huge_memory.c revision cd7548ab360c462118568eebb8c6da3bc303b02e
1/*
2 *  Copyright (C) 2009  Red Hat, Inc.
3 *
4 *  This work is licensed under the terms of the GNU GPL, version 2. See
5 *  the COPYING file in the top-level directory.
6 */
7
8#include <linux/mm.h>
9#include <linux/sched.h>
10#include <linux/highmem.h>
11#include <linux/hugetlb.h>
12#include <linux/mmu_notifier.h>
13#include <linux/rmap.h>
14#include <linux/swap.h>
15#include <linux/mm_inline.h>
16#include <linux/kthread.h>
17#include <linux/khugepaged.h>
18#include <asm/tlb.h>
19#include <asm/pgalloc.h>
20#include "internal.h"
21
22/*
23 * By default transparent hugepage support is enabled for all mappings
24 * and khugepaged scans all mappings. Defrag is only invoked by
25 * khugepaged hugepage allocations and by page faults inside
26 * MADV_HUGEPAGE regions to avoid the risk of slowing down short lived
27 * allocations.
28 */
29unsigned long transparent_hugepage_flags __read_mostly =
30	(1<<TRANSPARENT_HUGEPAGE_FLAG)|
31	(1<<TRANSPARENT_HUGEPAGE_DEFRAG_KHUGEPAGED_FLAG);
32
33/* default scan 8*512 pte (or vmas) every 30 second */
34static unsigned int khugepaged_pages_to_scan __read_mostly = HPAGE_PMD_NR*8;
35static unsigned int khugepaged_pages_collapsed;
36static unsigned int khugepaged_full_scans;
37static unsigned int khugepaged_scan_sleep_millisecs __read_mostly = 10000;
38/* during fragmentation poll the hugepage allocator once every minute */
39static unsigned int khugepaged_alloc_sleep_millisecs __read_mostly = 60000;
40static struct task_struct *khugepaged_thread __read_mostly;
41static DEFINE_MUTEX(khugepaged_mutex);
42static DEFINE_SPINLOCK(khugepaged_mm_lock);
43static DECLARE_WAIT_QUEUE_HEAD(khugepaged_wait);
44/*
45 * default collapse hugepages if there is at least one pte mapped like
46 * it would have happened if the vma was large enough during page
47 * fault.
48 */
49static unsigned int khugepaged_max_ptes_none __read_mostly = HPAGE_PMD_NR-1;
50
51static int khugepaged(void *none);
52static int mm_slots_hash_init(void);
53static int khugepaged_slab_init(void);
54static void khugepaged_slab_free(void);
55
56#define MM_SLOTS_HASH_HEADS 1024
57static struct hlist_head *mm_slots_hash __read_mostly;
58static struct kmem_cache *mm_slot_cache __read_mostly;
59
60/**
61 * struct mm_slot - hash lookup from mm to mm_slot
62 * @hash: hash collision list
63 * @mm_node: khugepaged scan list headed in khugepaged_scan.mm_head
64 * @mm: the mm that this information is valid for
65 */
66struct mm_slot {
67	struct hlist_node hash;
68	struct list_head mm_node;
69	struct mm_struct *mm;
70};
71
72/**
73 * struct khugepaged_scan - cursor for scanning
74 * @mm_head: the head of the mm list to scan
75 * @mm_slot: the current mm_slot we are scanning
76 * @address: the next address inside that to be scanned
77 *
78 * There is only the one khugepaged_scan instance of this cursor structure.
79 */
80struct khugepaged_scan {
81	struct list_head mm_head;
82	struct mm_slot *mm_slot;
83	unsigned long address;
84} khugepaged_scan = {
85	.mm_head = LIST_HEAD_INIT(khugepaged_scan.mm_head),
86};
87
88static int start_khugepaged(void)
89{
90	int err = 0;
91	if (khugepaged_enabled()) {
92		int wakeup;
93		if (unlikely(!mm_slot_cache || !mm_slots_hash)) {
94			err = -ENOMEM;
95			goto out;
96		}
97		mutex_lock(&khugepaged_mutex);
98		if (!khugepaged_thread)
99			khugepaged_thread = kthread_run(khugepaged, NULL,
100							"khugepaged");
101		if (unlikely(IS_ERR(khugepaged_thread))) {
102			printk(KERN_ERR
103			       "khugepaged: kthread_run(khugepaged) failed\n");
104			err = PTR_ERR(khugepaged_thread);
105			khugepaged_thread = NULL;
106		}
107		wakeup = !list_empty(&khugepaged_scan.mm_head);
108		mutex_unlock(&khugepaged_mutex);
109		if (wakeup)
110			wake_up_interruptible(&khugepaged_wait);
111	} else
112		/* wakeup to exit */
113		wake_up_interruptible(&khugepaged_wait);
114out:
115	return err;
116}
117
118#ifdef CONFIG_SYSFS
119
120static ssize_t double_flag_show(struct kobject *kobj,
121				struct kobj_attribute *attr, char *buf,
122				enum transparent_hugepage_flag enabled,
123				enum transparent_hugepage_flag req_madv)
124{
125	if (test_bit(enabled, &transparent_hugepage_flags)) {
126		VM_BUG_ON(test_bit(req_madv, &transparent_hugepage_flags));
127		return sprintf(buf, "[always] madvise never\n");
128	} else if (test_bit(req_madv, &transparent_hugepage_flags))
129		return sprintf(buf, "always [madvise] never\n");
130	else
131		return sprintf(buf, "always madvise [never]\n");
132}
133static ssize_t double_flag_store(struct kobject *kobj,
134				 struct kobj_attribute *attr,
135				 const char *buf, size_t count,
136				 enum transparent_hugepage_flag enabled,
137				 enum transparent_hugepage_flag req_madv)
138{
139	if (!memcmp("always", buf,
140		    min(sizeof("always")-1, count))) {
141		set_bit(enabled, &transparent_hugepage_flags);
142		clear_bit(req_madv, &transparent_hugepage_flags);
143	} else if (!memcmp("madvise", buf,
144			   min(sizeof("madvise")-1, count))) {
145		clear_bit(enabled, &transparent_hugepage_flags);
146		set_bit(req_madv, &transparent_hugepage_flags);
147	} else if (!memcmp("never", buf,
148			   min(sizeof("never")-1, count))) {
149		clear_bit(enabled, &transparent_hugepage_flags);
150		clear_bit(req_madv, &transparent_hugepage_flags);
151	} else
152		return -EINVAL;
153
154	return count;
155}
156
157static ssize_t enabled_show(struct kobject *kobj,
158			    struct kobj_attribute *attr, char *buf)
159{
160	return double_flag_show(kobj, attr, buf,
161				TRANSPARENT_HUGEPAGE_FLAG,
162				TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG);
163}
164static ssize_t enabled_store(struct kobject *kobj,
165			     struct kobj_attribute *attr,
166			     const char *buf, size_t count)
167{
168	ssize_t ret;
169
170	ret = double_flag_store(kobj, attr, buf, count,
171				TRANSPARENT_HUGEPAGE_FLAG,
172				TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG);
173
174	if (ret > 0) {
175		int err = start_khugepaged();
176		if (err)
177			ret = err;
178	}
179
180	return ret;
181}
182static struct kobj_attribute enabled_attr =
183	__ATTR(enabled, 0644, enabled_show, enabled_store);
184
185static ssize_t single_flag_show(struct kobject *kobj,
186				struct kobj_attribute *attr, char *buf,
187				enum transparent_hugepage_flag flag)
188{
189	if (test_bit(flag, &transparent_hugepage_flags))
190		return sprintf(buf, "[yes] no\n");
191	else
192		return sprintf(buf, "yes [no]\n");
193}
194static ssize_t single_flag_store(struct kobject *kobj,
195				 struct kobj_attribute *attr,
196				 const char *buf, size_t count,
197				 enum transparent_hugepage_flag flag)
198{
199	if (!memcmp("yes", buf,
200		    min(sizeof("yes")-1, count))) {
201		set_bit(flag, &transparent_hugepage_flags);
202	} else if (!memcmp("no", buf,
203			   min(sizeof("no")-1, count))) {
204		clear_bit(flag, &transparent_hugepage_flags);
205	} else
206		return -EINVAL;
207
208	return count;
209}
210
211/*
212 * Currently defrag only disables __GFP_NOWAIT for allocation. A blind
213 * __GFP_REPEAT is too aggressive, it's never worth swapping tons of
214 * memory just to allocate one more hugepage.
