hugetlb.c revision 094e9539bd24bbe23b8e2741e903b0f3f1f85b03
1/*
2 * Generic hugetlb support.
3 * (C) William Irwin, April 2004
4 */
5#include <linux/gfp.h>
6#include <linux/list.h>
7#include <linux/init.h>
8#include <linux/module.h>
9#include <linux/mm.h>
10#include <linux/seq_file.h>
11#include <linux/sysctl.h>
12#include <linux/highmem.h>
13#include <linux/mmu_notifier.h>
14#include <linux/nodemask.h>
15#include <linux/pagemap.h>
16#include <linux/mempolicy.h>
17#include <linux/cpuset.h>
18#include <linux/mutex.h>
19#include <linux/bootmem.h>
20#include <linux/sysfs.h>
21
22#include <asm/page.h>
23#include <asm/pgtable.h>
24#include <asm/io.h>
25
26#include <linux/hugetlb.h>
27#include <linux/node.h>
28#include "internal.h"
29
30const unsigned long hugetlb_zero = 0, hugetlb_infinity = ~0UL;
31static gfp_t htlb_alloc_mask = GFP_HIGHUSER;
32unsigned long hugepages_treat_as_movable;
33
34static int max_hstate;
35unsigned int default_hstate_idx;
36struct hstate hstates[HUGE_MAX_HSTATE];
37
38__initdata LIST_HEAD(huge_boot_pages);
39
40/* for command line parsing */
41static struct hstate * __initdata parsed_hstate;
42static unsigned long __initdata default_hstate_max_huge_pages;
43static unsigned long __initdata default_hstate_size;
44
45#define for_each_hstate(h) \
46	for ((h) = hstates; (h) < &hstates[max_hstate]; (h)++)
47
48/*
49 * Protects updates to hugepage_freelists, nr_huge_pages, and free_huge_pages
50 */
51static DEFINE_SPINLOCK(hugetlb_lock);
52
53/*
54 * Region tracking -- allows tracking of reservations and instantiated pages
55 *                    across the pages in a mapping.
56 *
57 * The region data structures are protected by a combination of the mmap_sem
58 * and the hugetlb_instantion_mutex.  To access or modify a region the caller
59 * must either hold the mmap_sem for write, or the mmap_sem for read and
60 * the hugetlb_instantiation mutex:
61 *
62 * 	down_write(&mm->mmap_sem);
63 * or
64 * 	down_read(&mm->mmap_sem);
65 * 	mutex_lock(&hugetlb_instantiation_mutex);
66 */
67struct file_region {
68	struct list_head link;
69	long from;
70	long to;
71};
72
73static long region_add(struct list_head *head, long f, long t)
74{
75	struct file_region *rg, *nrg, *trg;
76
77	/* Locate the region we are either in or before. */
78	list_for_each_entry(rg, head, link)
79		if (f <= rg->to)
80			break;
81
82	/* Round our left edge to the current segment if it encloses us. */
83	if (f > rg->from)
84		f = rg->from;
85
86	/* Check for and consume any regions we now overlap with. */
87	nrg = rg;
88	list_for_each_entry_safe(rg, trg, rg->link.prev, link) {
89		if (&rg->link == head)
90			break;
91		if (rg->from > t)
92			break;
93
94		/* If this area reaches higher then extend our area to
95		 * include it completely.  If this is not the first area
96		 * which we intend to reuse, free it. */
97		if (rg->to > t)
98			t = rg->to;
99		if (rg != nrg) {
100			list_del(&rg->link);
101			kfree(rg);
102		}
103	}
104	nrg->from = f;
105	nrg->to = t;
106	return 0;
107}
108
109static long region_chg(struct list_head *head, long f, long t)
110{
111	struct file_region *rg, *nrg;
112	long chg = 0;
113
114	/* Locate the region we are before or in. */
115	list_for_each_entry(rg, head, link)
116		if (f <= rg->to)
117			break;
118
119	/* If we are below the current region then a new region is required.
