highmem.c revision a19b27ce3847c3a5d4ea6b6c91b6f7154759af23
1/*
2 * High memory handling common code and variables.
3 *
4 * (C) 1999 Andrea Arcangeli, SuSE GmbH, andrea@suse.de
5 *          Gerhard Wichert, Siemens AG, Gerhard.Wichert@pdb.siemens.de
6 *
7 *
8 * Redesigned the x86 32-bit VM architecture to deal with
9 * 64-bit physical space. With current x86 CPUs this
10 * means up to 64 Gigabytes physical RAM.
11 *
12 * Rewrote high memory support to move the page cache into
13 * high memory. Implemented permanent (schedulable) kmaps
14 * based on Linus' idea.
15 *
16 * Copyright (C) 1999 Ingo Molnar <mingo@redhat.com>
17 */
18
19#include <linux/mm.h>
20#include <linux/module.h>
21#include <linux/swap.h>
22#include <linux/bio.h>
23#include <linux/pagemap.h>
24#include <linux/mempool.h>
25#include <linux/blkdev.h>
26#include <linux/init.h>
27#include <linux/hash.h>
28#include <linux/highmem.h>
29#include <linux/blktrace_api.h>
30#include <asm/tlbflush.h>
31
32static mempool_t *page_pool, *isa_page_pool;
33
34static void *mempool_alloc_pages_isa(gfp_t gfp_mask, void *data)
35{
36	return mempool_alloc_pages(gfp_mask | GFP_DMA, data);
37}
38
39/*
40 * Virtual_count is not a pure "count".
41 *  0 means that it is not mapped, and has not been mapped
42 *    since a TLB flush - it is usable.
43 *  1 means that there are no users, but it has been mapped
44 *    since the last TLB flush - so we can't use it.
45 *  n means that there are (n-1) current users of it.
46 */
47#ifdef CONFIG_HIGHMEM
48
49static int pkmap_count[LAST_PKMAP];
50static unsigned int last_pkmap_nr;
51static  __cacheline_aligned_in_smp DEFINE_SPINLOCK(kmap_lock);
52
53pte_t * pkmap_page_table;
54
55static DECLARE_WAIT_QUEUE_HEAD(pkmap_map_wait);
56
57static void flush_all_zero_pkmaps(void)
58{
59	int i;
60
61	flush_cache_kmaps();
62
63	for (i = 0; i < LAST_PKMAP; i++) {
64		struct page *page;
65
66		/*
67		 * zero means we don't have anything to do,
68		 * >1 means that it is still in use. Only
69		 * a count of 1 means that it is free but
70		 * needs to be unmapped
71		 */
72		if (pkmap_count[i] != 1)
73			continue;
74		pkmap_count[i] = 0;
75
76		/* sanity check */
77		if (pte_none(pkmap_page_table[i]))
78			BUG();
79
80		/*
81		 * Don't need an atomic fetch-and-clear op here;
82		 * no-one has the page mapped, and cannot get at
83		 * its virtual address (and hence PTE) without first
84		 * getting the kmap_lock (which is held here).
85		 * So no dangers, even with speculative execution.