215 */
216static ssize_t defrag_show(struct kobject *kobj,
217			   struct kobj_attribute *attr, char *buf)
218{
219	return double_flag_show(kobj, attr, buf,
220				TRANSPARENT_HUGEPAGE_DEFRAG_FLAG,
221				TRANSPARENT_HUGEPAGE_DEFRAG_REQ_MADV_FLAG);
222}
223static ssize_t defrag_store(struct kobject *kobj,
224			    struct kobj_attribute *attr,
225			    const char *buf, size_t count)
226{
227	return double_flag_store(kobj, attr, buf, count,
228				 TRANSPARENT_HUGEPAGE_DEFRAG_FLAG,
229				 TRANSPARENT_HUGEPAGE_DEFRAG_REQ_MADV_FLAG);
230}
231static struct kobj_attribute defrag_attr =
232	__ATTR(defrag, 0644, defrag_show, defrag_store);
233
234#ifdef CONFIG_DEBUG_VM
235static ssize_t debug_cow_show(struct kobject *kobj,
236				struct kobj_attribute *attr, char *buf)
237{
238	return single_flag_show(kobj, attr, buf,
239				TRANSPARENT_HUGEPAGE_DEBUG_COW_FLAG);
240}
241static ssize_t debug_cow_store(struct kobject *kobj,
242			       struct kobj_attribute *attr,
243			       const char *buf, size_t count)
244{
245	return single_flag_store(kobj, attr, buf, count,
246				 TRANSPARENT_HUGEPAGE_DEBUG_COW_FLAG);
247}
248static struct kobj_attribute debug_cow_attr =
249	__ATTR(debug_cow, 0644, debug_cow_show, debug_cow_store);
250#endif /* CONFIG_DEBUG_VM */
251
252static struct attribute *hugepage_attr[] = {
253	&enabled_attr.attr,
254	&defrag_attr.attr,
255#ifdef CONFIG_DEBUG_VM
256	&debug_cow_attr.attr,
257#endif
258	NULL,
259};
260
261static struct attribute_group hugepage_attr_group = {
262	.attrs = hugepage_attr,
263};
264
265static ssize_t scan_sleep_millisecs_show(struct kobject *kobj,
266					 struct kobj_attribute *attr,
267					 char *buf)
268{
269	return sprintf(buf, "%u\n", khugepaged_scan_sleep_millisecs);
270}
271
272static ssize_t scan_sleep_millisecs_store(struct kobject *kobj,
273					  struct kobj_attribute *attr,
274					  const char *buf, size_t count)
275{
276	unsigned long msecs;
277	int err;
278
279	err = strict_strtoul(buf, 10, &msecs);
280	if (err || msecs > UINT_MAX)
281		return -EINVAL;
282
283	khugepaged_scan_sleep_millisecs = msecs;
284	wake_up_interruptible(&khugepaged_wait);
285
286	return count;
287}
288static struct kobj_attribute scan_sleep_millisecs_attr =
289	__ATTR(scan_sleep_millisecs, 0644, scan_sleep_millisecs_show,
290	       scan_sleep_millisecs_store);
291
292static ssize_t alloc_sleep_millisecs_show(struct kobject *kobj,
293					  struct kobj_attribute *attr,
294					  char *buf)
295{
296	return sprintf(buf, "%u\n", khugepaged_alloc_sleep_millisecs);
297}
298
299static ssize_t alloc_sleep_millisecs_store(struct kobject *kobj,
300					   struct kobj_attribute *attr,
301					   const char *buf, size_t count)
302{
303	unsigned long msecs;
304	int err;
305
306	err = strict_strtoul(buf, 10, &msecs);
307	if (err || msecs > UINT_MAX)
308		return -EINVAL;
309
310	khugepaged_alloc_sleep_millisecs = msecs;
311	wake_up_interruptible(&khugepaged_wait);
312
313	return count;
314}
315static struct kobj_attribute alloc_sleep_millisecs_attr =
316	__ATTR(alloc_sleep_millisecs, 0644, alloc_sleep_millisecs_show,
317	       alloc_sleep_millisecs_store);
318
319static ssize_t pages_to_scan_show(struct kobject *kobj,
320				  struct kobj_attribute *attr,
321				  char *buf)
322{
323	return sprintf(buf, "%u\n", khugepaged_pages_to_scan);
324}
325static ssize_t pages_to_scan_store(struct kobject *kobj,
326				   struct kobj_attribute *attr,
327				   const char *buf, size_t count)
328{
329	int err;
330	unsigned long pages;
331
332	err = strict_strtoul(buf, 10, &pages);
333	if (err || !pages || pages > UINT_MAX)
334		return -EINVAL;
335
336	khugepaged_pages_to_scan = pages;
337
338	return count;
339}
340static struct kobj_attribute pages_to_scan_attr =
341	__ATTR(pages_to_scan, 0644, pages_to_scan_show,
342	       pages_to_scan_store);
343
344static ssize_t pages_collapsed_show(struct kobject *kobj,
345				    struct kobj_attribute *attr,
346				    char *buf)
347{
348	return sprintf(buf, "%u\n", khugepaged_pages_collapsed);
349}
350static struct kobj_attribute pages_collapsed_attr =
351	__ATTR_RO(pages_collapsed);
352
353static ssize_t full_scans_show(struct kobject *kobj,
354			       struct kobj_attribute *attr,
355			       char *buf)
356{
357	return sprintf(buf, "%u\n", khugepaged_full_scans);
358}
359static struct kobj_attribute full_scans_attr =
360	__ATTR_RO(full_scans);
361
362static ssize_t khugepaged_defrag_show(struct kobject *kobj,
363				      struct kobj_attribute *attr, char *buf)
364{
365	return single_flag_show(kobj, attr, buf,
366				TRANSPARENT_HUGEPAGE_DEFRAG_KHUGEPAGED_FLAG);
367}
368static ssize_t khugepaged_defrag_store(struct kobject *kobj,
369				       struct kobj_attribute *attr,
370				       const char *buf, size_t count)
371{
372	return single_flag_store(kobj, attr, buf, count,
373				 TRANSPARENT_HUGEPAGE_DEFRAG_KHUGEPAGED_FLAG);
374}
375static struct kobj_attribute khugepaged_defrag_attr =
376	__ATTR(defrag, 0644, khugepaged_defrag_show,
377	       khugepaged_defrag_store);
378
379/*
380 * max_ptes_none controls if khugepaged should collapse hugepages over
381 * any unmapped ptes in turn potentially increasing the memory
382 * footprint of the vmas. When max_ptes_none is 0 khugepaged will not
383 * reduce the available free memory in the system as it
384 * runs. Increasing max_ptes_none will instead potentially reduce the
385 * free memory in the system during the khugepaged scan.
386 */
387static ssize_t khugepaged_max_ptes_none_show(struct kobject *kobj,
388					     struct kobj_attribute *attr,
389					     char *buf)
390{
391	return sprintf(buf, "%u\n", khugepaged_max_ptes_none);
392}
393static ssize_t khugepaged_max_ptes_none_store(struct kobject *kobj,
394					      struct kobj_attribute *attr,
395					      const char *buf, size_t count)
396{
397	int err;
398	unsigned long max_ptes_none;
399
400	err = strict_strtoul(buf, 10, &max_ptes_none);
401	if (err || max_ptes_none > HPAGE_PMD_NR-1)
402		return -EINVAL;
403
404	khugepaged_max_ptes_none = max_ptes_none;
405
406	return count;
407}
408static struct kobj_attribute khugepaged_max_ptes_none_attr =
409	__ATTR(max_ptes_none, 0644, khugepaged_max_ptes_none_show,
410	       khugepaged_max_ptes_none_store);
411
412static struct attribute *khugepaged_attr[] = {
413	&khugepaged_defrag_attr.attr,
414	&khugepaged_max_ptes_none_attr.attr,
415	&pages_to_scan_attr.attr,
416	&pages_collapsed_attr.attr,
417	&full_scans_attr.attr,
418	&scan_sleep_millisecs_attr.attr,
419	&alloc_sleep_millisecs_attr.attr,
420	NULL,
421};
422
423static struct attribute_group khugepaged_attr_group = {
424	.attrs = khugepaged_attr,
425	.name = "khugepaged",
426};
427#endif /* CONFIG_SYSFS */
428
429static int __init hugepage_init(void)
430{
431	int err;
432#ifdef CONFIG_SYSFS
433	static struct kobject *hugepage_kobj;
434
435	err = -ENOMEM;
436	hugepage_kobj = kobject_create_and_add("transparent_hugepage", mm_kobj);
437	if (unlikely(!hugepage_kobj)) {
438		printk(KERN_ERR "hugepage: failed kobject create\n");
439		goto out;
440	}
441
442	err = sysfs_create_group(hugepage_kobj, &hugepage_attr_group);
443	if (err) {
444		printk(KERN_ERR "hugepage: failed register hugeage group\n");
445		goto out;
446	}
447
448	err = sysfs_create_group(hugepage_kobj, &khugepaged_attr_group);
449	if (err) {
450		printk(KERN_ERR "hugepage: failed register hugeage group\n");
451		goto out;
452	}
453#endif
454
455	err = khugepaged_slab_init();
456	if (err)
457		goto out;
458
459	err = mm_slots_hash_init();
460	if (err) {
461		khugepaged_slab_free();
462		goto out;
463	}
464
465	start_khugepaged();
466
467out:
468	return err;
469}
470module_init(hugepage_init)
471
472static int __init setup_transparent_hugepage(char *str)
473{
474	int ret = 0;
475	if (!str)
476		goto out;
477	if (!strcmp(str, "always")) {
478		set_bit(TRANSPARENT_HUGEPAGE_FLAG,
479			&transparent_hugepage_flags);
480		clear_bit(TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG,
481			  &transparent_hugepage_flags);
482		ret = 1;
483	} else if (!strcmp(str, "madvise")) {
484		clear_bit(TRANSPARENT_HUGEPAGE_FLAG,
485			  &transparent_hugepage_flags);
486		set_bit(TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG,
487			&transparent_hugepage_flags);
488		ret = 1;
489	} else if (!strcmp(str, "never")) {
490		clear_bit(TRANSPARENT_HUGEPAGE_FLAG,
491			  &transparent_hugepage_flags);
492		clear_bit(TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG,
493			  &transparent_hugepage_flags);
494		ret = 1;
495	}
496out:
497	if (!ret)
498		printk(KERN_WARNING
499		       "transparent_hugepage= cannot parse, ignored\n");
500	return ret;
501}
502__setup("transparent_hugepage=", setup_transparent_hugepage);
503
504static void prepare_pmd_huge_pte(pgtable_t pgtable,
505				 struct mm_struct *mm)
506{
507	assert_spin_locked(&mm->page_table_lock);
508
509	/* FIFO */
510	if (!mm->pmd_huge_pte)
511		INIT_LIST_HEAD(&pgtable->lru);
512	else
513		list_add(&pgtable->lru, &mm->pmd_huge_pte->lru);
514	mm->pmd_huge_pte = pgtable;
515}
516
517static inline pmd_t maybe_pmd_mkwrite(pmd_t pmd, struct vm_area_struct *vma)
518{
519	if (likely(vma->vm_flags & VM_WRITE))
520		pmd = pmd_mkwrite(pmd);
521	return pmd;
522}
523
524static int __do_huge_pmd_anonymous_page(struct mm_struct *mm,
525					struct vm_area_struct *vma,
526					unsigned long haddr, pmd_t *pmd,
527					struct page *page)
528{
529	int ret = 0;
530	pgtable_t pgtable;
531
532	VM_BUG_ON(!PageCompound(page));
533	pgtable = pte_alloc_one(mm, haddr);
534	if (unlikely(!pgtable)) {
535		mem_cgroup_uncharge_page(page);
536		put_page(page);
537		return VM_FAULT_OOM;
538	}
539
540	clear_huge_page(page, haddr, HPAGE_PMD_NR);
541	__SetPageUptodate(page);
542
543	spin_lock(&mm->page_table_lock);
544	if (unlikely(!pmd_none(*pmd))) {
545		spin_unlock(&mm->page_table_lock);
546		mem_cgroup_uncharge_page(page);
547		put_page(page);
548		pte_free(mm, pgtable);
549	} else {
550		pmd_t entry;
551		entry = mk_pmd(page, vma->vm_page_prot);
552		entry = maybe_pmd_mkwrite(pmd_mkdirty(entry), vma);
553		entry = pmd_mkhuge(entry);
554		/*
555		 * The spinlocking to take the lru_lock inside
556		 * page_add_new_anon_rmap() acts as a full memory
557		 * barrier to be sure clear_huge_page writes become
558		 * visible after the set_pmd_at() write.
