages; i++) {
283			struct page *page = pvec.pages[i];
284
285			/* until radix tree lookup accepts end_index */
286			if (page->index > end)
287				continue;
288
289			wait_on_page_writeback(page);
290			if (TestClearPageError(page))
291				ret = -EIO;
292		}
293		pagevec_release(&pvec);
294		cond_resched();
295	}
296
297	/* Check for outstanding write errors */
298	if (test_and_clear_bit(AS_ENOSPC, &mapping->flags))
299		ret = -ENOSPC;
300	if (test_and_clear_bit(AS_EIO, &mapping->flags))
301		ret = -EIO;
302
303	return ret;
304}
305EXPORT_SYMBOL(filemap_fdatawait_range);
306
307/**
308 * filemap_fdatawait - wait for all under-writeback pages to complete
309 * @mapping: address space structure to wait for
310 *
311 * Walk the list of under-writeback pages of the given address space
312 * and wait for all of them.
313 */
314int filemap_fdatawait(struct address_space *mapping)
315{
316	loff_t i_size = i_size_read(mapping->host);
317
318	if (i_size == 0)
319		return 0;
320
321	return filemap_fdatawait_range(mapping, 0, i_size - 1);
322}
323EXPORT_SYMBOL(filemap_fdatawait);
324
325int filemap_write_and_wait(struct address_space *mapping)
326{
327	int err = 0;
328
329	if (mapping->nrpages) {
330		err = filemap_fdatawrite(mapping);
331		/*
332		 * Even if the above returned error, the pages may be
333		 * written partially (e.g. -ENOSPC), so we wait for it.
334		 * But the -EIO is special case, it may indicate the worst
335		 * thing (e.g. bug) happened, so we avoid waiting for it.
336		 */
337		if (err != -EIO) {
338			int err2 = filemap_fdatawait(mapping);
339			if (!err)
340				err = err2;
341		}
342	}
343	return err;
344}
345EXPORT_SYMBOL(filemap_write_and_wait);
346
347/**
348 * filemap_write_and_wait_range - write out & wait on a file range
349 * @mapping:	the address_space for the pages
350 * @lstart:	offset in bytes where the range starts
351 * @lend:	offset in bytes where the range ends (inclusive)
352 *
353 * Write out and wait upon file offsets lstart->lend, inclusive.
354 *
355 * Note that `lend' is inclusive (describes the last byte to be written) so
356 * that this function can be used to write to the very end-of-file (end = -1).
357 */
358int filemap_write_and_wait_range(struct address_space *mapping,
359				 loff_t lstart, loff_t lend)
360{
361	int err = 0;
362
363	if (mapping->nrpages) {
364		err = __filemap_fdatawrite_range(mapping, lstart, lend,
365						 WB_SYNC_ALL);
366		/* See comment of filemap_write_and_wait() */
367		if (err != -EIO) {
368			int err2 = filemap_fdatawait_range(mapping,
369						lstart, lend);
370			if (!err)
371				err = err2;
372		}
373	}
374	return err;
375}
376EXPORT_SYMBOL(filemap_write_and_wait_range);
377
378/**
379 * replace_page_cache_page - replace a pagecache page with a new one
380 * @old:	page to be replaced
381 * @new:	page to replace with
382 * @gfp_mask:	allocation mode
383 *
384 * This function replaces a page in the pagecache with a new one.  On
385 * success it acquires the pagecache reference for the new page and
386 * drops it for the old page.  Both the old and new pages must be
387 * locked.  This function does not add the new page to the LRU, the
388 * caller must do that.
389 *
390 * The remove + add is atomic.  The only way this function can fail is
391 * memory allocation failure.
392 */
393int replace_page_cache_page(struct page *old, struct page *new, gfp_t gfp_mask)
394{
395	int error;
396	struct mem_cgroup *memcg = NULL;
397
398	VM_BUG_ON(!PageLocked(old));
399	VM_BUG_ON(!PageLocked(new));
400	VM_BUG_ON(new->mapping);
401
402	/*
403	 * This is not page migration, but prepare_migration and
404	 * end_migration does enough work for charge replacement.
405	 *
406	 * In the longer term we probably want a specialized function
407	 * for moving the charge from old to new in a more efficient
408	 * manner.
409	 */
410	error = mem_cgroup_prepare_migration(old, new, &memcg, gfp_mask);
411	if (error)
412		return error;
413
414	error = radix_tree_preload(gfp_mask & ~__GFP_HIGHMEM);
415	if (!error) {
416		struct address_space *mapping = old->mapping;
417		void (*freepage)(struct page *);
418
419		pgoff_t offset = old->index;
420		freepage = mapping->a_ops->freepage;
421
422		page_cache_get(new);
423		new->mapping = mapping;
424		new->index = offset;
425
426		spin_lock_irq(&mapping->tree_lock);
427		__delete_from_page_cache(old);
428		error = radix_tree_insert(&mapping->page_tree, offset, new);
429		BUG_ON(error);
430		mapping->nrpages++;
431		__inc_zone_page_state(new, NR_FILE_PAGES);
432		if (PageSwapBacked(new))
433			__inc_zone_page_state(new, NR_SHMEM);
434		spin_unlock_irq(&mapping->tree_lock);
435		radix_tree_preload_end();
436		if (freepage)
437			freepage(old);
438		page_cache_release(old);
439		mem_cgroup_end_migration(memcg, old, new, true);
440	} else {
441		mem_cgroup_end_migration(memcg, old, new, false);
442	}
443
444	return error;
445}
446EXPORT_SYMBOL_GPL(replace_page_cache_page);
447
448/**
449 * add_to_page_cache_locked - add a locked page to the pagecache
450 * @page:	page to add
451 * @mapping:	the page's address_space
452 * @offset:	page index
453 * @gfp_mask:	page allocation mode
454 *
455 * This function is used to add a page to the pagecache. It must be locked.
456 * This function does not add the page to the LRU.  The caller must do that.
457 */
458int add_to_page_cache_locked(struct page *page, struct address_space *mapping,
459		pgoff_t offset, gfp_t gfp_mask)
460{
461	int error;
462
463	VM_BUG_ON(!PageLocked(page));
464	VM_BUG_ON(PageSwapBacked(page));
465
466	error = mem_cgroup_cache_charge(page, current->mm,
467					gfp_mask & GFP_RECLAIM_MASK);
468	if (error)
469		goto out;
470
471	error = radix_tree_preload(gfp_mask & ~__GFP_HIGHMEM);
472	if (error == 0) {
473		page_cache_get(page);
474		page->mapping = mapping;
475		page->index = offset;
476
477		spin_lock_irq(&mapping->tree_lock);
478		error = radix_tree_insert(&mapping->page_tree, offset, page);
479		if (likely(!error)) {
480			mapping->nrpages++;
481			__inc_zone_page_state(page, NR_FILE_PAGES);
482			spin_unlock_irq(&mapping->tree_lock);
483		} else {
484			page->mapping = NULL;
485			/* Leave page->index set: truncation relies upon it */
486			spin_unlock_irq(&mapping->tree_lock);
487			mem_cgroup_uncharge_cache_page(page);
488			page_cache_release(page);
489		}
490		radix_tree_preload_end();
491	} else
492		mem_cgroup_uncharge_cache_page(page);
493out:
494	return error;
495}
496EXPORT_SYMBOL(add_to_page_cache_locked);
497
498int add_to_page_cache_lru(struct page *page, struct address_space *mapping,
499				pgoff_t offset, gfp_t gfp_mask)
500{
501	int ret;
502
503	ret = add_to_page_cache(page, mapping, offset, gfp_mask);
504	if (ret == 0)
505		lru_cache_add_file(page);
506	return ret;
507}
508EXPORT_SYMBOL_GPL(add_to_page_cache_lru);
509
510#ifdef CONFIG_NUMA
511struct page *__page_cache_alloc(gfp_t gfp)
512{
513	int n;
514	struct page *page;
515
516	if (cpuset_do_page_mem_spread()) {
517		get_mems_allowed();
518		n = cpuset_mem_spread_node();
519		page = alloc_pages_exact_node(n, gfp, 0);
520		put_mems_allowed();
521		return page;
522	}
523	return alloc_pages(gfp, 0);
524}
525EXPORT_SYMBOL(__page_cache_alloc);
526#endif
527
528/*
529 * In order to wait for pages to become available there must be
530 * waitqueues associated with pages. By using a hash table of
531 * waitqueues where the bucket discipline is to maintain all
532 * waiters on the same queue and wake all when any of the pages
533 * become available, and for the woken contexts to check to be
534 * sure the appropriate page became available, this saves space
535 * at a cost of "thundering herd" phenomena during rare hash
536 * collisions.
537 */
538static wait_queue_head_t *page_waitqueue(struct page *page)
539{
540	const struct zone *zone = page_zone(page);
541
542	return &zone->wait_table[hash_ptr(page, zone->wait_table_bits)];
543}
544
545static inline void wake_up_page(struct page *page, int bit)
546{
547	__wake_up_bit(page_waitqueue(page), &page->flags, bit);
548}
549
550void wait_on_page_bit(struct page *page, int bit_nr)
551{
552	DEFINE_WAIT_BIT(wait, &page->flags, bit_nr);
553
554	if (test_bit(bit_nr, &page->flags))
555		__wait_on_bit(page_waitqueue(page), &wait, sleep_on_page,
556							TASK_UNINTERRUPTIBLE);
557}
558EXPORT_SYMBOL(wait_on_page_bit);
559
560int wait_on_page_bit_killable(struct page *page, int bit_nr)
561{
562	DEFINE_WAIT_BIT(wait, &page->flags, bit_nr);
563
564	if (!test_bit(bit_nr, &page->flags))
565		return 0;
566
567	return __wait_on_bit(page_waitqueue(page), &wait,
568			     sleep_on_page_killable, TASK_KILLABLE);
569}
570
571/**
572 * add_page_wait_queue - Add an arbitrary waiter to a page's wait queue
573 * @page: Page defining the wait queue of interest
574 * @waiter: Waiter to add to the queue
575 *
576 * Add an arbitrary @waiter to the wait queue for the nominated @page.
