huge_memory.c revision e27e6151b154ff6e5e8162efa291bc60196d29ea
1/*
2 *  Copyright (C) 2009  Red Hat, Inc.
3 *
4 *  This work is licensed under the terms of the GNU GPL, version 2. See
5 *  the COPYING file in the top-level directory.
6 */
7
8#include <linux/mm.h>
9#include <linux/sched.h>
10#include <linux/highmem.h>
11#include <linux/hugetlb.h>
12#include <linux/mmu_notifier.h>
13#include <linux/rmap.h>
14#include <linux/swap.h>
15#include <linux/mm_inline.h>
16#include <linux/kthread.h>
17#include <linux/khugepaged.h>
18#include <linux/freezer.h>
19#include <linux/mman.h>
20#include <asm/tlb.h>
21#include <asm/pgalloc.h>
22#include "internal.h"
23
24/*
25 * By default transparent hugepage support is enabled for all mappings
26 * and khugepaged scans all mappings. Defrag is only invoked by
27 * khugepaged hugepage allocations and by page faults inside
28 * MADV_HUGEPAGE regions to avoid the risk of slowing down short lived
29 * allocations.
30 */
31unsigned long transparent_hugepage_flags __read_mostly =
32#ifdef CONFIG_TRANSPARENT_HUGEPAGE_ALWAYS
33	(1<<TRANSPARENT_HUGEPAGE_FLAG)|
34#endif
35#ifdef CONFIG_TRANSPARENT_HUGEPAGE_MADVISE
36	(1<<TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG)|
37#endif
38	(1<<TRANSPARENT_HUGEPAGE_DEFRAG_FLAG)|
39	(1<<TRANSPARENT_HUGEPAGE_DEFRAG_KHUGEPAGED_FLAG);
40
41/* default scan 8*512 pte (or vmas) every 30 second */
42static unsigned int khugepaged_pages_to_scan __read_mostly = HPAGE_PMD_NR*8;
43static unsigned int khugepaged_pages_collapsed;
44static unsigned int khugepaged_full_scans;
45static unsigned int khugepaged_scan_sleep_millisecs __read_mostly = 10000;
46/* during fragmentation poll the hugepage allocator once every minute */
47static unsigned int khugepaged_alloc_sleep_millisecs __read_mostly = 60000;
48static struct task_struct *khugepaged_thread __read_mostly;
49static DEFINE_MUTEX(khugepaged_mutex);
50static DEFINE_SPINLOCK(khugepaged_mm_lock);
51static DECLARE_WAIT_QUEUE_HEAD(khugepaged_wait);
52/*
53 * default collapse hugepages if there is at least one pte mapped like
54 * it would have happened if the vma was large enough during page
55 * fault.
56 */
57static unsigned int khugepaged_max_ptes_none __read_mostly = HPAGE_PMD_NR-1;
58
59static int khugepaged(void *none);
60static int mm_slots_hash_init(void);
61static int khugepaged_slab_init(void);
62static void khugepaged_slab_free(void);
63
64#define MM_SLOTS_HASH_HEADS 1024
65static struct hlist_head *mm_slots_hash __read_mostly;
66static struct kmem_cache *mm_slot_cache __read_mostly;
67
68/**
69 * struct mm_slot - hash lookup from mm to mm_slot
70 * @hash: hash collision list
71 * @mm_node: khugepaged scan list headed in khugepaged_scan.mm_head
72 * @mm: the mm that this information is valid for
73 */
74struct mm_slot {
75	struct hlist_node hash;
76	struct list_head mm_node;
77	struct mm_struct *mm;
78};
79
80/**
81 * struct khugepaged_scan - cursor for scanning
82 * @mm_head: the head of the mm list to scan
83 * @mm_slot: the current mm_slot we are scanning
84 * @address: the next address inside that to be scanned
85 *
86 * There is only the one khugepaged_scan instance of this cursor structure.
87 */
88struct khugepaged_scan {
89	struct list_head mm_head;
90	struct mm_slot *mm_slot;
91	unsigned long address;
92} khugepaged_scan = {
93	.mm_head = LIST_HEAD_INIT(khugepaged_scan.mm_head),
94};
95
96
97static int set_recommended_min_free_kbytes(void)
98{
99	struct zone *zone;
100	int nr_zones = 0;
101	unsigned long recommended_min;
102	extern int min_free_kbytes;
103
104	if (!test_bit(TRANSPARENT_HUGEPAGE_FLAG,
105		      &transparent_hugepage_flags) &&
106	    !test_bit(TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG,
107		      &transparent_hugepage_flags))
108		return 0;
109
110	for_each_populated_zone(zone)
111		nr_zones++;
112
113	/* Make sure at least 2 hugepages are free for MIGRATE_RESERVE */
114	recommended_min = pageblock_nr_pages * nr_zones * 2;
115
116	/*
117	 * Make sure that on average at least two pageblocks are almost free
118	 * of another type, one for a migratetype to fall back to and a
119	 * second to avoid subsequent fallbacks of other types There are 3
120	 * MIGRATE_TYPES we care about.
121	 */
122	recommended_min += pageblock_nr_pages * nr_zones *
123			   MIGRATE_PCPTYPES * MIGRATE_PCPTYPES;
124
125	/* don't ever allow to reserve more than 5% of the lowmem */
126	recommended_min = min(recommended_min,
127			      (unsigned long) nr_free_buffer_pages() / 20);
128	recommended_min <<= (PAGE_SHIFT-10);
129
130	if (recommended_min > min_free_kbytes)
131		min_free_kbytes = recommended_min;
132	setup_per_zone_wmarks();
133	return 0;
134}
135late_initcall(set_recommended_min_free_kbytes);
136
137static int start_khugepaged(void)
138{
139	int err = 0;
140	if (khugepaged_enabled()) {
141		int wakeup;
142		if (unlikely(!mm_slot_cache || !mm_slots_hash)) {
143			err = -ENOMEM;
144			goto out;
145		}
146		mutex_lock(&khugepaged_mutex);
147		if (!khugepaged_thread)
148			khugepaged_thread = kthread_run(khugepaged, NULL,
149							"khugepaged");
150		if (unlikely(IS_ERR(khugepaged_thread))) {
151			printk(KERN_ERR
152			       "khugepaged: kthread_run(khugepaged) failed\n");
153			err = PTR_ERR(khugepaged_thread);
154			khugepaged_thread = NULL;
155		}
156		wakeup = !list_empty(&khugepaged_scan.mm_head);
157		mutex_unlock(&khugepaged_mutex);
158		if (wakeup)
159			wake_up_interruptible(&khugepaged_wait);
160
161		set_recommended_min_free_kbytes();
162	} else
163		/* wakeup to exit */
164		wake_up_interruptible(&khugepaged_wait);
165out:
166	return err;
167}
168
169#ifdef CONFIG_SYSFS
170
171static ssize_t double_flag_show(struct kobject *kobj,
172				struct kobj_attribute *attr, char *buf,
173				enum transparent_hugepage_flag enabled,
174				enum transparent_hugepage_flag req_madv)
175{
176	if (test_bit(enabled, &transparent_hugepage_flags)) {
177		VM_BUG_ON(test_bit(req_madv, &transparent_hugepage_flags));
178		return sprintf(buf, "[always] madvise never\n");
179	} else if (test_bit(req_madv, &transparent_hugepage_flags))
180		return sprintf(buf, "always [madvise] never\n");
181	else
182		return sprintf(buf, "always madvise [never]\n");
183}
184static ssize_t double_flag_store(struct kobject *kobj,
185				 struct kobj_attribute *attr,
186				 const char *buf, size_t count,
187				 enum transparent_hugepage_flag enabled,
188				 enum transparent_hugepage_flag req_madv)
189{
190	if (!memcmp("always", buf,
191		    min(sizeof("always")-1, count))) {
192		set_bit(enabled, &transparent_hugepage_flags);
193		clear_bit(req_madv, &transparent_hugepage_flags);
194	} else if (!memcmp("madvise", buf,
195			   min(sizeof("madvise")-1, count))) {
196		clear_bit(enabled, &transparent_hugepage_flags);
197		set_bit(req_madv, &transparent_hugepage_flags);
198	} else if (!memcmp("never", buf,
199			   min(sizeof("never")-1, count))) {
200		clear_bit(enabled, &transparent_hugepage_flags);
201		clear_bit(req_madv, &transparent_hugepage_flags);
202	} else
203		return -EINVAL;
204
205	return count;
206}
207
208static ssize_t enabled_show(struct kobject *kobj,
209			    struct kobj_attribute *attr, char *buf)
210{
211	return double_flag_show(kobj, attr, buf,
212				TRANSPARENT_HUGEPAGE_FLAG,
213				TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG);
214}
215static ssize_t enabled_store(struct kobject *kobj,
216			     struct kobj_attribute *attr,
217			     const char *buf, size_t count)
218{
219	ssize_t ret;
220
221	ret = double_flag_store(kobj, attr, buf, count,
222				TRANSPARENT_HUGEPAGE_FLAG,
223				TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG);
224
225	if (ret > 0) {
226		int err = start_khugepaged();
227		if (err)
228			ret = err;
229	}
230
231	if (ret > 0 &&
232	    (test_bit(TRANSPARENT_HUGEPAGE_FLAG,
233		      &transparent_hugepage_flags) ||
234	     test_bit(TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG,
235		      &transparent_hugepage_flags)))
236		set_recommended_min_free_kbytes();
237
238	return ret;
239}
240static struct kobj_attribute enabled_attr =
241	__ATTR(enabled, 0644, enabled_show, enabled_store);
242
243static ssize_t single_flag_show(struct kobject *kobj,
244				struct kobj_attribute *attr, char *buf,
245				enum transparent_hugepage_flag flag)
246{
247	return sprintf(buf, "%d\n",
248		       !!test_bit(flag, &transparent_hugepage_flags));
249}
250
251static ssize_t single_flag_store(struct kobject *kobj,
252				 struct kobj_attribute *attr,
253				 const char *buf, size_t count,
254				 enum transparent_hugepage_flag flag)
255{
256	unsigned long value;
257	int ret;
258
259	ret = kstrtoul(buf, 10, &value);
260	if (ret < 0)
261		return ret;
262	if (value > 1)
263		return -EINVAL;
264
265	if (value)
266		set_bit(flag, &transparent_hugepage_flags);
267	else
268		clear_bit(flag, &transparent_hugepage_flags);
269
270	return count;
271}
272
273/*
274 * Currently defrag only disables __GFP_NOWAIT for allocation. A blind
275 * __GFP_REPEAT is too aggressive, it's never worth swapping tons of
276 * memory just to allocate one more hugepage.