559		 */
560		page_add_new_anon_rmap(page, vma, haddr);
561		set_pmd_at(mm, haddr, pmd, entry);
562		prepare_pmd_huge_pte(pgtable, mm);
563		add_mm_counter(mm, MM_ANONPAGES, HPAGE_PMD_NR);
564		spin_unlock(&mm->page_table_lock);
565	}
566
567	return ret;
568}
569
570static inline struct page *alloc_hugepage(int defrag)
571{
572	return alloc_pages(GFP_TRANSHUGE & ~(defrag ? 0 : __GFP_WAIT),
573			   HPAGE_PMD_ORDER);
574}
575
576int do_huge_pmd_anonymous_page(struct mm_struct *mm, struct vm_area_struct *vma,
577			       unsigned long address, pmd_t *pmd,
578			       unsigned int flags)
579{
580	struct page *page;
581	unsigned long haddr = address & HPAGE_PMD_MASK;
582	pte_t *pte;
583
584	if (haddr >= vma->vm_start && haddr + HPAGE_PMD_SIZE <= vma->vm_end) {
585		if (unlikely(anon_vma_prepare(vma)))
586			return VM_FAULT_OOM;
587		if (unlikely(khugepaged_enter(vma)))
588			return VM_FAULT_OOM;
589		page = alloc_hugepage(transparent_hugepage_defrag(vma));
590		if (unlikely(!page))
591			goto out;
592		if (unlikely(mem_cgroup_newpage_charge(page, mm, GFP_KERNEL))) {
593			put_page(page);
594			goto out;
595		}
596
597		return __do_huge_pmd_anonymous_page(mm, vma, haddr, pmd, page);
598	}
599out:
600	/*
601	 * Use __pte_alloc instead of pte_alloc_map, because we can't
602	 * run pte_offset_map on the pmd, if an huge pmd could
603	 * materialize from under us from a different thread.
604	 */
605	if (unlikely(__pte_alloc(mm, vma, pmd, address)))
606		return VM_FAULT_OOM;
607	/* if an huge pmd materialized from under us just retry later */
608	if (unlikely(pmd_trans_huge(*pmd)))
609		return 0;
610	/*
611	 * A regular pmd is established and it can't morph into a huge pmd
612	 * from under us anymore at this point because we hold the mmap_sem
613	 * read mode and khugepaged takes it in write mode. So now it's
614	 * safe to run pte_offset_map().
615	 */
616	pte = pte_offset_map(pmd, address);
617	return handle_pte_fault(mm, vma, address, pte, pmd, flags);
618}
619
620int copy_huge_pmd(struct mm_struct *dst_mm, struct mm_struct *src_mm,
621		  pmd_t *dst_pmd, pmd_t *src_pmd, unsigned long addr,
622		  struct vm_area_struct *vma)
623{
624	struct page *src_page;
625	pmd_t pmd;
626	pgtable_t pgtable;
627	int ret;
628
629	ret = -ENOMEM;
630	pgtable = pte_alloc_one(dst_mm, addr);
631	if (unlikely(!pgtable))
632		goto out;
633
634	spin_lock(&dst_mm->page_table_lock);
635	spin_lock_nested(&src_mm->page_table_lock, SINGLE_DEPTH_NESTING);
636
637	ret = -EAGAIN;
638	pmd = *src_pmd;
639	if (unlikely(!pmd_trans_huge(pmd))) {
640		pte_free(dst_mm, pgtable);
641		goto out_unlock;
642	}
643	if (unlikely(pmd_trans_splitting(pmd))) {
644		/* split huge page running from under us */
645		spin_unlock(&src_mm->page_table_lock);
646		spin_unlock(&dst_mm->page_table_lock);
647		pte_free(dst_mm, pgtable);
648
649		wait_split_huge_page(vma->anon_vma, src_pmd); /* src_vma */
650		goto out;
651	}
652	src_page = pmd_page(pmd);
653	VM_BUG_ON(!PageHead(src_page));
654	get_page(src_page);
655	page_dup_rmap(src_page);
656	add_mm_counter(dst_mm, MM_ANONPAGES, HPAGE_PMD_NR);
657
658	pmdp_set_wrprotect(src_mm, addr, src_pmd);
659	pmd = pmd_mkold(pmd_wrprotect(pmd));
660	set_pmd_at(dst_mm, addr, dst_pmd, pmd);
661	prepare_pmd_huge_pte(pgtable, dst_mm);
662
663	ret = 0;
664out_unlock:
665	spin_unlock(&src_mm->page_table_lock);
666	spin_unlock(&dst_mm->page_table_lock);
667out:
668	return ret;
669}
670
671/* no "address" argument so destroys page coloring of some arch */
672pgtable_t get_pmd_huge_pte(struct mm_struct *mm)
673{
674	pgtable_t pgtable;
675
676	assert_spin_locked(&mm->page_table_lock);
677
678	/* FIFO */
679	pgtable = mm->pmd_huge_pte;
680	if (list_empty(&pgtable->lru))
681		mm->pmd_huge_pte = NULL;
682	else {
683		mm->pmd_huge_pte = list_entry(pgtable->lru.next,
684					      struct page, lru);
685		list_del(&pgtable->lru);
686	}
687	return pgtable;
688}
689
690static int do_huge_pmd_wp_page_fallback(struct mm_struct *mm,
691					struct vm_area_struct *vma,
692					unsigned long address,
693					pmd_t *pmd, pmd_t orig_pmd,
694					struct page *page,
695					unsigned long haddr)
696{
697	pgtable_t pgtable;
698	pmd_t _pmd;
699	int ret = 0, i;
700	struct page **pages;
701
702	pages = kmalloc(sizeof(struct page *) * HPAGE_PMD_NR,
703			GFP_KERNEL);
704	if (unlikely(!pages)) {
705		ret |= VM_FAULT_OOM;
706		goto out;
707	}
708
709	for (i = 0; i < HPAGE_PMD_NR; i++) {
710		pages[i] = alloc_page_vma(GFP_HIGHUSER_MOVABLE,
711					  vma, address);
712		if (unlikely(!pages[i] ||
713			     mem_cgroup_newpage_charge(pages[i], mm,
714						       GFP_KERNEL))) {
715			if (pages[i])
716				put_page(pages[i]);
717			mem_cgroup_uncharge_start();
718			while (--i >= 0) {
719				mem_cgroup_uncharge_page(pages[i]);
720				put_page(pages[i]);
721			}
722			mem_cgroup_uncharge_end();
723			kfree(pages);
724			ret |= VM_FAULT_OOM;
725			goto out;
726		}
727	}
728
729	for (i = 0; i < HPAGE_PMD_NR; i++) {
730		copy_user_highpage(pages[i], page + i,
731				   haddr + PAGE_SHIFT*i, vma);
732		__SetPageUptodate(pages[i]);
733		cond_resched();
734	}
735
736	spin_lock(&mm->page_table_lock);
737	if (unlikely(!pmd_same(*pmd, orig_pmd)))
738		goto out_free_pages;
739	VM_BUG_ON(!PageHead(page));
740
741	pmdp_clear_flush_notify(vma, haddr, pmd);
742	/* leave pmd empty until pte is filled */
743
744	pgtable = get_pmd_huge_pte(mm);
745	pmd_populate(mm, &_pmd, pgtable);
746
747	for (i = 0; i < HPAGE_PMD_NR; i++, haddr += PAGE_SIZE) {
748		pte_t *pte, entry;
749		entry = mk_pte(pages[i], vma->vm_page_prot);
750		entry = maybe_mkwrite(pte_mkdirty(entry), vma);
751		page_add_new_anon_rmap(pages[i], vma, haddr);
752		pte = pte_offset_map(&_pmd, haddr);
753		VM_BUG_ON(!pte_none(*pte));
754		set_pte_at(mm, haddr, pte, entry);
755		pte_unmap(pte);
756	}
757	kfree(pages);
758
759	mm->nr_ptes++;
760	smp_wmb(); /* make pte visible before pmd */
761	pmd_populate(mm, pmd, pgtable);
762	page_remove_rmap(page);
763	spin_unlock(&mm->page_table_lock);
764
765	ret |= VM_FAULT_WRITE;
766	put_page(page);
767
768out:
769	return ret;
770
771out_free_pages:
772	spin_unlock(&mm->page_table_lock);
773	mem_cgroup_uncharge_start();
774	for (i = 0; i < HPAGE_PMD_NR; i++) {
775		mem_cgroup_uncharge_page(pages[i]);
776		put_page(pages[i]);
777	}
778	mem_cgroup_uncharge_end();
779	kfree(pages);
780	goto out;
781}
782
783int do_huge_pmd_wp_page(struct mm_struct *mm, struct vm_area_struct *vma,
784			unsigned long address, pmd_t *pmd, pmd_t orig_pmd)
785{
786	int ret = 0;
787	struct page *page, *new_page;
788	unsigned long haddr;
789
790	VM_BUG_ON(!vma->anon_vma);
791	spin_lock(&mm->page_table_lock);
792	if (unlikely(!pmd_same(*pmd, orig_pmd)))
793		goto out_unlock;
794
795	page = pmd_page(orig_pmd);