86		 */
87		page = pte_page(pkmap_page_table[i]);
88		pte_clear(&init_mm, (unsigned long)page_address(page),
89			  &pkmap_page_table[i]);
90
91		set_page_address(page, NULL);
92	}
93	flush_tlb_kernel_range(PKMAP_ADDR(0), PKMAP_ADDR(LAST_PKMAP));
94}
95
96static inline unsigned long map_new_virtual(struct page *page)
97{
98	unsigned long vaddr;
99	int count;
100
101start:
102	count = LAST_PKMAP;
103	/* Find an empty entry */
104	for (;;) {
105		last_pkmap_nr = (last_pkmap_nr + 1) & LAST_PKMAP_MASK;
106		if (!last_pkmap_nr) {
107			flush_all_zero_pkmaps();
108			count = LAST_PKMAP;
109		}
110		if (!pkmap_count[last_pkmap_nr])
111			break;	/* Found a usable entry */
112		if (--count)
113			continue;
114
115		/*
116		 * Sleep for somebody else to unmap their entries
117		 */
118		{
119			DECLARE_WAITQUEUE(wait, current);
120
121			__set_current_state(TASK_UNINTERRUPTIBLE);
122			add_wait_queue(&pkmap_map_wait, &wait);
123			spin_unlock(&kmap_lock);
124			schedule();
125			remove_wait_queue(&pkmap_map_wait, &wait);
126			spin_lock(&kmap_lock);
127
128			/* Somebody else might have mapped it while we slept */
129			if (page_address(page))
130				return (unsigned long)page_address(page);
131
132			/* Re-start */
133			goto start;
134		}
135	}
136	vaddr = PKMAP_ADDR(last_pkmap_nr);
137	set_pte_at(&init_mm, vaddr,
138		   &(pkmap_page_table[last_pkmap_nr]), mk_pte(page, kmap_prot));
139
140	pkmap_count[last_pkmap_nr] = 1;
141	set_page_address(page, (void *)vaddr);
142
143	return vaddr;
144}
145
146void fastcall *kmap_high(struct page *page)
147{
148	unsigned long vaddr;
149
150	/*
151	 * For highmem pages, we can't trust "virtual" until
152	 * after we have the lock.
153	 *
154	 * We cannot call this from interrupts, as it may block
155	 */
156	spin_lock(&kmap_lock);
157	vaddr = (unsigned long)page_address(page);
158	if (!vaddr)
159		vaddr = map_new_virtual(page);
160	pkmap_count[PKMAP_NR(vaddr)]++;
161	if (pkmap_count[PKMAP_NR(vaddr)] < 2)
162		BUG();
163	spin_unlock(&kmap_lock);
164	return (void*) vaddr;
165}
166
167EXPORT_SYMBOL(kmap_high);
168
169void fastcall kunmap_high(struct page *page)
170{
171	unsigned long vaddr;
172	unsigned long nr;
173	int need_wakeup;
174
175	spin_lock(&kmap_lock);
176	vaddr = (unsigned long)page_address(page);
177	if (!vaddr)
178		BUG();
179	nr = PKMAP_NR(vaddr);
180
181	/*
182	 * A count must never go down to zero
183	 * without a TLB flush!
184	 */
185	need_wakeup = 0;
186	switch (--pkmap_count[nr]) {
187	case 0:
188		BUG();
189	case 1:
190		/*
191		 * Avoid an unnecessary wake_up() function call.
192		 * The common case is pkmap_count[] == 1, but
193		 * no waiters.
194		 * The tasks queued in the wait-queue are guarded
195		 * by both the lock in the wait-queue-head and by
196		 * the kmap_lock.  As the kmap_lock is held here,
197		 * no need for the wait-queue-head's lock.  Simply
198		 * test if the queue is empty.
199		 */
200		need_wakeup = waitqueue_active(&pkmap_map_wait);
201	}
202	spin_unlock(&kmap_lock);
203
204	/* do wake-up, if needed, race-free outside of the spin lock */
205	if (need_wakeup)
206		wake_up(&pkmap_map_wait);
207}
208
209EXPORT_SYMBOL(kunmap_high);
210
211#define POOL_SIZE	64
212
213static __init int init_emergency_pool(void)
214{
215	struct sysinfo i;
216	si_meminfo(&i);
217	si_swapinfo(&i);
218
219	if (!i.totalhigh)
220		return 0;
221
222	page_pool = mempool_create_page_pool(POOL_SIZE, 0);
223	if (!page_pool)
224		BUG();
225	printk("highmem bounce pool size: %d pages\n", POOL_SIZE);
226
227	return 0;
228}
229
230__initcall(init_emergency_pool);
231
232/*
233 * highmem version, map in to vec
234 */
235static void bounce_copy_vec(struct bio_vec *to, unsigned char *vfrom)
236{
237	unsigned long flags;
238	unsigned char *vto;
239
240	local_irq_save(flags);
241	vto = kmap_atomic(to->bv_page, KM_BOUNCE_READ);
242	memcpy(vto + to->bv_offset, vfrom, to->bv_len);
243	kunmap_atomic(vto, KM_BOUNCE_READ);
244	local_irq_restore(flags);
245}
246
247#else /* CONFIG_HIGHMEM */
248
249#define bounce_copy_vec(to, vfrom)	\
250	memcpy(page_address((to)->bv_page) + (to)->bv_offset, vfrom, (to)->bv_len)
251
252#endif
253
254#define ISA_POOL_SIZE	16
255
256/*
257 * gets called "every" time someone init's a queue with BLK_BOUNCE_ISA
258 * as the max address, so check if the pool has already been created.