577 */
578void add_page_wait_queue(struct page *page, wait_queue_t *waiter)
579{
580	wait_queue_head_t *q = page_waitqueue(page);
581	unsigned long flags;
582
583	spin_lock_irqsave(&q->lock, flags);
584	__add_wait_queue(q, waiter);
585	spin_unlock_irqrestore(&q->lock, flags);
586}
587EXPORT_SYMBOL_GPL(add_page_wait_queue);
588
589/**
590 * unlock_page - unlock a locked page
591 * @page: the page
592 *
593 * Unlocks the page and wakes up sleepers in ___wait_on_page_locked().
594 * Also wakes sleepers in wait_on_page_writeback() because the wakeup
595 * mechananism between PageLocked pages and PageWriteback pages is shared.
596 * But that's OK - sleepers in wait_on_page_writeback() just go back to sleep.
597 *
598 * The mb is necessary to enforce ordering between the clear_bit and the read
599 * of the waitqueue (to avoid SMP races with a parallel wait_on_page_locked()).
600 */
601void unlock_page(struct page *page)
602{
603	VM_BUG_ON(!PageLocked(page));
604	clear_bit_unlock(PG_locked, &page->flags);
605	smp_mb__after_clear_bit();
606	wake_up_page(page, PG_locked);
607}
608EXPORT_SYMBOL(unlock_page);
609
610/**
611 * end_page_writeback - end writeback against a page
612 * @page: the page
613 */
614void end_page_writeback(struct page *page)
615{
616	if (TestClearPageReclaim(page))
617		rotate_reclaimable_page(page);
618
619	if (!test_clear_page_writeback(page))
620		BUG();
621
622	smp_mb__after_clear_bit();
623	wake_up_page(page, PG_writeback);
624}
625EXPORT_SYMBOL(end_page_writeback);
626
627/**
628 * __lock_page - get a lock on the page, assuming we need to sleep to get it
629 * @page: the page to lock
630 */
631void __lock_page(struct page *page)
632{
633	DEFINE_WAIT_BIT(wait, &page->flags, PG_locked);
634
635	__wait_on_bit_lock(page_waitqueue(page), &wait, sleep_on_page,
636							TASK_UNINTERRUPTIBLE);
637}
638EXPORT_SYMBOL(__lock_page);
639
640int __lock_page_killable(struct page *page)
641{
642	DEFINE_WAIT_BIT(wait, &page->flags, PG_locked);
643
644	return __wait_on_bit_lock(page_waitqueue(page), &wait,
645					sleep_on_page_killable, TASK_KILLABLE);
646}
647EXPORT_SYMBOL_GPL(__lock_page_killable);
648
649int __lock_page_or_retry(struct page *page, struct mm_struct *mm,
650			 unsigned int flags)
651{
652	if (flags & FAULT_FLAG_ALLOW_RETRY) {
653		/*
654		 * CAUTION! In this case, mmap_sem is not released
655		 * even though return 0.
656		 */
657		if (flags & FAULT_FLAG_RETRY_NOWAIT)
658			return 0;
659
660		up_read(&mm->mmap_sem);
661		if (flags & FAULT_FLAG_KILLABLE)
662			wait_on_page_locked_killable(page);
663		else
664			wait_on_page_locked(page);
665		return 0;
666	} else {
667		if (flags & FAULT_FLAG_KILLABLE) {
668			int ret;
669
670			ret = __lock_page_killable(page);
671			if (ret) {
672				up_read(&mm->mmap_sem);
673				return 0;
674			}
675		} else
676			__lock_page(page);
677		return 1;
678	}
679}
680
681/**
682 * find_get_page - find and get a page reference
683 * @mapping: the address_space to search
684 * @offset: the page index
685 *
686 * Is there a pagecache struct page at the given (mapping, offset) tuple?
687 * If yes, increment its refcount and return it; if no, return NULL.
688 */
689struct page *find_get_page(struct address_space *mapping, pgoff_t offset)
690{
691	void **pagep;
692	struct page *page;
693
694	rcu_read_lock();
695repeat:
696	page = NULL;
697	pagep = radix_tree_lookup_slot(&mapping->page_tree, offset);
698	if (pagep) {
699		page = radix_tree_deref_slot(pagep);
700		if (unlikely(!page))
701			goto out;
702		if (radix_tree_exception(page)) {
703			if (radix_tree_deref_retry(page))
704				goto repeat;
705			/*
706			 * Otherwise, shmem/tmpfs must be storing a swap entry
707			 * here as an exceptional entry: so return it without
708			 * attempting to raise page count.
709			 */
710			goto out;
711		}
712		if (!page_cache_get_speculative(page))
713			goto repeat;
714
715		/*
716		 * Has the page moved?
717		 * This is part of the lockless pagecache protocol. See
718		 * include/linux/pagemap.h for details.
719		 */
720		if (unlikely(page != *pagep)) {
721			page_cache_release(page);
722			goto repeat;
723		}
724	}
725out:
726	rcu_read_unlock();
727
728	return page;
729}
730EXPORT_SYMBOL(find_get_page);
731
732/**
733 * find_lock_page - locate, pin and lock a pagecache page
734 * @mapping: the address_space to search
735 * @offset: the page index
736 *
737 * Locates the desired pagecache page, locks it, increments its reference
738 * count and returns its address.
739 *
740 * Returns zero if the page was not present. find_lock_page() may sleep.
741 */
742struct page *find_lock_page(struct address_space *mapping, pgoff_t offset)
743{
744	struct page *page;
745
746repeat:
747	page = find_get_page(mapping, offset);
748	if (page && !radix_tree_exception(page)) {
749		lock_page(page);
750		/* Has the page been truncated? */
751		if (unlikely(page->mapping != mapping)) {
752			unlock_page(page);
753			page_cache_release(page);
754			goto repeat;
755		}
756		VM_BUG_ON(page->index != offset);
757	}
758	return page;
759}
760EXPORT_SYMBOL(find_lock_page);
761
762/**
763 * find_or_create_page - locate or add a pagecache page
764 * @mapping: the page's address_space
765 * @index: the page's index into the mapping
766 * @gfp_mask: page allocation mode
767 *
768 * Locates a page in the pagecache.  If the page is not present, a new page
769 * is allocated using @gfp_mask and is added to the pagecache and to the VM's
770 * LRU list.  The returned page is locked and has its reference count
771 * incremented.
772 *
773 * find_or_create_page() may sleep, even if @gfp_flags specifies an atomic
774 * allocation!
775 *
776 * find_or_create_page() returns the desired page's address, or zero on
777 * memory exhaustion.
778 */
779struct page *find_or_create_page(struct address_space *mapping,
780		pgoff_t index, gfp_t gfp_mask)
781{
782	struct page *page;
783	int err;
784repeat:
785	page = find_lock_page(mapping, index);
786	if (!page) {
787		page = __page_cache_alloc(gfp_mask);
788		if (!page)
789			return NULL;
790		/*
791		 * We want a regular kernel memory (not highmem or DMA etc)
792		 * allocation for the radix tree nodes, but we need to honour
793		 * the context-specific requirements the caller has asked for.
794		 * GFP_RECLAIM_MASK collects those requirements.
795		 */
796		err = add_to_page_cache_lru(page, mapping, index,
797			(gfp_mask & GFP_RECLAIM_MASK));
798		if (unlikely(err)) {
799			page_cache_release(page);
800			page = NULL;
801			if (err == -EEXIST)
802				goto repeat;
803		}
804	}
805	return page;
806}
807EXPORT_SYMBOL(find_or_create_page);
808
809/**
810 * find_get_pages - gang pagecache lookup
811 * @mapping:	The address_space to search
812 * @start:	The starting page index
813 * @nr_pages:	The maximum number of pages
814 * @pages:	Where the resulting pages are placed
815 *
816 * find_get_pages() will search for and return a group of up to
817 * @nr_pages pages in the mapping.  The pages are placed at @pages.
818 * find_get_pages() takes a reference against the returned pages.
819 *
820 * The search returns a group of mapping-contiguous pages with ascending
821 * indexes.  There may be holes in the indices due to not-present pages.
822 *
823 * find_get_pages() returns the number of pages which were found.
824 */
825unsigned find_get_pages(struct address_space *mapping, pgoff_t start,
826			    unsigned int nr_pages, struct page **pages)
827{
828	unsigned int i;
829	unsigned int ret;
830	unsigned int nr_found, nr_skip;
831
832	rcu_read_lock();
833restart:
834	nr_found = radix_tree_gang_lookup_slot(&mapping->page_tree,
835				(void ***)pages, NULL, start, nr_pages);
836	ret = 0;
837	nr_skip = 0;
838	for (i = 0; i < nr_found; i++) {
839		struct page *page;
840repeat:
841		page = radix_tree_deref_slot((void **)pages[i]);
842		if (unlikely(!page))
843			continue;
844
845		if (radix_tree_exception(page)) {
846			if (radix_tree_deref_retry(page)) {
847				/*
848				 * Transient condition which can only trigger
849				 * when entry at index 0 moves out of or back
850				 * to root: none yet gotten, safe to restart.
851				 */
852				WARN_ON(start | i);
853				goto restart;
854			}
855			/*
856			 * Otherwise, shmem/tmpfs must be storing a swap entry
857			 * here as an exceptional entry: so skip over it -
858			 * we only reach this from invalidate_mapping_pages().
859			 */
860			nr_skip++;
861			continue;
862		}
863
864		if (!page_cache_get_speculative(page))
865			goto repeat;
866
867		/* Has the page moved? */
868		if (unlikely(page != *((void **)pages[i]))) {
869			page_cache_release(page);
870			goto repeat;
871		}
872
873		pages[ret] = page;
874		ret++;
875	}
876
877	/*
878	 * If all entries were removed before we could secure them,
879	 * try again, because callers stop trying once 0 is returned.
880	 */
881	if (unlikely(!ret && nr_found > nr_skip))
882		goto restart;
883	rcu_read_unlock();
884	return ret;
885}
886
887/**
888 * find_get_pages_contig - gang contiguous pagecache lookup
889 * @mapping:	The address_space to search
890 * @index:	The starting page index
891 * @nr_pages:	The maximum number of pages
892 * @pages:	Where the resulting pages are placed
893 *
894 * find_get_pages_contig() works exactly like find_get_pages(), except
895 * that the returned number of pages are guaranteed to be contiguous.
896 *
897 * find_get_pages_contig() returns the number of pages which were found.
