filemap.c revision ef00e08e26dd5d84271ef706262506b82195e752
1/*
2 *	linux/mm/filemap.c
3 *
4 * Copyright (C) 1994-1999  Linus Torvalds
5 */
6
7/*
8 * This file handles the generic file mmap semantics used by
9 * most "normal" filesystems (but you don't /have/ to use this:
10 * the NFS filesystem used to do this differently, for example)
11 */
12#include <linux/module.h>
13#include <linux/slab.h>
14#include <linux/compiler.h>
15#include <linux/fs.h>
16#include <linux/uaccess.h>
17#include <linux/aio.h>
18#include <linux/capability.h>
19#include <linux/kernel_stat.h>
20#include <linux/mm.h>
21#include <linux/swap.h>
22#include <linux/mman.h>
23#include <linux/pagemap.h>
24#include <linux/file.h>
25#include <linux/uio.h>
26#include <linux/hash.h>
27#include <linux/writeback.h>
28#include <linux/backing-dev.h>
29#include <linux/pagevec.h>
30#include <linux/blkdev.h>
31#include <linux/security.h>
32#include <linux/syscalls.h>
33#include <linux/cpuset.h>
34#include <linux/hardirq.h> /* for BUG_ON(!in_atomic()) only */
35#include <linux/memcontrol.h>
36#include <linux/mm_inline.h> /* for page_is_file_cache() */
37#include "internal.h"
38
39/*
40 * FIXME: remove all knowledge of the buffer layer from the core VM
41 */
42#include <linux/buffer_head.h> /* for generic_osync_inode */
43
44#include <asm/mman.h>
45
46
47/*
48 * Shared mappings implemented 30.11.1994. It's not fully working yet,
49 * though.
50 *
51 * Shared mappings now work. 15.8.1995  Bruno.
52 *
53 * finished 'unifying' the page and buffer cache and SMP-threaded the
54 * page-cache, 21.05.1999, Ingo Molnar <mingo@redhat.com>
55 *
56 * SMP-threaded pagemap-LRU 1999, Andrea Arcangeli <andrea@suse.de>
57 */
58
59/*
60 * Lock ordering:
61 *
62 *  ->i_mmap_lock		(vmtruncate)
63 *    ->private_lock		(__free_pte->__set_page_dirty_buffers)
64 *      ->swap_lock		(exclusive_swap_page, others)
65 *        ->mapping->tree_lock
66 *
67 *  ->i_mutex
68 *    ->i_mmap_lock		(truncate->unmap_mapping_range)
69 *
70 *  ->mmap_sem
71 *    ->i_mmap_lock
72 *      ->page_table_lock or pte_lock	(various, mainly in memory.c)
73 *        ->mapping->tree_lock	(arch-dependent flush_dcache_mmap_lock)
74 *
75 *  ->mmap_sem
76 *    ->lock_page		(access_process_vm)
77 *
78 *  ->i_mutex			(generic_file_buffered_write)
79 *    ->mmap_sem		(fault_in_pages_readable->do_page_fault)
80 *
81 *  ->i_mutex
82 *    ->i_alloc_sem             (various)
83 *
84 *  ->inode_lock
85 *    ->sb_lock			(fs/fs-writeback.c)
86 *    ->mapping->tree_lock	(__sync_single_inode)
87 *
88 *  ->i_mmap_lock
89 *    ->anon_vma.lock		(vma_adjust)
90 *
91 *  ->anon_vma.lock
92 *    ->page_table_lock or pte_lock	(anon_vma_prepare and various)
93 *
94 *  ->page_table_lock or pte_lock
95 *    ->swap_lock		(try_to_unmap_one)
96 *    ->private_lock		(try_to_unmap_one)
97 *    ->tree_lock		(try_to_unmap_one)
98 *    ->zone.lru_lock		(follow_page->mark_page_accessed)
99 *    ->zone.lru_lock		(check_pte_range->isolate_lru_page)
100 *    ->private_lock		(page_remove_rmap->set_page_dirty)
101 *    ->tree_lock		(page_remove_rmap->set_page_dirty)
102 *    ->inode_lock		(page_remove_rmap->set_page_dirty)
103 *    ->inode_lock		(zap_pte_range->set_page_dirty)
104 *    ->private_lock		(zap_pte_range->__set_page_dirty_buffers)
105 *
106 *  ->task->proc_lock
107 *    ->dcache_lock		(proc_pid_lookup)
108 */
109
110/*
111 * Remove a page from the page cache and free it. Caller has to make
112 * sure the page is locked and that nobody else uses it - or that usage
113 * is safe.  The caller must hold the mapping's tree_lock.
114 */
115void __remove_from_page_cache(struct page *page)
116{
117	struct address_space *mapping = page->mapping;
118
119	radix_tree_delete(&mapping->page_tree, page->index);
120	page->mapping = NULL;
121	mapping->nrpages--;
122	__dec_zone_page_state(page, NR_FILE_PAGES);
123	BUG_ON(page_mapped(page));
124
125	/*
126	 * Some filesystems seem to re-dirty the page even after
127	 * the VM has canceled the dirty bit (eg ext3 journaling).
128	 *
129	 * Fix it up by doing a final dirty accounting check after
130	 * having removed the page entirely.
131	 */
132	if (PageDirty(page) && mapping_cap_account_dirty(mapping)) {
133		dec_zone_page_state(page, NR_FILE_DIRTY);
134		dec_bdi_stat(mapping->backing_dev_info, BDI_RECLAIMABLE);
135	}
136}
137
138void remove_from_page_cache(struct page *page)
139{
140	struct address_space *mapping = page->mapping;
141
142	BUG_ON(!PageLocked(page));
143
144	spin_lock_irq(&mapping->tree_lock);
145	__remove_from_page_cache(page);
146	spin_unlock_irq(&mapping->tree_lock);
147	mem_cgroup_uncharge_cache_page(page);
148}
149
150static int sync_page(void *word)
151{
152	struct address_space *mapping;
153	struct page *page;
154
155	page = container_of((unsigned long *)word, struct page, flags);
156
157	/*
158	 * page_mapping() is being called without PG_locked held.
159	 * Some knowledge of the state and use of the page is used to
160	 * reduce the requirements down to a memory barrier.
161	 * The danger here is of a stale page_mapping() return value
162	 * indicating a struct address_space different from the one it's
163	 * associated with when it is associated with one.
164	 * After smp_mb(), it's either the correct page_mapping() for
165	 * the page, or an old page_mapping() and the page's own
166	 * page_mapping() has gone NULL.
167	 * The ->sync_page() address_space operation must tolerate
168	 * page_mapping() going NULL. By an amazing coincidence,
169	 * this comes about because none of the users of the page
170	 * in the ->sync_page() methods make essential use of the
171	 * page_mapping(), merely passing the page down to the backing
172	 * device's unplug functions when it's non-NULL, which in turn
173	 * ignore it for all cases but swap, where only page_private(page) is
174	 * of interest. When page_mapping() does go NULL, the entire
175	 * call stack gracefully ignores the page and returns.
176	 * -- wli
177	 */
178	smp_mb();
179	mapping = page_mapping(page);
180	if (mapping && mapping->a_ops && mapping->a_ops->sync_page)
181		mapping->a_ops->sync_page(page);
182	io_schedule();
183	return 0;
184}
185
186static int sync_page_killable(void *word)
187{
188	sync_page(word);
189	return fatal_signal_pending(current) ? -EINTR : 0;
190}
191
192/**
193 * __filemap_fdatawrite_range - start writeback on mapping dirty pages in range
194 * @mapping:	address space structure to write
195 * @start:	offset in bytes where the range starts
196 * @end:	offset in bytes where the range ends (inclusive)
197 * @sync_mode:	enable synchronous operation
198 *
199 * Start writeback against all of a mapping's dirty pages that lie
200 * within the byte offsets <start, end> inclusive.
201 *
202 * If sync_mode is WB_SYNC_ALL then this is a "data integrity" operation, as
203 * opposed to a regular memory cleansing writeback.  The difference between
204 * these two operations is that if a dirty page/buffer is encountered, it must
205 * be waited upon, and not just skipped over.
206 */
207int __filemap_fdatawrite_range(struct address_space *mapping, loff_t start,
208				loff_t end, int sync_mode)
209{
210	int ret;
211	struct writeback_control wbc = {
212		.sync_mode = sync_mode,
213		.nr_to_write = LONG_MAX,
214		.range_start = start,
215		.range_end = end,
216	};
217
218	if (!mapping_cap_writeback_dirty(mapping))
219		return 0;
220
221	ret = do_writepages(mapping, &wbc);
222	return ret;
223}
224
225static inline int __filemap_fdatawrite(struct address_space *mapping,
226	int sync_mode)
227{
228	return __filemap_fdatawrite_range(mapping, 0, LLONG_MAX, sync_mode);
229}
230
231int filemap_fdatawrite(struct address_space *mapping)
232{
233	return __filemap_fdatawrite(mapping, WB_SYNC_ALL);
234}
235EXPORT_SYMBOL(filemap_fdatawrite);
236
237int filemap_fdatawrite_range(struct address_space *mapping, loff_t start,
238				loff_t end)
239{
240	return __filemap_fdatawrite_range(mapping, start, end, WB_SYNC_ALL);
241}
242EXPORT_SYMBOL(filemap_fdatawrite_range);
243
244/**
245 * filemap_flush - mostly a non-blocking flush
246 * @mapping:	target address_space
247 *
248 * This is a mostly non-blocking flush.  Not suitable for data-integrity
249 * purposes - I/O may not be started against all dirty pages.
250 */
251int filemap_flush(struct address_space *mapping)
252{
253	return __filemap_fdatawrite(mapping, WB_SYNC_NONE);
254}
255EXPORT_SYMBOL(filemap_flush);
256
257/**
258 * wait_on_page_writeback_range - wait for writeback to complete
259 * @mapping:	target address_space
260 * @start:	beginning page index
261 * @end:	ending page index
262 *
263 * Wait for writeback to complete against pages indexed by start->end
264 * inclusive
265 */
266int wait_on_page_writeback_range(struct address_space *mapping,
267				pgoff_t start, pgoff_t end)
268{
269	struct pagevec pvec;
270	int nr_pages;
271	int ret = 0;
272	pgoff_t index;
273
274	if (end < start)
275		return 0;
276
277	pagevec_init(&pvec, 0);
278	index = start;
279	while ((index <= end) &&
280			(nr_pages = pagevec_lookup_tag(&pvec, mapping, &index,
281			PAGECACHE_TAG_WRITEBACK,
282			min(end - index, (pgoff_t)PAGEVEC_SIZE-1) + 1)) != 0) {
283		unsigned i;
284
285		for (i = 0; i < nr_pages; i++) {
286			struct page *page = pvec.pages[i];
287
288			/* until radix tree lookup accepts end_index */
289			if (page->index > end)
290				continue;
291
292			wait_on_page_writeback(page);
293			if (PageError(page))
294				ret = -EIO;
295		}
296		pagevec_release(&pvec);
297		cond_resched();
298	}
299
300	/* Check for outstanding write errors */
301	if (test_and_clear_bit(AS_ENOSPC, &mapping->flags))
302		ret = -ENOSPC;
303	if (test_and_clear_bit(AS_EIO, &mapping->flags))
304		ret = -EIO;
305
306	return ret;
307}
308
309/**
310 * sync_page_range - write and wait on all pages in the passed range
311 * @inode:	target inode
312 * @mapping:	target address_space
313 * @pos:	beginning offset in pages to write
314 * @count:	number of bytes to write
315 *
316 * Write and wait upon all the pages in the passed range.  This is a "data
317 * integrity" operation.  It waits upon in-flight writeout before starting and
318 * waiting upon new writeout.  If there was an IO error, return it.