796	VM_BUG_ON(!PageCompound(page) || !PageHead(page));
797	haddr = address & HPAGE_PMD_MASK;
798	if (page_mapcount(page) == 1) {
799		pmd_t entry;
800		entry = pmd_mkyoung(orig_pmd);
801		entry = maybe_pmd_mkwrite(pmd_mkdirty(entry), vma);
802		if (pmdp_set_access_flags(vma, haddr, pmd, entry,  1))
803			update_mmu_cache(vma, address, entry);
804		ret |= VM_FAULT_WRITE;
805		goto out_unlock;
806	}
807	get_page(page);
808	spin_unlock(&mm->page_table_lock);
809
810	if (transparent_hugepage_enabled(vma) &&
811	    !transparent_hugepage_debug_cow())
812		new_page = alloc_hugepage(transparent_hugepage_defrag(vma));
813	else
814		new_page = NULL;
815
816	if (unlikely(!new_page)) {
817		ret = do_huge_pmd_wp_page_fallback(mm, vma, address,
818						   pmd, orig_pmd, page, haddr);
819		put_page(page);
820		goto out;
821	}
822
823	if (unlikely(mem_cgroup_newpage_charge(new_page, mm, GFP_KERNEL))) {
824		put_page(new_page);
825		put_page(page);
826		ret |= VM_FAULT_OOM;
827		goto out;
828	}
829
830	copy_user_huge_page(new_page, page, haddr, vma, HPAGE_PMD_NR);
831	__SetPageUptodate(new_page);
832
833	spin_lock(&mm->page_table_lock);
834	put_page(page);
835	if (unlikely(!pmd_same(*pmd, orig_pmd))) {
836		mem_cgroup_uncharge_page(new_page);
837		put_page(new_page);
838	} else {
839		pmd_t entry;
840		VM_BUG_ON(!PageHead(page));
841		entry = mk_pmd(new_page, vma->vm_page_prot);
842		entry = maybe_pmd_mkwrite(pmd_mkdirty(entry), vma);
843		entry = pmd_mkhuge(entry);
844		pmdp_clear_flush_notify(vma, haddr, pmd);
845		page_add_new_anon_rmap(new_page, vma, haddr);
846		set_pmd_at(mm, haddr, pmd, entry);
847		update_mmu_cache(vma, address, entry);
848		page_remove_rmap(page);
849		put_page(page);
850		ret |= VM_FAULT_WRITE;
851	}
852out_unlock:
853	spin_unlock(&mm->page_table_lock);
854out:
855	return ret;
856}
857
858struct page *follow_trans_huge_pmd(struct mm_struct *mm,
859				   unsigned long addr,
860				   pmd_t *pmd,
861				   unsigned int flags)
862{
863	struct page *page = NULL;
864
865	assert_spin_locked(&mm->page_table_lock);
866
867	if (flags & FOLL_WRITE && !pmd_write(*pmd))
868		goto out;
869
870	page = pmd_page(*pmd);
871	VM_BUG_ON(!PageHead(page));
872	if (flags & FOLL_TOUCH) {
873		pmd_t _pmd;
874		/*
875		 * We should set the dirty bit only for FOLL_WRITE but
876		 * for now the dirty bit in the pmd is meaningless.
877		 * And if the dirty bit will become meaningful and
878		 * we'll only set it with FOLL_WRITE, an atomic
879		 * set_bit will be required on the pmd to set the
880		 * young bit, instead of the current set_pmd_at.
881		 */
882		_pmd = pmd_mkyoung(pmd_mkdirty(*pmd));
883		set_pmd_at(mm, addr & HPAGE_PMD_MASK, pmd, _pmd);
884	}
885	page += (addr & ~HPAGE_PMD_MASK) >> PAGE_SHIFT;
886	VM_BUG_ON(!PageCompound(page));
887	if (flags & FOLL_GET)
888		get_page(page);
889
890out:
891	return page;
892}
893
894int zap_huge_pmd(struct mmu_gather *tlb, struct vm_area_struct *vma,
895		 pmd_t *pmd)
896{
897	int ret = 0;
898
899	spin_lock(&tlb->mm->page_table_lock);
900	if (likely(pmd_trans_huge(*pmd))) {
901		if (unlikely(pmd_trans_splitting(*pmd))) {
902			spin_unlock(&tlb->mm->page_table_lock);
903			wait_split_huge_page(vma->anon_vma,
904					     pmd);
905		} else {
906			struct page *page;
907			pgtable_t pgtable;
908			pgtable = get_pmd_huge_pte(tlb->mm);
909			page = pmd_page(*pmd);
910			pmd_clear(pmd);
911			page_remove_rmap(page);
912			VM_BUG_ON(page_mapcount(page) < 0);
913			add_mm_counter(tlb->mm, MM_ANONPAGES, -HPAGE_PMD_NR);
914			VM_BUG_ON(!PageHead(page));
915			spin_unlock(&tlb->mm->page_table_lock);
916			tlb_remove_page(tlb, page);
917			pte_free(tlb->mm, pgtable);
918			ret = 1;
919		}
920	} else
921		spin_unlock(&tlb->mm->page_table_lock);
922
923	return ret;
924}
925
926int mincore_huge_pmd(struct vm_area_struct *vma, pmd_t *pmd,
927		unsigned long addr, unsigned long end,
928		unsigned char *vec)
929{
930	int ret = 0;
931
932	spin_lock(&vma->vm_mm->page_table_lock);
933	if (likely(pmd_trans_huge(*pmd))) {
934		ret = !pmd_trans_splitting(*pmd);
935		spin_unlock(&vma->vm_mm->page_table_lock);
936		if (unlikely(!ret))
937			wait_split_huge_page(vma->anon_vma, pmd);
938		else {
939			/*
940			 * All logical pages in the range are present
941			 * if backed by a huge page.
942			 */
943			memset(vec, 1, (end - addr) >> PAGE_SHIFT);
944		}
945	} else
946		spin_unlock(&vma->vm_mm->page_table_lock);
947
948	return ret;
949}
950
951int change_huge_pmd(struct vm_area_struct *vma, pmd_t *pmd,
952		unsigned long addr, pgprot_t newprot)
953{
954	struct mm_struct *mm = vma->vm_mm;
955	int ret = 0;
956
957	spin_lock(&mm->page_table_lock);
958	if (likely(pmd_trans_huge(*pmd))) {
959		if (unlikely(pmd_trans_splitting(*pmd))) {
960			spin_unlock(&mm->page_table_lock);
961			wait_split_huge_page(vma->anon_vma, pmd);
962		} else {
963			pmd_t entry;
964
965			entry = pmdp_get_and_clear(mm, addr, pmd);
966			entry = pmd_modify(entry, newprot);
967			set_pmd_at(mm, addr, pmd, entry);
968			spin_unlock(&vma->vm_mm->page_table_lock);
969			flush_tlb_range(vma, addr, addr + HPAGE_PMD_SIZE);
970			ret = 1;
971		}
972	} else
973		spin_unlock(&vma->vm_mm->page_table_lock);
974
975	return ret;
976}
977
978pmd_t *page_check_address_pmd(struct page *page,
979			      struct mm_struct *mm,
980			      unsigned long address,
981			      enum page_check_address_pmd_flag flag)
982{
983	pgd_t *pgd;
984	pud_t *pud;
985	pmd_t *pmd, *ret = NULL;
986
987	if (address & ~HPAGE_PMD_MASK)
988		goto out;
989
990	pgd = pgd_offset(mm, address);
991	if (!pgd_present(*pgd))
992		goto out;
993
994	pud = pud_offset(pgd, address);
995	if (!pud_present(*pud))
996		goto out;
997
998	pmd = pmd_offset(pud, address);
999	if (pmd_none(*pmd))
1000		goto out;
1001	if (pmd_page(*pmd) != page)
1002		goto out;
1003	VM_BUG_ON(flag == PAGE_CHECK_ADDRESS_PMD_NOTSPLITTING_FLAG &&
1004		  pmd_trans_splitting(*pmd));
1005	if (pmd_trans_huge(*pmd)) {
1006		VM_BUG_ON(flag == PAGE_CHECK_ADDRESS_PMD_SPLITTING_FLAG &&
1007			  !pmd_trans_splitting(*pmd));
1008		ret = pmd;
1009	}
1010out:
1011	return ret;
1012}
1013
1014static int __split_huge_page_splitting(struct page *page,
1015				       struct vm_area_struct *vma,
1016				       unsigned long address)
1017{
1018	struct mm_struct *mm = vma->vm_mm;
1019	pmd_t *pmd;
1020	int ret = 0;
1021
1022	spin_lock(&mm->page_table_lock);
1023	pmd = page_check_address_pmd(page, mm, address,
1024				     PAGE_CHECK_ADDRESS_PMD_NOTSPLITTING_FLAG);
1025	if (pmd) {
1026		/*
1027		 * We can't temporarily set the pmd to null in order
1028		 * to split it, the pmd must remain marked huge at all
1029		 * times or the VM won't take the pmd_trans_huge paths
1030		 * and it won't wait on the anon_vma->root->lock to
1031		 * serialize against split_huge_page*.