277 */
278static ssize_t defrag_show(struct kobject *kobj,
279			   struct kobj_attribute *attr, char *buf)
280{
281	return double_flag_show(kobj, attr, buf,
282				TRANSPARENT_HUGEPAGE_DEFRAG_FLAG,
283				TRANSPARENT_HUGEPAGE_DEFRAG_REQ_MADV_FLAG);
284}
285static ssize_t defrag_store(struct kobject *kobj,
286			    struct kobj_attribute *attr,
287			    const char *buf, size_t count)
288{
289	return double_flag_store(kobj, attr, buf, count,
290				 TRANSPARENT_HUGEPAGE_DEFRAG_FLAG,
291				 TRANSPARENT_HUGEPAGE_DEFRAG_REQ_MADV_FLAG);
292}
293static struct kobj_attribute defrag_attr =
294	__ATTR(defrag, 0644, defrag_show, defrag_store);
295
296#ifdef CONFIG_DEBUG_VM
297static ssize_t debug_cow_show(struct kobject *kobj,
298				struct kobj_attribute *attr, char *buf)
299{
300	return single_flag_show(kobj, attr, buf,
301				TRANSPARENT_HUGEPAGE_DEBUG_COW_FLAG);
302}
303static ssize_t debug_cow_store(struct kobject *kobj,
304			       struct kobj_attribute *attr,
305			       const char *buf, size_t count)
306{
307	return single_flag_store(kobj, attr, buf, count,
308				 TRANSPARENT_HUGEPAGE_DEBUG_COW_FLAG);
309}
310static struct kobj_attribute debug_cow_attr =
311	__ATTR(debug_cow, 0644, debug_cow_show, debug_cow_store);
312#endif /* CONFIG_DEBUG_VM */
313
314static struct attribute *hugepage_attr[] = {
315	&enabled_attr.attr,
316	&defrag_attr.attr,
317#ifdef CONFIG_DEBUG_VM
318	&debug_cow_attr.attr,
319#endif
320	NULL,
321};
322
323static struct attribute_group hugepage_attr_group = {
324	.attrs = hugepage_attr,
325};
326
327static ssize_t scan_sleep_millisecs_show(struct kobject *kobj,
328					 struct kobj_attribute *attr,
329					 char *buf)
330{
331	return sprintf(buf, "%u\n", khugepaged_scan_sleep_millisecs);
332}
333
334static ssize_t scan_sleep_millisecs_store(struct kobject *kobj,
335					  struct kobj_attribute *attr,
336					  const char *buf, size_t count)
337{
338	unsigned long msecs;
339	int err;
340
341	err = strict_strtoul(buf, 10, &msecs);
342	if (err || msecs > UINT_MAX)
343		return -EINVAL;
344
345	khugepaged_scan_sleep_millisecs = msecs;
346	wake_up_interruptible(&khugepaged_wait);
347
348	return count;
349}
350static struct kobj_attribute scan_sleep_millisecs_attr =
351	__ATTR(scan_sleep_millisecs, 0644, scan_sleep_millisecs_show,
352	       scan_sleep_millisecs_store);
353
354static ssize_t alloc_sleep_millisecs_show(struct kobject *kobj,
355					  struct kobj_attribute *attr,
356					  char *buf)
357{
358	return sprintf(buf, "%u\n", khugepaged_alloc_sleep_millisecs);
359}
360
361static ssize_t alloc_sleep_millisecs_store(struct kobject *kobj,
362					   struct kobj_attribute *attr,
363					   const char *buf, size_t count)
364{
365	unsigned long msecs;
366	int err;
367
368	err = strict_strtoul(buf, 10, &msecs);
369	if (err || msecs > UINT_MAX)
370		return -EINVAL;
371
372	khugepaged_alloc_sleep_millisecs = msecs;
373	wake_up_interruptible(&khugepaged_wait);
374
375	return count;
376}
377static struct kobj_attribute alloc_sleep_millisecs_attr =
378	__ATTR(alloc_sleep_millisecs, 0644, alloc_sleep_millisecs_show,
379	       alloc_sleep_millisecs_store);
380
381static ssize_t pages_to_scan_show(struct kobject *kobj,
382				  struct kobj_attribute *attr,
383				  char *buf)
384{
385	return sprintf(buf, "%u\n", khugepaged_pages_to_scan);
386}
387static ssize_t pages_to_scan_store(struct kobject *kobj,
388				   struct kobj_attribute *attr,
389				   const char *buf, size_t count)
390{
391	int err;
392	unsigned long pages;
393
394	err = strict_strtoul(buf, 10, &pages);
395	if (err || !pages || pages > UINT_MAX)
396		return -EINVAL;
397
398	khugepaged_pages_to_scan = pages;
399
400	return count;
401}
402static struct kobj_attribute pages_to_scan_attr =
403	__ATTR(pages_to_scan, 0644, pages_to_scan_show,
404	       pages_to_scan_store);
405
406static ssize_t pages_collapsed_show(struct kobject *kobj,
407				    struct kobj_attribute *attr,
408				    char *buf)
409{
410	return sprintf(buf, "%u\n", khugepaged_pages_collapsed);
411}
412static struct kobj_attribute pages_collapsed_attr =
413	__ATTR_RO(pages_collapsed);
414
415static ssize_t full_scans_show(struct kobject *kobj,
416			       struct kobj_attribute *attr,
417			       char *buf)
418{
419	return sprintf(buf, "%u\n", khugepaged_full_scans);
420}
421static struct kobj_attribute full_scans_attr =
422	__ATTR_RO(full_scans);
423
424static ssize_t khugepaged_defrag_show(struct kobject *kobj,
425				      struct kobj_attribute *attr, char *buf)
426{
427	return single_flag_show(kobj, attr, buf,
428				TRANSPARENT_HUGEPAGE_DEFRAG_KHUGEPAGED_FLAG);
429}
430static ssize_t khugepaged_defrag_store(struct kobject *kobj,
431				       struct kobj_attribute *attr,
432				       const char *buf, size_t count)
433{
434	return single_flag_store(kobj, attr, buf, count,
435				 TRANSPARENT_HUGEPAGE_DEFRAG_KHUGEPAGED_FLAG);
436}
437static struct kobj_attribute khugepaged_defrag_attr =
438	__ATTR(defrag, 0644, khugepaged_defrag_show,
439	       khugepaged_defrag_store);
440
441/*
442 * max_ptes_none controls if khugepaged should collapse hugepages over
443 * any unmapped ptes in turn potentially increasing the memory
444 * footprint of the vmas. When max_ptes_none is 0 khugepaged will not
445 * reduce the available free memory in the system as it
446 * runs. Increasing max_ptes_none will instead potentially reduce the
447 * free memory in the system during the khugepaged scan.
448 */
449static ssize_t khugepaged_max_ptes_none_show(struct kobject *kobj,
450					     struct kobj_attribute *attr,
451					     char *buf)
452{
453	return sprintf(buf, "%u\n", khugepaged_max_ptes_none);
454}
455static ssize_t khugepaged_max_ptes_none_store(struct kobject *kobj,
456					      struct kobj_attribute *attr,
457					      const char *buf, size_t count)
458{
459	int err;
460	unsigned long max_ptes_none;
461
462	err = strict_strtoul(buf, 10, &max_ptes_none);
463	if (err || max_ptes_none > HPAGE_PMD_NR-1)
464		return -EINVAL;
465
466	khugepaged_max_ptes_none = max_ptes_none;
467
468	return count;
469}
470static struct kobj_attribute khugepaged_max_ptes_none_attr =
471	__ATTR(max_ptes_none, 0644, khugepaged_max_ptes_none_show,
472	       khugepaged_max_ptes_none_store);
473
474static struct attribute *khugepaged_attr[] = {
475	&khugepaged_defrag_attr.attr,
476	&khugepaged_max_ptes_none_attr.attr,
477	&pages_to_scan_attr.attr,
478	&pages_collapsed_attr.attr,
479	&full_scans_attr.attr,
480	&scan_sleep_millisecs_attr.attr,
481	&alloc_sleep_millisecs_attr.attr,
482	NULL,
483};
484
485static struct attribute_group khugepaged_attr_group = {
486	.attrs = khugepaged_attr,
487	.name = "khugepaged",
488};
489#endif /* CONFIG_SYSFS */
490
491static int __init hugepage_init(void)
492{
493	int err;
494#ifdef CONFIG_SYSFS
495	static struct kobject *hugepage_kobj;
496#endif
497
498	err = -EINVAL;
499	if (!has_transparent_hugepage()) {
500		transparent_hugepage_flags = 0;
501		goto out;
502	}
503
504#ifdef CONFIG_SYSFS
505	err = -ENOMEM;
506	hugepage_kobj = kobject_create_and_add("transparent_hugepage", mm_kobj);
507	if (unlikely(!hugepage_kobj)) {
508		printk(KERN_ERR "hugepage: failed kobject create\n");
509		goto out;
510	}
511
512	err = sysfs_create_group(hugepage_kobj, &hugepage_attr_group);
513	if (err) {
514		printk(KERN_ERR "hugepage: failed register hugeage group\n");
515		goto out;
516	}
517
518	err = sysfs_create_group(hugepage_kobj, &khugepaged_attr_group);
519	if (err) {
520		printk(KERN_ERR "hugepage: failed register hugeage group\n");
521		goto out;
522	}
523#endif
524
525	err = khugepaged_slab_init();
526	if (err)
527		goto out;
528
529	err = mm_slots_hash_init();
530	if (err) {
531		khugepaged_slab_free();
532		goto out;
533	}
534
535	/*
536	 * By default disable transparent hugepages on smaller systems,
537	 * where the extra memory used could hurt more than TLB overhead
538	 * is likely to save.  The admin can still enable it through /sys.
539	 */
540	if (totalram_pages < (512 << (20 - PAGE_SHIFT)))
541		transparent_hugepage_flags = 0;
542
543	start_khugepaged();
544
545	set_recommended_min_free_kbytes();
546
547out:
548	return err;
549}
550module_init(hugepage_init)
551
552static int __init setup_transparent_hugepage(char *str)
553{
554	int ret = 0;
555	if (!str)
556		goto out;
557	if (!strcmp(str, "always")) {
558		set_bit(TRANSPARENT_HUGEPAGE_FLAG,
559			&transparent_hugepage_flags);
560		clear_bit(TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG,
561			  &transparent_hugepage_flags);
562		ret = 1;
563	} else if (!strcmp(str, "madvise")) {
564		clear_bit(TRANSPARENT_HUGEPAGE_FLAG,
565			  &transparent_hugepage_flags);
566		set_bit(TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG,
567			&transparent_hugepage_flags);
568		ret = 1;
569	} else if (!strcmp(str, "never")) {
570		clear_bit(TRANSPARENT_HUGEPAGE_FLAG,
571			  &transparent_hugepage_flags);
572		clear_bit(TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG,
573			  &transparent_hugepage_flags);
574		ret = 1;
575	}
576out:
577	if (!ret)
578		printk(KERN_WARNING
579		       "transparent_hugepage= cannot parse, ignored\n");
580	return ret;
581}
582__setup("transparent_hugepage=", setup_transparent_hugepage);
583
584static void prepare_pmd_huge_pte(pgtable_t pgtable,
585				 struct mm_struct *mm)
586{
587	assert_spin_locked(&mm->page_table_lock);
588
589	/* FIFO */
590	if (!mm->pmd_huge_pte)
591		INIT_LIST_HEAD(&pgtable->lru);
592	else
593		list_add(&pgtable->lru, &mm->pmd_huge_pte->lru);
594	mm->pmd_huge_pte = pgtable;
595}
596
597static inline pmd_t maybe_pmd_mkwrite(pmd_t pmd, struct vm_area_struct *vma)
598{
599	if (likely(vma->vm_flags & VM_WRITE))
600		pmd = pmd_mkwrite(pmd);
601	return pmd;
602}
603
604static int __do_huge_pmd_anonymous_page(struct mm_struct *mm,
605					struct vm_area_struct *vma,
606					unsigned long haddr, pmd_t *pmd,
607					struct page *page)
608{
609	int ret = 0;
610	pgtable_t pgtable;
611
612	VM_BUG_ON(!PageCompound(page));
613	pgtable = pte_alloc_one(mm, haddr);
614	if (unlikely(!pgtable)) {
615		mem_cgroup_uncharge_page(page);
616		put_page(page);
617		return VM_FAULT_OOM;
618	}
619
620	clear_huge_page(page, haddr, HPAGE_PMD_NR);
621	__SetPageUptodate(page);
622
623	spin_lock(&mm->page_table_lock);
624	if (unlikely(!pmd_none(*pmd))) {
625		spin_unlock(&mm->page_table_lock);
626		mem_cgroup_uncharge_page(page);
627		put_page(page);
628		pte_free(mm, pgtable);
629	} else {
630		pmd_t entry;
631		entry = mk_pmd(page, vma->vm_page_prot);
632		entry = maybe_pmd_mkwrite(pmd_mkdirty(entry), vma);
633		entry = pmd_mkhuge(entry);
634		/*
635		 * The spinlocking to take the lru_lock inside
636		 * page_add_new_anon_rmap() acts as a full memory
637		 * barrier to be sure clear_huge_page writes become
638		 * visible after the set_pmd_at() write.