259 */
260int init_emergency_isa_pool(void)
261{
262	if (isa_page_pool)
263		return 0;
264
265	isa_page_pool = mempool_create(ISA_POOL_SIZE, mempool_alloc_pages_isa,
266				       mempool_free_pages, (void *) 0);
267	if (!isa_page_pool)
268		BUG();
269
270	printk("isa bounce pool size: %d pages\n", ISA_POOL_SIZE);
271	return 0;
272}
273
274/*
275 * Simple bounce buffer support for highmem pages. Depending on the
276 * queue gfp mask set, *to may or may not be a highmem page. kmap it
277 * always, it will do the Right Thing
278 */
279static void copy_to_high_bio_irq(struct bio *to, struct bio *from)
280{
281	unsigned char *vfrom;
282	struct bio_vec *tovec, *fromvec;
283	int i;
284
285	__bio_for_each_segment(tovec, to, i, 0) {
286		fromvec = from->bi_io_vec + i;
287
288		/*
289		 * not bounced
290		 */
291		if (tovec->bv_page == fromvec->bv_page)
292			continue;
293
294		/*
295		 * fromvec->bv_offset and fromvec->bv_len might have been
296		 * modified by the block layer, so use the original copy,
297		 * bounce_copy_vec already uses tovec->bv_len
298		 */
299		vfrom = page_address(fromvec->bv_page) + tovec->bv_offset;
300
301		flush_dcache_page(tovec->bv_page);
302		bounce_copy_vec(tovec, vfrom);
303	}
304}
305
306static void bounce_end_io(struct bio *bio, mempool_t *pool, int err)
307{
308	struct bio *bio_orig = bio->bi_private;
309	struct bio_vec *bvec, *org_vec;
310	int i;
311
312	if (test_bit(BIO_EOPNOTSUPP, &bio->bi_flags))
313		set_bit(BIO_EOPNOTSUPP, &bio_orig->bi_flags);
314
315	/*
316	 * free up bounce indirect pages used
317	 */
318	__bio_for_each_segment(bvec, bio, i, 0) {
319		org_vec = bio_orig->bi_io_vec + i;
320		if (bvec->bv_page == org_vec->bv_page)
321			continue;
322
323		mempool_free(bvec->bv_page, pool);
324		dec_page_state(nr_bounce);
325	}
326
327	bio_endio(bio_orig, bio_orig->bi_size, err);
328	bio_put(bio);
329}
330
331static int bounce_end_io_write(struct bio *bio, unsigned int bytes_done, int err)
332{
333	if (bio->bi_size)
334		return 1;
335
336	bounce_end_io(bio, page_pool, err);
337	return 0;
338}
339
340static int bounce_end_io_write_isa(struct bio *bio, unsigned int bytes_done, int err)
341{
342	if (bio->bi_size)
343		return 1;
344
345	bounce_end_io(bio, isa_page_pool, err);
346	return 0;
347}
348
349static void __bounce_end_io_read(struct bio *bio, mempool_t *pool, int err)
350{
351	struct bio *bio_orig = bio->bi_private;
352
353	if (test_bit(BIO_UPTODATE, &bio->bi_flags))
354		copy_to_high_bio_irq(bio_orig, bio);
355
356	bounce_end_io(bio, pool, err);
357}
358
359static int bounce_end_io_read(struct bio *bio, unsigned int bytes_done, int err)
360{
361	if (bio->bi_size)
362		return 1;
363
364	__bounce_end_io_read(bio, page_pool, err);
365	return 0;
366}
367
368static int bounce_end_io_read_isa(struct bio *bio, unsigned int bytes_done, int err)
369{
370	if (bio->bi_size)
371		return 1;
372
373	__bounce_end_io_read(bio, isa_page_pool, err);
374	return 0;
375}
376
377static void __blk_queue_bounce(request_queue_t *q, struct bio **bio_orig,
378			       mempool_t *pool)
379{
380	struct page *page;
381	struct bio *bio = NULL;
382	int i, rw = bio_data_dir(*bio_orig);
383	struct bio_vec *to, *from;
384
385	bio_for_each_segment(from, *bio_orig, i) {
386		page = from->bv_page;
387
388		/*
389		 * is destination page below bounce pfn?