120	 * Subtle, allocate a new region at the position but make it zero
121	 * size such that we can guarantee to record the reservation. */
122	if (&rg->link == head || t < rg->from) {
123		nrg = kmalloc(sizeof(*nrg), GFP_KERNEL);
124		if (!nrg)
125			return -ENOMEM;
126		nrg->from = f;
127		nrg->to   = f;
128		INIT_LIST_HEAD(&nrg->link);
129		list_add(&nrg->link, rg->link.prev);
130
131		return t - f;
132	}
133
134	/* Round our left edge to the current segment if it encloses us. */
135	if (f > rg->from)
136		f = rg->from;
137	chg = t - f;
138
139	/* Check for and consume any regions we now overlap with. */
140	list_for_each_entry(rg, rg->link.prev, link) {
141		if (&rg->link == head)
142			break;
143		if (rg->from > t)
144			return chg;
145
146		/* We overlap with this area, if it extends futher than
147		 * us then we must extend ourselves.  Account for its
148		 * existing reservation. */
149		if (rg->to > t) {
150			chg += rg->to - t;
151			t = rg->to;
152		}
153		chg -= rg->to - rg->from;
154	}
155	return chg;
156}
157
158static long region_truncate(struct list_head *head, long end)
159{
160	struct file_region *rg, *trg;
161	long chg = 0;
162
163	/* Locate the region we are either in or before. */
164	list_for_each_entry(rg, head, link)
165		if (end <= rg->to)
166			break;
167	if (&rg->link == head)
168		return 0;
169
170	/* If we are in the middle of a region then adjust it. */
171	if (end > rg->from) {
172		chg = rg->to - end;
173		rg->to = end;
174		rg = list_entry(rg->link.next, typeof(*rg), link);
175	}
176
177	/* Drop any remaining regions. */
178	list_for_each_entry_safe(rg, trg, rg->link.prev, link) {
179		if (&rg->link == head)
180			break;
181		chg += rg->to - rg->from;
182		list_del(&rg->link);
183		kfree(rg);
184	}
185	return chg;
186}
187
188static long region_count(struct list_head *head, long f, long t)
189{
190	struct file_region *rg;
191	long chg = 0;
192
193	/* Locate each segment we overlap with, and count that overlap. */
194	list_for_each_entry(rg, head, link) {
195		int seg_from;
196		int seg_to;
197
198		if (rg->to <= f)
199			continue;
200		if (rg->from >= t)
201			break;
202
203		seg_from = max(rg->from, f);
204		seg_to = min(rg->to, t);
205
206		chg += seg_to - seg_from;
207	}
208
209	return chg;
210}
211
212/*
213 * Convert the address within this vma to the page offset within
214 * the mapping, in pagecache page units; huge pages here.
215 */
216static pgoff_t vma_hugecache_offset(struct hstate *h,
217			struct vm_area_struct *vma, unsigned long address)
218{
219	return ((address - vma->vm_start) >> huge_page_shift(h)) +
220			(vma->vm_pgoff >> huge_page_order(h));
221}
222
223/*
224 * Return the size of the pages allocated when backing a VMA. In the majority
225 * cases this will be same size as used by the page table entries.
226 */
227unsigned long vma_kernel_pagesize(struct vm_area_struct *vma)
228{
229	struct hstate *hstate;
230
231	if (!is_vm_hugetlb_page(vma))
232		return PAGE_SIZE;
233
234	hstate = hstate_vma(vma);
235
236	return 1UL << (hstate->order + PAGE_SHIFT);
237}
238EXPORT_SYMBOL_GPL(vma_kernel_pagesize);
239
240/*
241 * Return the page size being used by the MMU to back a VMA. In the majority
242 * of cases, the page size used by the kernel matches the MMU size. On
243 * architectures where it differs, an architecture-specific version of this
244 * function is required.