898 */
899unsigned find_get_pages_contig(struct address_space *mapping, pgoff_t index,
900			       unsigned int nr_pages, struct page **pages)
901{
902	unsigned int i;
903	unsigned int ret;
904	unsigned int nr_found;
905
906	rcu_read_lock();
907restart:
908	nr_found = radix_tree_gang_lookup_slot(&mapping->page_tree,
909				(void ***)pages, NULL, index, nr_pages);
910	ret = 0;
911	for (i = 0; i < nr_found; i++) {
912		struct page *page;
913repeat:
914		page = radix_tree_deref_slot((void **)pages[i]);
915		if (unlikely(!page))
916			continue;
917
918		if (radix_tree_exception(page)) {
919			if (radix_tree_deref_retry(page)) {
920				/*
921				 * Transient condition which can only trigger
922				 * when entry at index 0 moves out of or back
923				 * to root: none yet gotten, safe to restart.
924				 */
925				goto restart;
926			}
927			/*
928			 * Otherwise, shmem/tmpfs must be storing a swap entry
929			 * here as an exceptional entry: so stop looking for
930			 * contiguous pages.
931			 */
932			break;
933		}
934
935		if (!page_cache_get_speculative(page))
936			goto repeat;
937
938		/* Has the page moved? */
939		if (unlikely(page != *((void **)pages[i]))) {
940			page_cache_release(page);
941			goto repeat;
942		}
943
944		/*
945		 * must check mapping and index after taking the ref.
946		 * otherwise we can get both false positives and false
947		 * negatives, which is just confusing to the caller.
948		 */
949		if (page->mapping == NULL || page->index != index) {
950			page_cache_release(page);
951			break;
952		}
953
954		pages[ret] = page;
955		ret++;
956		index++;
957	}
958	rcu_read_unlock();
959	return ret;
960}
961EXPORT_SYMBOL(find_get_pages_contig);
962
963/**
964 * find_get_pages_tag - find and return pages that match @tag
965 * @mapping:	the address_space to search
966 * @index:	the starting page index
967 * @tag:	the tag index
968 * @nr_pages:	the maximum number of pages
969 * @pages:	where the resulting pages are placed
970 *
971 * Like find_get_pages, except we only return pages which are tagged with
972 * @tag.   We update @index to index the next page for the traversal.
973 */
974unsigned find_get_pages_tag(struct address_space *mapping, pgoff_t *index,
975			int tag, unsigned int nr_pages, struct page **pages)
976{
977	unsigned int i;
978	unsigned int ret;
979	unsigned int nr_found;
980
981	rcu_read_lock();
982restart:
983	nr_found = radix_tree_gang_lookup_tag_slot(&mapping->page_tree,
984				(void ***)pages, *index, nr_pages, tag);
985	ret = 0;
986	for (i = 0; i < nr_found; i++) {
987		struct page *page;
988repeat:
989		page = radix_tree_deref_slot((void **)pages[i]);
990		if (unlikely(!page))
991			continue;
992
993		if (radix_tree_exception(page)) {
994			if (radix_tree_deref_retry(page)) {
995				/*
996				 * Transient condition which can only trigger
997				 * when entry at index 0 moves out of or back
998				 * to root: none yet gotten, safe to restart.
999				 */
1000				goto restart;
1001			}
1002			/*
1003			 * This function is never used on a shmem/tmpfs
1004			 * mapping, so a swap entry won't be found here.
1005			 */
1006			BUG();
1007		}
1008
1009		if (!page_cache_get_speculative(page))
1010			goto repeat;
1011
1012		/* Has the page moved? */
1013		if (unlikely(page != *((void **)pages[i]))) {
1014			page_cache_release(page);
1015			goto repeat;
1016		}
1017
1018		pages[ret] = page;
1019		ret++;
1020	}
1021
1022	/*
1023	 * If all entries were removed before we could secure them,
1024	 * try again, because callers stop trying once 0 is returned.
1025	 */
1026	if (unlikely(!ret && nr_found))
1027		goto restart;
1028	rcu_read_unlock();
1029
1030	if (ret)
1031		*index = pages[ret - 1]->index + 1;
1032
1033	return ret;
1034}
1035EXPORT_SYMBOL(find_get_pages_tag);
1036
1037/**
1038 * grab_cache_page_nowait - returns locked page at given index in given cache
1039 * @mapping: target address_space
1040 * @index: the page index
1041 *
1042 * Same as grab_cache_page(), but do not wait if the page is unavailable.
1043 * This is intended for speculative data generators, where the data can
1044 * be regenerated if the page couldn't be grabbed.  This routine should
1045 * be safe to call while holding the lock for another page.
1046 *
1047 * Clear __GFP_FS when allocating the page to avoid recursion into the fs
1048 * and deadlock against the caller's locked page.
1049 */
1050struct page *
1051grab_cache_page_nowait(struct address_space *mapping, pgoff_t index)
1052{
1053	struct page *page = find_get_page(mapping, index);
1054
1055	if (page) {
1056		if (trylock_page(page))
1057			return page;
1058		page_cache_release(page);
1059		return NULL;
1060	}
1061	page = __page_cache_alloc(mapping_gfp_mask(mapping) & ~__GFP_FS);
1062	if (page && add_to_page_cache_lru(page, mapping, index, GFP_NOFS)) {
1063		page_cache_release(page);
1064		page = NULL;
1065	}
1066	return page;
1067}
1068EXPORT_SYMBOL(grab_cache_page_nowait);
1069
1070/*
1071 * CD/DVDs are error prone. When a medium error occurs, the driver may fail
1072 * a _large_ part of the i/o request. Imagine the worst scenario:
1073 *
1074 *      ---R__________________________________________B__________
1075 *         ^ reading here                             ^ bad block(assume 4k)
1076 *
1077 * read(R) => miss => readahead(R...B) => media error => frustrating retries
1078 * => failing the whole request => read(R) => read(R+1) =>
1079 * readahead(R+1...B+1) => bang => read(R+2) => read(R+3) =>
1080 * readahead(R+3...B+2) => bang => read(R+3) => read(R+4) =>
1081 * readahead(R+4...B+3) => bang => read(R+4) => read(R+5) => ......
1082 *
1083 * It is going insane. Fix it by quickly scaling down the readahead size.
1084 */
1085static void shrink_readahead_size_eio(struct file *filp,
1086					struct file_ra_state *ra)
1087{
1088	ra->ra_pages /= 4;
1089}
1090
1091/**
1092 * do_generic_file_read - generic file read routine
1093 * @filp:	the file to read
1094 * @ppos:	current file position
1095 * @desc:	read_descriptor
1096 * @actor:	read method
1097 *
1098 * This is a generic file read routine, and uses the
1099 * mapping->a_ops->readpage() function for the actual low-level stuff.
1100 *
1101 * This is really ugly. But the goto's actually try to clarify some
1102 * of the logic when it comes to error handling etc.
1103 */
1104static void do_generic_file_read(struct file *filp, loff_t *ppos,
1105		read_descriptor_t *desc, read_actor_t actor)
1106{
1107	struct address_space *mapping = filp->f_mapping;
1108	struct inode *inode = mapping->host;
1109	struct file_ra_state *ra = &filp->f_ra;
1110	pgoff_t index;
1111	pgoff_t last_index;
1112	pgoff_t prev_index;
1113	unsigned long offset;      /* offset into pagecache page */
1114	unsigned int prev_offset;
1115	int error;
1116
1117	index = *ppos >> PAGE_CACHE_SHIFT;
1118	prev_index = ra->prev_pos >> PAGE_CACHE_SHIFT;
1119	prev_offset = ra->prev_pos & (PAGE_CACHE_SIZE-1);
1120	last_index = (*ppos + desc->count + PAGE_CACHE_SIZE-1) >> PAGE_CACHE_SHIFT;
1121	offset = *ppos & ~PAGE_CACHE_MASK;
1122
1123	for (;;) {
1124		struct page *page;
1125		pgoff_t end_index;
1126		loff_t isize;
1127		unsigned long nr, ret;
1128
1129		cond_resched();
1130find_page:
1131		page = find_get_page(mapping, index);
1132		if (!page) {
1133			page_cache_sync_readahead(mapping,
1134					ra, filp,
1135					index, last_index - index);
1136			page = find_get_page(mapping, index);
1137			if (unlikely(page == NULL))
1138				goto no_cached_page;
1139		}
1140		if (PageReadahead(page)) {
1141			page_cache_async_readahead(mapping,
1142					ra, filp, page,
1143					index, last_index - index);
1144		}
1145		if (!PageUptodate(page)) {
1146			if (inode->i_blkbits == PAGE_CACHE_SHIFT ||
1147					!mapping->a_ops->is_partially_uptodate)
1148				goto page_not_up_to_date;
1149			if (!trylock_page(page))
1150				goto page_not_up_to_date;
1151			/* Did it get truncated before we got the lock? */
1152			if (!page->mapping)
1153				goto page_not_up_to_date_locked;
1154			if (!mapping->a_ops->is_partially_uptodate(page,
1155								desc, offset))
1156				goto page_not_up_to_date_locked;
1157			unlock_page(page);
1158		}
1159page_ok:
1160		/*
1161		 * i_size must be checked after we know the page is Uptodate.
1162		 *
1163		 * Checking i_size after the check allows us to calculate
1164		 * the correct value for "nr", which means the zero-filled
1165		 * part of the page is not copied back to userspace (unless
1166		 * another truncate extends the file - this is desired though).
1167		 */
1168
1169		isize = i_size_read(inode);
1170		end_index = (isize - 1) >> PAGE_CACHE_SHIFT;
1171		if (unlikely(!isize || index > end_index)) {
1172			page_cache_release(page);
1173			goto out;
1174		}
1175
1176		/* nr is the maximum number of bytes to copy from this page */
1177		nr = PAGE_CACHE_SIZE;
1178		if (index == end_index) {
1179			nr = ((isize - 1) & ~PAGE_CACHE_MASK) + 1;
1180			if (nr <= offset) {
1181				page_cache_release(page);
1182				goto out;
1183			}
1184		}
1185		nr = nr - offset;
1186
1187		/* If users can be writing to this page using arbitrary
1188		 * virtual addresses, take care about potential aliasing
1189		 * before reading the page on the kernel side.
1190		 */
1191		if (mapping_writably_mapped(mapping))
1192			flush_dcache_page(page);
1193
1194		/*
1195		 * When a sequential read accesses a page several times,
1196		 * only mark it as accessed the first time.