639		 */
640		page_add_new_anon_rmap(page, vma, haddr);
641		set_pmd_at(mm, haddr, pmd, entry);
642		prepare_pmd_huge_pte(pgtable, mm);
643		add_mm_counter(mm, MM_ANONPAGES, HPAGE_PMD_NR);
644		spin_unlock(&mm->page_table_lock);
645	}
646
647	return ret;
648}
649
650static inline gfp_t alloc_hugepage_gfpmask(int defrag, gfp_t extra_gfp)
651{
652	return (GFP_TRANSHUGE & ~(defrag ? 0 : __GFP_WAIT)) | extra_gfp;
653}
654
655static inline struct page *alloc_hugepage_vma(int defrag,
656					      struct vm_area_struct *vma,
657					      unsigned long haddr, int nd,
658					      gfp_t extra_gfp)
659{
660	return alloc_pages_vma(alloc_hugepage_gfpmask(defrag, extra_gfp),
661			       HPAGE_PMD_ORDER, vma, haddr, nd);
662}
663
664#ifndef CONFIG_NUMA
665static inline struct page *alloc_hugepage(int defrag)
666{
667	return alloc_pages(alloc_hugepage_gfpmask(defrag, 0),
668			   HPAGE_PMD_ORDER);
669}
670#endif
671
672int do_huge_pmd_anonymous_page(struct mm_struct *mm, struct vm_area_struct *vma,
673			       unsigned long address, pmd_t *pmd,
674			       unsigned int flags)
675{
676	struct page *page;
677	unsigned long haddr = address & HPAGE_PMD_MASK;
678	pte_t *pte;
679
680	if (haddr >= vma->vm_start && haddr + HPAGE_PMD_SIZE <= vma->vm_end) {
681		if (unlikely(anon_vma_prepare(vma)))
682			return VM_FAULT_OOM;
683		if (unlikely(khugepaged_enter(vma)))
684			return VM_FAULT_OOM;
685		page = alloc_hugepage_vma(transparent_hugepage_defrag(vma),
686					  vma, haddr, numa_node_id(), 0);
687		if (unlikely(!page)) {
688			count_vm_event(THP_FAULT_FALLBACK);
689			goto out;
690		}
691		count_vm_event(THP_FAULT_ALLOC);
692		if (unlikely(mem_cgroup_newpage_charge(page, mm, GFP_KERNEL))) {
693			put_page(page);
694			goto out;
695		}
696
697		return __do_huge_pmd_anonymous_page(mm, vma, haddr, pmd, page);
698	}
699out:
700	/*
701	 * Use __pte_alloc instead of pte_alloc_map, because we can't
702	 * run pte_offset_map on the pmd, if an huge pmd could
703	 * materialize from under us from a different thread.
704	 */
705	if (unlikely(__pte_alloc(mm, vma, pmd, address)))
706		return VM_FAULT_OOM;
707	/* if an huge pmd materialized from under us just retry later */
708	if (unlikely(pmd_trans_huge(*pmd)))
709		return 0;
710	/*
711	 * A regular pmd is established and it can't morph into a huge pmd
712	 * from under us anymore at this point because we hold the mmap_sem
713	 * read mode and khugepaged takes it in write mode. So now it's
714	 * safe to run pte_offset_map().
715	 */
716	pte = pte_offset_map(pmd, address);
717	return handle_pte_fault(mm, vma, address, pte, pmd, flags);
718}
719
720int copy_huge_pmd(struct mm_struct *dst_mm, struct mm_struct *src_mm,
721		  pmd_t *dst_pmd, pmd_t *src_pmd, unsigned long addr,
722		  struct vm_area_struct *vma)
723{
724	struct page *src_page;
725	pmd_t pmd;
726	pgtable_t pgtable;
727	int ret;
728
729	ret = -ENOMEM;
730	pgtable = pte_alloc_one(dst_mm, addr);
731	if (unlikely(!pgtable))
732		goto out;
733
734	spin_lock(&dst_mm->page_table_lock);
735	spin_lock_nested(&src_mm->page_table_lock, SINGLE_DEPTH_NESTING);
736
737	ret = -EAGAIN;
738	pmd = *src_pmd;
739	if (unlikely(!pmd_trans_huge(pmd))) {
740		pte_free(dst_mm, pgtable);
741		goto out_unlock;
742	}
743	if (unlikely(pmd_trans_splitting(pmd))) {
744		/* split huge page running from under us */
745		spin_unlock(&src_mm->page_table_lock);
746		spin_unlock(&dst_mm->page_table_lock);
747		pte_free(dst_mm, pgtable);
748
749		wait_split_huge_page(vma->anon_vma, src_pmd); /* src_vma */
750		goto out;
751	}
752	src_page = pmd_page(pmd);
753	VM_BUG_ON(!PageHead(src_page));
754	get_page(src_page);
755	page_dup_rmap(src_page);
756	add_mm_counter(dst_mm, MM_ANONPAGES, HPAGE_PMD_NR);
757
758	pmdp_set_wrprotect(src_mm, addr, src_pmd);
759	pmd = pmd_mkold(pmd_wrprotect(pmd));
760	set_pmd_at(dst_mm, addr, dst_pmd, pmd);
761	prepare_pmd_huge_pte(pgtable, dst_mm);
762
763	ret = 0;
764out_unlock:
765	spin_unlock(&src_mm->page_table_lock);
766	spin_unlock(&dst_mm->page_table_lock);
767out:
768	return ret;
769}
770
771/* no "address" argument so destroys page coloring of some arch */
772pgtable_t get_pmd_huge_pte(struct mm_struct *mm)
773{
774	pgtable_t pgtable;
775
776	assert_spin_locked(&mm->page_table_lock);
777
778	/* FIFO */
779	pgtable = mm->pmd_huge_pte;
780	if (list_empty(&pgtable->lru))
781		mm->pmd_huge_pte = NULL;
782	else {
783		mm->pmd_huge_pte = list_entry(pgtable->lru.next,
784					      struct page, lru);
785		list_del(&pgtable->lru);
786	}
787	return pgtable;
788}
789
790static int do_huge_pmd_wp_page_fallback(struct mm_struct *mm,
791					struct vm_area_struct *vma,
792					unsigned long address,
793					pmd_t *pmd, pmd_t orig_pmd,
794					struct page *page,
795					unsigned long haddr)
796{
797	pgtable_t pgtable;
798	pmd_t _pmd;
799	int ret = 0, i;
800	struct page **pages;
801
802	pages = kmalloc(sizeof(struct page *) * HPAGE_PMD_NR,
803			GFP_KERNEL);
804	if (unlikely(!pages)) {
805		ret |= VM_FAULT_OOM;
806		goto out;
807	}
808
809	for (i = 0; i < HPAGE_PMD_NR; i++) {
810		pages[i] = alloc_page_vma_node(GFP_HIGHUSER_MOVABLE |
811					       __GFP_OTHER_NODE,
812					       vma, address, page_to_nid(page));
813		if (unlikely(!pages[i] ||
814			     mem_cgroup_newpage_charge(pages[i], mm,
815						       GFP_KERNEL))) {
816			if (pages[i])
817				put_page(pages[i]);
818			mem_cgroup_uncharge_start();
819			while (--i >= 0) {
820				mem_cgroup_uncharge_page(pages[i]);
821				put_page(pages[i]);
822			}
823			mem_cgroup_uncharge_end();
824			kfree(pages);
825			ret |= VM_FAULT_OOM;
826			goto out;
827		}
828	}
829
830	for (i = 0; i < HPAGE_PMD_NR; i++) {
831		copy_user_highpage(pages[i], page + i,
832				   haddr + PAGE_SHIFT*i, vma);
833		__SetPageUptodate(pages[i]);
834		cond_resched();
835	}
836
837	spin_lock(&mm->page_table_lock);
838	if (unlikely(!pmd_same(*pmd, orig_pmd)))
839		goto out_free_pages;
840	VM_BUG_ON(!PageHead(page));
841
842	pmdp_clear_flush_notify(vma, haddr, pmd);
843	/* leave pmd empty until pte is filled */
844
845	pgtable = get_pmd_huge_pte(mm);
846	pmd_populate(mm, &_pmd, pgtable);
847
848	for (i = 0; i < HPAGE_PMD_NR; i++, haddr += PAGE_SIZE) {
849		pte_t *pte, entry;
850		entry = mk_pte(pages[i], vma->vm_page_prot);
851		entry = maybe_mkwrite(pte_mkdirty(entry), vma);
852		page_add_new_anon_rmap(pages[i], vma, haddr);
853		pte = pte_offset_map(&_pmd, haddr);
854		VM_BUG_ON(!pte_none(*pte));
855		set_pte_at(mm, haddr, pte, entry);
856		pte_unmap(pte);
857	}
858	kfree(pages);
859
860	mm->nr_ptes++;
861	smp_wmb(); /* make pte visible before pmd */
862	pmd_populate(mm, pmd, pgtable);
863	page_remove_rmap(page);
864	spin_unlock(&mm->page_table_lock);
865
866	ret |= VM_FAULT_WRITE;
867	put_page(page);
868
869out:
870	return ret;
871
872out_free_pages:
873	spin_unlock(&mm->page_table_lock);
874	mem_cgroup_uncharge_start();
875	for (i = 0; i < HPAGE_PMD_NR; i++) {
876		mem_cgroup_uncharge_page(pages[i]);
877		put_page(pages[i]);
878	}
879	mem_cgroup_uncharge_end();
880	kfree(pages);
881	goto out;
882}
883
884int do_huge_pmd_wp_page(struct mm_struct *mm, struct vm_area_struct *vma,
885			unsigned long address, pmd_t *pmd, pmd_t orig_pmd)
886{
887	int ret = 0;
888	struct page *page, *new_page;
889	unsigned long haddr;
890
891	VM_BUG_ON(!vma->anon_vma);
892	spin_lock(&mm->page_table_lock);
893	if (unlikely(!pmd_same(*pmd, orig_pmd)))
894		goto out_unlock;
895
896	page = pmd_page(orig_pmd);
897	VM_BUG_ON(!PageCompound(page) || !PageHead(page));
898	haddr = address & HPAGE_PMD_MASK;
899	if (page_mapcount(page) == 1) {
900		pmd_t entry;
901		entry = pmd_mkyoung(orig_pmd);
902		entry = maybe_pmd_mkwrite(pmd_mkdirty(entry), vma);
903		if (pmdp_set_access_flags(vma, haddr, pmd, entry,  1))
904			update_mmu_cache(vma, address, entry);
905		ret |= VM_FAULT_WRITE;
906		goto out_unlock;
907	}
908	get_page(page);
909	spin_unlock(&mm->page_table_lock);
910
911	if (transparent_hugepage_enabled(vma) &&
912	    !transparent_hugepage_debug_cow())
913		new_page = alloc_hugepage_vma(transparent_hugepage_defrag(vma),
914					      vma, haddr, numa_node_id(), 0);
915	else
916		new_page = NULL;
917
918	if (unlikely(!new_page)) {
919		count_vm_event(THP_FAULT_FALLBACK);
920		ret = do_huge_pmd_wp_page_fallback(mm, vma, address,
921						   pmd, orig_pmd, page, haddr);
922		put_page(page);
923		goto out;
924	}
925	count_vm_event(THP_FAULT_ALLOC);
926
927	if (unlikely(mem_cgroup_newpage_charge(new_page, mm, GFP_KERNEL))) {
928		put_page(new_page);
929		put_page(page);
930		ret |= VM_FAULT_OOM;
931		goto out;
932	}
933
934	copy_user_huge_page(new_page, page, haddr, vma, HPAGE_PMD_NR);
935	__SetPageUptodate(new_page);
936
937	spin_lock(&mm->page_table_lock);
938	put_page(page);
939	if (unlikely(!pmd_same(*pmd, orig_pmd))) {
940		mem_cgroup_uncharge_page(new_page);
941		put_page(new_page);
942	} else {
943		pmd_t entry;
944		VM_BUG_ON(!PageHead(page));
945		entry = mk_pmd(new_page, vma->vm_page_prot);
946		entry = maybe_pmd_mkwrite(pmd_mkdirty(entry), vma);
947		entry = pmd_mkhuge(entry);
948		pmdp_clear_flush_notify(vma, haddr, pmd);
949		page_add_new_anon_rmap(new_page, vma, haddr);
950		set_pmd_at(mm, haddr, pmd, entry);
951		update_mmu_cache(vma, address, entry);
952		page_remove_rmap(page);
953		put_page(page);
954		ret |= VM_FAULT_WRITE;
955	}
956out_unlock:
957	spin_unlock(&mm->page_table_lock);
958out:
959	return ret;
960}
961
962struct page *follow_trans_huge_pmd(struct mm_struct *mm,
963				   unsigned long addr,
964				   pmd_t *pmd,
965				   unsigned int flags)
966{
967	struct page *page = NULL;
968
969	assert_spin_locked(&mm->page_table_lock);
970
971	if (flags & FOLL_WRITE && !pmd_write(*pmd))
972		goto out;
973
974	page = pmd_page(*pmd);
975	VM_BUG_ON(!PageHead(page));
976	if (flags & FOLL_TOUCH) {
977		pmd_t _pmd;
978		/*
979		 * We should set the dirty bit only for FOLL_WRITE but
980		 * for now the dirty bit in the pmd is meaningless.