319 *
320 * We need to re-take i_mutex during the generic_osync_inode list walk because
321 * it is otherwise livelockable.
322 */
323int sync_page_range(struct inode *inode, struct address_space *mapping,
324			loff_t pos, loff_t count)
325{
326	pgoff_t start = pos >> PAGE_CACHE_SHIFT;
327	pgoff_t end = (pos + count - 1) >> PAGE_CACHE_SHIFT;
328	int ret;
329
330	if (!mapping_cap_writeback_dirty(mapping) || !count)
331		return 0;
332	ret = filemap_fdatawrite_range(mapping, pos, pos + count - 1);
333	if (ret == 0) {
334		mutex_lock(&inode->i_mutex);
335		ret = generic_osync_inode(inode, mapping, OSYNC_METADATA);
336		mutex_unlock(&inode->i_mutex);
337	}
338	if (ret == 0)
339		ret = wait_on_page_writeback_range(mapping, start, end);
340	return ret;
341}
342EXPORT_SYMBOL(sync_page_range);
343
344/**
345 * sync_page_range_nolock - write & wait on all pages in the passed range without locking
346 * @inode:	target inode
347 * @mapping:	target address_space
348 * @pos:	beginning offset in pages to write
349 * @count:	number of bytes to write
350 *
351 * Note: Holding i_mutex across sync_page_range_nolock() is not a good idea
352 * as it forces O_SYNC writers to different parts of the same file
353 * to be serialised right until io completion.
354 */
355int sync_page_range_nolock(struct inode *inode, struct address_space *mapping,
356			   loff_t pos, loff_t count)
357{
358	pgoff_t start = pos >> PAGE_CACHE_SHIFT;
359	pgoff_t end = (pos + count - 1) >> PAGE_CACHE_SHIFT;
360	int ret;
361
362	if (!mapping_cap_writeback_dirty(mapping) || !count)
363		return 0;
364	ret = filemap_fdatawrite_range(mapping, pos, pos + count - 1);
365	if (ret == 0)
366		ret = generic_osync_inode(inode, mapping, OSYNC_METADATA);
367	if (ret == 0)
368		ret = wait_on_page_writeback_range(mapping, start, end);
369	return ret;
370}
371EXPORT_SYMBOL(sync_page_range_nolock);
372
373/**
374 * filemap_fdatawait - wait for all under-writeback pages to complete
375 * @mapping: address space structure to wait for
376 *
377 * Walk the list of under-writeback pages of the given address space
378 * and wait for all of them.
379 */
380int filemap_fdatawait(struct address_space *mapping)
381{
382	loff_t i_size = i_size_read(mapping->host);
383
384	if (i_size == 0)
385		return 0;
386
387	return wait_on_page_writeback_range(mapping, 0,
388				(i_size - 1) >> PAGE_CACHE_SHIFT);
389}
390EXPORT_SYMBOL(filemap_fdatawait);
391
392int filemap_write_and_wait(struct address_space *mapping)
393{
394	int err = 0;
395
396	if (mapping->nrpages) {
397		err = filemap_fdatawrite(mapping);
398		/*
399		 * Even if the above returned error, the pages may be
400		 * written partially (e.g. -ENOSPC), so we wait for it.
401		 * But the -EIO is special case, it may indicate the worst
402		 * thing (e.g. bug) happened, so we avoid waiting for it.
403		 */
404		if (err != -EIO) {
405			int err2 = filemap_fdatawait(mapping);
406			if (!err)
407				err = err2;
408		}
409	}
410	return err;
411}
412EXPORT_SYMBOL(filemap_write_and_wait);
413
414/**
415 * filemap_write_and_wait_range - write out & wait on a file range
416 * @mapping:	the address_space for the pages
417 * @lstart:	offset in bytes where the range starts
418 * @lend:	offset in bytes where the range ends (inclusive)
419 *
420 * Write out and wait upon file offsets lstart->lend, inclusive.
421 *
422 * Note that `lend' is inclusive (describes the last byte to be written) so
423 * that this function can be used to write to the very end-of-file (end = -1).
424 */
425int filemap_write_and_wait_range(struct address_space *mapping,
426				 loff_t lstart, loff_t lend)
427{
428	int err = 0;
429
430	if (mapping->nrpages) {
431		err = __filemap_fdatawrite_range(mapping, lstart, lend,
432						 WB_SYNC_ALL);
433		/* See comment of filemap_write_and_wait() */
434		if (err != -EIO) {
435			int err2 = wait_on_page_writeback_range(mapping,
436						lstart >> PAGE_CACHE_SHIFT,
437						lend >> PAGE_CACHE_SHIFT);
438			if (!err)
439				err = err2;
440		}
441	}
442	return err;
443}
444EXPORT_SYMBOL(filemap_write_and_wait_range);
445
446/**
447 * add_to_page_cache_locked - add a locked page to the pagecache
448 * @page:	page to add
449 * @mapping:	the page's address_space
450 * @offset:	page index
451 * @gfp_mask:	page allocation mode
452 *
453 * This function is used to add a page to the pagecache. It must be locked.
454 * This function does not add the page to the LRU.  The caller must do that.
455 */
456int add_to_page_cache_locked(struct page *page, struct address_space *mapping,
457		pgoff_t offset, gfp_t gfp_mask)
458{
459	int error;
460
461	VM_BUG_ON(!PageLocked(page));
462
463	error = mem_cgroup_cache_charge(page, current->mm,
464					gfp_mask & GFP_RECLAIM_MASK);
465	if (error)
466		goto out;
467
468	error = radix_tree_preload(gfp_mask & ~__GFP_HIGHMEM);
469	if (error == 0) {
470		page_cache_get(page);
471		page->mapping = mapping;
472		page->index = offset;
473
474		spin_lock_irq(&mapping->tree_lock);
475		error = radix_tree_insert(&mapping->page_tree, offset, page);
476		if (likely(!error)) {
477			mapping->nrpages++;
478			__inc_zone_page_state(page, NR_FILE_PAGES);
479			spin_unlock_irq(&mapping->tree_lock);
480		} else {
481			page->mapping = NULL;
482			spin_unlock_irq(&mapping->tree_lock);
483			mem_cgroup_uncharge_cache_page(page);
484			page_cache_release(page);
485		}
486		radix_tree_preload_end();
487	} else
488		mem_cgroup_uncharge_cache_page(page);
489out:
490	return error;
491}
492EXPORT_SYMBOL(add_to_page_cache_locked);
493
494int add_to_page_cache_lru(struct page *page, struct address_space *mapping,
495				pgoff_t offset, gfp_t gfp_mask)
496{
497	int ret;
498
499	/*
500	 * Splice_read and readahead add shmem/tmpfs pages into the page cache
501	 * before shmem_readpage has a chance to mark them as SwapBacked: they
502	 * need to go on the active_anon lru below, and mem_cgroup_cache_charge
503	 * (called in add_to_page_cache) needs to know where they're going too.
504	 */
505	if (mapping_cap_swap_backed(mapping))
506		SetPageSwapBacked(page);
507
508	ret = add_to_page_cache(page, mapping, offset, gfp_mask);
509	if (ret == 0) {
510		if (page_is_file_cache(page))
511			lru_cache_add_file(page);
512		else
513			lru_cache_add_active_anon(page);
514	}
515	return ret;
516}
517EXPORT_SYMBOL_GPL(add_to_page_cache_lru);
518
519#ifdef CONFIG_NUMA
520struct page *__page_cache_alloc(gfp_t gfp)
521{
522	if (cpuset_do_page_mem_spread()) {
523		int n = cpuset_mem_spread_node();
524		return alloc_pages_node(n, gfp, 0);
525	}
526	return alloc_pages(gfp, 0);
527}
528EXPORT_SYMBOL(__page_cache_alloc);
529#endif
530
531static int __sleep_on_page_lock(void *word)
532{
533	io_schedule();
534	return 0;
535}
536
537/*
538 * In order to wait for pages to become available there must be
539 * waitqueues associated with pages. By using a hash table of
540 * waitqueues where the bucket discipline is to maintain all
541 * waiters on the same queue and wake all when any of the pages
542 * become available, and for the woken contexts to check to be
543 * sure the appropriate page became available, this saves space
544 * at a cost of "thundering herd" phenomena during rare hash
545 * collisions.
546 */
547static wait_queue_head_t *page_waitqueue(struct page *page)
548{
549	const struct zone *zone = page_zone(page);
550
551	return &zone->wait_table[hash_ptr(page, zone->wait_table_bits)];
552}
553
554static inline void wake_up_page(struct page *page, int bit)
555{
556	__wake_up_bit(page_waitqueue(page), &page->flags, bit);
557}
558
559void wait_on_page_bit(struct page *page, int bit_nr)
560{
561	DEFINE_WAIT_BIT(wait, &page->flags, bit_nr);
562
563	if (test_bit(bit_nr, &page->flags))
564		__wait_on_bit(page_waitqueue(page), &wait, sync_page,
565							TASK_UNINTERRUPTIBLE);
566}
567EXPORT_SYMBOL(wait_on_page_bit);
568
569/**
570 * add_page_wait_queue - Add an arbitrary waiter to a page's wait queue
571 * @page: Page defining the wait queue of interest
572 * @waiter: Waiter to add to the queue
573 *
574 * Add an arbitrary @waiter to the wait queue for the nominated @page.
575 */
576void add_page_wait_queue(struct page *page, wait_queue_t *waiter)
577{
578	wait_queue_head_t *q = page_waitqueue(page);
579	unsigned long flags;
580
581	spin_lock_irqsave(&q->lock, flags);
582	__add_wait_queue(q, waiter);
583	spin_unlock_irqrestore(&q->lock, flags);
584}
585EXPORT_SYMBOL_GPL(add_page_wait_queue);
586
587/**
588 * unlock_page - unlock a locked page
589 * @page: the page
590 *
591 * Unlocks the page and wakes up sleepers in ___wait_on_page_locked().
592 * Also wakes sleepers in wait_on_page_writeback() because the wakeup
593 * mechananism between PageLocked pages and PageWriteback pages is shared.
594 * But that's OK - sleepers in wait_on_page_writeback() just go back to sleep.
595 *
596 * The mb is necessary to enforce ordering between the clear_bit and the read
597 * of the waitqueue (to avoid SMP races with a parallel wait_on_page_locked()).