1197		 */
1198		if (prev_index != index || offset != prev_offset)
1199			mark_page_accessed(page);
1200		prev_index = index;
1201
1202		/*
1203		 * Ok, we have the page, and it's up-to-date, so
1204		 * now we can copy it to user space...
1205		 *
1206		 * The actor routine returns how many bytes were actually used..
1207		 * NOTE! This may not be the same as how much of a user buffer
1208		 * we filled up (we may be padding etc), so we can only update
1209		 * "pos" here (the actor routine has to update the user buffer
1210		 * pointers and the remaining count).
1211		 */
1212		ret = actor(desc, page, offset, nr);
1213		offset += ret;
1214		index += offset >> PAGE_CACHE_SHIFT;
1215		offset &= ~PAGE_CACHE_MASK;
1216		prev_offset = offset;
1217
1218		page_cache_release(page);
1219		if (ret == nr && desc->count)
1220			continue;
1221		goto out;
1222
1223page_not_up_to_date:
1224		/* Get exclusive access to the page ... */
1225		error = lock_page_killable(page);
1226		if (unlikely(error))
1227			goto readpage_error;
1228
1229page_not_up_to_date_locked:
1230		/* Did it get truncated before we got the lock? */
1231		if (!page->mapping) {
1232			unlock_page(page);
1233			page_cache_release(page);
1234			continue;
1235		}
1236
1237		/* Did somebody else fill it already? */
1238		if (PageUptodate(page)) {
1239			unlock_page(page);
1240			goto page_ok;
1241		}
1242
1243readpage:
1244		/*
1245		 * A previous I/O error may have been due to temporary
1246		 * failures, eg. multipath errors.
1247		 * PG_error will be set again if readpage fails.
1248		 */
1249		ClearPageError(page);
1250		/* Start the actual read. The read will unlock the page. */
1251		error = mapping->a_ops->readpage(filp, page);
1252
1253		if (unlikely(error)) {
1254			if (error == AOP_TRUNCATED_PAGE) {
1255				page_cache_release(page);
1256				goto find_page;
1257			}
1258			goto readpage_error;
1259		}
1260
1261		if (!PageUptodate(page)) {
1262			error = lock_page_killable(page);
1263			if (unlikely(error))
1264				goto readpage_error;
1265			if (!PageUptodate(page)) {
1266				if (page->mapping == NULL) {
1267					/*
1268					 * invalidate_mapping_pages got it
1269					 */
1270					unlock_page(page);
1271					page_cache_release(page);
1272					goto find_page;
1273				}
1274				unlock_page(page);
1275				shrink_readahead_size_eio(filp, ra);
1276				error = -EIO;
1277				goto readpage_error;
1278			}
1279			unlock_page(page);
1280		}
1281
1282		goto page_ok;
1283
1284readpage_error:
1285		/* UHHUH! A synchronous read error occurred. Report it */
1286		desc->error = error;
1287		page_cache_release(page);
1288		goto out;
1289
1290no_cached_page:
1291		/*
1292		 * Ok, it wasn't cached, so we need to create a new
1293		 * page..
1294		 */
1295		page = page_cache_alloc_cold(mapping);
1296		if (!page) {
1297			desc->error = -ENOMEM;
1298			goto out;
1299		}
1300		error = add_to_page_cache_lru(page, mapping,
1301						index, GFP_KERNEL);
1302		if (error) {
1303			page_cache_release(page);
1304			if (error == -EEXIST)
1305				goto find_page;
1306			desc->error = error;
1307			goto out;
1308		}
1309		goto readpage;
1310	}
1311
1312out:
1313	ra->prev_pos = prev_index;
1314	ra->prev_pos <<= PAGE_CACHE_SHIFT;
1315	ra->prev_pos |= prev_offset;
1316
1317	*ppos = ((loff_t)index << PAGE_CACHE_SHIFT) + offset;
1318	file_accessed(filp);
1319}
1320
1321int file_read_actor(read_descriptor_t *desc, struct page *page,
1322			unsigned long offset, unsigned long size)
1323{
1324	char *kaddr;
1325	unsigned long left, count = desc->count;
1326
1327	if (size > count)
1328		size = count;
1329
1330	/*
1331	 * Faults on the destination of a read are common, so do it before
1332	 * taking the kmap.
1333	 */
1334	if (!fault_in_pages_writeable(desc->arg.buf, size)) {
1335		kaddr = kmap_atomic(page, KM_USER0);
1336		left = __copy_to_user_inatomic(desc->arg.buf,
1337						kaddr + offset, size);
1338		kunmap_atomic(kaddr, KM_USER0);
1339		if (left == 0)
1340			goto success;
1341	}
1342
1343	/* Do it the slow way */
1344	kaddr = kmap(page);
1345	left = __copy_to_user(desc->arg.buf, kaddr + offset, size);
1346	kunmap(page);
1347
1348	if (left) {
1349		size -= left;
1350		desc->error = -EFAULT;
1351	}
1352success:
1353	desc->count = count - size;
1354	desc->written += size;
1355	desc->arg.buf += size;
1356	return size;
1357}
1358
1359/*
1360 * Performs necessary checks before doing a write
1361 * @iov:	io vector request
1362 * @nr_segs:	number of segments in the iovec
1363 * @count:	number of bytes to write
1364 * @access_flags: type of access: %VERIFY_READ or %VERIFY_WRITE
1365 *
1366 * Adjust number of segments and amount of bytes to write (nr_segs should be
1367 * properly initialized first). Returns appropriate error code that caller
1368 * should return or zero in case that write should be allowed.
1369 */
1370int generic_segment_checks(const struct iovec *iov,
1371			unsigned long *nr_segs, size_t *count, int access_flags)
1372{
1373	unsigned long   seg;
1374	size_t cnt = 0;
1375	for (seg = 0; seg < *nr_segs; seg++) {
1376		const struct iovec *iv = &iov[seg];
1377
1378		/*
1379		 * If any segment has a negative length, or the cumulative
1380		 * length ever wraps negative then return -EINVAL.
1381		 */
1382		cnt += iv->iov_len;
1383		if (unlikely((ssize_t)(cnt|iv->iov_len) < 0))
1384			return -EINVAL;
1385		if (access_ok(access_flags, iv->iov_base, iv->iov_len))
1386			continue;
1387		if (seg == 0)
1388			return -EFAULT;
1389		*nr_segs = seg;
1390		cnt -= iv->iov_len;	/* This segment is no good */
1391		break;
1392	}
1393	*count = cnt;
1394	return 0;
1395}
1396EXPORT_SYMBOL(generic_segment_checks);
1397
1398/**
1399 * generic_file_aio_read - generic filesystem read routine
1400 * @iocb:	kernel I/O control block
1401 * @iov:	io vector request
1402 * @nr_segs:	number of segments in the iovec
1403 * @pos:	current file position
1404 *
1405 * This is the "read()" routine for all filesystems
1406 * that can use the page cache directly.
1407 */
1408ssize_t
1409generic_file_aio_read(struct kiocb *iocb, const struct iovec *iov,
1410		unsigned long nr_segs, loff_t pos)
1411{
1412	struct file *filp = iocb->ki_filp;
1413	ssize_t retval;
1414	unsigned long seg = 0;
1415	size_t count;
1416	loff_t *ppos = &iocb->ki_pos;
1417	struct blk_plug plug;
1418
1419	count = 0;
1420	retval = generic_segment_checks(iov, &nr_segs, &count, VERIFY_WRITE);
1421	if (retval)
1422		return retval;
1423
1424	blk_start_plug(&plug);
1425
1426	/* coalesce the iovecs and go direct-to-BIO for O_DIRECT */
1427	if (filp->f_flags & O_DIRECT) {
1428		loff_t size;
1429		struct address_space *mapping;
1430		struct inode *inode;
1431
1432		mapping = filp->f_mapping;
1433		inode = mapping->host;
1434		if (!count)
1435			goto out; /* skip atime */
1436		size = i_size_read(inode);
1437		if (pos < size) {
1438			retval = filemap_write_and_wait_range(mapping, pos,
1439					pos + iov_length(iov, nr_segs) - 1);
1440			if (!retval) {
1441				retval = mapping->a_ops->direct_IO(READ, iocb,
1442							iov, pos, nr_segs);
1443			}
1444			if (retval > 0) {
1445				*ppos = pos + retval;
1446				count -= retval;
1447			}
1448
1449			/*
1450			 * Btrfs can have a short DIO read if we encounter
1451			 * compressed extents, so if there was an error, or if
1452			 * we've already read everything we wanted to, or if
1453			 * there was a short read because we hit EOF, go ahead
1454			 * and return.  Otherwise fallthrough to buffered io for
1455			 * the rest of the read.
1456			 */
1457			if (retval < 0 || !count || *ppos >= size) {
1458				file_accessed(filp);
1459				goto out;
1460			}
1461		}
1462	}
1463
1464	count = retval;
1465	for (seg = 0; seg < nr_segs; seg++) {
1466		read_descriptor_t desc;
1467		loff_t offset = 0;
1468
1469		/*
1470		 * If we did a short DIO read we need to skip the section of the
1471		 * iov that we've already read data into.
1472		 */
1473		if (count) {
1474			if (count > iov[seg].iov_len) {
1475				count -= iov[seg].iov_len;
1476				continue;
1477			}
1478			offset = count;
1479			count = 0;
1480		}
1481
1482		desc.written = 0;
1483		desc.arg.buf = iov[seg].iov_base + offset;
1484		desc.count = iov[seg].iov_len - offset;
1485		if (desc.count == 0)
1486			continue;
1487		desc.error = 0;
1488		do_generic_file_read(filp, ppos, &desc, file_read_actor);
1489		retval += desc.written;
1490		if (desc.error) {
1491			retval = retval ?: desc.error;
1492			break;
1493		}
1494		if (desc.count > 0)
1495			break;
1496	}
1497out:
1498	blk_finish_plug(&plug);
1499	return retval;
1500}
1501EXPORT_SYMBOL(generic_file_aio_read);
1502
1503static ssize_t
1504do_readahead(struct address_space *mapping, struct file *filp,
1505	     pgoff_t index, unsigned long nr)
1506{
1507	if (!mapping || !mapping->a_ops || !mapping->a_ops->readpage)
1508		return -EINVAL;
1509
1510	force_page_cache_readahead(mapping, filp, index, nr);
1511	return 0;
1512}
1513
1514SYSCALL_DEFINE(readahead)(int fd, loff_t offset, size_t count)
1515{
1516	ssize_t ret;
1517	struct file *file;
1518
1519	ret = -EBADF;
1520	file = fget(fd);
1521	if (file) {
1522		if (file->f_mode & FMODE_READ) {
1523			struct address_space *mapping = file->f_mapping;
1524			pgoff_t start = offset >> PAGE_CACHE_SHIFT;
1525			pgoff_t end = (offset + count - 1) >> PAGE_CACHE_SHIFT;
1526			unsigned long len = end - start + 1;
1527			ret = do_readahead(mapping, file, start, len);
1528		}
1529		fput(file);
1530	}
1531	return ret;
1532}
1533#ifdef CONFIG_HAVE_SYSCALL_WRAPPERS
1534asmlinkage long SyS_readahead(long fd, loff_t offset, long count)
1535{
1536	return SYSC_readahead((int) fd, offset, (size_t) count);
1537}
1538SYSCALL_ALIAS(sys_readahead, SyS_readahead);
1539#endif
1540
1541#ifdef CONFIG_MMU
1542/**
1543 * page_cache_read - adds requested page to the page cache if not already there
1544 * @file:	file to read
1545 * @offset:	page index
1546 *
1547 * This adds the requested page to the page cache if it isn't already there,
1548 * and schedules an I/O to read in its contents from disk.