981		 * And if the dirty bit will become meaningful and
982		 * we'll only set it with FOLL_WRITE, an atomic
983		 * set_bit will be required on the pmd to set the
984		 * young bit, instead of the current set_pmd_at.
985		 */
986		_pmd = pmd_mkyoung(pmd_mkdirty(*pmd));
987		set_pmd_at(mm, addr & HPAGE_PMD_MASK, pmd, _pmd);
988	}
989	page += (addr & ~HPAGE_PMD_MASK) >> PAGE_SHIFT;
990	VM_BUG_ON(!PageCompound(page));
991	if (flags & FOLL_GET)
992		get_page(page);
993
994out:
995	return page;
996}
997
998int zap_huge_pmd(struct mmu_gather *tlb, struct vm_area_struct *vma,
999		 pmd_t *pmd)
1000{
1001	int ret = 0;
1002
1003	spin_lock(&tlb->mm->page_table_lock);
1004	if (likely(pmd_trans_huge(*pmd))) {
1005		if (unlikely(pmd_trans_splitting(*pmd))) {
1006			spin_unlock(&tlb->mm->page_table_lock);
1007			wait_split_huge_page(vma->anon_vma,
1008					     pmd);
1009		} else {
1010			struct page *page;
1011			pgtable_t pgtable;
1012			pgtable = get_pmd_huge_pte(tlb->mm);
1013			page = pmd_page(*pmd);
1014			pmd_clear(pmd);
1015			page_remove_rmap(page);
1016			VM_BUG_ON(page_mapcount(page) < 0);
1017			add_mm_counter(tlb->mm, MM_ANONPAGES, -HPAGE_PMD_NR);
1018			VM_BUG_ON(!PageHead(page));
1019			spin_unlock(&tlb->mm->page_table_lock);
1020			tlb_remove_page(tlb, page);
1021			pte_free(tlb->mm, pgtable);
1022			ret = 1;
1023		}
1024	} else
1025		spin_unlock(&tlb->mm->page_table_lock);
1026
1027	return ret;
1028}
1029
1030int mincore_huge_pmd(struct vm_area_struct *vma, pmd_t *pmd,
1031		unsigned long addr, unsigned long end,
1032		unsigned char *vec)
1033{
1034	int ret = 0;
1035
1036	spin_lock(&vma->vm_mm->page_table_lock);
1037	if (likely(pmd_trans_huge(*pmd))) {
1038		ret = !pmd_trans_splitting(*pmd);
1039		spin_unlock(&vma->vm_mm->page_table_lock);
1040		if (unlikely(!ret))
1041			wait_split_huge_page(vma->anon_vma, pmd);
1042		else {
1043			/*
1044			 * All logical pages in the range are present
1045			 * if backed by a huge page.
1046			 */
1047			memset(vec, 1, (end - addr) >> PAGE_SHIFT);
1048		}
1049	} else
1050		spin_unlock(&vma->vm_mm->page_table_lock);
1051
1052	return ret;
1053}
1054
1055int change_huge_pmd(struct vm_area_struct *vma, pmd_t *pmd,
1056		unsigned long addr, pgprot_t newprot)
1057{
1058	struct mm_struct *mm = vma->vm_mm;
1059	int ret = 0;
1060
1061	spin_lock(&mm->page_table_lock);
1062	if (likely(pmd_trans_huge(*pmd))) {
1063		if (unlikely(pmd_trans_splitting(*pmd))) {
1064			spin_unlock(&mm->page_table_lock);
1065			wait_split_huge_page(vma->anon_vma, pmd);
1066		} else {
1067			pmd_t entry;
1068
1069			entry = pmdp_get_and_clear(mm, addr, pmd);
1070			entry = pmd_modify(entry, newprot);
1071			set_pmd_at(mm, addr, pmd, entry);
1072			spin_unlock(&vma->vm_mm->page_table_lock);
1073			flush_tlb_range(vma, addr, addr + HPAGE_PMD_SIZE);
1074			ret = 1;
1075		}
1076	} else
1077		spin_unlock(&vma->vm_mm->page_table_lock);
1078
1079	return ret;
1080}
1081
1082pmd_t *page_check_address_pmd(struct page *page,
1083			      struct mm_struct *mm,
1084			      unsigned long address,
1085			      enum page_check_address_pmd_flag flag)
1086{
1087	pgd_t *pgd;
1088	pud_t *pud;
1089	pmd_t *pmd, *ret = NULL;
1090
1091	if (address & ~HPAGE_PMD_MASK)
1092		goto out;
1093
1094	pgd = pgd_offset(mm, address);
1095	if (!pgd_present(*pgd))
1096		goto out;
1097
1098	pud = pud_offset(pgd, address);
1099	if (!pud_present(*pud))
1100		goto out;
1101
1102	pmd = pmd_offset(pud, address);
1103	if (pmd_none(*pmd))
1104		goto out;
1105	if (pmd_page(*pmd) != page)
1106		goto out;
1107	/*
1108	 * split_vma() may create temporary aliased mappings. There is
1109	 * no risk as long as all huge pmd are found and have their
1110	 * splitting bit set before __split_huge_page_refcount
1111	 * runs. Finding the same huge pmd more than once during the
1112	 * same rmap walk is not a problem.
1113	 */
1114	if (flag == PAGE_CHECK_ADDRESS_PMD_NOTSPLITTING_FLAG &&
1115	    pmd_trans_splitting(*pmd))
1116		goto out;
1117	if (pmd_trans_huge(*pmd)) {
1118		VM_BUG_ON(flag == PAGE_CHECK_ADDRESS_PMD_SPLITTING_FLAG &&
1119			  !pmd_trans_splitting(*pmd));
1120		ret = pmd;
1121	}
1122out:
1123	return ret;
1124}
1125
1126static int __split_huge_page_splitting(struct page *page,
1127				       struct vm_area_struct *vma,
1128				       unsigned long address)
1129{
1130	struct mm_struct *mm = vma->vm_mm;
1131	pmd_t *pmd;
1132	int ret = 0;
1133
1134	spin_lock(&mm->page_table_lock);
1135	pmd = page_check_address_pmd(page, mm, address,
1136				     PAGE_CHECK_ADDRESS_PMD_NOTSPLITTING_FLAG);
1137	if (pmd) {
1138		/*
1139		 * We can't temporarily set the pmd to null in order
1140		 * to split it, the pmd must remain marked huge at all
1141		 * times or the VM won't take the pmd_trans_huge paths
1142		 * and it won't wait on the anon_vma->root->lock to
1143		 * serialize against split_huge_page*.
1144		 */
1145		pmdp_splitting_flush_notify(vma, address, pmd);
1146		ret = 1;
1147	}
1148	spin_unlock(&mm->page_table_lock);
1149
1150	return ret;
1151}
1152
1153static void __split_huge_page_refcount(struct page *page)
1154{
1155	int i;
1156	unsigned long head_index = page->index;
1157	struct zone *zone = page_zone(page);
1158	int zonestat;
1159
1160	/* prevent PageLRU to go away from under us, and freeze lru stats */
1161	spin_lock_irq(&zone->lru_lock);
1162	compound_lock(page);
1163
1164	for (i = 1; i < HPAGE_PMD_NR; i++) {
1165		struct page *page_tail = page + i;
1166
1167		/* tail_page->_count cannot change */
1168		atomic_sub(atomic_read(&page_tail->_count), &page->_count);
1169		BUG_ON(page_count(page) <= 0);
1170		atomic_add(page_mapcount(page) + 1, &page_tail->_count);
1171		BUG_ON(atomic_read(&page_tail->_count) <= 0);
1172
1173		/* after clearing PageTail the gup refcount can be released */
1174		smp_mb();
1175
1176		/*
1177		 * retain hwpoison flag of the poisoned tail page:
1178		 *   fix for the unsuitable process killed on Guest Machine(KVM)
1179		 *   by the memory-failure.
1180		 */
1181		page_tail->flags &= ~PAGE_FLAGS_CHECK_AT_PREP | __PG_HWPOISON;
1182		page_tail->flags |= (page->flags &
1183				     ((1L << PG_referenced) |
1184				      (1L << PG_swapbacked) |
1185				      (1L << PG_mlocked) |
1186				      (1L << PG_uptodate)));
1187		page_tail->flags |= (1L << PG_dirty);
1188
1189		/*
1190		 * 1) clear PageTail before overwriting first_page
1191		 * 2) clear PageTail before clearing PageHead for VM_BUG_ON
1192		 */
1193		smp_wmb();
1194
1195		/*
1196		 * __split_huge_page_splitting() already set the
1197		 * splitting bit in all pmd that could map this
1198		 * hugepage, that will ensure no CPU can alter the
1199		 * mapcount on the head page. The mapcount is only
1200		 * accounted in the head page and it has to be
1201		 * transferred to all tail pages in the below code. So
1202		 * for this code to be safe, the split the mapcount
1203		 * can't change. But that doesn't mean userland can't
1204		 * keep changing and reading the page contents while
1205		 * we transfer the mapcount, so the pmd splitting
1206		 * status is achieved setting a reserved bit in the
1207		 * pmd, not by clearing the present bit.