598 */
599void unlock_page(struct page *page)
600{
601	VM_BUG_ON(!PageLocked(page));
602	clear_bit_unlock(PG_locked, &page->flags);
603	smp_mb__after_clear_bit();
604	wake_up_page(page, PG_locked);
605}
606EXPORT_SYMBOL(unlock_page);
607
608/**
609 * end_page_writeback - end writeback against a page
610 * @page: the page
611 */
612void end_page_writeback(struct page *page)
613{
614	if (TestClearPageReclaim(page))
615		rotate_reclaimable_page(page);
616
617	if (!test_clear_page_writeback(page))
618		BUG();
619
620	smp_mb__after_clear_bit();
621	wake_up_page(page, PG_writeback);
622}
623EXPORT_SYMBOL(end_page_writeback);
624
625/**
626 * __lock_page - get a lock on the page, assuming we need to sleep to get it
627 * @page: the page to lock
628 *
629 * Ugly. Running sync_page() in state TASK_UNINTERRUPTIBLE is scary.  If some
630 * random driver's requestfn sets TASK_RUNNING, we could busywait.  However
631 * chances are that on the second loop, the block layer's plug list is empty,
632 * so sync_page() will then return in state TASK_UNINTERRUPTIBLE.
633 */
634void __lock_page(struct page *page)
635{
636	DEFINE_WAIT_BIT(wait, &page->flags, PG_locked);
637
638	__wait_on_bit_lock(page_waitqueue(page), &wait, sync_page,
639							TASK_UNINTERRUPTIBLE);
640}
641EXPORT_SYMBOL(__lock_page);
642
643int __lock_page_killable(struct page *page)
644{
645	DEFINE_WAIT_BIT(wait, &page->flags, PG_locked);
646
647	return __wait_on_bit_lock(page_waitqueue(page), &wait,
648					sync_page_killable, TASK_KILLABLE);
649}
650EXPORT_SYMBOL_GPL(__lock_page_killable);
651
652/**
653 * __lock_page_nosync - get a lock on the page, without calling sync_page()
654 * @page: the page to lock
655 *
656 * Variant of lock_page that does not require the caller to hold a reference
657 * on the page's mapping.
658 */
659void __lock_page_nosync(struct page *page)
660{
661	DEFINE_WAIT_BIT(wait, &page->flags, PG_locked);
662	__wait_on_bit_lock(page_waitqueue(page), &wait, __sleep_on_page_lock,
663							TASK_UNINTERRUPTIBLE);
664}
665
666/**
667 * find_get_page - find and get a page reference
668 * @mapping: the address_space to search
669 * @offset: the page index
670 *
671 * Is there a pagecache struct page at the given (mapping, offset) tuple?
672 * If yes, increment its refcount and return it; if no, return NULL.
673 */
674struct page *find_get_page(struct address_space *mapping, pgoff_t offset)
675{
676	void **pagep;
677	struct page *page;
678
679	rcu_read_lock();
680repeat:
681	page = NULL;
682	pagep = radix_tree_lookup_slot(&mapping->page_tree, offset);
683	if (pagep) {
684		page = radix_tree_deref_slot(pagep);
685		if (unlikely(!page || page == RADIX_TREE_RETRY))
686			goto repeat;
687
688		if (!page_cache_get_speculative(page))
689			goto repeat;
690
691		/*
692		 * Has the page moved?
693		 * This is part of the lockless pagecache protocol. See
694		 * include/linux/pagemap.h for details.
695		 */
696		if (unlikely(page != *pagep)) {
697			page_cache_release(page);
698			goto repeat;
699		}
700	}
701	rcu_read_unlock();
702
703	return page;
704}
705EXPORT_SYMBOL(find_get_page);
706
707/**
708 * find_lock_page - locate, pin and lock a pagecache page
709 * @mapping: the address_space to search
710 * @offset: the page index
711 *
712 * Locates the desired pagecache page, locks it, increments its reference
713 * count and returns its address.
714 *
715 * Returns zero if the page was not present. find_lock_page() may sleep.
716 */
717struct page *find_lock_page(struct address_space *mapping, pgoff_t offset)
718{
719	struct page *page;
720
721repeat:
722	page = find_get_page(mapping, offset);
723	if (page) {
724		lock_page(page);
725		/* Has the page been truncated? */
726		if (unlikely(page->mapping != mapping)) {
727			unlock_page(page);
728			page_cache_release(page);
729			goto repeat;
730		}
731		VM_BUG_ON(page->index != offset);
732	}
733	return page;
734}
735EXPORT_SYMBOL(find_lock_page);
736
737/**
738 * find_or_create_page - locate or add a pagecache page
739 * @mapping: the page's address_space
740 * @index: the page's index into the mapping
741 * @gfp_mask: page allocation mode
742 *
743 * Locates a page in the pagecache.  If the page is not present, a new page
744 * is allocated using @gfp_mask and is added to the pagecache and to the VM's
745 * LRU list.  The returned page is locked and has its reference count
746 * incremented.
747 *
748 * find_or_create_page() may sleep, even if @gfp_flags specifies an atomic
749 * allocation!
750 *
751 * find_or_create_page() returns the desired page's address, or zero on
752 * memory exhaustion.
753 */
754struct page *find_or_create_page(struct address_space *mapping,
755		pgoff_t index, gfp_t gfp_mask)
756{
757	struct page *page;
758	int err;
759repeat:
760	page = find_lock_page(mapping, index);
761	if (!page) {
762		page = __page_cache_alloc(gfp_mask);
763		if (!page)
764			return NULL;
765		/*
766		 * We want a regular kernel memory (not highmem or DMA etc)
767		 * allocation for the radix tree nodes, but we need to honour
768		 * the context-specific requirements the caller has asked for.
769		 * GFP_RECLAIM_MASK collects those requirements.
770		 */
771		err = add_to_page_cache_lru(page, mapping, index,
772			(gfp_mask & GFP_RECLAIM_MASK));
773		if (unlikely(err)) {
774			page_cache_release(page);
775			page = NULL;
776			if (err == -EEXIST)
777				goto repeat;
778		}
779	}
780	return page;
781}
782EXPORT_SYMBOL(find_or_create_page);
783
784/**
785 * find_get_pages - gang pagecache lookup
786 * @mapping:	The address_space to search
787 * @start:	The starting page index
788 * @nr_pages:	The maximum number of pages
789 * @pages:	Where the resulting pages are placed
790 *
791 * find_get_pages() will search for and return a group of up to
792 * @nr_pages pages in the mapping.  The pages are placed at @pages.
793 * find_get_pages() takes a reference against the returned pages.
794 *
795 * The search returns a group of mapping-contiguous pages with ascending
796 * indexes.  There may be holes in the indices due to not-present pages.
797 *
798 * find_get_pages() returns the number of pages which were found.
799 */
800unsigned find_get_pages(struct address_space *mapping, pgoff_t start,
801			    unsigned int nr_pages, struct page **pages)
802{
803	unsigned int i;
804	unsigned int ret;
805	unsigned int nr_found;
806
807	rcu_read_lock();
808restart:
809	nr_found = radix_tree_gang_lookup_slot(&mapping->page_tree,
810				(void ***)pages, start, nr_pages);
811	ret = 0;
812	for (i = 0; i < nr_found; i++) {
813		struct page *page;
814repeat:
815		page = radix_tree_deref_slot((void **)pages[i]);
816		if (unlikely(!page))
817			continue;
818		/*
819		 * this can only trigger if nr_found == 1, making livelock
820		 * a non issue.
821		 */
822		if (unlikely(page == RADIX_TREE_RETRY))
823			goto restart;
824
825		if (!page_cache_get_speculative(page))
826			goto repeat;
827
828		/* Has the page moved? */
829		if (unlikely(page != *((void **)pages[i]))) {
830			page_cache_release(page);
831			goto repeat;
832		}
833
834		pages[ret] = page;
835		ret++;
836	}
837	rcu_read_unlock();
838	return ret;
839}
840
841/**
842 * find_get_pages_contig - gang contiguous pagecache lookup
843 * @mapping:	The address_space to search
844 * @index:	The starting page index
845 * @nr_pages:	The maximum number of pages
846 * @pages:	Where the resulting pages are placed
847 *
848 * find_get_pages_contig() works exactly like find_get_pages(), except
849 * that the returned number of pages are guaranteed to be contiguous.
850 *
851 * find_get_pages_contig() returns the number of pages which were found.
852 */
853unsigned find_get_pages_contig(struct address_space *mapping, pgoff_t index,
854			       unsigned int nr_pages, struct page **pages)
855{
856	unsigned int i;
857	unsigned int ret;
858	unsigned int nr_found;
859
860	rcu_read_lock();
861restart:
862	nr_found = radix_tree_gang_lookup_slot(&mapping->page_tree,
863				(void ***)pages, index, nr_pages);
864	ret = 0;
865	for (i = 0; i < nr_found; i++) {
866		struct page *page;
867repeat:
868		page = radix_tree_deref_slot((void **)pages[i]);
869		if (unlikely(!page))
870			continue;
871		/*
872		 * this can only trigger if nr_found == 1, making livelock
873		 * a non issue.
874		 */
875		if (unlikely(page == RADIX_TREE_RETRY))
876			goto restart;
877
878		if (page->mapping == NULL || page->index != index)
879			break;
880
881		if (!page_cache_get_speculative(page))
882			goto repeat;
883
884		/* Has the page moved? */
885		if (unlikely(page != *((void **)pages[i]))) {
886			page_cache_release(page);
887			goto repeat;
888		}
889
890		pages[ret] = page;
891		ret++;
892		index++;
893	}
894	rcu_read_unlock();
895	return ret;
896}
897EXPORT_SYMBOL(find_get_pages_contig);
898
899/**
900 * find_get_pages_tag - find and return pages that match @tag
901 * @mapping:	the address_space to search
902 * @index:	the starting page index
903 * @tag:	the tag index
904 * @nr_pages:	the maximum number of pages
905 * @pages:	where the resulting pages are placed
906 *
907 * Like find_get_pages, except we only return pages which are tagged with
908 * @tag.   We update @index to index the next page for the traversal.
909 */
910unsigned find_get_pages_tag(struct address_space *mapping, pgoff_t *index,
911			int tag, unsigned int nr_pages, struct page **pages)
912{
913	unsigned int i;
914	unsigned int ret;
915	unsigned int nr_found;
916
917	rcu_read_lock();
918restart:
919	nr_found = radix_tree_gang_lookup_tag_slot(&mapping->page_tree,
920				(void ***)pages, *index, nr_pages, tag);
921	ret = 0;
922	for (i = 0; i < nr_found; i++) {
923		struct page *page;
924repeat:
925		page = radix_tree_deref_slot((void **)pages[i]);
926		if (unlikely(!page))
927			continue;
928		/*
929		 * this can only trigger if nr_found == 1, making livelock
930		 * a non issue.
931		 */
932		if (unlikely(page == RADIX_TREE_RETRY))
933			goto restart;
934
935		if (!page_cache_get_speculative(page))
936			goto repeat;
937
938		/* Has the page moved? */
939		if (unlikely(page != *((void **)pages[i]))) {
940			page_cache_release(page);
941			goto repeat;
942		}
943
944		pages[ret] = page;
945		ret++;
946	}
947	rcu_read_unlock();
948
949	if (ret)
950		*index = pages[ret - 1]->index + 1;
951
952	return ret;
953}
954EXPORT_SYMBOL(find_get_pages_tag);
955
956/**
957 * grab_cache_page_nowait - returns locked page at given index in given cache
958 * @mapping: target address_space
959 * @index: the page index
960 *
961 * Same as grab_cache_page(), but do not wait if the page is unavailable.