1549 */
1550static int page_cache_read(struct file *file, pgoff_t offset)
1551{
1552	struct address_space *mapping = file->f_mapping;
1553	struct page *page;
1554	int ret;
1555
1556	do {
1557		page = page_cache_alloc_cold(mapping);
1558		if (!page)
1559			return -ENOMEM;
1560
1561		ret = add_to_page_cache_lru(page, mapping, offset, GFP_KERNEL);
1562		if (ret == 0)
1563			ret = mapping->a_ops->readpage(file, page);
1564		else if (ret == -EEXIST)
1565			ret = 0; /* losing race to add is OK */
1566
1567		page_cache_release(page);
1568
1569	} while (ret == AOP_TRUNCATED_PAGE);
1570
1571	return ret;
1572}
1573
1574#define MMAP_LOTSAMISS  (100)
1575
1576/*
1577 * Synchronous readahead happens when we don't even find
1578 * a page in the page cache at all.
1579 */
1580static void do_sync_mmap_readahead(struct vm_area_struct *vma,
1581				   struct file_ra_state *ra,
1582				   struct file *file,
1583				   pgoff_t offset)
1584{
1585	unsigned long ra_pages;
1586	struct address_space *mapping = file->f_mapping;
1587
1588	/* If we don't want any read-ahead, don't bother */
1589	if (VM_RandomReadHint(vma))
1590		return;
1591	if (!ra->ra_pages)
1592		return;
1593
1594	if (VM_SequentialReadHint(vma)) {
1595		page_cache_sync_readahead(mapping, ra, file, offset,
1596					  ra->ra_pages);
1597		return;
1598	}
1599
1600	/* Avoid banging the cache line if not needed */
1601	if (ra->mmap_miss < MMAP_LOTSAMISS * 10)
1602		ra->mmap_miss++;
1603
1604	/*
1605	 * Do we miss much more than hit in this file? If so,
1606	 * stop bothering with read-ahead. It will only hurt.
1607	 */
1608	if (ra->mmap_miss > MMAP_LOTSAMISS)
1609		return;
1610
1611	/*
1612	 * mmap read-around
1613	 */
1614	ra_pages = max_sane_readahead(ra->ra_pages);
1615	ra->start = max_t(long, 0, offset - ra_pages / 2);
1616	ra->size = ra_pages;
1617	ra->async_size = ra_pages / 4;
1618	ra_submit(ra, mapping, file);
1619}
1620
1621/*
1622 * Asynchronous readahead happens when we find the page and PG_readahead,
1623 * so we want to possibly extend the readahead further..
1624 */
1625static void do_async_mmap_readahead(struct vm_area_struct *vma,
1626				    struct file_ra_state *ra,
1627				    struct file *file,
1628				    struct page *page,
1629				    pgoff_t offset)
1630{
1631	struct address_space *mapping = file->f_mapping;
1632
1633	/* If we don't want any read-ahead, don't bother */
1634	if (VM_RandomReadHint(vma))
1635		return;
1636	if (ra->mmap_miss > 0)
1637		ra->mmap_miss--;
1638	if (PageReadahead(page))
1639		page_cache_async_readahead(mapping, ra, file,
1640					   page, offset, ra->ra_pages);
1641}
1642
1643/**
1644 * filemap_fault - read in file data for page fault handling
1645 * @vma:	vma in which the fault was taken
1646 * @vmf:	struct vm_fault containing details of the fault
1647 *
1648 * filemap_fault() is invoked via the vma operations vector for a
1649 * mapped memory region to read in file data during a page fault.
1650 *
1651 * The goto's are kind of ugly, but this streamlines the normal case of having
1652 * it in the page cache, and handles the special cases reasonably without
1653 * having a lot of duplicated code.
1654 */
1655int filemap_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
1656{
1657	int error;
1658	struct file *file = vma->vm_file;
1659	struct address_space *mapping = file->f_mapping;
1660	struct file_ra_state *ra = &file->f_ra;
1661	struct inode *inode = mapping->host;
1662	pgoff_t offset = vmf->pgoff;
1663	struct page *page;
1664	pgoff_t size;
1665	int ret = 0;
1666
1667	size = (i_size_read(inode) + PAGE_CACHE_SIZE - 1) >> PAGE_CACHE_SHIFT;
1668	if (offset >= size)
1669		return VM_FAULT_SIGBUS;
1670
1671	/*
1672	 * Do we have something in the page cache already?
1673	 */
1674	page = find_get_page(mapping, offset);
1675	if (likely(page)) {
1676		/*
1677		 * We found the page, so try async readahead before
1678		 * waiting for the lock.
1679		 */
1680		do_async_mmap_readahead(vma, ra, file, page, offset);
1681	} else {
1682		/* No page in the page cache at all */
1683		do_sync_mmap_readahead(vma, ra, file, offset);
1684		count_vm_event(PGMAJFAULT);
1685		mem_cgroup_count_vm_event(vma->vm_mm, PGMAJFAULT);
1686		ret = VM_FAULT_MAJOR;
1687retry_find:
1688		page = find_get_page(mapping, offset);
1689		if (!page)
1690			goto no_cached_page;
1691	}
1692
1693	if (!lock_page_or_retry(page, vma->vm_mm, vmf->flags)) {
1694		page_cache_release(page);
1695		return ret | VM_FAULT_RETRY;
1696	}
1697
1698	/* Did it get truncated? */
1699	if (unlikely(page->mapping != mapping)) {
1700		unlock_page(page);
1701		put_page(page);
1702		goto retry_find;
1703	}
1704	VM_BUG_ON(page->index != offset);
1705
1706	/*
1707	 * We have a locked page in the page cache, now we need to check
1708	 * that it's up-to-date. If not, it is going to be due to an error.
1709	 */
1710	if (unlikely(!PageUptodate(page)))
1711		goto page_not_uptodate;
1712
1713	/*
1714	 * Found the page and have a reference on it.
1715	 * We must recheck i_size under page lock.
1716	 */
1717	size = (i_size_read(inode) + PAGE_CACHE_SIZE - 1) >> PAGE_CACHE_SHIFT;
1718	if (unlikely(offset >= size)) {
1719		unlock_page(page);
1720		page_cache_release(page);
1721		return VM_FAULT_SIGBUS;
1722	}
1723
1724	vmf->page = page;
1725	return ret | VM_FAULT_LOCKED;
1726
1727no_cached_page:
1728	/*
1729	 * We're only likely to ever get here if MADV_RANDOM is in
1730	 * effect.
1731	 */
1732	error = page_cache_read(file, offset);
1733
1734	/*
1735	 * The page we want has now been added to the page cache.
1736	 * In the unlikely event that someone removed it in the
1737	 * meantime, we'll just come back here and read it again.
1738	 */
1739	if (error >= 0)
1740		goto retry_find;
1741
1742	/*
1743	 * An error return from page_cache_read can result if the
1744	 * system is low on memory, or a problem occurs while trying
1745	 * to schedule I/O.
1746	 */
1747	if (error == -ENOMEM)
1748		return VM_FAULT_OOM;
1749	return VM_FAULT_SIGBUS;
1750
1751page_not_uptodate:
1752	/*
1753	 * Umm, take care of errors if the page isn't up-to-date.
1754	 * Try to re-read it _once_. We do this synchronously,
1755	 * because there really aren't any performance issues here
1756	 * and we need to check for errors.
1757	 */
1758	ClearPageError(page);
1759	error = mapping->a_ops->readpage(file, page);
1760	if (!error) {
1761		wait_on_page_locked(page);
1762		if (!PageUptodate(page))
1763			error = -EIO;
1764	}
1765	page_cache_release(page);
1766
1767	if (!error || error == AOP_TRUNCATED_PAGE)
1768		goto retry_find;
1769
1770	/* Things didn't work out. Return zero to tell the mm layer so. */
1771	shrink_readahead_size_eio(file, ra);
1772	return VM_FAULT_SIGBUS;
1773}
1774EXPORT_SYMBOL(filemap_fault);
1775
1776const struct vm_operations_struct generic_file_vm_ops = {
1777	.fault		= filemap_fault,
1778};
1779
1780/* This is used for a general mmap of a disk file */
1781
1782int generic_file_mmap(struct file * file, struct vm_area_struct * vma)
1783{
1784	struct address_space *mapping = file->f_mapping;
1785
1786	if (!mapping->a_ops->readpage)
1787		return -ENOEXEC;
1788	file_accessed(file);
1789	vma->vm_ops = &generic_file_vm_ops;
1790	vma->vm_flags |= VM_CAN_NONLINEAR;
1791	return 0;
1792}
1793
1794/*
1795 * This is for filesystems which do not implement ->writepage.