245 */
246#ifndef vma_mmu_pagesize
247unsigned long vma_mmu_pagesize(struct vm_area_struct *vma)
248{
249	return vma_kernel_pagesize(vma);
250}
251#endif
252
253/*
254 * Flags for MAP_PRIVATE reservations.  These are stored in the bottom
255 * bits of the reservation map pointer, which are always clear due to
256 * alignment.
257 */
258#define HPAGE_RESV_OWNER    (1UL << 0)
259#define HPAGE_RESV_UNMAPPED (1UL << 1)
260#define HPAGE_RESV_MASK (HPAGE_RESV_OWNER | HPAGE_RESV_UNMAPPED)
261
262/*
263 * These helpers are used to track how many pages are reserved for
264 * faults in a MAP_PRIVATE mapping. Only the process that called mmap()
265 * is guaranteed to have their future faults succeed.
266 *
267 * With the exception of reset_vma_resv_huge_pages() which is called at fork(),
268 * the reserve counters are updated with the hugetlb_lock held. It is safe
269 * to reset the VMA at fork() time as it is not in use yet and there is no
270 * chance of the global counters getting corrupted as a result of the values.
271 *
272 * The private mapping reservation is represented in a subtly different
273 * manner to a shared mapping.  A shared mapping has a region map associated
274 * with the underlying file, this region map represents the backing file
275 * pages which have ever had a reservation assigned which this persists even
276 * after the page is instantiated.  A private mapping has a region map
277 * associated with the original mmap which is attached to all VMAs which
278 * reference it, this region map represents those offsets which have consumed
279 * reservation ie. where pages have been instantiated.
280 */
281static unsigned long get_vma_private_data(struct vm_area_struct *vma)
282{
283	return (unsigned long)vma->vm_private_data;
284}
285
286static void set_vma_private_data(struct vm_area_struct *vma,
287							unsigned long value)
288{
289	vma->vm_private_data = (void *)value;
290}
291
292struct resv_map {
293	struct kref refs;
294	struct list_head regions;
295};
296
297static struct resv_map *resv_map_alloc(void)
298{
299	struct resv_map *resv_map = kmalloc(sizeof(*resv_map), GFP_KERNEL);
300	if (!resv_map)
301		return NULL;
302
303	kref_init(&resv_map->refs);
304	INIT_LIST_HEAD(&resv_map->regions);
305
306	return resv_map;
307}
308
309static void resv_map_release(struct kref *ref)
310{
311	struct resv_map *resv_map = container_of(ref, struct resv_map, refs);
312
313	/* Clear out any active regions before we release the map. */
314	region_truncate(&resv_map->regions, 0);
315	kfree(resv_map);
316}
317
318static struct resv_map *vma_resv_map(struct vm_area_struct *vma)
319{
320	VM_BUG_ON(!is_vm_hugetlb_page(vma));
321	if (!(vma->vm_flags & VM_MAYSHARE))
322		return (struct resv_map *)(get_vma_private_data(vma) &
323							~HPAGE_RESV_MASK);
324	return NULL;
325}
326
327static void set_vma_resv_map(struct vm_area_struct *vma, struct resv_map *map)
328{
329	VM_BUG_ON(!is_vm_hugetlb_page(vma));
330	VM_BUG_ON(vma->vm_flags & VM_MAYSHARE);
331
332	set_vma_private_data(vma, (get_vma_private_data(vma) &
333				HPAGE_RESV_MASK) | (unsigned long)map);
334}
335
336static void set_vma_resv_flags(struct vm_area_struct *vma, unsigned long flags)
337{
338	VM_BUG_ON(!is_vm_hugetlb_page(vma));
339	VM_BUG_ON(vma->vm_flags & VM_MAYSHARE);
340
341	set_vma_private_data(vma, get_vma_private_data(vma) | flags);
342}
343
344static int is_vma_resv_set(struct vm_area_struct *vma, unsigned long flag)
345{
346	VM_BUG_ON(!is_vm_hugetlb_page(vma));
347
348	return (get_vma_private_data(vma) & flag) != 0;
349}
350
351/* Decrement the reserved pages in the hugepage pool by one */
352static void decrement_hugepage_resv_vma(struct hstate *h,
353			struct vm_area_struct *vma)
354{
355	if (vma->vm_flags & VM_NORESERVE)
356		return;
357
358	if (vma->vm_flags & VM_MAYSHARE) {
359		/* Shared mappings always use reserves */
360		h->resv_huge_pages--;
361	} else if (is_vma_resv_set(vma, HPAGE_RESV_OWNER)) {
362		/*
363		 * Only the process that called mmap() has reserves for
364		 * private mappings.