962 * This is intended for speculative data generators, where the data can
963 * be regenerated if the page couldn't be grabbed.  This routine should
964 * be safe to call while holding the lock for another page.
965 *
966 * Clear __GFP_FS when allocating the page to avoid recursion into the fs
967 * and deadlock against the caller's locked page.
968 */
969struct page *
970grab_cache_page_nowait(struct address_space *mapping, pgoff_t index)
971{
972	struct page *page = find_get_page(mapping, index);
973
974	if (page) {
975		if (trylock_page(page))
976			return page;
977		page_cache_release(page);
978		return NULL;
979	}
980	page = __page_cache_alloc(mapping_gfp_mask(mapping) & ~__GFP_FS);
981	if (page && add_to_page_cache_lru(page, mapping, index, GFP_NOFS)) {
982		page_cache_release(page);
983		page = NULL;
984	}
985	return page;
986}
987EXPORT_SYMBOL(grab_cache_page_nowait);
988
989/*
990 * CD/DVDs are error prone. When a medium error occurs, the driver may fail
991 * a _large_ part of the i/o request. Imagine the worst scenario:
992 *
993 *      ---R__________________________________________B__________
994 *         ^ reading here                             ^ bad block(assume 4k)
995 *
996 * read(R) => miss => readahead(R...B) => media error => frustrating retries
997 * => failing the whole request => read(R) => read(R+1) =>
998 * readahead(R+1...B+1) => bang => read(R+2) => read(R+3) =>
999 * readahead(R+3...B+2) => bang => read(R+3) => read(R+4) =>
1000 * readahead(R+4...B+3) => bang => read(R+4) => read(R+5) => ......
1001 *
1002 * It is going insane. Fix it by quickly scaling down the readahead size.
1003 */
1004static void shrink_readahead_size_eio(struct file *filp,
1005					struct file_ra_state *ra)
1006{
1007	if (!ra->ra_pages)
1008		return;
1009
1010	ra->ra_pages /= 4;
1011}
1012
1013/**
1014 * do_generic_file_read - generic file read routine
1015 * @filp:	the file to read
1016 * @ppos:	current file position
1017 * @desc:	read_descriptor
1018 * @actor:	read method
1019 *
1020 * This is a generic file read routine, and uses the
1021 * mapping->a_ops->readpage() function for the actual low-level stuff.
1022 *
1023 * This is really ugly. But the goto's actually try to clarify some
1024 * of the logic when it comes to error handling etc.
1025 */
1026static void do_generic_file_read(struct file *filp, loff_t *ppos,
1027		read_descriptor_t *desc, read_actor_t actor)
1028{
1029	struct address_space *mapping = filp->f_mapping;
1030	struct inode *inode = mapping->host;
1031	struct file_ra_state *ra = &filp->f_ra;
1032	pgoff_t index;
1033	pgoff_t last_index;
1034	pgoff_t prev_index;
1035	unsigned long offset;      /* offset into pagecache page */
1036	unsigned int prev_offset;
1037	int error;
1038
1039	index = *ppos >> PAGE_CACHE_SHIFT;
1040	prev_index = ra->prev_pos >> PAGE_CACHE_SHIFT;
1041	prev_offset = ra->prev_pos & (PAGE_CACHE_SIZE-1);
1042	last_index = (*ppos + desc->count + PAGE_CACHE_SIZE-1) >> PAGE_CACHE_SHIFT;
1043	offset = *ppos & ~PAGE_CACHE_MASK;
1044
1045	for (;;) {
1046		struct page *page;
1047		pgoff_t end_index;
1048		loff_t isize;
1049		unsigned long nr, ret;
1050
1051		cond_resched();
1052find_page:
1053		page = find_get_page(mapping, index);
1054		if (!page) {
1055			page_cache_sync_readahead(mapping,
1056					ra, filp,
1057					index, last_index - index);
1058			page = find_get_page(mapping, index);
1059			if (unlikely(page == NULL))
1060				goto no_cached_page;
1061		}
1062		if (PageReadahead(page)) {
1063			page_cache_async_readahead(mapping,
1064					ra, filp, page,
1065					index, last_index - index);
1066		}
1067		if (!PageUptodate(page)) {
1068			if (inode->i_blkbits == PAGE_CACHE_SHIFT ||
1069					!mapping->a_ops->is_partially_uptodate)
1070				goto page_not_up_to_date;
1071			if (!trylock_page(page))
1072				goto page_not_up_to_date;
1073			if (!mapping->a_ops->is_partially_uptodate(page,
1074								desc, offset))
1075				goto page_not_up_to_date_locked;
1076			unlock_page(page);
1077		}
1078page_ok:
1079		/*
1080		 * i_size must be checked after we know the page is Uptodate.
1081		 *
1082		 * Checking i_size after the check allows us to calculate
1083		 * the correct value for "nr", which means the zero-filled
1084		 * part of the page is not copied back to userspace (unless
1085		 * another truncate extends the file - this is desired though).
1086		 */
1087
1088		isize = i_size_read(inode);
1089		end_index = (isize - 1) >> PAGE_CACHE_SHIFT;
1090		if (unlikely(!isize || index > end_index)) {
1091			page_cache_release(page);
1092			goto out;
1093		}
1094
1095		/* nr is the maximum number of bytes to copy from this page */
1096		nr = PAGE_CACHE_SIZE;
1097		if (index == end_index) {
1098			nr = ((isize - 1) & ~PAGE_CACHE_MASK) + 1;
1099			if (nr <= offset) {
1100				page_cache_release(page);
1101				goto out;
1102			}
1103		}
1104		nr = nr - offset;
1105
1106		/* If users can be writing to this page using arbitrary
1107		 * virtual addresses, take care about potential aliasing
1108		 * before reading the page on the kernel side.
1109		 */
1110		if (mapping_writably_mapped(mapping))
1111			flush_dcache_page(page);
1112
1113		/*
1114		 * When a sequential read accesses a page several times,
1115		 * only mark it as accessed the first time.
1116		 */
1117		if (prev_index != index || offset != prev_offset)
1118			mark_page_accessed(page);
1119		prev_index = index;
1120
1121		/*
1122		 * Ok, we have the page, and it's up-to-date, so
1123		 * now we can copy it to user space...
1124		 *
1125		 * The actor routine returns how many bytes were actually used..
1126		 * NOTE! This may not be the same as how much of a user buffer
1127		 * we filled up (we may be padding etc), so we can only update
1128		 * "pos" here (the actor routine has to update the user buffer
1129		 * pointers and the remaining count).
1130		 */
1131		ret = actor(desc, page, offset, nr);
1132		offset += ret;
1133		index += offset >> PAGE_CACHE_SHIFT;
1134		offset &= ~PAGE_CACHE_MASK;
1135		prev_offset = offset;
1136
1137		page_cache_release(page);
1138		if (ret == nr && desc->count)
1139			continue;
1140		goto out;
1141
1142page_not_up_to_date:
1143		/* Get exclusive access to the page ... */
1144		error = lock_page_killable(page);
1145		if (unlikely(error))
1146			goto readpage_error;
1147
1148page_not_up_to_date_locked:
1149		/* Did it get truncated before we got the lock? */
1150		if (!page->mapping) {
1151			unlock_page(page);
1152			page_cache_release(page);
1153			continue;
1154		}
1155
1156		/* Did somebody else fill it already? */
1157		if (PageUptodate(page)) {
1158			unlock_page(page);
1159			goto page_ok;
1160		}
1161
1162readpage:
1163		/* Start the actual read. The read will unlock the page. */
1164		error = mapping->a_ops->readpage(filp, page);
1165
1166		if (unlikely(error)) {
1167			if (error == AOP_TRUNCATED_PAGE) {
1168				page_cache_release(page);
1169				goto find_page;
1170			}
1171			goto readpage_error;
1172		}
1173
1174		if (!PageUptodate(page)) {
1175			error = lock_page_killable(page);
1176			if (unlikely(error))
1177				goto readpage_error;
1178			if (!PageUptodate(page)) {
1179				if (page->mapping == NULL) {
1180					/*
1181					 * invalidate_inode_pages got it
1182					 */
1183					unlock_page(page);
1184					page_cache_release(page);
1185					goto find_page;
1186				}
1187				unlock_page(page);
1188				shrink_readahead_size_eio(filp, ra);
1189				error = -EIO;
1190				goto readpage_error;
1191			}
1192			unlock_page(page);
1193		}
1194
1195		goto page_ok;
1196
1197readpage_error:
1198		/* UHHUH! A synchronous read error occurred. Report it */
1199		desc->error = error;
1200		page_cache_release(page);
1201		goto out;
1202
1203no_cached_page:
1204		/*
1205		 * Ok, it wasn't cached, so we need to create a new
1206		 * page..
1207		 */
1208		page = page_cache_alloc_cold(mapping);
1209		if (!page) {
1210			desc->error = -ENOMEM;
1211			goto out;
1212		}
1213		error = add_to_page_cache_lru(page, mapping,
1214						index, GFP_KERNEL);
1215		if (error) {
1216			page_cache_release(page);
1217			if (error == -EEXIST)
1218				goto find_page;
1219			desc->error = error;
1220			goto out;
1221		}
1222		goto readpage;
1223	}
1224
1225out:
1226	ra->prev_pos = prev_index;
1227	ra->prev_pos <<= PAGE_CACHE_SHIFT;
1228	ra->prev_pos |= prev_offset;
1229
1230	*ppos = ((loff_t)index << PAGE_CACHE_SHIFT) + offset;
1231	file_accessed(filp);
1232}
1233
1234int file_read_actor(read_descriptor_t *desc, struct page *page,
1235			unsigned long offset, unsigned long size)
1236{
1237	char *kaddr;
1238	unsigned long left, count = desc->count;
1239
1240	if (size > count)
1241		size = count;
1242
1243	/*
1244	 * Faults on the destination of a read are common, so do it before
1245	 * taking the kmap.
1246	 */
1247	if (!fault_in_pages_writeable(desc->arg.buf, size)) {
1248		kaddr = kmap_atomic(page, KM_USER0);
1249		left = __copy_to_user_inatomic(desc->arg.buf,
1250						kaddr + offset, size);
1251		kunmap_atomic(kaddr, KM_USER0);
1252		if (left == 0)
1253			goto success;
1254	}
1255
1256	/* Do it the slow way */
1257	kaddr = kmap(page);
1258	left = __copy_to_user(desc->arg.buf, kaddr + offset, size);
1259	kunmap(page);
1260
1261	if (left) {
1262		size -= left;
1263		desc->error = -EFAULT;
1264	}
1265success:
1266	desc->count = count - size;
1267	desc->written += size;
1268	desc->arg.buf += size;
1269	return size;
1270}
1271
1272/*
1273 * Performs necessary checks before doing a write
1274 * @iov:	io vector request
1275 * @nr_segs:	number of segments in the iovec
1276 * @count:	number of bytes to write
1277 * @access_flags: type of access: %VERIFY_READ or %VERIFY_WRITE
1278 *
1279 * Adjust number of segments and amount of bytes to write (nr_segs should be
1280 * properly initialized first). Returns appropriate error code that caller
1281 * should return or zero in case that write should be allowed.