1796 */
1797int generic_file_readonly_mmap(struct file *file, struct vm_area_struct *vma)
1798{
1799	if ((vma->vm_flags & VM_SHARED) && (vma->vm_flags & VM_MAYWRITE))
1800		return -EINVAL;
1801	return generic_file_mmap(file, vma);
1802}
1803#else
1804int generic_file_mmap(struct file * file, struct vm_area_struct * vma)
1805{
1806	return -ENOSYS;
1807}
1808int generic_file_readonly_mmap(struct file * file, struct vm_area_struct * vma)
1809{
1810	return -ENOSYS;
1811}
1812#endif /* CONFIG_MMU */
1813
1814EXPORT_SYMBOL(generic_file_mmap);
1815EXPORT_SYMBOL(generic_file_readonly_mmap);
1816
1817static struct page *__read_cache_page(struct address_space *mapping,
1818				pgoff_t index,
1819				int (*filler)(void *, struct page *),
1820				void *data,
1821				gfp_t gfp)
1822{
1823	struct page *page;
1824	int err;
1825repeat:
1826	page = find_get_page(mapping, index);
1827	if (!page) {
1828		page = __page_cache_alloc(gfp | __GFP_COLD);
1829		if (!page)
1830			return ERR_PTR(-ENOMEM);
1831		err = add_to_page_cache_lru(page, mapping, index, gfp);
1832		if (unlikely(err)) {
1833			page_cache_release(page);
1834			if (err == -EEXIST)
1835				goto repeat;
1836			/* Presumably ENOMEM for radix tree node */
1837			return ERR_PTR(err);
1838		}
1839		err = filler(data, page);
1840		if (err < 0) {
1841			page_cache_release(page);
1842			page = ERR_PTR(err);
1843		}
1844	}
1845	return page;
1846}
1847
1848static struct page *do_read_cache_page(struct address_space *mapping,
1849				pgoff_t index,
1850				int (*filler)(void *, struct page *),
1851				void *data,
1852				gfp_t gfp)
1853
1854{
1855	struct page *page;
1856	int err;
1857
1858retry:
1859	page = __read_cache_page(mapping, index, filler, data, gfp);
1860	if (IS_ERR(page))
1861		return page;
1862	if (PageUptodate(page))
1863		goto out;
1864
1865	lock_page(page);
1866	if (!page->mapping) {
1867		unlock_page(page);
1868		page_cache_release(page);
1869		goto retry;
1870	}
1871	if (PageUptodate(page)) {
1872		unlock_page(page);
1873		goto out;
1874	}
1875	err = filler(data, page);
1876	if (err < 0) {
1877		page_cache_release(page);
1878		return ERR_PTR(err);
1879	}
1880out:
1881	mark_page_accessed(page);
1882	return page;
1883}
1884
1885/**
1886 * read_cache_page_async - read into page cache, fill it if needed
1887 * @mapping:	the page's address_space
1888 * @index:	the page index
1889 * @filler:	function to perform the read
1890 * @data:	first arg to filler(data, page) function, often left as NULL
1891 *
1892 * Same as read_cache_page, but don't wait for page to become unlocked
1893 * after submitting it to the filler.
1894 *
1895 * Read into the page cache. If a page already exists, and PageUptodate() is
1896 * not set, try to fill the page but don't wait for it to become unlocked.
1897 *
1898 * If the page does not get brought uptodate, return -EIO.
1899 */
1900struct page *read_cache_page_async(struct address_space *mapping,
1901				pgoff_t index,
1902				int (*filler)(void *, struct page *),
1903				void *data)
1904{
1905	return do_read_cache_page(mapping, index, filler, data, mapping_gfp_mask(mapping));
1906}
1907EXPORT_SYMBOL(read_cache_page_async);
1908
1909static struct page *wait_on_page_read(struct page *page)
1910{
1911	if (!IS_ERR(page)) {
1912		wait_on_page_locked(page);
1913		if (!PageUptodate(page)) {
1914			page_cache_release(page);
1915			page = ERR_PTR(-EIO);
1916		}
1917	}
1918	return page;
1919}
1920
1921/**
1922 * read_cache_page_gfp - read into page cache, using specified page allocation flags.
1923 * @mapping:	the page's address_space
1924 * @index:	the page index
1925 * @gfp:	the page allocator flags to use if allocating
1926 *
1927 * This is the same as "read_mapping_page(mapping, index, NULL)", but with
1928 * any new page allocations done using the specified allocation flags.
1929 *
1930 * If the page does not get brought uptodate, return -EIO.
1931 */
1932struct page *read_cache_page_gfp(struct address_space *mapping,
1933				pgoff_t index,
1934				gfp_t gfp)
1935{
1936	filler_t *filler = (filler_t *)mapping->a_ops->readpage;
1937
1938	return wait_on_page_read(do_read_cache_page(mapping, index, filler, NULL, gfp));
1939}
1940EXPORT_SYMBOL(read_cache_page_gfp);
1941
1942/**
1943 * read_cache_page - read into page cache, fill it if needed
1944 * @mapping:	the page's address_space
1945 * @index:	the page index
1946 * @filler:	function to perform the read
1947 * @data:	first arg to filler(data, page) function, often left as NULL
1948 *
1949 * Read into the page cache. If a page already exists, and PageUptodate() is
1950 * not set, try to fill the page then wait for it to become unlocked.
1951 *
1952 * If the page does not get brought uptodate, return -EIO.
1953 */
1954struct page *read_cache_page(struct address_space *mapping,
1955				pgoff_t index,
1956				int (*filler)(void *, struct page *),
1957				void *data)
1958{
1959	return wait_on_page_read(read_cache_page_async(mapping, index, filler, data));
1960}
1961EXPORT_SYMBOL(read_cache_page);
1962
1963/*
1964 * The logic we want is
1965 *
1966 *	if suid or (sgid and xgrp)
1967 *		remove privs
1968 */
1969int should_remove_suid(struct dentry *dentry)
1970{
1971	mode_t mode = dentry->d_inode->i_mode;
1972	int kill = 0;
1973
1974	/* suid always must be killed */
1975	if (unlikely(mode & S_ISUID))
1976		kill = ATTR_KILL_SUID;
1977
1978	/*
1979	 * sgid without any exec bits is just a mandatory locking mark; leave
1980	 * it alone.  If some exec bits are set, it's a real sgid; kill it.
1981	 */
1982	if (unlikely((mode & S_ISGID) && (mode & S_IXGRP)))
1983		kill |= ATTR_KILL_SGID;
1984
1985	if (unlikely(kill && !capable(CAP_FSETID) && S_ISREG(mode)))
1986		return kill;
1987
1988	return 0;
1989}
1990EXPORT_SYMBOL(should_remove_suid);
1991
1992static int __remove_suid(struct dentry *dentry, int kill)
1993{
1994	struct iattr newattrs;
1995
1996	newattrs.ia_valid = ATTR_FORCE | kill;
1997	return notify_change(dentry, &newattrs);
1998}
1999
2000int file_remove_suid(struct file *file)
2001{
2002	struct dentry *dentry = file->f_path.dentry;
2003	struct inode *inode = dentry->d_inode;
2004	int killsuid;
2005	int killpriv;
2006	int error = 0;
2007
2008	/* Fast path for nothing security related */
2009	if (IS_NOSEC(inode))
2010		return 0;
2011
2012	killsuid = should_remove_suid(dentry);
2013	killpriv = security_inode_need_killpriv(dentry);
2014
2015	if (killpriv < 0)
2016		return killpriv;
2017	if (killpriv)
2018		error = security_inode_killpriv(dentry);
2019	if (!error && killsuid)
2020		error = __remove_suid(dentry, killsuid);
2021	if (!error && (inode->i_sb->s_flags & MS_NOSEC))
2022		inode->i_flags |= S_NOSEC;
2023
2024	return error;
2025}
2026EXPORT_SYMBOL(file_remove_suid);
2027
2028static size_t __iovec_copy_from_user_inatomic(char *vaddr,
2029			const struct iovec *iov, size_t base, size_t bytes)
2030{
2031	size_t copied = 0, left = 0;
2032
2033	while (bytes) {
2034		char __user *buf = iov->iov_base + base;
2035		int copy = min(bytes, iov->iov_len - base);
2036
2037		base = 0;
2038		left = __copy_from_user_inatomic(vaddr, buf, copy);
2039		copied += copy;
2040		bytes -= copy;
2041		vaddr += copy;
2042		iov++;
2043
2044		if (unlikely(left))
2045			break;
2046	}
2047	return copied - left;
2048}
2049
2050/*
2051 * Copy as much as we can into the page and return the number of bytes which
2052 * were successfully copied.  If a fault is encountered then return the number of
2053 * bytes which were copied.
2054 */
2055size_t iov_iter_copy_from_user_atomic(struct page *page,
2056		struct iov_iter *i, unsigned long offset, size_t bytes)
2057{
2058	char *kaddr;
2059	size_t copied;
2060
2061	BUG_ON(!in_atomic());
2062	kaddr = kmap_atomic(page, KM_USER0);
2063	if (likely(i->nr_segs == 1)) {
2064		int left;
2065		char __user *buf = i->iov->iov_base + i->iov_offset;
2066		left = __copy_from_user_inatomic(kaddr + offset, buf, bytes);
2067		copied = bytes - left;
2068	} else {
2069		copied = __iovec_copy_from_user_inatomic(kaddr + offset,
2070						i->iov, i->iov_offset, bytes);
2071	}
2072	kunmap_atomic(kaddr, KM_USER0);
2073
2074	return copied;
2075}
2076EXPORT_SYMBOL(iov_iter_copy_from_user_atomic);
2077
2078/*
2079 * This has the same sideeffects and return value as
2080 * iov_iter_copy_from_user_atomic().
2081 * The difference is that it attempts to resolve faults.
2082 * Page must not be locked.
2083 */
2084size_t iov_iter_copy_from_user(struct page *page,
2085		struct iov_iter *i, unsigned long offset, size_t bytes)
2086{
2087	char *kaddr;
2088	size_t copied;
2089
2090	kaddr = kmap(page);
2091	if (likely(i->nr_segs == 1)) {
2092		int left;
2093		char __user *buf = i->iov->iov_base + i->iov_offset;
2094		left = __copy_from_user(kaddr + offset, buf, bytes);
2095		copied = bytes - left;
2096	} else {
2097		copied = __iovec_copy_from_user_inatomic(kaddr + offset,
2098						i->iov, i->iov_offset, bytes);
2099	}
2100	kunmap(page);
2101	return copied;
2102}
2103EXPORT_SYMBOL(iov_iter_copy_from_user);
2104
2105void iov_iter_advance(struct iov_iter *i, size_t bytes)
2106{
2107	BUG_ON(i->count < bytes);
2108
2109	if (likely(i->nr_segs == 1)) {
2110		i->iov_offset += bytes;
2111		i->count -= bytes;
2112	} else {
2113		const struct iovec *iov = i->iov;
2114		size_t base = i->iov_offset;
2115		unsigned long nr_segs = i->nr_segs;
2116
2117		/*
2118		 * The !iov->iov_len check ensures we skip over unlikely
2119		 * zero-length segments (without overruning the iovec).