365		 */
366		h->resv_huge_pages--;
367	}
368}
369
370/* Reset counters to 0 and clear all HPAGE_RESV_* flags */
371void reset_vma_resv_huge_pages(struct vm_area_struct *vma)
372{
373	VM_BUG_ON(!is_vm_hugetlb_page(vma));
374	if (!(vma->vm_flags & VM_MAYSHARE))
375		vma->vm_private_data = (void *)0;
376}
377
378/* Returns true if the VMA has associated reserve pages */
379static int vma_has_reserves(struct vm_area_struct *vma)
380{
381	if (vma->vm_flags & VM_MAYSHARE)
382		return 1;
383	if (is_vma_resv_set(vma, HPAGE_RESV_OWNER))
384		return 1;
385	return 0;
386}
387
388static void clear_gigantic_page(struct page *page,
389			unsigned long addr, unsigned long sz)
390{
391	int i;
392	struct page *p = page;
393
394	might_sleep();
395	for (i = 0; i < sz/PAGE_SIZE; i++, p = mem_map_next(p, page, i)) {
396		cond_resched();
397		clear_user_highpage(p, addr + i * PAGE_SIZE);
398	}
399}
400static void clear_huge_page(struct page *page,
401			unsigned long addr, unsigned long sz)
402{
403	int i;
404
405	if (unlikely(sz/PAGE_SIZE > MAX_ORDER_NR_PAGES)) {
406		clear_gigantic_page(page, addr, sz);
407		return;
408	}
409
410	might_sleep();
411	for (i = 0; i < sz/PAGE_SIZE; i++) {
412		cond_resched();
413		clear_user_highpage(page + i, addr + i * PAGE_SIZE);
414	}
415}
416
417static void copy_gigantic_page(struct page *dst, struct page *src,
418			   unsigned long addr, struct vm_area_struct *vma)
419{
420	int i;
421	struct hstate *h = hstate_vma(vma);
422	struct page *dst_base = dst;
423	struct page *src_base = src;
424	might_sleep();
425	for (i = 0; i < pages_per_huge_page(h); ) {
426		cond_resched();
427		copy_user_highpage(dst, src, addr + i*PAGE_SIZE, vma);
428
429		i++;
430		dst = mem_map_next(dst, dst_base, i);
431		src = mem_map_next(src, src_base, i);
432	}
433}
434static void copy_huge_page(struct page *dst, struct page *src,
435			   unsigned long addr, struct vm_area_struct *vma)
436{
437	int i;
438	struct hstate *h = hstate_vma(vma);
439
440	if (unlikely(pages_per_huge_page(h) > MAX_ORDER_NR_PAGES)) {
441		copy_gigantic_page(dst, src, addr, vma);
442		return;
443	}
444
445	might_sleep();
446	for (i = 0; i < pages_per_huge_page(h); i++) {
447		cond_resched();
448		copy_user_highpage(dst + i, src + i, addr + i*PAGE_SIZE, vma);
449	}
450}
451
452static void enqueue_huge_page(struct hstate *h, struct page *page)
453{
454	int nid = page_to_nid(page);
455	list_add(&page->lru, &h->hugepage_freelists[nid]);
456	h->free_huge_pages++;