390		 */
391		if (page_to_pfn(page) < q->bounce_pfn)
392			continue;
393
394		/*
395		 * irk, bounce it
396		 */
397		if (!bio)
398			bio = bio_alloc(GFP_NOIO, (*bio_orig)->bi_vcnt);
399
400		to = bio->bi_io_vec + i;
401
402		to->bv_page = mempool_alloc(pool, q->bounce_gfp);
403		to->bv_len = from->bv_len;
404		to->bv_offset = from->bv_offset;
405		inc_page_state(nr_bounce);
406
407		if (rw == WRITE) {
408			char *vto, *vfrom;
409
410			flush_dcache_page(from->bv_page);
411			vto = page_address(to->bv_page) + to->bv_offset;
412			vfrom = kmap(from->bv_page) + from->bv_offset;
413			memcpy(vto, vfrom, to->bv_len);
414			kunmap(from->bv_page);
415		}
416	}
417
418	/*
419	 * no pages bounced
420	 */
421	if (!bio)
422		return;
423
424	/*
425	 * at least one page was bounced, fill in possible non-highmem
426	 * pages
427	 */
428	__bio_for_each_segment(from, *bio_orig, i, 0) {
429		to = bio_iovec_idx(bio, i);
430		if (!to->bv_page) {
431			to->bv_page = from->bv_page;
432			to->bv_len = from->bv_len;
433			to->bv_offset = from->bv_offset;
434		}
435	}
436
437	bio->bi_bdev = (*bio_orig)->bi_bdev;
438	bio->bi_flags |= (1 << BIO_BOUNCED);
439	bio->bi_sector = (*bio_orig)->bi_sector;
440	bio->bi_rw = (*bio_orig)->bi_rw;
441
442	bio->bi_vcnt = (*bio_orig)->bi_vcnt;
443	bio->bi_idx = (*bio_orig)->bi_idx;
444	bio->bi_size = (*bio_orig)->bi_size;
445
446	if (pool == page_pool) {
447		bio->bi_end_io = bounce_end_io_write;
448		if (rw == READ)
449			bio->bi_end_io = bounce_end_io_read;
450	} else {
451		bio->bi_end_io = bounce_end_io_write_isa;
452		if (rw == READ)
453			bio->bi_end_io = bounce_end_io_read_isa;
454	}
455
456	bio->bi_private = *bio_orig;
457	*bio_orig = bio;
458}
459
460void blk_queue_bounce(request_queue_t *q, struct bio **bio_orig)
461{
462	mempool_t *pool;
463
464	/*
465	 * for non-isa bounce case, just check if the bounce pfn is equal
466	 * to or bigger than the highest pfn in the system -- in that case,
467	 * don't waste time iterating over bio segments
468	 */
469	if (!(q->bounce_gfp & GFP_DMA)) {
470		if (q->bounce_pfn >= blk_max_pfn)
471			return;
472		pool = page_pool;
473	} else {
474		BUG_ON(!isa_page_pool);
475		pool = isa_page_pool;
476	}
477
478	blk_add_trace_bio(q, *bio_orig, BLK_TA_BOUNCE);
479
480	/*
481	 * slow path
482	 */
483	__blk_queue_bounce(q, bio_orig, pool);
484}
485
486EXPORT_SYMBOL(blk_queue_bounce);
487
488#if defined(HASHED_PAGE_VIRTUAL)
489
490#define PA_HASH_ORDER	7
491
492/*
493 * Describes one page->virtual association
494 */
495struct page_address_map {
496	struct page *page;
497	void *virtual;
498	struct list_head list;
499};
500
501/*
502 * page_address_map freelist, allocated from page_address_maps.