1282 */
1283int generic_segment_checks(const struct iovec *iov,
1284			unsigned long *nr_segs, size_t *count, int access_flags)
1285{
1286	unsigned long   seg;
1287	size_t cnt = 0;
1288	for (seg = 0; seg < *nr_segs; seg++) {
1289		const struct iovec *iv = &iov[seg];
1290
1291		/*
1292		 * If any segment has a negative length, or the cumulative
1293		 * length ever wraps negative then return -EINVAL.
1294		 */
1295		cnt += iv->iov_len;
1296		if (unlikely((ssize_t)(cnt|iv->iov_len) < 0))
1297			return -EINVAL;
1298		if (access_ok(access_flags, iv->iov_base, iv->iov_len))
1299			continue;
1300		if (seg == 0)
1301			return -EFAULT;
1302		*nr_segs = seg;
1303		cnt -= iv->iov_len;	/* This segment is no good */
1304		break;
1305	}
1306	*count = cnt;
1307	return 0;
1308}
1309EXPORT_SYMBOL(generic_segment_checks);
1310
1311/**
1312 * generic_file_aio_read - generic filesystem read routine
1313 * @iocb:	kernel I/O control block
1314 * @iov:	io vector request
1315 * @nr_segs:	number of segments in the iovec
1316 * @pos:	current file position
1317 *
1318 * This is the "read()" routine for all filesystems
1319 * that can use the page cache directly.
1320 */
1321ssize_t
1322generic_file_aio_read(struct kiocb *iocb, const struct iovec *iov,
1323		unsigned long nr_segs, loff_t pos)
1324{
1325	struct file *filp = iocb->ki_filp;
1326	ssize_t retval;
1327	unsigned long seg;
1328	size_t count;
1329	loff_t *ppos = &iocb->ki_pos;
1330
1331	count = 0;
1332	retval = generic_segment_checks(iov, &nr_segs, &count, VERIFY_WRITE);
1333	if (retval)
1334		return retval;
1335
1336	/* coalesce the iovecs and go direct-to-BIO for O_DIRECT */
1337	if (filp->f_flags & O_DIRECT) {
1338		loff_t size;
1339		struct address_space *mapping;
1340		struct inode *inode;
1341
1342		mapping = filp->f_mapping;
1343		inode = mapping->host;
1344		if (!count)
1345			goto out; /* skip atime */
1346		size = i_size_read(inode);
1347		if (pos < size) {
1348			retval = filemap_write_and_wait_range(mapping, pos,
1349					pos + iov_length(iov, nr_segs) - 1);
1350			if (!retval) {
1351				retval = mapping->a_ops->direct_IO(READ, iocb,
1352							iov, pos, nr_segs);
1353			}
1354			if (retval > 0)
1355				*ppos = pos + retval;
1356			if (retval) {
1357				file_accessed(filp);
1358				goto out;
1359			}
1360		}
1361	}
1362
1363	for (seg = 0; seg < nr_segs; seg++) {
1364		read_descriptor_t desc;
1365
1366		desc.written = 0;
1367		desc.arg.buf = iov[seg].iov_base;
1368		desc.count = iov[seg].iov_len;
1369		if (desc.count == 0)
1370			continue;
1371		desc.error = 0;
1372		do_generic_file_read(filp, ppos, &desc, file_read_actor);
1373		retval += desc.written;
1374		if (desc.error) {
1375			retval = retval ?: desc.error;
1376			break;
1377		}
1378		if (desc.count > 0)
1379			break;
1380	}
1381out:
1382	return retval;
1383}
1384EXPORT_SYMBOL(generic_file_aio_read);
1385
1386static ssize_t
1387do_readahead(struct address_space *mapping, struct file *filp,
1388	     pgoff_t index, unsigned long nr)
1389{
1390	if (!mapping || !mapping->a_ops || !mapping->a_ops->readpage)
1391		return -EINVAL;
1392
1393	force_page_cache_readahead(mapping, filp, index, nr);
1394	return 0;
1395}
1396
1397SYSCALL_DEFINE(readahead)(int fd, loff_t offset, size_t count)
1398{
1399	ssize_t ret;
1400	struct file *file;
1401
1402	ret = -EBADF;
1403	file = fget(fd);
1404	if (file) {
1405		if (file->f_mode & FMODE_READ) {
1406			struct address_space *mapping = file->f_mapping;
1407			pgoff_t start = offset >> PAGE_CACHE_SHIFT;
1408			pgoff_t end = (offset + count - 1) >> PAGE_CACHE_SHIFT;
1409			unsigned long len = end - start + 1;
1410			ret = do_readahead(mapping, file, start, len);
1411		}
1412		fput(file);
1413	}
1414	return ret;
1415}
1416#ifdef CONFIG_HAVE_SYSCALL_WRAPPERS
1417asmlinkage long SyS_readahead(long fd, loff_t offset, long count)
1418{
1419	return SYSC_readahead((int) fd, offset, (size_t) count);
1420}
1421SYSCALL_ALIAS(sys_readahead, SyS_readahead);
1422#endif
1423
1424#ifdef CONFIG_MMU
1425/**
1426 * page_cache_read - adds requested page to the page cache if not already there
1427 * @file:	file to read
1428 * @offset:	page index
1429 *
1430 * This adds the requested page to the page cache if it isn't already there,
1431 * and schedules an I/O to read in its contents from disk.
1432 */
1433static int page_cache_read(struct file *file, pgoff_t offset)
1434{
1435	struct address_space *mapping = file->f_mapping;
1436	struct page *page;
1437	int ret;
1438
1439	do {
1440		page = page_cache_alloc_cold(mapping);
1441		if (!page)
1442			return -ENOMEM;
1443
1444		ret = add_to_page_cache_lru(page, mapping, offset, GFP_KERNEL);
1445		if (ret == 0)
1446			ret = mapping->a_ops->readpage(file, page);
1447		else if (ret == -EEXIST)
1448			ret = 0; /* losing race to add is OK */
1449
1450		page_cache_release(page);
1451
1452	} while (ret == AOP_TRUNCATED_PAGE);
1453
1454	return ret;
1455}
1456
1457#define MMAP_LOTSAMISS  (100)
1458
1459/*
1460 * Synchronous readahead happens when we don't even find
1461 * a page in the page cache at all.
1462 */
1463static void do_sync_mmap_readahead(struct vm_area_struct *vma,
1464				   struct file_ra_state *ra,
1465				   struct file *file,
1466				   pgoff_t offset)
1467{
1468	unsigned long ra_pages;
1469	struct address_space *mapping = file->f_mapping;
1470
1471	/* If we don't want any read-ahead, don't bother */
1472	if (VM_RandomReadHint(vma))
1473		return;
1474
1475	if (VM_SequentialReadHint(vma)) {
1476		page_cache_sync_readahead(mapping, ra, file, offset, 1);
1477		return;
1478	}
1479
1480	if (ra->mmap_miss < INT_MAX)
1481		ra->mmap_miss++;
1482
1483	/*
1484	 * Do we miss much more than hit in this file? If so,
1485	 * stop bothering with read-ahead. It will only hurt.
1486	 */
1487	if (ra->mmap_miss > MMAP_LOTSAMISS)
1488		return;
1489
1490	ra_pages = max_sane_readahead(ra->ra_pages);
1491	if (ra_pages) {
1492		pgoff_t start = 0;
1493
1494		if (offset > ra_pages / 2)
1495			start = offset - ra_pages / 2;
1496		do_page_cache_readahead(mapping, file, start, ra_pages);
1497	}
1498}
1499
1500/*
1501 * Asynchronous readahead happens when we find the page and PG_readahead,
1502 * so we want to possibly extend the readahead further..
1503 */
1504static void do_async_mmap_readahead(struct vm_area_struct *vma,
1505				    struct file_ra_state *ra,
1506				    struct file *file,
1507				    struct page *page,
1508				    pgoff_t offset)
1509{
1510	struct address_space *mapping = file->f_mapping;
1511
1512	/* If we don't want any read-ahead, don't bother */
1513	if (VM_RandomReadHint(vma))
1514		return;
1515	if (ra->mmap_miss > 0)
1516		ra->mmap_miss--;
1517	if (PageReadahead(page))
1518		page_cache_async_readahead(mapping, ra, file, page, offset, 1);
1519}
1520
1521/**
1522 * filemap_fault - read in file data for page fault handling
1523 * @vma:	vma in which the fault was taken
1524 * @vmf:	struct vm_fault containing details of the fault
1525 *
1526 * filemap_fault() is invoked via the vma operations vector for a
1527 * mapped memory region to read in file data during a page fault.
1528 *
1529 * The goto's are kind of ugly, but this streamlines the normal case of having
1530 * it in the page cache, and handles the special cases reasonably without
1531 * having a lot of duplicated code.
1532 */
1533int filemap_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
1534{
1535	int error;
1536	struct file *file = vma->vm_file;
1537	struct address_space *mapping = file->f_mapping;
1538	struct file_ra_state *ra = &file->f_ra;
1539	struct inode *inode = mapping->host;
1540	pgoff_t offset = vmf->pgoff;
1541	struct page *page;
1542	pgoff_t size;
1543	int ret = 0;
1544
1545	size = (i_size_read(inode) + PAGE_CACHE_SIZE - 1) >> PAGE_CACHE_SHIFT;
1546	if (offset >= size)
1547		return VM_FAULT_SIGBUS;
1548
1549	/*
1550	 * Do we have something in the page cache already?
1551	 */
1552	page = find_get_page(mapping, offset);
1553	if (likely(page)) {
1554		/*
1555		 * We found the page, so try async readahead before
1556		 * waiting for the lock.
1557		 */
1558		do_async_mmap_readahead(vma, ra, file, page, offset);
1559		lock_page(page);
1560
1561		/* Did it get truncated? */
1562		if (unlikely(page->mapping != mapping)) {
1563			unlock_page(page);
1564			put_page(page);
1565			goto no_cached_page;
1566		}
1567	} else {
1568		/* No page in the page cache at all */
1569		do_sync_mmap_readahead(vma, ra, file, offset);
1570		count_vm_event(PGMAJFAULT);
1571		ret = VM_FAULT_MAJOR;
1572retry_find:
1573		page = find_lock_page(mapping, offset);
1574		if (!page)
1575			goto no_cached_page;
1576	}
1577
1578	/*
1579	 * We have a locked page in the page cache, now we need to check
1580	 * that it's up-to-date. If not, it is going to be due to an error.
1581	 */
1582	if (unlikely(!PageUptodate(page)))
1583		goto page_not_uptodate;
1584
1585	/*
1586	 * Found the page and have a reference on it.
1587	 * We must recheck i_size under page lock.
1588	 */
1589	size = (i_size_read(inode) + PAGE_CACHE_SIZE - 1) >> PAGE_CACHE_SHIFT;
1590	if (unlikely(offset >= size)) {
1591		unlock_page(page);
1592		page_cache_release(page);
1593		return VM_FAULT_SIGBUS;
1594	}
1595
1596	ra->prev_pos = (loff_t)offset << PAGE_CACHE_SHIFT;
1597	vmf->page = page;
1598	return ret | VM_FAULT_LOCKED;
1599
1600no_cached_page:
1601	/*
1602	 * We're only likely to ever get here if MADV_RANDOM is in
1603	 * effect.