1032		 */
1033		pmdp_splitting_flush_notify(vma, address, pmd);
1034		ret = 1;
1035	}
1036	spin_unlock(&mm->page_table_lock);
1037
1038	return ret;
1039}
1040
1041static void __split_huge_page_refcount(struct page *page)
1042{
1043	int i;
1044	unsigned long head_index = page->index;
1045	struct zone *zone = page_zone(page);
1046
1047	/* prevent PageLRU to go away from under us, and freeze lru stats */
1048	spin_lock_irq(&zone->lru_lock);
1049	compound_lock(page);
1050
1051	for (i = 1; i < HPAGE_PMD_NR; i++) {
1052		struct page *page_tail = page + i;
1053
1054		/* tail_page->_count cannot change */
1055		atomic_sub(atomic_read(&page_tail->_count), &page->_count);
1056		BUG_ON(page_count(page) <= 0);
1057		atomic_add(page_mapcount(page) + 1, &page_tail->_count);
1058		BUG_ON(atomic_read(&page_tail->_count) <= 0);
1059
1060		/* after clearing PageTail the gup refcount can be released */
1061		smp_mb();
1062
1063		page_tail->flags &= ~PAGE_FLAGS_CHECK_AT_PREP;
1064		page_tail->flags |= (page->flags &
1065				     ((1L << PG_referenced) |
1066				      (1L << PG_swapbacked) |
1067				      (1L << PG_mlocked) |
1068				      (1L << PG_uptodate)));
1069		page_tail->flags |= (1L << PG_dirty);
1070
1071		/*
1072		 * 1) clear PageTail before overwriting first_page
1073		 * 2) clear PageTail before clearing PageHead for VM_BUG_ON
1074		 */
1075		smp_wmb();
1076
1077		/*
1078		 * __split_huge_page_splitting() already set the
1079		 * splitting bit in all pmd that could map this
1080		 * hugepage, that will ensure no CPU can alter the
1081		 * mapcount on the head page. The mapcount is only
1082		 * accounted in the head page and it has to be
1083		 * transferred to all tail pages in the below code. So
1084		 * for this code to be safe, the split the mapcount
1085		 * can't change. But that doesn't mean userland can't
1086		 * keep changing and reading the page contents while
1087		 * we transfer the mapcount, so the pmd splitting
1088		 * status is achieved setting a reserved bit in the
1089		 * pmd, not by clearing the present bit.
1090		*/
1091		BUG_ON(page_mapcount(page_tail));
1092		page_tail->_mapcount = page->_mapcount;
1093
1094		BUG_ON(page_tail->mapping);
1095		page_tail->mapping = page->mapping;
1096
1097		page_tail->index = ++head_index;
1098
1099		BUG_ON(!PageAnon(page_tail));
1100		BUG_ON(!PageUptodate(page_tail));
1101		BUG_ON(!PageDirty(page_tail));
1102		BUG_ON(!PageSwapBacked(page_tail));
1103
1104		lru_add_page_tail(zone, page, page_tail);
1105	}
1106
1107	__dec_zone_page_state(page, NR_ANON_TRANSPARENT_HUGEPAGES);
1108	__mod_zone_page_state(zone, NR_ANON_PAGES, HPAGE_PMD_NR);
1109
1110	ClearPageCompound(page);
1111	compound_unlock(page);
1112	spin_unlock_irq(&zone->lru_lock);
1113
1114	for (i = 1; i < HPAGE_PMD_NR; i++) {
1115		struct page *page_tail = page + i;
1116		BUG_ON(page_count(page_tail) <= 0);
1117		/*
1118		 * Tail pages may be freed if there wasn't any mapping
1119		 * like if add_to_swap() is running on a lru page that
1120		 * had its mapping zapped. And freeing these pages
1121		 * requires taking the lru_lock so we do the put_page
1122		 * of the tail pages after the split is complete.
1123		 */
1124		put_page(page_tail);
1125	}
1126
1127	/*
1128	 * Only the head page (now become a regular page) is required
1129	 * to be pinned by the caller.
1130	 */
1131	BUG_ON(page_count(page) <= 0);
1132}
1133
1134static int __split_huge_page_map(struct page *page,
1135				 struct vm_area_struct *vma,
1136				 unsigned long address)
1137{
1138	struct mm_struct *mm = vma->vm_mm;
1139	pmd_t *pmd, _pmd;
1140	int ret = 0, i;
1141	pgtable_t pgtable;
1142	unsigned long haddr;
1143
1144	spin_lock(&mm->page_table_lock);
1145	pmd = page_check_address_pmd(page, mm, address,
1146				     PAGE_CHECK_ADDRESS_PMD_SPLITTING_FLAG);
1147	if (pmd) {
1148		pgtable = get_pmd_huge_pte(mm);
1149		pmd_populate(mm, &_pmd, pgtable);
1150
1151		for (i = 0, haddr = address; i < HPAGE_PMD_NR;
1152		     i++, haddr += PAGE_SIZE) {
1153			pte_t *pte, entry;
1154			BUG_ON(PageCompound(page+i));
1155			entry = mk_pte(page + i, vma->vm_page_prot);
1156			entry = maybe_mkwrite(pte_mkdirty(entry), vma);
1157			if (!pmd_write(*pmd))
1158				entry = pte_wrprotect(entry);
1159			else
1160				BUG_ON(page_mapcount(page) != 1);
1161			if (!pmd_young(*pmd))
1162				entry = pte_mkold(entry);
1163			pte = pte_offset_map(&_pmd, haddr);
1164			BUG_ON(!pte_none(*pte));
1165			set_pte_at(mm, haddr, pte, entry);
1166			pte_unmap(pte);
1167		}
1168
1169		mm->nr_ptes++;
1170		smp_wmb(); /* make pte visible before pmd */
1171		/*
1172		 * Up to this point the pmd is present and huge and
1173		 * userland has the whole access to the hugepage
1174		 * during the split (which happens in place). If we
1175		 * overwrite the pmd with the not-huge version
1176		 * pointing to the pte here (which of course we could
1177		 * if all CPUs were bug free), userland could trigger
1178		 * a small page size TLB miss on the small sized TLB
1179		 * while the hugepage TLB entry is still established
1180		 * in the huge TLB. Some CPU doesn't like that. See
1181		 * http://support.amd.com/us/Processor_TechDocs/41322.pdf,
1182		 * Erratum 383 on page 93. Intel should be safe but is
1183		 * also warns that it's only safe if the permission
1184		 * and cache attributes of the two entries loaded in
1185		 * the two TLB is identical (which should be the case
1186		 * here). But it is generally safer to never allow
1187		 * small and huge TLB entries for the same virtual
1188		 * address to be loaded simultaneously. So instead of
1189		 * doing "pmd_populate(); flush_tlb_range();" we first
1190		 * mark the current pmd notpresent (atomically because
1191		 * here the pmd_trans_huge and pmd_trans_splitting
1192		 * must remain set at all times on the pmd until the
1193		 * split is complete for this pmd), then we flush the
1194		 * SMP TLB and finally we write the non-huge version
1195		 * of the pmd entry with pmd_populate.
1196		 */
1197		set_pmd_at(mm, address, pmd, pmd_mknotpresent(*pmd));
1198		flush_tlb_range(vma, address, address + HPAGE_PMD_SIZE);
1199		pmd_populate(mm, pmd, pgtable);
1200		ret = 1;
1201	}
1202	spin_unlock(&mm->page_table_lock);
1203
1204	return ret;
1205}
1206
1207/* must be called with anon_vma->root->lock hold */
1208static void __split_huge_page(struct page *page,
1209			      struct anon_vma *anon_vma)
1210{
1211	int mapcount, mapcount2;
1212	struct anon_vma_chain *avc;
1213
1214	BUG_ON(!PageHead(page));
1215	BUG_ON(PageTail(page));
1216
1217	mapcount = 0;
1218	list_for_each_entry(avc, &anon_vma->head, same_anon_vma) {
1219		struct vm_area_struct *vma = avc->vma;
1220		unsigned long addr = vma_address(page, vma);
1221		BUG_ON(is_vma_temporary_stack(vma));
1222		if (addr == -EFAULT)
1223			continue;
1224		mapcount += __split_huge_page_splitting(page, vma, addr);
1225	}
1226	/*
1227	 * It is critical that new vmas are added to the tail of the
1228	 * anon_vma list. This guarantes that if copy_huge_pmd() runs
1229	 * and establishes a child pmd before
1230	 * __split_huge_page_splitting() freezes the parent pmd (so if
1231	 * we fail to prevent copy_huge_pmd() from running until the
1232	 * whole __split_huge_page() is complete), we will still see
1233	 * the newly established pmd of the child later during the
1234	 * walk, to be able to set it as pmd_trans_splitting too.
1235	 */
1236	if (mapcount != page_mapcount(page))
1237		printk(KERN_ERR "mapcount %d page_mapcount %d\n",
1238		       mapcount, page_mapcount(page));
1239	BUG_ON(mapcount != page_mapcount(page));
1240
1241	__split_huge_page_refcount(page);
1242
1243	mapcount2 = 0;
1244	list_for_each_entry(avc, &anon_vma->head, same_anon_vma) {
1245		struct vm_area_struct *vma = avc->vma;
1246		unsigned long addr = vma_address(page, vma);
1247		BUG_ON(is_vma_temporary_stack(vma));
1248		if (addr == -EFAULT)
1249			continue;
1250		mapcount2 += __split_huge_page_map(page, vma, addr);
1251	}
1252	if (mapcount != mapcount2)
1253		printk(KERN_ERR "mapcount %d mapcount2 %d page_mapcount %d\n",
1254		       mapcount, mapcount2, page_mapcount(page));
1255	BUG_ON(mapcount != mapcount2);
1256}
1257
1258int split_huge_page(struct page *page)
1259{
1260	struct anon_vma *anon_vma;
1261	int ret = 1;
1262
1263	BUG_ON(!PageAnon(page));
1264	anon_vma = page_lock_anon_vma(page);
1265	if (!anon_vma)
1266		goto out;
1267	ret = 0;
1268	if (!PageCompound(page))
1269		goto out_unlock;
1270
1271	BUG_ON(!PageSwapBacked(page));
1272	__split_huge_page(page, anon_vma);
1273
1274	BUG_ON(PageCompound(page));
1275out_unlock:
1276	page_unlock_anon_vma(anon_vma);
1277out:
1278	return ret;
1279}
1280
1281int hugepage_madvise(unsigned long *vm_flags)
1282{
1283	/*
1284	 * Be somewhat over-protective like KSM for now!