1208		*/
1209		BUG_ON(page_mapcount(page_tail));
1210		page_tail->_mapcount = page->_mapcount;
1211
1212		BUG_ON(page_tail->mapping);
1213		page_tail->mapping = page->mapping;
1214
1215		page_tail->index = ++head_index;
1216
1217		BUG_ON(!PageAnon(page_tail));
1218		BUG_ON(!PageUptodate(page_tail));
1219		BUG_ON(!PageDirty(page_tail));
1220		BUG_ON(!PageSwapBacked(page_tail));
1221
1222		mem_cgroup_split_huge_fixup(page, page_tail);
1223
1224		lru_add_page_tail(zone, page, page_tail);
1225	}
1226
1227	__dec_zone_page_state(page, NR_ANON_TRANSPARENT_HUGEPAGES);
1228	__mod_zone_page_state(zone, NR_ANON_PAGES, HPAGE_PMD_NR);
1229
1230	/*
1231	 * A hugepage counts for HPAGE_PMD_NR pages on the LRU statistics,
1232	 * so adjust those appropriately if this page is on the LRU.
1233	 */
1234	if (PageLRU(page)) {
1235		zonestat = NR_LRU_BASE + page_lru(page);
1236		__mod_zone_page_state(zone, zonestat, -(HPAGE_PMD_NR-1));
1237	}
1238
1239	ClearPageCompound(page);
1240	compound_unlock(page);
1241	spin_unlock_irq(&zone->lru_lock);
1242
1243	for (i = 1; i < HPAGE_PMD_NR; i++) {
1244		struct page *page_tail = page + i;
1245		BUG_ON(page_count(page_tail) <= 0);
1246		/*
1247		 * Tail pages may be freed if there wasn't any mapping
1248		 * like if add_to_swap() is running on a lru page that
1249		 * had its mapping zapped. And freeing these pages
1250		 * requires taking the lru_lock so we do the put_page
1251		 * of the tail pages after the split is complete.
1252		 */
1253		put_page(page_tail);
1254	}
1255
1256	/*
1257	 * Only the head page (now become a regular page) is required
1258	 * to be pinned by the caller.
1259	 */
1260	BUG_ON(page_count(page) <= 0);
1261}
1262
1263static int __split_huge_page_map(struct page *page,
1264				 struct vm_area_struct *vma,
1265				 unsigned long address)
1266{
1267	struct mm_struct *mm = vma->vm_mm;
1268	pmd_t *pmd, _pmd;
1269	int ret = 0, i;
1270	pgtable_t pgtable;
1271	unsigned long haddr;
1272
1273	spin_lock(&mm->page_table_lock);
1274	pmd = page_check_address_pmd(page, mm, address,
1275				     PAGE_CHECK_ADDRESS_PMD_SPLITTING_FLAG);
1276	if (pmd) {
1277		pgtable = get_pmd_huge_pte(mm);
1278		pmd_populate(mm, &_pmd, pgtable);
1279
1280		for (i = 0, haddr = address; i < HPAGE_PMD_NR;
1281		     i++, haddr += PAGE_SIZE) {
1282			pte_t *pte, entry;
1283			BUG_ON(PageCompound(page+i));
1284			entry = mk_pte(page + i, vma->vm_page_prot);
1285			entry = maybe_mkwrite(pte_mkdirty(entry), vma);
1286			if (!pmd_write(*pmd))
1287				entry = pte_wrprotect(entry);
1288			else
1289				BUG_ON(page_mapcount(page) != 1);
1290			if (!pmd_young(*pmd))
1291				entry = pte_mkold(entry);
1292			pte = pte_offset_map(&_pmd, haddr);
1293			BUG_ON(!pte_none(*pte));
1294			set_pte_at(mm, haddr, pte, entry);
1295			pte_unmap(pte);
1296		}
1297
1298		mm->nr_ptes++;
1299		smp_wmb(); /* make pte visible before pmd */
1300		/*
1301		 * Up to this point the pmd is present and huge and
1302		 * userland has the whole access to the hugepage
1303		 * during the split (which happens in place). If we
1304		 * overwrite the pmd with the not-huge version
1305		 * pointing to the pte here (which of course we could
1306		 * if all CPUs were bug free), userland could trigger
1307		 * a small page size TLB miss on the small sized TLB
1308		 * while the hugepage TLB entry is still established
1309		 * in the huge TLB. Some CPU doesn't like that. See
1310		 * http://support.amd.com/us/Processor_TechDocs/41322.pdf,
1311		 * Erratum 383 on page 93. Intel should be safe but is
1312		 * also warns that it's only safe if the permission
1313		 * and cache attributes of the two entries loaded in
1314		 * the two TLB is identical (which should be the case
1315		 * here). But it is generally safer to never allow
1316		 * small and huge TLB entries for the same virtual
1317		 * address to be loaded simultaneously. So instead of
1318		 * doing "pmd_populate(); flush_tlb_range();" we first
1319		 * mark the current pmd notpresent (atomically because
1320		 * here the pmd_trans_huge and pmd_trans_splitting
1321		 * must remain set at all times on the pmd until the
1322		 * split is complete for this pmd), then we flush the
1323		 * SMP TLB and finally we write the non-huge version
1324		 * of the pmd entry with pmd_populate.
1325		 */
1326		set_pmd_at(mm, address, pmd, pmd_mknotpresent(*pmd));
1327		flush_tlb_range(vma, address, address + HPAGE_PMD_SIZE);
1328		pmd_populate(mm, pmd, pgtable);
1329		ret = 1;
1330	}
1331	spin_unlock(&mm->page_table_lock);
1332
1333	return ret;
1334}
1335
1336/* must be called with anon_vma->root->lock hold */
1337static void __split_huge_page(struct page *page,
1338			      struct anon_vma *anon_vma)
1339{
1340	int mapcount, mapcount2;
1341	struct anon_vma_chain *avc;
1342
1343	BUG_ON(!PageHead(page));
1344	BUG_ON(PageTail(page));
1345
1346	mapcount = 0;
1347	list_for_each_entry(avc, &anon_vma->head, same_anon_vma) {
1348		struct vm_area_struct *vma = avc->vma;
1349		unsigned long addr = vma_address(page, vma);
1350		BUG_ON(is_vma_temporary_stack(vma));
1351		if (addr == -EFAULT)
1352			continue;
1353		mapcount += __split_huge_page_splitting(page, vma, addr);
1354	}
1355	/*
1356	 * It is critical that new vmas are added to the tail of the
1357	 * anon_vma list. This guarantes that if copy_huge_pmd() runs
1358	 * and establishes a child pmd before
1359	 * __split_huge_page_splitting() freezes the parent pmd (so if
1360	 * we fail to prevent copy_huge_pmd() from running until the
1361	 * whole __split_huge_page() is complete), we will still see
1362	 * the newly established pmd of the child later during the
1363	 * walk, to be able to set it as pmd_trans_splitting too.
1364	 */
1365	if (mapcount != page_mapcount(page))
1366		printk(KERN_ERR "mapcount %d page_mapcount %d\n",
1367		       mapcount, page_mapcount(page));
1368	BUG_ON(mapcount != page_mapcount(page));
1369
1370	__split_huge_page_refcount(page);
1371
1372	mapcount2 = 0;
1373	list_for_each_entry(avc, &anon_vma->head, same_anon_vma) {
1374		struct vm_area_struct *vma = avc->vma;
1375		unsigned long addr = vma_address(page, vma);
1376		BUG_ON(is_vma_temporary_stack(vma));
1377		if (addr == -EFAULT)
1378			continue;
1379		mapcount2 += __split_huge_page_map(page, vma, addr);
1380	}
1381	if (mapcount != mapcount2)
1382		printk(KERN_ERR "mapcount %d mapcount2 %d page_mapcount %d\n",
1383		       mapcount, mapcount2, page_mapcount(page));
1384	BUG_ON(mapcount != mapcount2);
1385}
1386
1387int split_huge_page(struct page *page)
1388{
1389	struct anon_vma *anon_vma;
1390	int ret = 1;
1391
1392	BUG_ON(!PageAnon(page));
1393	anon_vma = page_lock_anon_vma(page);
1394	if (!anon_vma)
1395		goto out;
1396	ret = 0;
1397	if (!PageCompound(page))
1398		goto out_unlock;
1399
1400	BUG_ON(!PageSwapBacked(page));
1401	__split_huge_page(page, anon_vma);
1402	count_vm_event(THP_SPLIT);
1403
1404	BUG_ON(PageCompound(page));
1405out_unlock:
1406	page_unlock_anon_vma(anon_vma);
1407out:
1408	return ret;
1409}
1410
1411int hugepage_madvise(struct vm_area_struct *vma,
1412		     unsigned long *vm_flags, int advice)
1413{
1414	switch (advice) {
1415	case MADV_HUGEPAGE:
1416		/*
1417		 * Be somewhat over-protective like KSM for now!
1418		 */
1419		if (*vm_flags & (VM_HUGEPAGE |
1420				 VM_SHARED   | VM_MAYSHARE   |
1421				 VM_PFNMAP   | VM_IO      | VM_DONTEXPAND |
1422				 VM_RESERVED | VM_HUGETLB | VM_INSERTPAGE |
1423				 VM_MIXEDMAP | VM_SAO))
1424			return -EINVAL;
1425		*vm_flags &= ~VM_NOHUGEPAGE;
1426		*vm_flags |= VM_HUGEPAGE;
1427		/*
1428		 * If the vma become good for khugepaged to scan,
1429		 * register it here without waiting a page fault that
1430		 * may not happen any time soon.
1431		 */
1432		if (unlikely(khugepaged_enter_vma_merge(vma)))
1433			return -ENOMEM;
1434		break;
1435	case MADV_NOHUGEPAGE:
1436		/*
1437		 * Be somewhat over-protective like KSM for now!
1438		 */
1439		if (*vm_flags & (VM_NOHUGEPAGE |
1440				 VM_SHARED   | VM_MAYSHARE   |
1441				 VM_PFNMAP   | VM_IO      | VM_DONTEXPAND |
1442				 VM_RESERVED | VM_HUGETLB | VM_INSERTPAGE |
1443				 VM_MIXEDMAP | VM_SAO))
1444			return -EINVAL;
1445		*vm_flags &= ~VM_HUGEPAGE;
1446		*vm_flags |= VM_NOHUGEPAGE;
1447		/*
1448		 * Setting VM_NOHUGEPAGE will prevent khugepaged from scanning
1449		 * this vma even if we leave the mm registered in khugepaged if
1450		 * it got registered before VM_NOHUGEPAGE was set.