457	h->free_huge_pages_node[nid]++;
458}
459
460static struct page *dequeue_huge_page_vma(struct hstate *h,
461				struct vm_area_struct *vma,
462				unsigned long address, int avoid_reserve)
463{
464	int nid;
465	struct page *page = NULL;
466	struct mempolicy *mpol;
467	nodemask_t *nodemask;
468	struct zonelist *zonelist = huge_zonelist(vma, address,
469					htlb_alloc_mask, &mpol, &nodemask);
470	struct zone *zone;
471	struct zoneref *z;
472
473	/*
474	 * A child process with MAP_PRIVATE mappings created by their parent
475	 * have no page reserves. This check ensures that reservations are
476	 * not "stolen". The child may still get SIGKILLed
477	 */
478	if (!vma_has_reserves(vma) &&
479			h->free_huge_pages - h->resv_huge_pages == 0)
480		return NULL;
481
482	/* If reserves cannot be used, ensure enough pages are in the pool */
483	if (avoid_reserve && h->free_huge_pages - h->resv_huge_pages == 0)
484		return NULL;
485
486	for_each_zone_zonelist_nodemask(zone, z, zonelist,
487						MAX_NR_ZONES - 1, nodemask) {
488		nid = zone_to_nid(zone);
489		if (cpuset_zone_allowed_softwall(zone, htlb_alloc_mask) &&
490		    !list_empty(&h->hugepage_freelists[nid])) {
491			page = list_entry(h->hugepage_freelists[nid].next,
492					  struct page, lru);
493			list_del(&page->lru);
494			h->free_huge_pages--;
495			h->free_huge_pages_node[nid]--;
496
497			if (!avoid_reserve)
498				decrement_hugepage_resv_vma(h, vma);
499
500			break;
501		}
502	}
503	mpol_cond_put(mpol);
504	return page;
505}
506
507static void update_and_free_page(struct hstate *h, struct page *page)
508{
509	int i;
510
511	VM_BUG_ON(h->order >= MAX_ORDER);
512
513	h->nr_huge_pages--;
514	h->nr_huge_pages_node[page_to_nid(page)]--;
515	for (i = 0; i < pages_per_huge_page(h); i++) {
516		page[i].flags &= ~(1 << PG_locked | 1 << PG_error | 1 << PG_referenced |
517				1 << PG_dirty | 1 << PG_active | 1 << PG_reserved |
518				1 << PG_private | 1<< PG_writeback);
519	}
520	set_compound_page_dtor(page, NULL);
521	set_page_refcounted(page);
522	arch_release_hugepage(page);
523	__free_pages(page, huge_page_order(h));
524}
525
526struct hstate *size_to_hstate(unsigned long size)
527{
528	struct hstate *h;
529
530	for_each_hstate(h) {
531		if (huge_page_size(h) == size)
532			return h;
533	}
534	return NULL;
535}
536
537static void free_huge_page(struct page *page)
538{
539	/*
540	 * Can't pass hstate in here because it is called from the
541	 * compound page destructor.