1285	 */
1286	if (*vm_flags & (VM_HUGEPAGE | VM_SHARED  | VM_MAYSHARE   |
1287			 VM_PFNMAP   | VM_IO      | VM_DONTEXPAND |
1288			 VM_RESERVED | VM_HUGETLB | VM_INSERTPAGE |
1289			 VM_MIXEDMAP | VM_SAO))
1290		return -EINVAL;
1291
1292	*vm_flags |= VM_HUGEPAGE;
1293
1294	return 0;
1295}
1296
1297static int __init khugepaged_slab_init(void)
1298{
1299	mm_slot_cache = kmem_cache_create("khugepaged_mm_slot",
1300					  sizeof(struct mm_slot),
1301					  __alignof__(struct mm_slot), 0, NULL);
1302	if (!mm_slot_cache)
1303		return -ENOMEM;
1304
1305	return 0;
1306}
1307
1308static void __init khugepaged_slab_free(void)
1309{
1310	kmem_cache_destroy(mm_slot_cache);
1311	mm_slot_cache = NULL;
1312}
1313
1314static inline struct mm_slot *alloc_mm_slot(void)
1315{
1316	if (!mm_slot_cache)	/* initialization failed */
1317		return NULL;
1318	return kmem_cache_zalloc(mm_slot_cache, GFP_KERNEL);
1319}
1320
1321static inline void free_mm_slot(struct mm_slot *mm_slot)
1322{
1323	kmem_cache_free(mm_slot_cache, mm_slot);
1324}
1325
1326static int __init mm_slots_hash_init(void)
1327{
1328	mm_slots_hash = kzalloc(MM_SLOTS_HASH_HEADS * sizeof(struct hlist_head),
1329				GFP_KERNEL);
1330	if (!mm_slots_hash)
1331		return -ENOMEM;
1332	return 0;
1333}
1334
1335#if 0
1336static void __init mm_slots_hash_free(void)
1337{
1338	kfree(mm_slots_hash);
1339	mm_slots_hash = NULL;
1340}
1341#endif
1342
1343static struct mm_slot *get_mm_slot(struct mm_struct *mm)
1344{
1345	struct mm_slot *mm_slot;
1346	struct hlist_head *bucket;
1347	struct hlist_node *node;
1348
1349	bucket = &mm_slots_hash[((unsigned long)mm / sizeof(struct mm_struct))
1350				% MM_SLOTS_HASH_HEADS];
1351	hlist_for_each_entry(mm_slot, node, bucket, hash) {
1352		if (mm == mm_slot->mm)
1353			return mm_slot;
1354	}
1355	return NULL;
1356}
1357
1358static void insert_to_mm_slots_hash(struct mm_struct *mm,
1359				    struct mm_slot *mm_slot)
1360{
1361	struct hlist_head *bucket;
1362
1363	bucket = &mm_slots_hash[((unsigned long)mm / sizeof(struct mm_struct))
1364				% MM_SLOTS_HASH_HEADS];
1365	mm_slot->mm = mm;
1366	hlist_add_head(&mm_slot->hash, bucket);
1367}
1368
1369static inline int khugepaged_test_exit(struct mm_struct *mm)
1370{
1371	return atomic_read(&mm->mm_users) == 0;
1372}
1373
1374int __khugepaged_enter(struct mm_struct *mm)
1375{
1376	struct mm_slot *mm_slot;
1377	int wakeup;
1378
1379	mm_slot = alloc_mm_slot();
1380	if (!mm_slot)
1381		return -ENOMEM;
1382
1383	/* __khugepaged_exit() must not run from under us */
1384	VM_BUG_ON(khugepaged_test_exit(mm));
1385	if (unlikely(test_and_set_bit(MMF_VM_HUGEPAGE, &mm->flags))) {
1386		free_mm_slot(mm_slot);
1387		return 0;
1388	}
1389
1390	spin_lock(&khugepaged_mm_lock);
1391	insert_to_mm_slots_hash(mm, mm_slot);
1392	/*
1393	 * Insert just behind the scanning cursor, to let the area settle
1394	 * down a little.
1395	 */
1396	wakeup = list_empty(&khugepaged_scan.mm_head);
1397	list_add_tail(&mm_slot->mm_node, &khugepaged_scan.mm_head);
1398	spin_unlock(&khugepaged_mm_lock);
1399
1400	atomic_inc(&mm->mm_count);
1401	if (wakeup)
1402		wake_up_interruptible(&khugepaged_wait);
1403
1404	return 0;
1405}
1406
1407int khugepaged_enter_vma_merge(struct vm_area_struct *vma)
1408{
1409	unsigned long hstart, hend;
1410	if (!vma->anon_vma)
1411		/*
1412		 * Not yet faulted in so we will register later in the
1413		 * page fault if needed.
1414		 */
1415		return 0;
1416	if (vma->vm_file || vma->vm_ops)
1417		/* khugepaged not yet working on file or special mappings */
1418		return 0;
1419	VM_BUG_ON(is_linear_pfn_mapping(vma) || is_pfn_mapping(vma));
1420	hstart = (vma->vm_start + ~HPAGE_PMD_MASK) & HPAGE_PMD_MASK;
1421	hend = vma->vm_end & HPAGE_PMD_MASK;
1422	if (hstart < hend)
1423		return khugepaged_enter(vma);
1424	return 0;
1425}
1426
1427void __khugepaged_exit(struct mm_struct *mm)
1428{
1429	struct mm_slot *mm_slot;
1430	int free = 0;
1431
1432	spin_lock(&khugepaged_mm_lock);
1433	mm_slot = get_mm_slot(mm);
1434	if (mm_slot && khugepaged_scan.mm_slot != mm_slot) {
1435		hlist_del(&mm_slot->hash);
1436		list_del(&mm_slot->mm_node);
1437		free = 1;
1438	}
1439
1440	if (free) {
1441		spin_unlock(&khugepaged_mm_lock);
1442		clear_bit(MMF_VM_HUGEPAGE, &mm->flags);
1443		free_mm_slot(mm_slot);
1444		mmdrop(mm);
1445	} else if (mm_slot) {
1446		spin_unlock(&khugepaged_mm_lock);
1447		/*
1448		 * This is required to serialize against
1449		 * khugepaged_test_exit() (which is guaranteed to run
1450		 * under mmap sem read mode). Stop here (after we
1451		 * return all pagetables will be destroyed) until
1452		 * khugepaged has finished working on the pagetables
1453		 * under the mmap_sem.
1454		 */
1455		down_write(&mm->mmap_sem);
1456		up_write(&mm->mmap_sem);
1457	} else
1458		spin_unlock(&khugepaged_mm_lock);
1459}
1460
1461static void release_pte_page(struct page *page)
1462{
1463	/* 0 stands for page_is_file_cache(page) == false */
1464	dec_zone_page_state(page, NR_ISOLATED_ANON + 0);
1465	unlock_page(page);
1466	putback_lru_page(page);
1467}
1468
1469static void release_pte_pages(pte_t *pte, pte_t *_pte)
1470{
1471	while (--_pte >= pte) {
1472		pte_t pteval = *_pte;
1473		if (!pte_none(pteval))
1474			release_pte_page(pte_page(pteval));
1475	}
1476}
1477
1478static void release_all_pte_pages(pte_t *pte)
1479{
1480	release_pte_pages(pte, pte + HPAGE_PMD_NR);
1481}
1482
1483static int __collapse_huge_page_isolate(struct vm_area_struct *vma,
1484					unsigned long address,
1485					pte_t *pte)
1486{
1487	struct page *page;
1488	pte_t *_pte;
1489	int referenced = 0, isolated = 0, none = 0;
1490	for (_pte = pte; _pte < pte+HPAGE_PMD_NR;
1491	     _pte++, address += PAGE_SIZE) {
1492		pte_t pteval = *_pte;
1493		if (pte_none(pteval)) {
1494			if (++none <= khugepaged_max_ptes_none)
1495				continue;
1496			else {
1497				release_pte_pages(pte, _pte);
1498				goto out;
1499			}
1500		}
1501		if (!pte_present(pteval) || !pte_write(pteval)) {
1502			release_pte_pages(pte, _pte);
1503			goto out;
1504		}
1505		page = vm_normal_page(vma, address, pteval);
1506		if (unlikely(!page)) {
1507			release_pte_pages(pte, _pte);
1508			goto out;
1509		}
1510		VM_BUG_ON(PageCompound(page));
1511		BUG_ON(!PageAnon(page));
1512		VM_BUG_ON(!PageSwapBacked(page));
1513
1514		/* cannot use mapcount: can't collapse if there's a gup pin */
1515		if (page_count(page) != 1) {
1516			release_pte_pages(pte, _pte);
1517			goto out;
1518		}
1519		/*
1520		 * We can do it before isolate_lru_page because the
1521		 * page can't be freed from under us. NOTE: PG_lock
1522		 * is needed to serialize against split_huge_page
1523		 * when invoked from the VM.
1524		 */
1525		if (!trylock_page(page)) {
1526			release_pte_pages(pte, _pte);
1527			goto out;
1528		}
1529		/*
1530		 * Isolate the page to avoid collapsing an hugepage
1531		 * currently in use by the VM.