1604	 */
1605	error = page_cache_read(file, offset);
1606
1607	/*
1608	 * The page we want has now been added to the page cache.
1609	 * In the unlikely event that someone removed it in the
1610	 * meantime, we'll just come back here and read it again.
1611	 */
1612	if (error >= 0)
1613		goto retry_find;
1614
1615	/*
1616	 * An error return from page_cache_read can result if the
1617	 * system is low on memory, or a problem occurs while trying
1618	 * to schedule I/O.
1619	 */
1620	if (error == -ENOMEM)
1621		return VM_FAULT_OOM;
1622	return VM_FAULT_SIGBUS;
1623
1624page_not_uptodate:
1625	/*
1626	 * Umm, take care of errors if the page isn't up-to-date.
1627	 * Try to re-read it _once_. We do this synchronously,
1628	 * because there really aren't any performance issues here
1629	 * and we need to check for errors.
1630	 */
1631	ClearPageError(page);
1632	error = mapping->a_ops->readpage(file, page);
1633	if (!error) {
1634		wait_on_page_locked(page);
1635		if (!PageUptodate(page))
1636			error = -EIO;
1637	}
1638	page_cache_release(page);
1639
1640	if (!error || error == AOP_TRUNCATED_PAGE)
1641		goto retry_find;
1642
1643	/* Things didn't work out. Return zero to tell the mm layer so. */
1644	shrink_readahead_size_eio(file, ra);
1645	return VM_FAULT_SIGBUS;
1646}
1647EXPORT_SYMBOL(filemap_fault);
1648
1649struct vm_operations_struct generic_file_vm_ops = {
1650	.fault		= filemap_fault,
1651};
1652
1653/* This is used for a general mmap of a disk file */
1654
1655int generic_file_mmap(struct file * file, struct vm_area_struct * vma)
1656{
1657	struct address_space *mapping = file->f_mapping;
1658
1659	if (!mapping->a_ops->readpage)
1660		return -ENOEXEC;
1661	file_accessed(file);
1662	vma->vm_ops = &generic_file_vm_ops;
1663	vma->vm_flags |= VM_CAN_NONLINEAR;
1664	return 0;
1665}
1666
1667/*
1668 * This is for filesystems which do not implement ->writepage.
1669 */
1670int generic_file_readonly_mmap(struct file *file, struct vm_area_struct *vma)
1671{
1672	if ((vma->vm_flags & VM_SHARED) && (vma->vm_flags & VM_MAYWRITE))
1673		return -EINVAL;
1674	return generic_file_mmap(file, vma);
1675}
1676#else
1677int generic_file_mmap(struct file * file, struct vm_area_struct * vma)
1678{
1679	return -ENOSYS;
1680}
1681int generic_file_readonly_mmap(struct file * file, struct vm_area_struct * vma)
1682{
1683	return -ENOSYS;
1684}
1685#endif /* CONFIG_MMU */
1686
1687EXPORT_SYMBOL(generic_file_mmap);
1688EXPORT_SYMBOL(generic_file_readonly_mmap);
1689
1690static struct page *__read_cache_page(struct address_space *mapping,
1691				pgoff_t index,
1692				int (*filler)(void *,struct page*),
1693				void *data)
1694{
1695	struct page *page;
1696	int err;
1697repeat:
1698	page = find_get_page(mapping, index);
1699	if (!page) {
1700		page = page_cache_alloc_cold(mapping);
1701		if (!page)
1702			return ERR_PTR(-ENOMEM);
1703		err = add_to_page_cache_lru(page, mapping, index, GFP_KERNEL);
1704		if (unlikely(err)) {
1705			page_cache_release(page);
1706			if (err == -EEXIST)
1707				goto repeat;
1708			/* Presumably ENOMEM for radix tree node */
1709			return ERR_PTR(err);
1710		}
1711		err = filler(data, page);
1712		if (err < 0) {
1713			page_cache_release(page);
1714			page = ERR_PTR(err);
1715		}
1716	}
1717	return page;
1718}
1719
1720/**
1721 * read_cache_page_async - read into page cache, fill it if needed
1722 * @mapping:	the page's address_space
1723 * @index:	the page index
1724 * @filler:	function to perform the read
1725 * @data:	destination for read data
1726 *
1727 * Same as read_cache_page, but don't wait for page to become unlocked
1728 * after submitting it to the filler.
1729 *
1730 * Read into the page cache. If a page already exists, and PageUptodate() is
1731 * not set, try to fill the page but don't wait for it to become unlocked.
1732 *
1733 * If the page does not get brought uptodate, return -EIO.
1734 */
1735struct page *read_cache_page_async(struct address_space *mapping,
1736				pgoff_t index,
1737				int (*filler)(void *,struct page*),
1738				void *data)
1739{
1740	struct page *page;
1741	int err;
1742
1743retry:
1744	page = __read_cache_page(mapping, index, filler, data);
1745	if (IS_ERR(page))
1746		return page;
1747	if (PageUptodate(page))
1748		goto out;
1749
1750	lock_page(page);
1751	if (!page->mapping) {
1752		unlock_page(page);
1753		page_cache_release(page);
1754		goto retry;
1755	}
1756	if (PageUptodate(page)) {
1757		unlock_page(page);
1758		goto out;
1759	}
1760	err = filler(data, page);
1761	if (err < 0) {
1762		page_cache_release(page);
1763		return ERR_PTR(err);
1764	}
1765out:
1766	mark_page_accessed(page);
1767	return page;
1768}
1769EXPORT_SYMBOL(read_cache_page_async);
1770
1771/**
1772 * read_cache_page - read into page cache, fill it if needed
1773 * @mapping:	the page's address_space
1774 * @index:	the page index
1775 * @filler:	function to perform the read
1776 * @data:	destination for read data
1777 *
1778 * Read into the page cache. If a page already exists, and PageUptodate() is
1779 * not set, try to fill the page then wait for it to become unlocked.
1780 *
1781 * If the page does not get brought uptodate, return -EIO.
1782 */
1783struct page *read_cache_page(struct address_space *mapping,
1784				pgoff_t index,
1785				int (*filler)(void *,struct page*),
1786				void *data)
1787{
1788	struct page *page;
1789
1790	page = read_cache_page_async(mapping, index, filler, data);
1791	if (IS_ERR(page))
1792		goto out;
1793	wait_on_page_locked(page);
1794	if (!PageUptodate(page)) {
1795		page_cache_release(page);
1796		page = ERR_PTR(-EIO);
1797	}
1798 out:
1799	return page;
1800}
1801EXPORT_SYMBOL(read_cache_page);
1802
1803/*
1804 * The logic we want is
1805 *
1806 *	if suid or (sgid and xgrp)
1807 *		remove privs
1808 */
1809int should_remove_suid(struct dentry *dentry)
1810{
1811	mode_t mode = dentry->d_inode->i_mode;
1812	int kill = 0;
1813
1814	/* suid always must be killed */
1815	if (unlikely(mode & S_ISUID))
1816		kill = ATTR_KILL_SUID;
1817
1818	/*
1819	 * sgid without any exec bits is just a mandatory locking mark; leave
1820	 * it alone.  If some exec bits are set, it's a real sgid; kill it.
1821	 */
1822	if (unlikely((mode & S_ISGID) && (mode & S_IXGRP)))
1823		kill |= ATTR_KILL_SGID;
1824
1825	if (unlikely(kill && !capable(CAP_FSETID) && S_ISREG(mode)))
1826		return kill;
1827
1828	return 0;
1829}
1830EXPORT_SYMBOL(should_remove_suid);
1831
1832static int __remove_suid(struct dentry *dentry, int kill)
1833{
1834	struct iattr newattrs;
1835
1836	newattrs.ia_valid = ATTR_FORCE | kill;
1837	return notify_change(dentry, &newattrs);
1838}
1839
1840int file_remove_suid(struct file *file)
1841{
1842	struct dentry *dentry = file->f_path.dentry;
1843	int killsuid = should_remove_suid(dentry);
1844	int killpriv = security_inode_need_killpriv(dentry);
1845	int error = 0;
1846
1847	if (killpriv < 0)
1848		return killpriv;
1849	if (killpriv)
1850		error = security_inode_killpriv(dentry);
1851	if (!error && killsuid)
1852		error = __remove_suid(dentry, killsuid);
1853
1854	return error;
1855}
1856EXPORT_SYMBOL(file_remove_suid);
1857
1858static size_t __iovec_copy_from_user_inatomic(char *vaddr,
1859			const struct iovec *iov, size_t base, size_t bytes)
1860{
1861	size_t copied = 0, left = 0;
1862
1863	while (bytes) {
1864		char __user *buf = iov->iov_base + base;
1865		int copy = min(bytes, iov->iov_len - base);
1866
1867		base = 0;
1868		left = __copy_from_user_inatomic(vaddr, buf, copy);
1869		copied += copy;
1870		bytes -= copy;
1871		vaddr += copy;
1872		iov++;
1873
1874		if (unlikely(left))
1875			break;
1876	}
1877	return copied - left;
1878}
1879
1880/*
1881 * Copy as much as we can into the page and return the number of bytes which
1882 * were sucessfully copied.  If a fault is encountered then return the number of
1883 * bytes which were copied.
1884 */
1885size_t iov_iter_copy_from_user_atomic(struct page *page,
1886		struct iov_iter *i, unsigned long offset, size_t bytes)
1887{
1888	char *kaddr;
1889	size_t copied;
1890
1891	BUG_ON(!in_atomic());
1892	kaddr = kmap_atomic(page, KM_USER0);
1893	if (likely(i->nr_segs == 1)) {
1894		int left;
1895		char __user *buf = i->iov->iov_base + i->iov_offset;
1896		left = __copy_from_user_inatomic(kaddr + offset, buf, bytes);
1897		copied = bytes - left;
1898	} else {
1899		copied = __iovec_copy_from_user_inatomic(kaddr + offset,
1900						i->iov, i->iov_offset, bytes);
1901	}
1902	kunmap_atomic(kaddr, KM_USER0);
1903
1904	return copied;
1905}
1906EXPORT_SYMBOL(iov_iter_copy_from_user_atomic);
1907
1908/*
1909 * This has the same sideeffects and return value as
1910 * iov_iter_copy_from_user_atomic().
1911 * The difference is that it attempts to resolve faults.
1912 * Page must not be locked.