1451		 */
1452		break;
1453	}
1454
1455	return 0;
1456}
1457
1458static int __init khugepaged_slab_init(void)
1459{
1460	mm_slot_cache = kmem_cache_create("khugepaged_mm_slot",
1461					  sizeof(struct mm_slot),
1462					  __alignof__(struct mm_slot), 0, NULL);
1463	if (!mm_slot_cache)
1464		return -ENOMEM;
1465
1466	return 0;
1467}
1468
1469static void __init khugepaged_slab_free(void)
1470{
1471	kmem_cache_destroy(mm_slot_cache);
1472	mm_slot_cache = NULL;
1473}
1474
1475static inline struct mm_slot *alloc_mm_slot(void)
1476{
1477	if (!mm_slot_cache)	/* initialization failed */
1478		return NULL;
1479	return kmem_cache_zalloc(mm_slot_cache, GFP_KERNEL);
1480}
1481
1482static inline void free_mm_slot(struct mm_slot *mm_slot)
1483{
1484	kmem_cache_free(mm_slot_cache, mm_slot);
1485}
1486
1487static int __init mm_slots_hash_init(void)
1488{
1489	mm_slots_hash = kzalloc(MM_SLOTS_HASH_HEADS * sizeof(struct hlist_head),
1490				GFP_KERNEL);
1491	if (!mm_slots_hash)
1492		return -ENOMEM;
1493	return 0;
1494}
1495
1496#if 0
1497static void __init mm_slots_hash_free(void)
1498{
1499	kfree(mm_slots_hash);
1500	mm_slots_hash = NULL;
1501}
1502#endif
1503
1504static struct mm_slot *get_mm_slot(struct mm_struct *mm)
1505{
1506	struct mm_slot *mm_slot;
1507	struct hlist_head *bucket;
1508	struct hlist_node *node;
1509
1510	bucket = &mm_slots_hash[((unsigned long)mm / sizeof(struct mm_struct))
1511				% MM_SLOTS_HASH_HEADS];
1512	hlist_for_each_entry(mm_slot, node, bucket, hash) {
1513		if (mm == mm_slot->mm)
1514			return mm_slot;
1515	}
1516	return NULL;
1517}
1518
1519static void insert_to_mm_slots_hash(struct mm_struct *mm,
1520				    struct mm_slot *mm_slot)
1521{
1522	struct hlist_head *bucket;
1523
1524	bucket = &mm_slots_hash[((unsigned long)mm / sizeof(struct mm_struct))
1525				% MM_SLOTS_HASH_HEADS];
1526	mm_slot->mm = mm;
1527	hlist_add_head(&mm_slot->hash, bucket);
1528}
1529
1530static inline int khugepaged_test_exit(struct mm_struct *mm)
1531{
1532	return atomic_read(&mm->mm_users) == 0;
1533}
1534
1535int __khugepaged_enter(struct mm_struct *mm)
1536{
1537	struct mm_slot *mm_slot;
1538	int wakeup;
1539
1540	mm_slot = alloc_mm_slot();
1541	if (!mm_slot)
1542		return -ENOMEM;
1543
1544	/* __khugepaged_exit() must not run from under us */
1545	VM_BUG_ON(khugepaged_test_exit(mm));
1546	if (unlikely(test_and_set_bit(MMF_VM_HUGEPAGE, &mm->flags))) {
1547		free_mm_slot(mm_slot);
1548		return 0;
1549	}
1550
1551	spin_lock(&khugepaged_mm_lock);
1552	insert_to_mm_slots_hash(mm, mm_slot);
1553	/*
1554	 * Insert just behind the scanning cursor, to let the area settle
1555	 * down a little.
1556	 */
1557	wakeup = list_empty(&khugepaged_scan.mm_head);
1558	list_add_tail(&mm_slot->mm_node, &khugepaged_scan.mm_head);
1559	spin_unlock(&khugepaged_mm_lock);
1560
1561	atomic_inc(&mm->mm_count);
1562	if (wakeup)
1563		wake_up_interruptible(&khugepaged_wait);
1564
1565	return 0;
1566}
1567
1568int khugepaged_enter_vma_merge(struct vm_area_struct *vma)
1569{
1570	unsigned long hstart, hend;
1571	if (!vma->anon_vma)
1572		/*
1573		 * Not yet faulted in so we will register later in the
1574		 * page fault if needed.
1575		 */
1576		return 0;
1577	if (vma->vm_file || vma->vm_ops)
1578		/* khugepaged not yet working on file or special mappings */
1579		return 0;
1580	VM_BUG_ON(is_linear_pfn_mapping(vma) || is_pfn_mapping(vma));
1581	hstart = (vma->vm_start + ~HPAGE_PMD_MASK) & HPAGE_PMD_MASK;
1582	hend = vma->vm_end & HPAGE_PMD_MASK;
1583	if (hstart < hend)
1584		return khugepaged_enter(vma);
1585	return 0;
1586}
1587
1588void __khugepaged_exit(struct mm_struct *mm)
1589{
1590	struct mm_slot *mm_slot;
1591	int free = 0;
1592
1593	spin_lock(&khugepaged_mm_lock);
1594	mm_slot = get_mm_slot(mm);
1595	if (mm_slot && khugepaged_scan.mm_slot != mm_slot) {
1596		hlist_del(&mm_slot->hash);
1597		list_del(&mm_slot->mm_node);
1598		free = 1;
1599	}
1600
1601	if (free) {
1602		spin_unlock(&khugepaged_mm_lock);
1603		clear_bit(MMF_VM_HUGEPAGE, &mm->flags);
1604		free_mm_slot(mm_slot);
1605		mmdrop(mm);
1606	} else if (mm_slot) {
1607		spin_unlock(&khugepaged_mm_lock);
1608		/*
1609		 * This is required to serialize against
1610		 * khugepaged_test_exit() (which is guaranteed to run
1611		 * under mmap sem read mode). Stop here (after we
1612		 * return all pagetables will be destroyed) until
1613		 * khugepaged has finished working on the pagetables
1614		 * under the mmap_sem.
1615		 */
1616		down_write(&mm->mmap_sem);
1617		up_write(&mm->mmap_sem);
1618	} else
1619		spin_unlock(&khugepaged_mm_lock);
1620}
1621
1622static void release_pte_page(struct page *page)
1623{
1624	/* 0 stands for page_is_file_cache(page) == false */
1625	dec_zone_page_state(page, NR_ISOLATED_ANON + 0);
1626	unlock_page(page);
1627	putback_lru_page(page);
1628}
1629
1630static void release_pte_pages(pte_t *pte, pte_t *_pte)
1631{
1632	while (--_pte >= pte) {
1633		pte_t pteval = *_pte;
1634		if (!pte_none(pteval))
1635			release_pte_page(pte_page(pteval));
1636	}
1637}
1638
1639static void release_all_pte_pages(pte_t *pte)
1640{
1641	release_pte_pages(pte, pte + HPAGE_PMD_NR);
1642}
1643
1644static int __collapse_huge_page_isolate(struct vm_area_struct *vma,
1645					unsigned long address,
1646					pte_t *pte)
1647{
1648	struct page *page;
1649	pte_t *_pte;
1650	int referenced = 0, isolated = 0, none = 0;
1651	for (_pte = pte; _pte < pte+HPAGE_PMD_NR;
1652	     _pte++, address += PAGE_SIZE) {
1653		pte_t pteval = *_pte;
1654		if (pte_none(pteval)) {
1655			if (++none <= khugepaged_max_ptes_none)
1656				continue;
1657			else {
1658				release_pte_pages(pte, _pte);
1659				goto out;
1660			}
1661		}
1662		if (!pte_present(pteval) || !pte_write(pteval)) {
1663			release_pte_pages(pte, _pte);
1664			goto out;
1665		}
1666		page = vm_normal_page(vma, address, pteval);
1667		if (unlikely(!page)) {
1668			release_pte_pages(pte, _pte);
1669			goto out;
1670		}
1671		VM_BUG_ON(PageCompound(page));
1672		BUG_ON(!PageAnon(page));
1673		VM_BUG_ON(!PageSwapBacked(page));
1674
1675		/* cannot use mapcount: can't collapse if there's a gup pin */
1676		if (page_count(page) != 1) {
1677			release_pte_pages(pte, _pte);
1678			goto out;
1679		}
1680		/*
1681		 * We can do it before isolate_lru_page because the
1682		 * page can't be freed from under us. NOTE: PG_lock
1683		 * is needed to serialize against split_huge_page
1684		 * when invoked from the VM.
1685		 */
1686		if (!trylock_page(page)) {
1687			release_pte_pages(pte, _pte);
1688			goto out;
1689		}
1690		/*
1691		 * Isolate the page to avoid collapsing an hugepage
1692		 * currently in use by the VM.
1693		 */
1694		if (isolate_lru_page(page)) {
1695			unlock_page(page);
1696			release_pte_pages(pte, _pte);
1697			goto out;
1698		}
1699		/* 0 stands for page_is_file_cache(page) == false */
1700		inc_zone_page_state(page, NR_ISOLATED_ANON + 0);
1701		VM_BUG_ON(!PageLocked(page));
1702		VM_BUG_ON(PageLRU(page));
1703
1704		/* If there is no mapped pte young don't collapse the page */
1705		if (pte_young(pteval) || PageReferenced(page) ||
1706		    mmu_notifier_test_young(vma->vm_mm, address))
1707			referenced = 1;
1708	}
1709	if (unlikely(!referenced))
1710		release_all_pte_pages(pte);
1711	else
1712		isolated = 1;
1713out:
1714	return isolated;
1715}
1716
1717static void __collapse_huge_page_copy(pte_t *pte, struct page *page,
1718				      struct vm_area_struct *vma,
1719				      unsigned long address,
1720				      spinlock_t *ptl)
1721{
1722	pte_t *_pte;
1723	for (_pte = pte; _pte < pte+HPAGE_PMD_NR; _pte++) {
1724		pte_t pteval = *_pte;
1725		struct page *src_page;
1726
1727		if (pte_none(pteval)) {
1728			clear_user_highpage(page, address);
1729			add_mm_counter(vma->vm_mm, MM_ANONPAGES, 1);
1730		} else {
1731			src_page = pte_page(pteval);
1732			copy_user_highpage(page, src_page, address, vma);
1733			VM_BUG_ON(page_mapcount(src_page) != 1);
1734			VM_BUG_ON(page_count(src_page) != 2);
1735			release_pte_page(src_page);
1736			/*
1737			 * ptl mostly unnecessary, but preempt has to
1738			 * be disabled to update the per-cpu stats
1739			 * inside page_remove_rmap().
1740			 */
1741			spin_lock(ptl);
1742			/*
1743			 * paravirt calls inside pte_clear here are
1744			 * superfluous.
1745			 */
1746			pte_clear(vma->vm_mm, address, _pte);
1747			page_remove_rmap(src_page);
1748			spin_unlock(ptl);
1749			free_page_and_swap_cache(src_page);
1750		}
1751
1752		address += PAGE_SIZE;
1753		page++;
1754	}
1755}
1756
1757static void collapse_huge_page(struct mm_struct *mm,
1758			       unsigned long address,
1759			       struct page **hpage,
1760			       struct vm_area_struct *vma,
1761			       int node)
1762{
1763	pgd_t *pgd;
1764	pud_t *pud;
1765	pmd_t *pmd, _pmd;
1766	pte_t *pte;
1767	pgtable_t pgtable;
1768	struct page *new_page;
1769	spinlock_t *ptl;
1770	int isolated;
1771	unsigned long hstart, hend;
1772
1773	VM_BUG_ON(address & ~HPAGE_PMD_MASK);
1774#ifndef CONFIG_NUMA
1775	VM_BUG_ON(!*hpage);
1776	new_page = *hpage;
1777	if (unlikely(mem_cgroup_newpage_charge(new_page, mm, GFP_KERNEL))) {
1778		up_read(&mm->mmap_sem);
1779		return;
1780	}
1781#else
1782	VM_BUG_ON(*hpage);
1783	/*
1784	 * Allocate the page while the vma is still valid and under
1785	 * the mmap_sem read mode so there is no memory allocation
1786	 * later when we take the mmap_sem in write mode. This is more
1787	 * friendly behavior (OTOH it may actually hide bugs) to
1788	 * filesystems in userland with daemons allocating memory in
1789	 * the userland I/O paths.  Allocating memory with the
1790	 * mmap_sem in read mode is good idea also to allow greater
1791	 * scalability.