1532		 */
1533		if (isolate_lru_page(page)) {
1534			unlock_page(page);
1535			release_pte_pages(pte, _pte);
1536			goto out;
1537		}
1538		/* 0 stands for page_is_file_cache(page) == false */
1539		inc_zone_page_state(page, NR_ISOLATED_ANON + 0);
1540		VM_BUG_ON(!PageLocked(page));
1541		VM_BUG_ON(PageLRU(page));
1542
1543		/* If there is no mapped pte young don't collapse the page */
1544		if (pte_young(pteval))
1545			referenced = 1;
1546	}
1547	if (unlikely(!referenced))
1548		release_all_pte_pages(pte);
1549	else
1550		isolated = 1;
1551out:
1552	return isolated;
1553}
1554
1555static void __collapse_huge_page_copy(pte_t *pte, struct page *page,
1556				      struct vm_area_struct *vma,
1557				      unsigned long address,
1558				      spinlock_t *ptl)
1559{
1560	pte_t *_pte;
1561	for (_pte = pte; _pte < pte+HPAGE_PMD_NR; _pte++) {
1562		pte_t pteval = *_pte;
1563		struct page *src_page;
1564
1565		if (pte_none(pteval)) {
1566			clear_user_highpage(page, address);
1567			add_mm_counter(vma->vm_mm, MM_ANONPAGES, 1);
1568		} else {
1569			src_page = pte_page(pteval);
1570			copy_user_highpage(page, src_page, address, vma);
1571			VM_BUG_ON(page_mapcount(src_page) != 1);
1572			VM_BUG_ON(page_count(src_page) != 2);
1573			release_pte_page(src_page);
1574			/*
1575			 * ptl mostly unnecessary, but preempt has to
1576			 * be disabled to update the per-cpu stats
1577			 * inside page_remove_rmap().
1578			 */
1579			spin_lock(ptl);
1580			/*
1581			 * paravirt calls inside pte_clear here are
1582			 * superfluous.
1583			 */
1584			pte_clear(vma->vm_mm, address, _pte);
1585			page_remove_rmap(src_page);
1586			spin_unlock(ptl);
1587			free_page_and_swap_cache(src_page);
1588		}
1589
1590		address += PAGE_SIZE;
1591		page++;
1592	}
1593}
1594
1595static void collapse_huge_page(struct mm_struct *mm,
1596			       unsigned long address,
1597			       struct page **hpage)
1598{
1599	struct vm_area_struct *vma;
1600	pgd_t *pgd;
1601	pud_t *pud;
1602	pmd_t *pmd, _pmd;
1603	pte_t *pte;
1604	pgtable_t pgtable;
1605	struct page *new_page;
1606	spinlock_t *ptl;
1607	int isolated;
1608	unsigned long hstart, hend;
1609
1610	VM_BUG_ON(address & ~HPAGE_PMD_MASK);
1611	VM_BUG_ON(!*hpage);
1612
1613	/*
1614	 * Prevent all access to pagetables with the exception of
1615	 * gup_fast later hanlded by the ptep_clear_flush and the VM
1616	 * handled by the anon_vma lock + PG_lock.
1617	 */
1618	down_write(&mm->mmap_sem);
1619	if (unlikely(khugepaged_test_exit(mm)))
1620		goto out;
1621
1622	vma = find_vma(mm, address);
1623	hstart = (vma->vm_start + ~HPAGE_PMD_MASK) & HPAGE_PMD_MASK;
1624	hend = vma->vm_end & HPAGE_PMD_MASK;
1625	if (address < hstart || address + HPAGE_PMD_SIZE > hend)
1626		goto out;
1627
1628	if (!(vma->vm_flags & VM_HUGEPAGE) && !khugepaged_always())
1629		goto out;
1630
1631	/* VM_PFNMAP vmas may have vm_ops null but vm_file set */
1632	if (!vma->anon_vma || vma->vm_ops || vma->vm_file)
1633		goto out;
1634	VM_BUG_ON(is_linear_pfn_mapping(vma) || is_pfn_mapping(vma));
1635
1636	pgd = pgd_offset(mm, address);
1637	if (!pgd_present(*pgd))
1638		goto out;
1639
1640	pud = pud_offset(pgd, address);
1641	if (!pud_present(*pud))
1642		goto out;
1643
1644	pmd = pmd_offset(pud, address);
1645	/* pmd can't go away or become huge under us */
1646	if (!pmd_present(*pmd) || pmd_trans_huge(*pmd))
1647		goto out;
1648
1649	new_page = *hpage;
1650	if (unlikely(mem_cgroup_newpage_charge(new_page, mm, GFP_KERNEL)))
1651		goto out;
1652
1653	anon_vma_lock(vma->anon_vma);
1654
1655	pte = pte_offset_map(pmd, address);
1656	ptl = pte_lockptr(mm, pmd);
1657
1658	spin_lock(&mm->page_table_lock); /* probably unnecessary */
1659	/*
1660	 * After this gup_fast can't run anymore. This also removes
1661	 * any huge TLB entry from the CPU so we won't allow
1662	 * huge and small TLB entries for the same virtual address
1663	 * to avoid the risk of CPU bugs in that area.
1664	 */
1665	_pmd = pmdp_clear_flush_notify(vma, address, pmd);
1666	spin_unlock(&mm->page_table_lock);
1667
1668	spin_lock(ptl);
1669	isolated = __collapse_huge_page_isolate(vma, address, pte);
1670	spin_unlock(ptl);
1671	pte_unmap(pte);
1672
1673	if (unlikely(!isolated)) {
1674		spin_lock(&mm->page_table_lock);
1675		BUG_ON(!pmd_none(*pmd));
1676		set_pmd_at(mm, address, pmd, _pmd);
1677		spin_unlock(&mm->page_table_lock);
1678		anon_vma_unlock(vma->anon_vma);
1679		mem_cgroup_uncharge_page(new_page);
1680		goto out;
1681	}
1682
1683	/*
1684	 * All pages are isolated and locked so anon_vma rmap
1685	 * can't run anymore.
1686	 */
1687	anon_vma_unlock(vma->anon_vma);
1688
1689	__collapse_huge_page_copy(pte, new_page, vma, address, ptl);
1690	__SetPageUptodate(new_page);
1691	pgtable = pmd_pgtable(_pmd);
1692	VM_BUG_ON(page_count(pgtable) != 1);
1693	VM_BUG_ON(page_mapcount(pgtable) != 0);
1694
1695	_pmd = mk_pmd(new_page, vma->vm_page_prot);
1696	_pmd = maybe_pmd_mkwrite(pmd_mkdirty(_pmd), vma);
1697	_pmd = pmd_mkhuge(_pmd);
1698
1699	/*
1700	 * spin_lock() below is not the equivalent of smp_wmb(), so
1701	 * this is needed to avoid the copy_huge_page writes to become
1702	 * visible after the set_pmd_at() write.
1703	 */
1704	smp_wmb();
1705
1706	spin_lock(&mm->page_table_lock);
1707	BUG_ON(!pmd_none(*pmd));
1708	page_add_new_anon_rmap(new_page, vma, address);
1709	set_pmd_at(mm, address, pmd, _pmd);
1710	update_mmu_cache(vma, address, entry);
1711	prepare_pmd_huge_pte(pgtable, mm);
1712	mm->nr_ptes--;
1713	spin_unlock(&mm->page_table_lock);
1714
1715	*hpage = NULL;
1716	khugepaged_pages_collapsed++;
1717out:
1718	up_write(&mm->mmap_sem);
1719}
1720
1721static int khugepaged_scan_pmd(struct mm_struct *mm,
1722			       struct vm_area_struct *vma,
1723			       unsigned long address,
1724			       struct page **hpage)
1725{
1726	pgd_t *pgd;
1727	pud_t *pud;
1728	pmd_t *pmd;
1729	pte_t *pte, *_pte;
1730	int ret = 0, referenced = 0, none = 0;
1731	struct page *page;
1732	unsigned long _address;
1733	spinlock_t *ptl;
1734
1735	VM_BUG_ON(address & ~HPAGE_PMD_MASK);
1736
1737	pgd = pgd_offset(mm, address);
1738	if (!pgd_present(*pgd))
1739		goto out;
1740
1741	pud = pud_offset(pgd, address);
1742	if (!pud_present(*pud))
1743		goto out;
1744
1745	pmd = pmd_offset(pud, address);
1746	if (!pmd_present(*pmd) || pmd_trans_huge(*pmd))
1747		goto out;
1748
1749	pte = pte_offset_map_lock(mm, pmd, address, &ptl);
1750	for (_address = address, _pte = pte; _pte < pte+HPAGE_PMD_NR;
1751	     _pte++, _address += PAGE_SIZE) {
1752		pte_t pteval = *_pte;
1753		if (pte_none(pteval)) {
1754			if (++none <= khugepaged_max_ptes_none)
1755				continue;
1756			else
1757				goto out_unmap;
1758		}
1759		if (!pte_present(pteval) || !pte_write(pteval))
1760			goto out_unmap;
1761		page = vm_normal_page(vma, _address, pteval);
1762		if (unlikely(!page))
1763			goto out_unmap;
1764		VM_BUG_ON(PageCompound(page));
1765		if (!PageLRU(page) || PageLocked(page) || !PageAnon(page))
1766			goto out_unmap;
1767		/* cannot use mapcount: can't collapse if there's a gup pin */
1768		if (page_count(page) != 1)
1769			goto out_unmap;
1770		if (pte_young(pteval))
1771			referenced = 1;
1772	}
1773	if (referenced)
1774		ret = 1;
1775out_unmap:
1776	pte_unmap_unlock(pte, ptl);
1777	if (ret) {
1778		up_read(&mm->mmap_sem);
1779		collapse_huge_page(mm, address, hpage);
1780	}
1781out:
1782	return ret;
1783}
1784
1785static void collect_mm_slot(struct mm_slot *mm_slot)
1786{
1787	struct mm_struct *mm = mm_slot->mm;
1788
1789	VM_BUG_ON(!spin_is_locked(&khugepaged_mm_lock));
1790
1791	if (khugepaged_test_exit(mm)) {
1792		/* free mm_slot */
1793		hlist_del(&mm_slot->hash);
1794		list_del(&mm_slot->mm_node);
1795
1796		/*
1797		 * Not strictly needed because the mm exited already.