1913 */
1914size_t iov_iter_copy_from_user(struct page *page,
1915		struct iov_iter *i, unsigned long offset, size_t bytes)
1916{
1917	char *kaddr;
1918	size_t copied;
1919
1920	kaddr = kmap(page);
1921	if (likely(i->nr_segs == 1)) {
1922		int left;
1923		char __user *buf = i->iov->iov_base + i->iov_offset;
1924		left = __copy_from_user(kaddr + offset, buf, bytes);
1925		copied = bytes - left;
1926	} else {
1927		copied = __iovec_copy_from_user_inatomic(kaddr + offset,
1928						i->iov, i->iov_offset, bytes);
1929	}
1930	kunmap(page);
1931	return copied;
1932}
1933EXPORT_SYMBOL(iov_iter_copy_from_user);
1934
1935void iov_iter_advance(struct iov_iter *i, size_t bytes)
1936{
1937	BUG_ON(i->count < bytes);
1938
1939	if (likely(i->nr_segs == 1)) {
1940		i->iov_offset += bytes;
1941		i->count -= bytes;
1942	} else {
1943		const struct iovec *iov = i->iov;
1944		size_t base = i->iov_offset;
1945
1946		/*
1947		 * The !iov->iov_len check ensures we skip over unlikely
1948		 * zero-length segments (without overruning the iovec).
1949		 */
1950		while (bytes || unlikely(i->count && !iov->iov_len)) {
1951			int copy;
1952
1953			copy = min(bytes, iov->iov_len - base);
1954			BUG_ON(!i->count || i->count < copy);
1955			i->count -= copy;
1956			bytes -= copy;
1957			base += copy;
1958			if (iov->iov_len == base) {
1959				iov++;
1960				base = 0;
1961			}
1962		}
1963		i->iov = iov;
1964		i->iov_offset = base;
1965	}
1966}
1967EXPORT_SYMBOL(iov_iter_advance);
1968
1969/*
1970 * Fault in the first iovec of the given iov_iter, to a maximum length
1971 * of bytes. Returns 0 on success, or non-zero if the memory could not be
1972 * accessed (ie. because it is an invalid address).
1973 *
1974 * writev-intensive code may want this to prefault several iovecs -- that
1975 * would be possible (callers must not rely on the fact that _only_ the
1976 * first iovec will be faulted with the current implementation).
1977 */
1978int iov_iter_fault_in_readable(struct iov_iter *i, size_t bytes)
1979{
1980	char __user *buf = i->iov->iov_base + i->iov_offset;
1981	bytes = min(bytes, i->iov->iov_len - i->iov_offset);
1982	return fault_in_pages_readable(buf, bytes);
1983}
1984EXPORT_SYMBOL(iov_iter_fault_in_readable);
1985
1986/*
1987 * Return the count of just the current iov_iter segment.
1988 */
1989size_t iov_iter_single_seg_count(struct iov_iter *i)
1990{
1991	const struct iovec *iov = i->iov;
1992	if (i->nr_segs == 1)
1993		return i->count;
1994	else
1995		return min(i->count, iov->iov_len - i->iov_offset);
1996}
1997EXPORT_SYMBOL(iov_iter_single_seg_count);
1998
1999/*
2000 * Performs necessary checks before doing a write
2001 *
2002 * Can adjust writing position or amount of bytes to write.
2003 * Returns appropriate error code that caller should return or
2004 * zero in case that write should be allowed.
2005 */
2006inline int generic_write_checks(struct file *file, loff_t *pos, size_t *count, int isblk)
2007{
2008	struct inode *inode = file->f_mapping->host;
2009	unsigned long limit = current->signal->rlim[RLIMIT_FSIZE].rlim_cur;
2010
2011        if (unlikely(*pos < 0))
2012                return -EINVAL;
2013
2014	if (!isblk) {
2015		/* FIXME: this is for backwards compatibility with 2.4 */
2016		if (file->f_flags & O_APPEND)
2017                        *pos = i_size_read(inode);
2018
2019		if (limit != RLIM_INFINITY) {
2020			if (*pos >= limit) {
2021				send_sig(SIGXFSZ, current, 0);
2022				return -EFBIG;
2023			}
2024			if (*count > limit - (typeof(limit))*pos) {
2025				*count = limit - (typeof(limit))*pos;
2026			}
2027		}
2028	}
2029
2030	/*
2031	 * LFS rule
2032	 */
2033	if (unlikely(*pos + *count > MAX_NON_LFS &&
2034				!(file->f_flags & O_LARGEFILE))) {
2035		if (*pos >= MAX_NON_LFS) {
2036			return -EFBIG;
2037		}
2038		if (*count > MAX_NON_LFS - (unsigned long)*pos) {
2039			*count = MAX_NON_LFS - (unsigned long)*pos;
2040		}
2041	}
2042
2043	/*
2044	 * Are we about to exceed the fs block limit ?
2045	 *
2046	 * If we have written data it becomes a short write.  If we have
2047	 * exceeded without writing data we send a signal and return EFBIG.
2048	 * Linus frestrict idea will clean these up nicely..
2049	 */
2050	if (likely(!isblk)) {
2051		if (unlikely(*pos >= inode->i_sb->s_maxbytes)) {
2052			if (*count || *pos > inode->i_sb->s_maxbytes) {
2053				return -EFBIG;
2054			}
2055			/* zero-length writes at ->s_maxbytes are OK */
2056		}
2057
2058		if (unlikely(*pos + *count > inode->i_sb->s_maxbytes))
2059			*count = inode->i_sb->s_maxbytes - *pos;
2060	} else {
2061#ifdef CONFIG_BLOCK
2062		loff_t isize;
2063		if (bdev_read_only(I_BDEV(inode)))
2064			return -EPERM;
2065		isize = i_size_read(inode);
2066		if (*pos >= isize) {
2067			if (*count || *pos > isize)
2068				return -ENOSPC;
2069		}
2070
2071		if (*pos + *count > isize)
2072			*count = isize - *pos;
2073#else
2074		return -EPERM;
2075#endif
2076	}
2077	return 0;
2078}
2079EXPORT_SYMBOL(generic_write_checks);
2080
2081int pagecache_write_begin(struct file *file, struct address_space *mapping,
2082				loff_t pos, unsigned len, unsigned flags,
2083				struct page **pagep, void **fsdata)
2084{
2085	const struct address_space_operations *aops = mapping->a_ops;
2086
2087	return aops->write_begin(file, mapping, pos, len, flags,
2088							pagep, fsdata);
2089}
2090EXPORT_SYMBOL(pagecache_write_begin);
2091
2092int pagecache_write_end(struct file *file, struct address_space *mapping,
2093				loff_t pos, unsigned len, unsigned copied,
2094				struct page *page, void *fsdata)
2095{
2096	const struct address_space_operations *aops = mapping->a_ops;
2097
2098	mark_page_accessed(page);
2099	return aops->write_end(file, mapping, pos, len, copied, page, fsdata);
2100}
2101EXPORT_SYMBOL(pagecache_write_end);
2102
2103ssize_t
2104generic_file_direct_write(struct kiocb *iocb, const struct iovec *iov,
2105		unsigned long *nr_segs, loff_t pos, loff_t *ppos,
2106		size_t count, size_t ocount)
2107{
2108	struct file	*file = iocb->ki_filp;
2109	struct address_space *mapping = file->f_mapping;
2110	struct inode	*inode = mapping->host;
2111	ssize_t		written;
2112	size_t		write_len;
2113	pgoff_t		end;
2114
2115	if (count != ocount)
2116		*nr_segs = iov_shorten((struct iovec *)iov, *nr_segs, count);
2117
2118	write_len = iov_length(iov, *nr_segs);
2119	end = (pos + write_len - 1) >> PAGE_CACHE_SHIFT;
2120
2121	written = filemap_write_and_wait_range(mapping, pos, pos + write_len - 1);
2122	if (written)
2123		goto out;
2124
2125	/*
2126	 * After a write we want buffered reads to be sure to go to disk to get
2127	 * the new data.  We invalidate clean cached page from the region we're
2128	 * about to write.  We do this *before* the write so that we can return
2129	 * without clobbering -EIOCBQUEUED from ->direct_IO().
2130	 */
2131	if (mapping->nrpages) {
2132		written = invalidate_inode_pages2_range(mapping,
2133					pos >> PAGE_CACHE_SHIFT, end);
2134		/*
2135		 * If a page can not be invalidated, return 0 to fall back
2136		 * to buffered write.
2137		 */
2138		if (written) {
2139			if (written == -EBUSY)
2140				return 0;
2141			goto out;
2142		}
2143	}
2144
2145	written = mapping->a_ops->direct_IO(WRITE, iocb, iov, pos, *nr_segs);
2146
2147	/*
2148	 * Finally, try again to invalidate clean pages which might have been
2149	 * cached by non-direct readahead, or faulted in by get_user_pages()
2150	 * if the source of the write was an mmap'ed region of the file
2151	 * we're writing.  Either one is a pretty crazy thing to do,
2152	 * so we don't support it 100%.  If this invalidation
2153	 * fails, tough, the write still worked...
2154	 */
2155	if (mapping->nrpages) {
2156		invalidate_inode_pages2_range(mapping,
2157					      pos >> PAGE_CACHE_SHIFT, end);
2158	}
2159
2160	if (written > 0) {
2161		loff_t end = pos + written;
2162		if (end > i_size_read(inode) && !S_ISBLK(inode->i_mode)) {
2163			i_size_write(inode,  end);
2164			mark_inode_dirty(inode);
2165		}
2166		*ppos = end;
2167	}
2168
2169	/*
2170	 * Sync the fs metadata but not the minor inode changes and
2171	 * of course not the data as we did direct DMA for the IO.
2172	 * i_mutex is held, which protects generic_osync_inode() from
2173	 * livelocking.  AIO O_DIRECT ops attempt to sync metadata here.
2174	 */
2175out:
2176	if ((written >= 0 || written == -EIOCBQUEUED) &&
2177	    ((file->f_flags & O_SYNC) || IS_SYNC(inode))) {
2178		int err = generic_osync_inode(inode, mapping, OSYNC_METADATA);
2179		if (err < 0)
2180			written = err;
2181	}
2182	return written;
2183}
2184EXPORT_SYMBOL(generic_file_direct_write);
2185
2186/*
2187 * Find or create a page at the given pagecache position. Return the locked
2188 * page. This function is specifically for buffered writes.
2189 */
2190struct page *grab_cache_page_write_begin(struct address_space *mapping,
2191					pgoff_t index, unsigned flags)
2192{
2193	int status;
2194	struct page *page;
2195	gfp_t gfp_notmask = 0;
2196	if (flags & AOP_FLAG_NOFS)
2197		gfp_notmask = __GFP_FS;
2198repeat:
2199	page = find_lock_page(mapping, index);
2200	if (likely(page))
2201		return page;
2202
2203	page = __page_cache_alloc(mapping_gfp_mask(mapping) & ~gfp_notmask);
2204	if (!page)
2205		return NULL;
2206	status = add_to_page_cache_lru(page, mapping, index,
2207						GFP_KERNEL & ~gfp_notmask);
2208	if (unlikely(status)) {
2209		page_cache_release(page);
2210		if (status == -EEXIST)
2211			goto repeat;
2212		return NULL;
2213	}
2214	return page;
2215}
2216EXPORT_SYMBOL(grab_cache_page_write_begin);
2217
2218static ssize_t generic_perform_write(struct file *file,
2219				struct iov_iter *i, loff_t pos)
2220{
2221	struct address_space *mapping = file->f_mapping;
2222	const struct address_space_operations *a_ops = mapping->a_ops;
2223	long status = 0;
2224	ssize_t written = 0;
2225	unsigned int flags = 0;
2226
2227	/*
2228	 * Copies from kernel address space cannot fail (NFSD is a big user).