1792	 */
1793	new_page = alloc_hugepage_vma(khugepaged_defrag(), vma, address,
1794				      node, __GFP_OTHER_NODE);
1795	if (unlikely(!new_page)) {
1796		up_read(&mm->mmap_sem);
1797		count_vm_event(THP_COLLAPSE_ALLOC_FAILED);
1798		*hpage = ERR_PTR(-ENOMEM);
1799		return;
1800	}
1801	count_vm_event(THP_COLLAPSE_ALLOC);
1802	if (unlikely(mem_cgroup_newpage_charge(new_page, mm, GFP_KERNEL))) {
1803		up_read(&mm->mmap_sem);
1804		put_page(new_page);
1805		return;
1806	}
1807#endif
1808
1809	/* after allocating the hugepage upgrade to mmap_sem write mode */
1810	up_read(&mm->mmap_sem);
1811
1812	/*
1813	 * Prevent all access to pagetables with the exception of
1814	 * gup_fast later hanlded by the ptep_clear_flush and the VM
1815	 * handled by the anon_vma lock + PG_lock.
1816	 */
1817	down_write(&mm->mmap_sem);
1818	if (unlikely(khugepaged_test_exit(mm)))
1819		goto out;
1820
1821	vma = find_vma(mm, address);
1822	hstart = (vma->vm_start + ~HPAGE_PMD_MASK) & HPAGE_PMD_MASK;
1823	hend = vma->vm_end & HPAGE_PMD_MASK;
1824	if (address < hstart || address + HPAGE_PMD_SIZE > hend)
1825		goto out;
1826
1827	if ((!(vma->vm_flags & VM_HUGEPAGE) && !khugepaged_always()) ||
1828	    (vma->vm_flags & VM_NOHUGEPAGE))
1829		goto out;
1830
1831	/* VM_PFNMAP vmas may have vm_ops null but vm_file set */
1832	if (!vma->anon_vma || vma->vm_ops || vma->vm_file)
1833		goto out;
1834	if (is_vma_temporary_stack(vma))
1835		goto out;
1836	VM_BUG_ON(is_linear_pfn_mapping(vma) || is_pfn_mapping(vma));
1837
1838	pgd = pgd_offset(mm, address);
1839	if (!pgd_present(*pgd))
1840		goto out;
1841
1842	pud = pud_offset(pgd, address);
1843	if (!pud_present(*pud))
1844		goto out;
1845
1846	pmd = pmd_offset(pud, address);
1847	/* pmd can't go away or become huge under us */
1848	if (!pmd_present(*pmd) || pmd_trans_huge(*pmd))
1849		goto out;
1850
1851	anon_vma_lock(vma->anon_vma);
1852
1853	pte = pte_offset_map(pmd, address);
1854	ptl = pte_lockptr(mm, pmd);
1855
1856	spin_lock(&mm->page_table_lock); /* probably unnecessary */
1857	/*
1858	 * After this gup_fast can't run anymore. This also removes
1859	 * any huge TLB entry from the CPU so we won't allow
1860	 * huge and small TLB entries for the same virtual address
1861	 * to avoid the risk of CPU bugs in that area.
1862	 */
1863	_pmd = pmdp_clear_flush_notify(vma, address, pmd);
1864	spin_unlock(&mm->page_table_lock);
1865
1866	spin_lock(ptl);
1867	isolated = __collapse_huge_page_isolate(vma, address, pte);
1868	spin_unlock(ptl);
1869
1870	if (unlikely(!isolated)) {
1871		pte_unmap(pte);
1872		spin_lock(&mm->page_table_lock);
1873		BUG_ON(!pmd_none(*pmd));
1874		set_pmd_at(mm, address, pmd, _pmd);
1875		spin_unlock(&mm->page_table_lock);
1876		anon_vma_unlock(vma->anon_vma);
1877		goto out;
1878	}
1879
1880	/*
1881	 * All pages are isolated and locked so anon_vma rmap
1882	 * can't run anymore.
1883	 */
1884	anon_vma_unlock(vma->anon_vma);
1885
1886	__collapse_huge_page_copy(pte, new_page, vma, address, ptl);
1887	pte_unmap(pte);
1888	__SetPageUptodate(new_page);
1889	pgtable = pmd_pgtable(_pmd);
1890	VM_BUG_ON(page_count(pgtable) != 1);
1891	VM_BUG_ON(page_mapcount(pgtable) != 0);
1892
1893	_pmd = mk_pmd(new_page, vma->vm_page_prot);
1894	_pmd = maybe_pmd_mkwrite(pmd_mkdirty(_pmd), vma);
1895	_pmd = pmd_mkhuge(_pmd);
1896
1897	/*
1898	 * spin_lock() below is not the equivalent of smp_wmb(), so
1899	 * this is needed to avoid the copy_huge_page writes to become
1900	 * visible after the set_pmd_at() write.
1901	 */
1902	smp_wmb();
1903
1904	spin_lock(&mm->page_table_lock);
1905	BUG_ON(!pmd_none(*pmd));
1906	page_add_new_anon_rmap(new_page, vma, address);
1907	set_pmd_at(mm, address, pmd, _pmd);
1908	update_mmu_cache(vma, address, entry);
1909	prepare_pmd_huge_pte(pgtable, mm);
1910	mm->nr_ptes--;
1911	spin_unlock(&mm->page_table_lock);
1912
1913#ifndef CONFIG_NUMA
1914	*hpage = NULL;
1915#endif
1916	khugepaged_pages_collapsed++;
1917out_up_write:
1918	up_write(&mm->mmap_sem);
1919	return;
1920
1921out:
1922	mem_cgroup_uncharge_page(new_page);
1923#ifdef CONFIG_NUMA
1924	put_page(new_page);
1925#endif
1926	goto out_up_write;
1927}
1928
1929static int khugepaged_scan_pmd(struct mm_struct *mm,
1930			       struct vm_area_struct *vma,
1931			       unsigned long address,
1932			       struct page **hpage)
1933{
1934	pgd_t *pgd;
1935	pud_t *pud;
1936	pmd_t *pmd;
1937	pte_t *pte, *_pte;
1938	int ret = 0, referenced = 0, none = 0;
1939	struct page *page;
1940	unsigned long _address;
1941	spinlock_t *ptl;
1942	int node = -1;
1943
1944	VM_BUG_ON(address & ~HPAGE_PMD_MASK);
1945
1946	pgd = pgd_offset(mm, address);
1947	if (!pgd_present(*pgd))
1948		goto out;
1949
1950	pud = pud_offset(pgd, address);
1951	if (!pud_present(*pud))
1952		goto out;
1953
1954	pmd = pmd_offset(pud, address);
1955	if (!pmd_present(*pmd) || pmd_trans_huge(*pmd))
1956		goto out;
1957
1958	pte = pte_offset_map_lock(mm, pmd, address, &ptl);
1959	for (_address = address, _pte = pte; _pte < pte+HPAGE_PMD_NR;
1960	     _pte++, _address += PAGE_SIZE) {
1961		pte_t pteval = *_pte;
1962		if (pte_none(pteval)) {
1963			if (++none <= khugepaged_max_ptes_none)
1964				continue;
1965			else
1966				goto out_unmap;
1967		}
1968		if (!pte_present(pteval) || !pte_write(pteval))
1969			goto out_unmap;
1970		page = vm_normal_page(vma, _address, pteval);
1971		if (unlikely(!page))
1972			goto out_unmap;
1973		/*
1974		 * Chose the node of the first page. This could
1975		 * be more sophisticated and look at more pages,
1976		 * but isn't for now.
1977		 */
1978		if (node == -1)
1979			node = page_to_nid(page);
1980		VM_BUG_ON(PageCompound(page));
1981		if (!PageLRU(page) || PageLocked(page) || !PageAnon(page))
1982			goto out_unmap;
1983		/* cannot use mapcount: can't collapse if there's a gup pin */
1984		if (page_count(page) != 1)
1985			goto out_unmap;
1986		if (pte_young(pteval) || PageReferenced(page) ||
1987		    mmu_notifier_test_young(vma->vm_mm, address))
1988			referenced = 1;
1989	}
1990	if (referenced)
1991		ret = 1;
1992out_unmap:
1993	pte_unmap_unlock(pte, ptl);
1994	if (ret)
1995		/* collapse_huge_page will return with the mmap_sem released */
1996		collapse_huge_page(mm, address, hpage, vma, node);
1997out:
1998	return ret;
1999}
2000
2001static void collect_mm_slot(struct mm_slot *mm_slot)
2002{
2003	struct mm_struct *mm = mm_slot->mm;
2004
2005	VM_BUG_ON(!spin_is_locked(&khugepaged_mm_lock));
2006
2007	if (khugepaged_test_exit(mm)) {
2008		/* free mm_slot */
2009		hlist_del(&mm_slot->hash);
2010		list_del(&mm_slot->mm_node);
2011
2012		/*
2013		 * Not strictly needed because the mm exited already.
2014		 *
2015		 * clear_bit(MMF_VM_HUGEPAGE, &mm->flags);
2016		 */
2017
2018		/* khugepaged_mm_lock actually not necessary for the below */
2019		free_mm_slot(mm_slot);
2020		mmdrop(mm);
2021	}
2022}
2023
2024static unsigned int khugepaged_scan_mm_slot(unsigned int pages,
2025					    struct page **hpage)
2026{
2027	struct mm_slot *mm_slot;
2028	struct mm_struct *mm;
2029	struct vm_area_struct *vma;
2030	int progress = 0;
2031
2032	VM_BUG_ON(!pages);
2033	VM_BUG_ON(!spin_is_locked(&khugepaged_mm_lock));
2034
2035	if (khugepaged_scan.mm_slot)
2036		mm_slot = khugepaged_scan.mm_slot;
2037	else {
2038		mm_slot = list_entry(khugepaged_scan.mm_head.next,
2039				     struct mm_slot, mm_node);
2040		khugepaged_scan.address = 0;
2041		khugepaged_scan.mm_slot = mm_slot;
2042	}
2043	spin_unlock(&khugepaged_mm_lock);
2044
2045	mm = mm_slot->mm;
2046	down_read(&mm->mmap_sem);
2047	if (unlikely(khugepaged_test_exit(mm)))
2048		vma = NULL;
2049	else
2050		vma = find_vma(mm, khugepaged_scan.address);
2051
2052	progress++;
2053	for (; vma; vma = vma->vm_next) {
2054		unsigned long hstart, hend;
2055
2056		cond_resched();
2057		if (unlikely(khugepaged_test_exit(mm))) {
2058			progress++;
2059			break;
2060		}
2061
2062		if ((!(vma->vm_flags & VM_HUGEPAGE) &&
2063		     !khugepaged_always()) ||
2064		    (vma->vm_flags & VM_NOHUGEPAGE)) {
2065		skip:
2066			progress++;
2067			continue;
2068		}
2069		/* VM_PFNMAP vmas may have vm_ops null but vm_file set */
2070		if (!vma->anon_vma || vma->vm_ops || vma->vm_file)
2071			goto skip;
2072		if (is_vma_temporary_stack(vma))
2073			goto skip;
2074
2075		VM_BUG_ON(is_linear_pfn_mapping(vma) || is_pfn_mapping(vma));
2076
2077		hstart = (vma->vm_start + ~HPAGE_PMD_MASK) & HPAGE_PMD_MASK;
2078		hend = vma->vm_end & HPAGE_PMD_MASK;
2079		if (hstart >= hend)
2080			goto skip;
2081		if (khugepaged_scan.address > hend)
2082			goto skip;
2083		if (khugepaged_scan.address < hstart)
2084			khugepaged_scan.address = hstart;
2085		VM_BUG_ON(khugepaged_scan.address & ~HPAGE_PMD_MASK);
2086
2087		while (khugepaged_scan.address < hend) {
2088			int ret;
2089			cond_resched();
2090			if (unlikely(khugepaged_test_exit(mm)))
2091				goto breakouterloop;
2092
2093			VM_BUG_ON(khugepaged_scan.address < hstart ||
2094				  khugepaged_scan.address + HPAGE_PMD_SIZE >
2095				  hend);
2096			ret = khugepaged_scan_pmd(mm, vma,
2097						  khugepaged_scan.address,
2098						  hpage);
2099			/* move to next address */
2100			khugepaged_scan.address += HPAGE_PMD_SIZE;
2101			progress += HPAGE_PMD_NR;
2102			if (ret)
2103				/* we released mmap_sem so break loop */
2104				goto breakouterloop_mmap_sem;
2105			if (progress >= pages)
2106				goto breakouterloop;
2107		}
2108	}
2109breakouterloop:
2110	up_read(&mm->mmap_sem); /* exit_mmap will destroy ptes after this */
2111breakouterloop_mmap_sem:
2112
2113	spin_lock(&khugepaged_mm_lock);
2114	VM_BUG_ON(khugepaged_scan.mm_slot != mm_slot);
2115	/*
2116	 * Release the current mm_slot if this mm is about to die, or
2117	 * if we scanned all vmas of this mm.