2120		 */
2121		while (bytes || unlikely(i->count && !iov->iov_len)) {
2122			int copy;
2123
2124			copy = min(bytes, iov->iov_len - base);
2125			BUG_ON(!i->count || i->count < copy);
2126			i->count -= copy;
2127			bytes -= copy;
2128			base += copy;
2129			if (iov->iov_len == base) {
2130				iov++;
2131				nr_segs--;
2132				base = 0;
2133			}
2134		}
2135		i->iov = iov;
2136		i->iov_offset = base;
2137		i->nr_segs = nr_segs;
2138	}
2139}
2140EXPORT_SYMBOL(iov_iter_advance);
2141
2142/*
2143 * Fault in the first iovec of the given iov_iter, to a maximum length
2144 * of bytes. Returns 0 on success, or non-zero if the memory could not be
2145 * accessed (ie. because it is an invalid address).
2146 *
2147 * writev-intensive code may want this to prefault several iovecs -- that
2148 * would be possible (callers must not rely on the fact that _only_ the
2149 * first iovec will be faulted with the current implementation).
2150 */
2151int iov_iter_fault_in_readable(struct iov_iter *i, size_t bytes)
2152{
2153	char __user *buf = i->iov->iov_base + i->iov_offset;
2154	bytes = min(bytes, i->iov->iov_len - i->iov_offset);
2155	return fault_in_pages_readable(buf, bytes);
2156}
2157EXPORT_SYMBOL(iov_iter_fault_in_readable);
2158
2159/*
2160 * Return the count of just the current iov_iter segment.
2161 */
2162size_t iov_iter_single_seg_count(struct iov_iter *i)
2163{
2164	const struct iovec *iov = i->iov;
2165	if (i->nr_segs == 1)
2166		return i->count;
2167	else
2168		return min(i->count, iov->iov_len - i->iov_offset);
2169}
2170EXPORT_SYMBOL(iov_iter_single_seg_count);
2171
2172/*
2173 * Performs necessary checks before doing a write
2174 *
2175 * Can adjust writing position or amount of bytes to write.
2176 * Returns appropriate error code that caller should return or
2177 * zero in case that write should be allowed.
2178 */
2179inline int generic_write_checks(struct file *file, loff_t *pos, size_t *count, int isblk)
2180{
2181	struct inode *inode = file->f_mapping->host;
2182	unsigned long limit = rlimit(RLIMIT_FSIZE);
2183
2184        if (unlikely(*pos < 0))
2185                return -EINVAL;
2186
2187	if (!isblk) {
2188		/* FIXME: this is for backwards compatibility with 2.4 */
2189		if (file->f_flags & O_APPEND)
2190                        *pos = i_size_read(inode);
2191
2192		if (limit != RLIM_INFINITY) {
2193			if (*pos >= limit) {
2194				send_sig(SIGXFSZ, current, 0);
2195				return -EFBIG;
2196			}
2197			if (*count > limit - (typeof(limit))*pos) {
2198				*count = limit - (typeof(limit))*pos;
2199			}
2200		}
2201	}
2202
2203	/*
2204	 * LFS rule
2205	 */
2206	if (unlikely(*pos + *count > MAX_NON_LFS &&
2207				!(file->f_flags & O_LARGEFILE))) {
2208		if (*pos >= MAX_NON_LFS) {
2209			return -EFBIG;
2210		}
2211		if (*count > MAX_NON_LFS - (unsigned long)*pos) {
2212			*count = MAX_NON_LFS - (unsigned long)*pos;
2213		}
2214	}
2215
2216	/*
2217	 * Are we about to exceed the fs block limit ?
2218	 *
2219	 * If we have written data it becomes a short write.  If we have
2220	 * exceeded without writing data we send a signal and return EFBIG.
2221	 * Linus frestrict idea will clean these up nicely..
2222	 */
2223	if (likely(!isblk)) {
2224		if (unlikely(*pos >= inode->i_sb->s_maxbytes)) {
2225			if (*count || *pos > inode->i_sb->s_maxbytes) {
2226				return -EFBIG;
2227			}
2228			/* zero-length writes at ->s_maxbytes are OK */
2229		}
2230
2231		if (unlikely(*pos + *count > inode->i_sb->s_maxbytes))
2232			*count = inode->i_sb->s_maxbytes - *pos;
2233	} else {
2234#ifdef CONFIG_BLOCK
2235		loff_t isize;
2236		if (bdev_read_only(I_BDEV(inode)))
2237			return -EPERM;
2238		isize = i_size_read(inode);
2239		if (*pos >= isize) {
2240			if (*count || *pos > isize)
2241				return -ENOSPC;
2242		}
2243
2244		if (*pos + *count > isize)
2245			*count = isize - *pos;
2246#else
2247		return -EPERM;
2248#endif
2249	}
2250	return 0;
2251}
2252EXPORT_SYMBOL(generic_write_checks);
2253
2254int pagecache_write_begin(struct file *file, struct address_space *mapping,
2255				loff_t pos, unsigned len, unsigned flags,
2256				struct page **pagep, void **fsdata)
2257{
2258	const struct address_space_operations *aops = mapping->a_ops;
2259
2260	return aops->write_begin(file, mapping, pos, len, flags,
2261							pagep, fsdata);
2262}
2263EXPORT_SYMBOL(pagecache_write_begin);
2264
2265int pagecache_write_end(struct file *file, struct address_space *mapping,
2266				loff_t pos, unsigned len, unsigned copied,
2267				struct page *page, void *fsdata)
2268{
2269	const struct address_space_operations *aops = mapping->a_ops;
2270
2271	mark_page_accessed(page);
2272	return aops->write_end(file, mapping, pos, len, copied, page, fsdata);
2273}
2274EXPORT_SYMBOL(pagecache_write_end);
2275
2276ssize_t
2277generic_file_direct_write(struct kiocb *iocb, const struct iovec *iov,
2278		unsigned long *nr_segs, loff_t pos, loff_t *ppos,
2279		size_t count, size_t ocount)
2280{
2281	struct file	*file = iocb->ki_filp;
2282	struct address_space *mapping = file->f_mapping;
2283	struct inode	*inode = mapping->host;
2284	ssize_t		written;
2285	size_t		write_len;
2286	pgoff_t		end;
2287
2288	if (count != ocount)
2289		*nr_segs = iov_shorten((struct iovec *)iov, *nr_segs, count);
2290
2291	write_len = iov_length(iov, *nr_segs);
2292	end = (pos + write_len - 1) >> PAGE_CACHE_SHIFT;
2293
2294	written = filemap_write_and_wait_range(mapping, pos, pos + write_len - 1);
2295	if (written)
2296		goto out;
2297
2298	/*
2299	 * After a write we want buffered reads to be sure to go to disk to get
2300	 * the new data.  We invalidate clean cached page from the region we're
2301	 * about to write.  We do this *before* the write so that we can return
2302	 * without clobbering -EIOCBQUEUED from ->direct_IO().
2303	 */
2304	if (mapping->nrpages) {
2305		written = invalidate_inode_pages2_range(mapping,
2306					pos >> PAGE_CACHE_SHIFT, end);
2307		/*
2308		 * If a page can not be invalidated, return 0 to fall back
2309		 * to buffered write.
2310		 */
2311		if (written) {
2312			if (written == -EBUSY)
2313				return 0;
2314			goto out;
2315		}
2316	}
2317
2318	written = mapping->a_ops->direct_IO(WRITE, iocb, iov, pos, *nr_segs);
2319
2320	/*
2321	 * Finally, try again to invalidate clean pages which might have been
2322	 * cached by non-direct readahead, or faulted in by get_user_pages()
2323	 * if the source of the write was an mmap'ed region of the file
2324	 * we're writing.  Either one is a pretty crazy thing to do,
2325	 * so we don't support it 100%.  If this invalidation
2326	 * fails, tough, the write still worked...
2327	 */
2328	if (mapping->nrpages) {
2329		invalidate_inode_pages2_range(mapping,
2330					      pos >> PAGE_CACHE_SHIFT, end);
2331	}
2332
2333	if (written > 0) {
2334		pos += written;
2335		if (pos > i_size_read(inode) && !S_ISBLK(inode->i_mode)) {
2336			i_size_write(inode, pos);
2337			mark_inode_dirty(inode);
2338		}
2339		*ppos = pos;
2340	}
2341out:
2342	return written;
2343}
2344EXPORT_SYMBOL(generic_file_direct_write);
2345
2346/*
2347 * Find or create a page at the given pagecache position. Return the locked
2348 * page. This function is specifically for buffered writes.
2349 */
2350struct page *grab_cache_page_write_begin(struct address_space *mapping,
2351					pgoff_t index, unsigned flags)
2352{
2353	int status;
2354	struct page *page;
2355	gfp_t gfp_notmask = 0;
2356	if (flags & AOP_FLAG_NOFS)
2357		gfp_notmask = __GFP_FS;
2358repeat:
2359	page = find_lock_page(mapping, index);
2360	if (page)
2361		goto found;
2362
2363	page = __page_cache_alloc(mapping_gfp_mask(mapping) & ~gfp_notmask);
2364	if (!page)
2365		return NULL;
2366	status = add_to_page_cache_lru(page, mapping, index,
2367						GFP_KERNEL & ~gfp_notmask);
2368	if (unlikely(status)) {
2369		page_cache_release(page);
2370		if (status == -EEXIST)
2371			goto repeat;
2372		return NULL;
2373	}
2374found:
2375	wait_on_page_writeback(page);
2376	return page;
2377}
2378EXPORT_SYMBOL(grab_cache_page_write_begin);
2379
2380static ssize_t generic_perform_write(struct file *file,
2381				struct iov_iter *i, loff_t pos)
2382{
2383	struct address_space *mapping = file->f_mapping;
2384	const struct address_space_operations *a_ops = mapping->a_ops;
2385	long status = 0;
2386	ssize_t written = 0;
2387	unsigned int flags = 0;
2388
2389	/*
2390	 * Copies from kernel address space cannot fail (NFSD is a big user).