2229	 */
2230	if (segment_eq(get_fs(), KERNEL_DS))
2231		flags |= AOP_FLAG_UNINTERRUPTIBLE;
2232
2233	do {
2234		struct page *page;
2235		pgoff_t index;		/* Pagecache index for current page */
2236		unsigned long offset;	/* Offset into pagecache page */
2237		unsigned long bytes;	/* Bytes to write to page */
2238		size_t copied;		/* Bytes copied from user */
2239		void *fsdata;
2240
2241		offset = (pos & (PAGE_CACHE_SIZE - 1));
2242		index = pos >> PAGE_CACHE_SHIFT;
2243		bytes = min_t(unsigned long, PAGE_CACHE_SIZE - offset,
2244						iov_iter_count(i));
2245
2246again:
2247
2248		/*
2249		 * Bring in the user page that we will copy from _first_.
2250		 * Otherwise there's a nasty deadlock on copying from the
2251		 * same page as we're writing to, without it being marked
2252		 * up-to-date.
2253		 *
2254		 * Not only is this an optimisation, but it is also required
2255		 * to check that the address is actually valid, when atomic
2256		 * usercopies are used, below.
2257		 */
2258		if (unlikely(iov_iter_fault_in_readable(i, bytes))) {
2259			status = -EFAULT;
2260			break;
2261		}
2262
2263		status = a_ops->write_begin(file, mapping, pos, bytes, flags,
2264						&page, &fsdata);
2265		if (unlikely(status))
2266			break;
2267
2268		pagefault_disable();
2269		copied = iov_iter_copy_from_user_atomic(page, i, offset, bytes);
2270		pagefault_enable();
2271		flush_dcache_page(page);
2272
2273		status = a_ops->write_end(file, mapping, pos, bytes, copied,
2274						page, fsdata);
2275		if (unlikely(status < 0))
2276			break;
2277		copied = status;
2278
2279		cond_resched();
2280
2281		iov_iter_advance(i, copied);
2282		if (unlikely(copied == 0)) {
2283			/*
2284			 * If we were unable to copy any data at all, we must
2285			 * fall back to a single segment length write.
2286			 *
2287			 * If we didn't fallback here, we could livelock
2288			 * because not all segments in the iov can be copied at
2289			 * once without a pagefault.
2290			 */
2291			bytes = min_t(unsigned long, PAGE_CACHE_SIZE - offset,
2292						iov_iter_single_seg_count(i));
2293			goto again;
2294		}
2295		pos += copied;
2296		written += copied;
2297
2298		balance_dirty_pages_ratelimited(mapping);
2299
2300	} while (iov_iter_count(i));
2301
2302	return written ? written : status;
2303}
2304
2305ssize_t
2306generic_file_buffered_write(struct kiocb *iocb, const struct iovec *iov,
2307		unsigned long nr_segs, loff_t pos, loff_t *ppos,
2308		size_t count, ssize_t written)
2309{
2310	struct file *file = iocb->ki_filp;
2311	struct address_space *mapping = file->f_mapping;
2312	const struct address_space_operations *a_ops = mapping->a_ops;
2313	struct inode *inode = mapping->host;
2314	ssize_t status;
2315	struct iov_iter i;
2316
2317	iov_iter_init(&i, iov, nr_segs, count, written);
2318	status = generic_perform_write(file, &i, pos);
2319
2320	if (likely(status >= 0)) {
2321		written += status;
2322		*ppos = pos + status;
2323
2324		/*
2325		 * For now, when the user asks for O_SYNC, we'll actually give
2326		 * O_DSYNC
2327		 */
2328		if (unlikely((file->f_flags & O_SYNC) || IS_SYNC(inode))) {
2329			if (!a_ops->writepage || !is_sync_kiocb(iocb))
2330				status = generic_osync_inode(inode, mapping,
2331						OSYNC_METADATA|OSYNC_DATA);
2332		}
2333  	}
2334
2335	/*
2336	 * If we get here for O_DIRECT writes then we must have fallen through
2337	 * to buffered writes (block instantiation inside i_size).  So we sync
2338	 * the file data here, to try to honour O_DIRECT expectations.
2339	 */
2340	if (unlikely(file->f_flags & O_DIRECT) && written)
2341		status = filemap_write_and_wait_range(mapping,
2342					pos, pos + written - 1);
2343
2344	return written ? written : status;
2345}
2346EXPORT_SYMBOL(generic_file_buffered_write);
2347
2348static ssize_t
2349__generic_file_aio_write_nolock(struct kiocb *iocb, const struct iovec *iov,
2350				unsigned long nr_segs, loff_t *ppos)
2351{
2352	struct file *file = iocb->ki_filp;
2353	struct address_space * mapping = file->f_mapping;
2354	size_t ocount;		/* original count */
2355	size_t count;		/* after file limit checks */
2356	struct inode 	*inode = mapping->host;
2357	loff_t		pos;
2358	ssize_t		written;
2359	ssize_t		err;
2360
2361	ocount = 0;
2362	err = generic_segment_checks(iov, &nr_segs, &ocount, VERIFY_READ);
2363	if (err)
2364		return err;
2365
2366	count = ocount;
2367	pos = *ppos;
2368
2369	vfs_check_frozen(inode->i_sb, SB_FREEZE_WRITE);
2370
2371	/* We can write back this queue in page reclaim */
2372	current->backing_dev_info = mapping->backing_dev_info;
2373	written = 0;
2374
2375	err = generic_write_checks(file, &pos, &count, S_ISBLK(inode->i_mode));
2376	if (err)
2377		goto out;
2378
2379	if (count == 0)
2380		goto out;
2381
2382	err = file_remove_suid(file);
2383	if (err)
2384		goto out;
2385
2386	file_update_time(file);
2387
2388	/* coalesce the iovecs and go direct-to-BIO for O_DIRECT */
2389	if (unlikely(file->f_flags & O_DIRECT)) {
2390		loff_t endbyte;
2391		ssize_t written_buffered;
2392
2393		written = generic_file_direct_write(iocb, iov, &nr_segs, pos,
2394							ppos, count, ocount);
2395		if (written < 0 || written == count)
2396			goto out;
2397		/*
2398		 * direct-io write to a hole: fall through to buffered I/O
2399		 * for completing the rest of the request.
2400		 */
2401		pos += written;
2402		count -= written;
2403		written_buffered = generic_file_buffered_write(iocb, iov,
2404						nr_segs, pos, ppos, count,
2405						written);
2406		/*
2407		 * If generic_file_buffered_write() retuned a synchronous error
2408		 * then we want to return the number of bytes which were
2409		 * direct-written, or the error code if that was zero.  Note
2410		 * that this differs from normal direct-io semantics, which
2411		 * will return -EFOO even if some bytes were written.
2412		 */
2413		if (written_buffered < 0) {
2414			err = written_buffered;
2415			goto out;
2416		}
2417
2418		/*
2419		 * We need to ensure that the page cache pages are written to
2420		 * disk and invalidated to preserve the expected O_DIRECT
2421		 * semantics.
2422		 */
2423		endbyte = pos + written_buffered - written - 1;
2424		err = do_sync_mapping_range(file->f_mapping, pos, endbyte,
2425					    SYNC_FILE_RANGE_WAIT_BEFORE|
2426					    SYNC_FILE_RANGE_WRITE|
2427					    SYNC_FILE_RANGE_WAIT_AFTER);
2428		if (err == 0) {
2429			written = written_buffered;
2430			invalidate_mapping_pages(mapping,
2431						 pos >> PAGE_CACHE_SHIFT,
2432						 endbyte >> PAGE_CACHE_SHIFT);
2433		} else {
2434			/*
2435			 * We don't know how much we wrote, so just return
2436			 * the number of bytes which were direct-written
2437			 */
2438		}
2439	} else {
2440		written = generic_file_buffered_write(iocb, iov, nr_segs,
2441				pos, ppos, count, written);
2442	}
2443out:
2444	current->backing_dev_info = NULL;
2445	return written ? written : err;
2446}
2447
2448ssize_t generic_file_aio_write_nolock(struct kiocb *iocb,
2449		const struct iovec *iov, unsigned long nr_segs, loff_t pos)
2450{
2451	struct file *file = iocb->ki_filp;
2452	struct address_space *mapping = file->f_mapping;
2453	struct inode *inode = mapping->host;
2454	ssize_t ret;
2455
2456	BUG_ON(iocb->ki_pos != pos);
2457
2458	ret = __generic_file_aio_write_nolock(iocb, iov, nr_segs,
2459			&iocb->ki_pos);
2460
2461	if (ret > 0 && ((file->f_flags & O_SYNC) || IS_SYNC(inode))) {
2462		ssize_t err;
2463
2464		err = sync_page_range_nolock(inode, mapping, pos, ret);
2465		if (err < 0)
2466			ret = err;
2467	}
2468	return ret;
2469}
2470EXPORT_SYMBOL(generic_file_aio_write_nolock);
2471
2472ssize_t generic_file_aio_write(struct kiocb *iocb, const struct iovec *iov,
2473		unsigned long nr_segs, loff_t pos)
2474{
2475	struct file *file = iocb->ki_filp;
2476	struct address_space *mapping = file->f_mapping;
2477	struct inode *inode = mapping->host;
2478	ssize_t ret;
2479
2480	BUG_ON(iocb->ki_pos != pos);
2481
2482	mutex_lock(&inode->i_mutex);
2483	ret = __generic_file_aio_write_nolock(iocb, iov, nr_segs,
2484			&iocb->ki_pos);
2485	mutex_unlock(&inode->i_mutex);
2486
2487	if (ret > 0 && ((file->f_flags & O_SYNC) || IS_SYNC(inode))) {
2488		ssize_t err;
2489
2490		err = sync_page_range(inode, mapping, pos, ret);
2491		if (err < 0)
2492			ret = err;
2493	}
2494	return ret;
2495}
2496EXPORT_SYMBOL(generic_file_aio_write);
2497
2498/**
2499 * try_to_release_page() - release old fs-specific metadata on a page
2500 *
2501 * @page: the page which the kernel is trying to free
2502 * @gfp_mask: memory allocation flags (and I/O mode)
2503 *
2504 * The address_space is to try to release any data against the page
2505 * (presumably at page->private).  If the release was successful, return `1'.
2506 * Otherwise return zero.
2507 *
2508 * This may also be called if PG_fscache is set on a page, indicating that the
2509 * page is known to the local caching routines.
2510 *
2511 * The @gfp_mask argument specifies whether I/O may be performed to release
2512 * this page (__GFP_IO), and whether the call may block (__GFP_WAIT & __GFP_FS).
2513 *
2514 */
2515int try_to_release_page(struct page *page, gfp_t gfp_mask)
2516{
2517	struct address_space * const mapping = page->mapping;
2518
2519	BUG_ON(!PageLocked(page));
2520	if (PageWriteback(page))
2521		return 0;
2522
2523	if (mapping && mapping->a_ops->releasepage)
2524		return mapping->a_ops->releasepage(page, gfp_mask);
2525	return try_to_free_buffers(page);
2526}
2527
2528EXPORT_SYMBOL(try_to_release_page);
2529