2118	 */
2119	if (khugepaged_test_exit(mm) || !vma) {
2120		/*
2121		 * Make sure that if mm_users is reaching zero while
2122		 * khugepaged runs here, khugepaged_exit will find
2123		 * mm_slot not pointing to the exiting mm.
2124		 */
2125		if (mm_slot->mm_node.next != &khugepaged_scan.mm_head) {
2126			khugepaged_scan.mm_slot = list_entry(
2127				mm_slot->mm_node.next,
2128				struct mm_slot, mm_node);
2129			khugepaged_scan.address = 0;
2130		} else {
2131			khugepaged_scan.mm_slot = NULL;
2132			khugepaged_full_scans++;
2133		}
2134
2135		collect_mm_slot(mm_slot);
2136	}
2137
2138	return progress;
2139}
2140
2141static int khugepaged_has_work(void)
2142{
2143	return !list_empty(&khugepaged_scan.mm_head) &&
2144		khugepaged_enabled();
2145}
2146
2147static int khugepaged_wait_event(void)
2148{
2149	return !list_empty(&khugepaged_scan.mm_head) ||
2150		!khugepaged_enabled();
2151}
2152
2153static void khugepaged_do_scan(struct page **hpage)
2154{
2155	unsigned int progress = 0, pass_through_head = 0;
2156	unsigned int pages = khugepaged_pages_to_scan;
2157
2158	barrier(); /* write khugepaged_pages_to_scan to local stack */
2159
2160	while (progress < pages) {
2161		cond_resched();
2162
2163#ifndef CONFIG_NUMA
2164		if (!*hpage) {
2165			*hpage = alloc_hugepage(khugepaged_defrag());
2166			if (unlikely(!*hpage)) {
2167				count_vm_event(THP_COLLAPSE_ALLOC_FAILED);
2168				break;
2169			}
2170			count_vm_event(THP_COLLAPSE_ALLOC);
2171		}
2172#else
2173		if (IS_ERR(*hpage))
2174			break;
2175#endif
2176
2177		if (unlikely(kthread_should_stop() || freezing(current)))
2178			break;
2179
2180		spin_lock(&khugepaged_mm_lock);
2181		if (!khugepaged_scan.mm_slot)
2182			pass_through_head++;
2183		if (khugepaged_has_work() &&
2184		    pass_through_head < 2)
2185			progress += khugepaged_scan_mm_slot(pages - progress,
2186							    hpage);
2187		else
2188			progress = pages;
2189		spin_unlock(&khugepaged_mm_lock);
2190	}
2191}
2192
2193static void khugepaged_alloc_sleep(void)
2194{
2195	DEFINE_WAIT(wait);
2196	add_wait_queue(&khugepaged_wait, &wait);
2197	schedule_timeout_interruptible(
2198		msecs_to_jiffies(
2199			khugepaged_alloc_sleep_millisecs));
2200	remove_wait_queue(&khugepaged_wait, &wait);
2201}
2202
2203#ifndef CONFIG_NUMA
2204static struct page *khugepaged_alloc_hugepage(void)
2205{
2206	struct page *hpage;
2207
2208	do {
2209		hpage = alloc_hugepage(khugepaged_defrag());
2210		if (!hpage) {
2211			count_vm_event(THP_COLLAPSE_ALLOC_FAILED);
2212			khugepaged_alloc_sleep();
2213		} else
2214			count_vm_event(THP_COLLAPSE_ALLOC);
2215	} while (unlikely(!hpage) &&
2216		 likely(khugepaged_enabled()));
2217	return hpage;
2218}
2219#endif
2220
2221static void khugepaged_loop(void)
2222{
2223	struct page *hpage;
2224
2225#ifdef CONFIG_NUMA
2226	hpage = NULL;
2227#endif
2228	while (likely(khugepaged_enabled())) {
2229#ifndef CONFIG_NUMA
2230		hpage = khugepaged_alloc_hugepage();
2231		if (unlikely(!hpage)) {
2232			count_vm_event(THP_COLLAPSE_ALLOC_FAILED);
2233			break;
2234		}
2235		count_vm_event(THP_COLLAPSE_ALLOC);
2236#else
2237		if (IS_ERR(hpage)) {
2238			khugepaged_alloc_sleep();
2239			hpage = NULL;
2240		}
2241#endif
2242
2243		khugepaged_do_scan(&hpage);
2244#ifndef CONFIG_NUMA
2245		if (hpage)
2246			put_page(hpage);
2247#endif
2248		try_to_freeze();
2249		if (unlikely(kthread_should_stop()))
2250			break;
2251		if (khugepaged_has_work()) {
2252			DEFINE_WAIT(wait);
2253			if (!khugepaged_scan_sleep_millisecs)
2254				continue;
2255			add_wait_queue(&khugepaged_wait, &wait);
2256			schedule_timeout_interruptible(
2257				msecs_to_jiffies(
2258					khugepaged_scan_sleep_millisecs));
2259			remove_wait_queue(&khugepaged_wait, &wait);
2260		} else if (khugepaged_enabled())
2261			wait_event_freezable(khugepaged_wait,
2262					     khugepaged_wait_event());
2263	}
2264}
2265
2266static int khugepaged(void *none)
2267{
2268	struct mm_slot *mm_slot;
2269
2270	set_freezable();
2271	set_user_nice(current, 19);
2272
2273	/* serialize with start_khugepaged() */
2274	mutex_lock(&khugepaged_mutex);
2275
2276	for (;;) {
2277		mutex_unlock(&khugepaged_mutex);
2278		VM_BUG_ON(khugepaged_thread != current);
2279		khugepaged_loop();
2280		VM_BUG_ON(khugepaged_thread != current);
2281
2282		mutex_lock(&khugepaged_mutex);
2283		if (!khugepaged_enabled())
2284			break;
2285		if (unlikely(kthread_should_stop()))
2286			break;
2287	}
2288
2289	spin_lock(&khugepaged_mm_lock);
2290	mm_slot = khugepaged_scan.mm_slot;
2291	khugepaged_scan.mm_slot = NULL;
2292	if (mm_slot)
2293		collect_mm_slot(mm_slot);
2294	spin_unlock(&khugepaged_mm_lock);
2295
2296	khugepaged_thread = NULL;
2297	mutex_unlock(&khugepaged_mutex);
2298
2299	return 0;
2300}
2301
2302void __split_huge_page_pmd(struct mm_struct *mm, pmd_t *pmd)
2303{
2304	struct page *page;
2305
2306	spin_lock(&mm->page_table_lock);
2307	if (unlikely(!pmd_trans_huge(*pmd))) {
2308		spin_unlock(&mm->page_table_lock);
2309		return;
2310	}
2311	page = pmd_page(*pmd);
2312	VM_BUG_ON(!page_count(page));
2313	get_page(page);
2314	spin_unlock(&mm->page_table_lock);
2315
2316	split_huge_page(page);
2317
2318	put_page(page);
2319	BUG_ON(pmd_trans_huge(*pmd));
2320}
2321
2322static void split_huge_page_address(struct mm_struct *mm,
2323				    unsigned long address)
2324{
2325	pgd_t *pgd;
2326	pud_t *pud;
2327	pmd_t *pmd;
2328
2329	VM_BUG_ON(!(address & ~HPAGE_PMD_MASK));
2330
2331	pgd = pgd_offset(mm, address);
2332	if (!pgd_present(*pgd))
2333		return;
2334
2335	pud = pud_offset(pgd, address);
2336	if (!pud_present(*pud))
2337		return;
2338
2339	pmd = pmd_offset(pud, address);
2340	if (!pmd_present(*pmd))
2341		return;
2342	/*
2343	 * Caller holds the mmap_sem write mode, so a huge pmd cannot
2344	 * materialize from under us.
2345	 */
2346	split_huge_page_pmd(mm, pmd);
2347}
2348
2349void __vma_adjust_trans_huge(struct vm_area_struct *vma,
2350			     unsigned long start,
2351			     unsigned long end,
2352			     long adjust_next)
2353{
2354	/*
2355	 * If the new start address isn't hpage aligned and it could
2356	 * previously contain an hugepage: check if we need to split
2357	 * an huge pmd.
2358	 */
2359	if (start & ~HPAGE_PMD_MASK &&
2360	    (start & HPAGE_PMD_MASK) >= vma->vm_start &&
2361	    (start & HPAGE_PMD_MASK) + HPAGE_PMD_SIZE <= vma->vm_end)
2362		split_huge_page_address(vma->vm_mm, start);
2363
2364	/*
2365	 * If the new end address isn't hpage aligned and it could
2366	 * previously contain an hugepage: check if we need to split
2367	 * an huge pmd.
2368	 */
2369	if (end & ~HPAGE_PMD_MASK &&
2370	    (end & HPAGE_PMD_MASK) >= vma->vm_start &&
2371	    (end & HPAGE_PMD_MASK) + HPAGE_PMD_SIZE <= vma->vm_end)
2372		split_huge_page_address(vma->vm_mm, end);
2373
2374	/*
2375	 * If we're also updating the vma->vm_next->vm_start, if the new
2376	 * vm_next->vm_start isn't page aligned and it could previously
2377	 * contain an hugepage: check if we need to split an huge pmd.
2378	 */
2379	if (adjust_next > 0) {
2380		struct vm_area_struct *next = vma->vm_next;
2381		unsigned long nstart = next->vm_start;
2382		nstart += adjust_next << PAGE_SHIFT;
2383		if (nstart & ~HPAGE_PMD_MASK &&
2384		    (nstart & HPAGE_PMD_MASK) >= next->vm_start &&
2385		    (nstart & HPAGE_PMD_MASK) + HPAGE_PMD_SIZE <= next->vm_end)
2386			split_huge_page_address(next->vm_mm, nstart);
2387	}
2388}
2389