2391	 */
2392	if (segment_eq(get_fs(), KERNEL_DS))
2393		flags |= AOP_FLAG_UNINTERRUPTIBLE;
2394
2395	do {
2396		struct page *page;
2397		unsigned long offset;	/* Offset into pagecache page */
2398		unsigned long bytes;	/* Bytes to write to page */
2399		size_t copied;		/* Bytes copied from user */
2400		void *fsdata;
2401
2402		offset = (pos & (PAGE_CACHE_SIZE - 1));
2403		bytes = min_t(unsigned long, PAGE_CACHE_SIZE - offset,
2404						iov_iter_count(i));
2405
2406again:
2407		/*
2408		 * Bring in the user page that we will copy from _first_.
2409		 * Otherwise there's a nasty deadlock on copying from the
2410		 * same page as we're writing to, without it being marked
2411		 * up-to-date.
2412		 *
2413		 * Not only is this an optimisation, but it is also required
2414		 * to check that the address is actually valid, when atomic
2415		 * usercopies are used, below.
2416		 */
2417		if (unlikely(iov_iter_fault_in_readable(i, bytes))) {
2418			status = -EFAULT;
2419			break;
2420		}
2421
2422		status = a_ops->write_begin(file, mapping, pos, bytes, flags,
2423						&page, &fsdata);
2424		if (unlikely(status))
2425			break;
2426
2427		if (mapping_writably_mapped(mapping))
2428			flush_dcache_page(page);
2429
2430		pagefault_disable();
2431		copied = iov_iter_copy_from_user_atomic(page, i, offset, bytes);
2432		pagefault_enable();
2433		flush_dcache_page(page);
2434
2435		mark_page_accessed(page);
2436		status = a_ops->write_end(file, mapping, pos, bytes, copied,
2437						page, fsdata);
2438		if (unlikely(status < 0))
2439			break;
2440		copied = status;
2441
2442		cond_resched();
2443
2444		iov_iter_advance(i, copied);
2445		if (unlikely(copied == 0)) {
2446			/*
2447			 * If we were unable to copy any data at all, we must
2448			 * fall back to a single segment length write.
2449			 *
2450			 * If we didn't fallback here, we could livelock
2451			 * because not all segments in the iov can be copied at
2452			 * once without a pagefault.
2453			 */
2454			bytes = min_t(unsigned long, PAGE_CACHE_SIZE - offset,
2455						iov_iter_single_seg_count(i));
2456			goto again;
2457		}
2458		pos += copied;
2459		written += copied;
2460
2461		balance_dirty_pages_ratelimited(mapping);
2462		if (fatal_signal_pending(current)) {
2463			status = -EINTR;
2464			break;
2465		}
2466	} while (iov_iter_count(i));
2467
2468	return written ? written : status;
2469}
2470
2471ssize_t
2472generic_file_buffered_write(struct kiocb *iocb, const struct iovec *iov,
2473		unsigned long nr_segs, loff_t pos, loff_t *ppos,
2474		size_t count, ssize_t written)
2475{
2476	struct file *file = iocb->ki_filp;
2477	ssize_t status;
2478	struct iov_iter i;
2479
2480	iov_iter_init(&i, iov, nr_segs, count, written);
2481	status = generic_perform_write(file, &i, pos);
2482
2483	if (likely(status >= 0)) {
2484		written += status;
2485		*ppos = pos + status;
2486  	}
2487
2488	return written ? written : status;
2489}
2490EXPORT_SYMBOL(generic_file_buffered_write);
2491
2492/**
2493 * __generic_file_aio_write - write data to a file
2494 * @iocb:	IO state structure (file, offset, etc.)
2495 * @iov:	vector with data to write
2496 * @nr_segs:	number of segments in the vector
2497 * @ppos:	position where to write
2498 *
2499 * This function does all the work needed for actually writing data to a
2500 * file. It does all basic checks, removes SUID from the file, updates
2501 * modification times and calls proper subroutines depending on whether we
2502 * do direct IO or a standard buffered write.
2503 *
2504 * It expects i_mutex to be grabbed unless we work on a block device or similar
2505 * object which does not need locking at all.
2506 *
2507 * This function does *not* take care of syncing data in case of O_SYNC write.
2508 * A caller has to handle it. This is mainly due to the fact that we want to
2509 * avoid syncing under i_mutex.
2510 */
2511ssize_t __generic_file_aio_write(struct kiocb *iocb, const struct iovec *iov,
2512				 unsigned long nr_segs, loff_t *ppos)
2513{
2514	struct file *file = iocb->ki_filp;
2515	struct address_space * mapping = file->f_mapping;
2516	size_t ocount;		/* original count */
2517	size_t count;		/* after file limit checks */
2518	struct inode 	*inode = mapping->host;
2519	loff_t		pos;
2520	ssize_t		written;
2521	ssize_t		err;
2522
2523	ocount = 0;
2524	err = generic_segment_checks(iov, &nr_segs, &ocount, VERIFY_READ);
2525	if (err)
2526		return err;
2527
2528	count = ocount;
2529	pos = *ppos;
2530
2531	vfs_check_frozen(inode->i_sb, SB_FREEZE_WRITE);
2532
2533	/* We can write back this queue in page reclaim */
2534	current->backing_dev_info = mapping->backing_dev_info;
2535	written = 0;
2536
2537	err = generic_write_checks(file, &pos, &count, S_ISBLK(inode->i_mode));
2538	if (err)
2539		goto out;
2540
2541	if (count == 0)
2542		goto out;
2543
2544	err = file_remove_suid(file);
2545	if (err)
2546		goto out;
2547
2548	file_update_time(file);
2549
2550	/* coalesce the iovecs and go direct-to-BIO for O_DIRECT */
2551	if (unlikely(file->f_flags & O_DIRECT)) {
2552		loff_t endbyte;
2553		ssize_t written_buffered;
2554
2555		written = generic_file_direct_write(iocb, iov, &nr_segs, pos,
2556							ppos, count, ocount);
2557		if (written < 0 || written == count)
2558			goto out;
2559		/*
2560		 * direct-io write to a hole: fall through to buffered I/O
2561		 * for completing the rest of the request.
2562		 */
2563		pos += written;
2564		count -= written;
2565		written_buffered = generic_file_buffered_write(iocb, iov,
2566						nr_segs, pos, ppos, count,
2567						written);
2568		/*
2569		 * If generic_file_buffered_write() retuned a synchronous error
2570		 * then we want to return the number of bytes which were
2571		 * direct-written, or the error code if that was zero.  Note
2572		 * that this differs from normal direct-io semantics, which
2573		 * will return -EFOO even if some bytes were written.
2574		 */
2575		if (written_buffered < 0) {
2576			err = written_buffered;
2577			goto out;
2578		}
2579
2580		/*
2581		 * We need to ensure that the page cache pages are written to
2582		 * disk and invalidated to preserve the expected O_DIRECT
2583		 * semantics.
2584		 */
2585		endbyte = pos + written_buffered - written - 1;
2586		err = filemap_write_and_wait_range(file->f_mapping, pos, endbyte);
2587		if (err == 0) {
2588			written = written_buffered;
2589			invalidate_mapping_pages(mapping,
2590						 pos >> PAGE_CACHE_SHIFT,
2591						 endbyte >> PAGE_CACHE_SHIFT);
2592		} else {
2593			/*
2594			 * We don't know how much we wrote, so just return
2595			 * the number of bytes which were direct-written
2596			 */
2597		}
2598	} else {
2599		written = generic_file_buffered_write(iocb, iov, nr_segs,
2600				pos, ppos, count, written);
2601	}
2602out:
2603	current->backing_dev_info = NULL;
2604	return written ? written : err;
2605}
2606EXPORT_SYMBOL(__generic_file_aio_write);
2607
2608/**
2609 * generic_file_aio_write - write data to a file
2610 * @iocb:	IO state structure
2611 * @iov:	vector with data to write
2612 * @nr_segs:	number of segments in the vector
2613 * @pos:	position in file where to write
2614 *
2615 * This is a wrapper around __generic_file_aio_write() to be used by most
2616 * filesystems. It takes care of syncing the file in case of O_SYNC file
2617 * and acquires i_mutex as needed.
2618 */
2619ssize_t generic_file_aio_write(struct kiocb *iocb, const struct iovec *iov,
2620		unsigned long nr_segs, loff_t pos)
2621{
2622	struct file *file = iocb->ki_filp;
2623	struct inode *inode = file->f_mapping->host;
2624	struct blk_plug plug;
2625	ssize_t ret;
2626
2627	BUG_ON(iocb->ki_pos != pos);
2628
2629	mutex_lock(&inode->i_mutex);
2630	blk_start_plug(&plug);
2631	ret = __generic_file_aio_write(iocb, iov, nr_segs, &iocb->ki_pos);
2632	mutex_unlock(&inode->i_mutex);
2633
2634	if (ret > 0 || ret == -EIOCBQUEUED) {
2635		ssize_t err;
2636
2637		err = generic_write_sync(file, pos, ret);
2638		if (err < 0 && ret > 0)
2639			ret = err;
2640	}
2641	blk_finish_plug(&plug);
2642	return ret;
2643}
2644EXPORT_SYMBOL(generic_file_aio_write);
2645
2646/**
2647 * try_to_release_page() - release old fs-specific metadata on a page
2648 *
2649 * @page: the page which the kernel is trying to free
2650 * @gfp_mask: memory allocation flags (and I/O mode)
2651 *
2652 * The address_space is to try to release any data against the page
2653 * (presumably at page->private).  If the release was successful, return `1'.
2654 * Otherwise return zero.
2655 *
2656 * This may also be called if PG_fscache is set on a page, indicating that the
2657 * page is known to the local caching routines.
2658 *
2659 * The @gfp_mask argument specifies whether I/O may be performed to release
2660 * this page (__GFP_IO), and whether the call may block (__GFP_WAIT & __GFP_FS).
2661 *
2662 */
2663int try_to_release_page(struct page *page, gfp_t gfp_mask)
2664{
2665	struct address_space * const mapping = page->mapping;
2666
2667	BUG_ON(!PageLocked(page));
2668	if (PageWriteback(page))
2669		return 0;
2670
2671	if (mapping && mapping->a_ops->releasepage)
2672		return mapping->a_ops->releasepage(page, gfp_mask);
2673	return try_to_free_buffers(page);
2674}
2675
2676EXPORT_SYMBOL(try_to_release_page);
2677