542	 */
543	struct hstate *h = page_hstate(page);
544	int nid = page_to_nid(page);
545	struct address_space *mapping;
546
547	mapping = (struct address_space *) page_private(page);
548	set_page_private(page, 0);
549	BUG_ON(page_count(page));
550	INIT_LIST_HEAD(&page->lru);
551
552	spin_lock(&hugetlb_lock);
553	if (h->surplus_huge_pages_node[nid] && huge_page_order(h) < MAX_ORDER) {
554		update_and_free_page(h, page);
555		h->surplus_huge_pages--;
556		h->surplus_huge_pages_node[nid]--;
557	} else {
558		enqueue_huge_page(h, page);
559	}
560	spin_unlock(&hugetlb_lock);
561	if (mapping)
562		hugetlb_put_quota(mapping, 1);
563}
564
565static void prep_new_huge_page(struct hstate *h, struct page *page, int nid)
566{
567	set_compound_page_dtor(page, free_huge_page);
568	spin_lock(&hugetlb_lock);
569	h->nr_huge_pages++;
570	h->nr_huge_pages_node[nid]++;
571	spin_unlock(&hugetlb_lock);
572	put_page(page); /* free it into the hugepage allocator */
573}
574
575static void prep_compound_gigantic_page(struct page *page, unsigned long order)
576{
577	int i;
578	int nr_pages = 1 << order;
579	struct page *p = page + 1;
580
581	/* we rely on prep_new_huge_page to set the destructor */
582	set_compound_order(page, order);
583	__SetPageHead(page);
584	for (i = 1; i < nr_pages; i++, p = mem_map_next(p, page, i)) {
585		__SetPageTail(p);
586		p->first_page = page;
587	}
588}
589
590int PageHuge(struct page *page)
591{
592	compound_page_dtor *dtor;
593
594	if (!PageCompound(page))
595		return 0;
596
597	page = compound_head(page);
598	dtor = get_compound_page_dtor(page);
599
600	return dtor == free_huge_page;
601}
602
603static struct page *alloc_fresh_huge_page_node(struct hstate *h, int nid)
604{
605	struct page *page;
606
607	if (h->order >= MAX_ORDER)
608		return NULL;
609
610	page = alloc_pages_exact_node(nid,
611		htlb_alloc_mask|__GFP_COMP|__GFP_THISNODE|
612						__GFP_REPEAT|__GFP_NOWARN,
613		huge_page_order(h));
614	if (page) {
615		if (arch_prepare_hugepage(page)) {
616			__free_pages(page, huge_page_order(h));
617			return NULL;
618		}
619		prep_new_huge_page(h, page, nid);
620	}
621
622	return page;
623}
624
625/*
626 * common helper functions for hstate_next_node_to_{alloc|free}.
627 * We may have allocated or freed a huge page based on a different
628 * nodes_allowed previously, so h->next_node_to_{alloc|free} might
629 * be outside of *nodes_allowed.  Ensure that we use an allowed
630 * node for alloc or free.
631 */
632static int next_node_allowed(int nid, nodemask_t *nodes_allowed)
633{
634	nid = next_node(nid, *nodes_allowed);
635	if (nid == MAX_NUMNODES)
636		nid = first_node(*nodes_allowed);
637	VM_BUG_ON(nid >= MAX_NUMNODES);
638
639	return nid;
640}
641
642static int get_valid_node_allowed(int nid, nodemask_t *nodes_allowed)
643{
644	if (!node_isset(nid, *nodes_allowed))
645		nid = next_node_allowed(nid, nodes_allowed);
646	return nid;
647}
648
649/*
650 * returns the previously saved node ["this node"] from which to
651 * allocate a persistent huge page for the pool and advance the
652 * next node from which to allocate, handling wrap at end of node
653 * mask.
654 */
655static int hstate_next_node_to_alloc(struct hstate *h,
656					nodemask_t *nodes_allowed)
657{
658	int nid;
659
660	VM_BUG_ON(!nodes_allowed);
661
662	nid = get_valid_node_allowed(h->next_nid_to_alloc, nodes_allowed);
663	h->next_nid_to_alloc = next_node_allowed(nid, nodes_allowed);
664
665	return nid;
666}
667
668static int alloc_fresh_huge_page(struct hstate *h, nodemask_t *nodes_allowed)
669{
670	struct page *page;
671	int start_nid;
672	int next_nid;
673	int ret = 0;
674
675	start_nid = hstate_next_node_to_alloc(h, nodes_allowed);
676	next_nid = start_nid;
677
678	do {
679		page = alloc_fresh_huge_page_node(h, next_nid);
680		if (page) {
681			ret = 1;
682			break;
683		}
684		next_nid = hstate_next_node_to_alloc(h, nodes_allowed);
685	} while (next_nid != start_nid);
686
687	if (ret)
688		count_vm_event(HTLB_BUDDY_PGALLOC);
689	else
690		count_vm_event(HTLB_BUDDY_PGALLOC_FAIL);
691
692	return ret;
693}
694
695/*
696 * helper for free_pool_huge_page() - return the previously saved
697 * node ["this node"] from which to free a huge page.  Advance the
698 * next node id whether or not we find a free huge page to free so
699 * that the next attempt to free addresses the next node.