1798		 *
1799		 * clear_bit(MMF_VM_HUGEPAGE, &mm->flags);
1800		 */
1801
1802		/* khugepaged_mm_lock actually not necessary for the below */
1803		free_mm_slot(mm_slot);
1804		mmdrop(mm);
1805	}
1806}
1807
1808static unsigned int khugepaged_scan_mm_slot(unsigned int pages,
1809					    struct page **hpage)
1810{
1811	struct mm_slot *mm_slot;
1812	struct mm_struct *mm;
1813	struct vm_area_struct *vma;
1814	int progress = 0;
1815
1816	VM_BUG_ON(!pages);
1817	VM_BUG_ON(!spin_is_locked(&khugepaged_mm_lock));
1818
1819	if (khugepaged_scan.mm_slot)
1820		mm_slot = khugepaged_scan.mm_slot;
1821	else {
1822		mm_slot = list_entry(khugepaged_scan.mm_head.next,
1823				     struct mm_slot, mm_node);
1824		khugepaged_scan.address = 0;
1825		khugepaged_scan.mm_slot = mm_slot;
1826	}
1827	spin_unlock(&khugepaged_mm_lock);
1828
1829	mm = mm_slot->mm;
1830	down_read(&mm->mmap_sem);
1831	if (unlikely(khugepaged_test_exit(mm)))
1832		vma = NULL;
1833	else
1834		vma = find_vma(mm, khugepaged_scan.address);
1835
1836	progress++;
1837	for (; vma; vma = vma->vm_next) {
1838		unsigned long hstart, hend;
1839
1840		cond_resched();
1841		if (unlikely(khugepaged_test_exit(mm))) {
1842			progress++;
1843			break;
1844		}
1845
1846		if (!(vma->vm_flags & VM_HUGEPAGE) &&
1847		    !khugepaged_always()) {
1848			progress++;
1849			continue;
1850		}
1851
1852		/* VM_PFNMAP vmas may have vm_ops null but vm_file set */
1853		if (!vma->anon_vma || vma->vm_ops || vma->vm_file) {
1854			khugepaged_scan.address = vma->vm_end;
1855			progress++;
1856			continue;
1857		}
1858		VM_BUG_ON(is_linear_pfn_mapping(vma) || is_pfn_mapping(vma));
1859
1860		hstart = (vma->vm_start + ~HPAGE_PMD_MASK) & HPAGE_PMD_MASK;
1861		hend = vma->vm_end & HPAGE_PMD_MASK;
1862		if (hstart >= hend) {
1863			progress++;
1864			continue;
1865		}
1866		if (khugepaged_scan.address < hstart)
1867			khugepaged_scan.address = hstart;
1868		if (khugepaged_scan.address > hend) {
1869			khugepaged_scan.address = hend + HPAGE_PMD_SIZE;
1870			progress++;
1871			continue;
1872		}
1873		BUG_ON(khugepaged_scan.address & ~HPAGE_PMD_MASK);
1874
1875		while (khugepaged_scan.address < hend) {
1876			int ret;
1877			cond_resched();
1878			if (unlikely(khugepaged_test_exit(mm)))
1879				goto breakouterloop;
1880
1881			VM_BUG_ON(khugepaged_scan.address < hstart ||
1882				  khugepaged_scan.address + HPAGE_PMD_SIZE >
1883				  hend);
1884			ret = khugepaged_scan_pmd(mm, vma,
1885						  khugepaged_scan.address,
1886						  hpage);
1887			/* move to next address */
1888			khugepaged_scan.address += HPAGE_PMD_SIZE;
1889			progress += HPAGE_PMD_NR;
1890			if (ret)
1891				/* we released mmap_sem so break loop */
1892				goto breakouterloop_mmap_sem;
1893			if (progress >= pages)
1894				goto breakouterloop;
1895		}
1896	}
1897breakouterloop:
1898	up_read(&mm->mmap_sem); /* exit_mmap will destroy ptes after this */
1899breakouterloop_mmap_sem:
1900
1901	spin_lock(&khugepaged_mm_lock);
1902	BUG_ON(khugepaged_scan.mm_slot != mm_slot);
1903	/*
1904	 * Release the current mm_slot if this mm is about to die, or
1905	 * if we scanned all vmas of this mm.
1906	 */
1907	if (khugepaged_test_exit(mm) || !vma) {
1908		/*
1909		 * Make sure that if mm_users is reaching zero while
1910		 * khugepaged runs here, khugepaged_exit will find
1911		 * mm_slot not pointing to the exiting mm.
1912		 */
1913		if (mm_slot->mm_node.next != &khugepaged_scan.mm_head) {
1914			khugepaged_scan.mm_slot = list_entry(
1915				mm_slot->mm_node.next,
1916				struct mm_slot, mm_node);
1917			khugepaged_scan.address = 0;
1918		} else {
1919			khugepaged_scan.mm_slot = NULL;
1920			khugepaged_full_scans++;
1921		}
1922
1923		collect_mm_slot(mm_slot);
1924	}
1925
1926	return progress;
1927}
1928
1929static int khugepaged_has_work(void)
1930{
1931	return !list_empty(&khugepaged_scan.mm_head) &&
1932		khugepaged_enabled();
1933}
1934
1935static int khugepaged_wait_event(void)
1936{
1937	return !list_empty(&khugepaged_scan.mm_head) ||
1938		!khugepaged_enabled();
1939}
1940
1941static void khugepaged_do_scan(struct page **hpage)
1942{
1943	unsigned int progress = 0, pass_through_head = 0;
1944	unsigned int pages = khugepaged_pages_to_scan;
1945
1946	barrier(); /* write khugepaged_pages_to_scan to local stack */
1947
1948	while (progress < pages) {
1949		cond_resched();
1950
1951		if (!*hpage) {
1952			*hpage = alloc_hugepage(khugepaged_defrag());
1953			if (unlikely(!*hpage))
1954				break;
1955		}
1956
1957		spin_lock(&khugepaged_mm_lock);
1958		if (!khugepaged_scan.mm_slot)
1959			pass_through_head++;
1960		if (khugepaged_has_work() &&
1961		    pass_through_head < 2)
1962			progress += khugepaged_scan_mm_slot(pages - progress,
1963							    hpage);
1964		else
1965			progress = pages;
1966		spin_unlock(&khugepaged_mm_lock);
1967	}
1968}
1969
1970static struct page *khugepaged_alloc_hugepage(void)
1971{
1972	struct page *hpage;
1973
1974	do {
1975		hpage = alloc_hugepage(khugepaged_defrag());
1976		if (!hpage) {
1977			DEFINE_WAIT(wait);
1978			add_wait_queue(&khugepaged_wait, &wait);
1979			schedule_timeout_interruptible(
1980				msecs_to_jiffies(
1981					khugepaged_alloc_sleep_millisecs));
1982			remove_wait_queue(&khugepaged_wait, &wait);
1983		}
1984	} while (unlikely(!hpage) &&
1985		 likely(khugepaged_enabled()));
1986	return hpage;
1987}
1988
1989static void khugepaged_loop(void)
1990{
1991	struct page *hpage;
1992
1993	while (likely(khugepaged_enabled())) {
1994		hpage = khugepaged_alloc_hugepage();
1995		if (unlikely(!hpage))
1996			break;
1997
1998		khugepaged_do_scan(&hpage);
1999		if (hpage)
2000			put_page(hpage);
2001		if (khugepaged_has_work()) {
2002			DEFINE_WAIT(wait);
2003			if (!khugepaged_scan_sleep_millisecs)
2004				continue;
2005			add_wait_queue(&khugepaged_wait, &wait);
2006			schedule_timeout_interruptible(
2007				msecs_to_jiffies(
2008					khugepaged_scan_sleep_millisecs));
2009			remove_wait_queue(&khugepaged_wait, &wait);
2010		} else if (khugepaged_enabled())
2011			wait_event_interruptible(khugepaged_wait,
2012						 khugepaged_wait_event());
2013	}
2014}
2015
2016static int khugepaged(void *none)
2017{
2018	struct mm_slot *mm_slot;
2019
2020	set_user_nice(current, 19);
2021
2022	/* serialize with start_khugepaged() */
2023	mutex_lock(&khugepaged_mutex);
2024
2025	for (;;) {
2026		mutex_unlock(&khugepaged_mutex);
2027		BUG_ON(khugepaged_thread != current);
2028		khugepaged_loop();
2029		BUG_ON(khugepaged_thread != current);
2030
2031		mutex_lock(&khugepaged_mutex);
2032		if (!khugepaged_enabled())
2033			break;
2034	}
2035
2036	spin_lock(&khugepaged_mm_lock);
2037	mm_slot = khugepaged_scan.mm_slot;
2038	khugepaged_scan.mm_slot = NULL;
2039	if (mm_slot)
2040		collect_mm_slot(mm_slot);
2041	spin_unlock(&khugepaged_mm_lock);
2042
2043	khugepaged_thread = NULL;
2044	mutex_unlock(&khugepaged_mutex);
2045
2046	return 0;
2047}
2048
2049void __split_huge_page_pmd(struct mm_struct *mm, pmd_t *pmd)
2050{
2051	struct page *page;
2052
2053	spin_lock(&mm->page_table_lock);
2054	if (unlikely(!pmd_trans_huge(*pmd))) {
2055		spin_unlock(&mm->page_table_lock);
2056		return;
2057	}
2058	page = pmd_page(*pmd);
2059	VM_BUG_ON(!page_count(page));
2060	get_page(page);
2061	spin_unlock(&mm->page_table_lock);
2062
2063	split_huge_page(page);
2064
2065	put_page(page);
2066	BUG_ON(pmd_trans_huge(*pmd));
2067}
2068