503 */
504static struct list_head page_address_pool;	/* freelist */
505static spinlock_t pool_lock;			/* protects page_address_pool */
506
507/*
508 * Hash table bucket
509 */
510static struct page_address_slot {
511	struct list_head lh;			/* List of page_address_maps */
512	spinlock_t lock;			/* Protect this bucket's list */
513} ____cacheline_aligned_in_smp page_address_htable[1<<PA_HASH_ORDER];
514
515static struct page_address_slot *page_slot(struct page *page)
516{
517	return &page_address_htable[hash_ptr(page, PA_HASH_ORDER)];
518}
519
520void *page_address(struct page *page)
521{
522	unsigned long flags;
523	void *ret;
524	struct page_address_slot *pas;
525
526	if (!PageHighMem(page))
527		return lowmem_page_address(page);
528
529	pas = page_slot(page);
530	ret = NULL;
531	spin_lock_irqsave(&pas->lock, flags);
532	if (!list_empty(&pas->lh)) {
533		struct page_address_map *pam;
534
535		list_for_each_entry(pam, &pas->lh, list) {
536			if (pam->page == page) {
537				ret = pam->virtual;
538				goto done;
539			}
540		}
541	}
542done:
543	spin_unlock_irqrestore(&pas->lock, flags);
544	return ret;
545}
546
547EXPORT_SYMBOL(page_address);
548
549void set_page_address(struct page *page, void *virtual)
550{
551	unsigned long flags;
552	struct page_address_slot *pas;
553	struct page_address_map *pam;
554
555	BUG_ON(!PageHighMem(page));
556
557	pas = page_slot(page);
558	if (virtual) {		/* Add */
559		BUG_ON(list_empty(&page_address_pool));
560
561		spin_lock_irqsave(&pool_lock, flags);
562		pam = list_entry(page_address_pool.next,
563				struct page_address_map, list);
564		list_del(&pam->list);
565		spin_unlock_irqrestore(&pool_lock, flags);
566
567		pam->page = page;
568		pam->virtual = virtual;
569
570		spin_lock_irqsave(&pas->lock, flags);
571		list_add_tail(&pam->list, &pas->lh);
572		spin_unlock_irqrestore(&pas->lock, flags);
573	} else {		/* Remove */
574		spin_lock_irqsave(&pas->lock, flags);
575		list_for_each_entry(pam, &pas->lh, list) {
576			if (pam->page == page) {
577				list_del(&pam->list);
578				spin_unlock_irqrestore(&pas->lock, flags);
579				spin_lock_irqsave(&pool_lock, flags);
580				list_add_tail(&pam->list, &page_address_pool);
581				spin_unlock_irqrestore(&pool_lock, flags);
582				goto done;
583			}
584		}
585		spin_unlock_irqrestore(&pas->lock, flags);
586	}
587done:
588	return;
589}
590
591static struct page_address_map page_address_maps[LAST_PKMAP];
592
593void __init page_address_init(void)
594{
595	int i;
596
597	INIT_LIST_HEAD(&page_address_pool);
598	for (i = 0; i < ARRAY_SIZE(page_address_maps); i++)
599		list_add(&page_address_maps[i].list, &page_address_pool);
600	for (i = 0; i < ARRAY_SIZE(page_address_htable); i++) {
601		INIT_LIST_HEAD(&page_address_htable[i].lh);
602		spin_lock_init(&page_address_htable[i].lock);
603	}
604	spin_lock_init(&pool_lock);
605}
606
607#endif	/* defined(CONFIG_HIGHMEM) && !defined(WANT_PAGE_VIRTUAL) */
608