700 */
701static int hstate_next_node_to_free(struct hstate *h, nodemask_t *nodes_allowed)
702{
703	int nid;
704
705	VM_BUG_ON(!nodes_allowed);
706
707	nid = get_valid_node_allowed(h->next_nid_to_free, nodes_allowed);
708	h->next_nid_to_free = next_node_allowed(nid, nodes_allowed);
709
710	return nid;
711}
712
713/*
714 * Free huge page from pool from next node to free.
715 * Attempt to keep persistent huge pages more or less
716 * balanced over allowed nodes.
717 * Called with hugetlb_lock locked.
718 */
719static int free_pool_huge_page(struct hstate *h, nodemask_t *nodes_allowed,
720							 bool acct_surplus)
721{
722	int start_nid;
723	int next_nid;
724	int ret = 0;
725
726	start_nid = hstate_next_node_to_free(h, nodes_allowed);
727	next_nid = start_nid;
728
729	do {
730		/*
731		 * If we're returning unused surplus pages, only examine
732		 * nodes with surplus pages.
733		 */
734		if ((!acct_surplus || h->surplus_huge_pages_node[next_nid]) &&
735		    !list_empty(&h->hugepage_freelists[next_nid])) {
736			struct page *page =
737				list_entry(h->hugepage_freelists[next_nid].next,
738					  struct page, lru);
739			list_del(&page->lru);
740			h->free_huge_pages--;
741			h->free_huge_pages_node[next_nid]--;
742			if (acct_surplus) {
743				h->surplus_huge_pages--;
744				h->surplus_huge_pages_node[next_nid]--;
745			}
746			update_and_free_page(h, page);
747			ret = 1;
748			break;
749		}
750		next_nid = hstate_next_node_to_free(h, nodes_allowed);
751	} while (next_nid != start_nid);
752
753	return ret;
754}
755
756static struct page *alloc_buddy_huge_page(struct hstate *h,
757			struct vm_area_struct *vma, unsigned long address)
758{
759	struct page *page;
760	unsigned int nid;
761
762	if (h->order >= MAX_ORDER)
763		return NULL;
764
765	/*
766	 * Assume we will successfully allocate the surplus page to
767	 * prevent racing processes from causing the surplus to exceed
768	 * overcommit
769	 *
770	 * This however introduces a different race, where a process B
771	 * tries to grow the static hugepage pool while alloc_pages() is
772	 * called by process A. B will only examine the per-node
773	 * counters in determining if surplus huge pages can be
774	 * converted to normal huge pages in adjust_pool_surplus(). A
775	 * won't be able to increment the per-node counter, until the
776	 * lock is dropped by B, but B doesn't drop hugetlb_lock until
777	 * no more huge pages can be converted from surplus to normal
778	 * state (and doesn't try to convert again). Thus, we have a
779	 * case where a surplus huge page exists, the pool is grown, and
780	 * the surplus huge page still exists after, even though it
781	 * should just have been converted to a normal huge page. This
782	 * does not leak memory, though, as the hugepage will be freed
783	 * once it is out of use. It also does not allow the counters to
784	 * go out of whack in adjust_pool_surplus() as we don't modify
785	 * the node values until we've gotten the hugepage and only the
786	 * per-node value is checked there.
787	 */
788	spin_lock(&hugetlb_lock);
789	if (h->surplus_huge_pages >= h->nr_overcommit_huge_pages) {
790		spin_unlock(&hugetlb_lock);
791		return NULL;
792	} else {
793		h->nr_huge_pages++;
794		h->surplus_huge_pages++;
795	}
796	spin_unlock(&hugetlb_lock);
797
798	page = alloc_pages(htlb_alloc_mask|__GFP_COMP|
799					__GFP_REPEAT|__GFP_NOWARN,
800					huge_page_order(h));
801
802	if (page && arch_prepare_hugepage(page)) {
803		__free_pages(page, huge_page_order(h));
804		return NULL;
805	}
806
807	spin_lock(&hugetlb_lock);
808	if (page) {
809		/*
810		 * This page is now managed by the hugetlb allocator and has
811		 * no users -- drop the buddy allocator's reference.
812		 */
813		put_page_testzero(page);
814		VM_BUG_ON(page_count(page));
815		nid = page_to_nid(page);
816		set_compound_page_dtor(page, free_huge_page);
817		/*
818		 * We incremented the global counters already
819		 */
820		h->nr_huge_pages_node[nid]++;
821		h->surplus_huge_pages_node[nid]++;
822		__count_vm_event(HTLB_BUDDY_PGALLOC);
823	} else {
824		h->nr_huge_pages--;
825		h->surplus_huge_pages--;
826		__count_vm_event(HTLB_BUDDY_PGALLOC_FAIL);
827	}
828	spin_unlock(&hugetlb_lock);
829
830	return page;
831}
832
833/*
834 * Increase the hugetlb pool such that it can accomodate a reservation
835 * of size 'delta'.
836 */
837static int gather_surplus_pages(struct hstate *h, int delta)
838{
839	struct list_head surplus_list;
840	struct page *page, *tmp;
841	int ret, i;
842	int needed, allocated;
843
844	needed = (h->resv_huge_pages + delta) - h->free_huge_pages;
845	if (needed <= 0) {
846		h->resv_huge_pages += delta;
847		return 0;
848	}
849
850	allocated = 0;
851	INIT_LIST_HEAD(&surplus_list);
852
853	ret = -ENOMEM;
854retry:
855	spin_unlock(&hugetlb_lock);
856	for (i = 0; i < needed; i++) {
857		page = alloc_buddy_huge_page(h, NULL, 0);
858		if (!page) {
859			/*
860			 * We were not able to allocate enough pages to
861			 * satisfy the entire reservation so we free what
862			 * we've allocated so far.
863			 */
864			spin_lock(&hugetlb_lock);
865			needed = 0;
866			goto free;
867		}
868
869		list_add(&page->lru, &surplus_list);
870	}
871	allocated += needed;
872
873	/*
874	 * After retaking hugetlb_lock, we need to recalculate 'needed'
875	 * because either resv_huge_pages or free_huge_pages may have changed.
876	 */
877	spin_lock(&hugetlb_lock);
878	needed = (h->resv_huge_pages + delta) -
879			(h->free_huge_pages + allocated);
880	if (needed > 0)
881		goto retry;
882
883	/*
884	 * The surplus_list now contains _at_least_ the number of extra pages
885	 * needed to accomodate the reservation.  Add the appropriate number
886	 * of pages to the hugetlb pool and free the extras back to the buddy
887	 * allocator.  Commit the entire reservation here to prevent another
888	 * process from stealing the pages as they are added to the pool but
889	 * before they are reserved.
890	 */
891	needed += allocated;
892	h->resv_huge_pages += delta;
893	ret = 0;
894free:
895	/* Free the needed pages to the hugetlb pool */
896	list_for_each_entry_safe(page, tmp, &surplus_list, lru) {
897		if ((--needed) < 0)
898			break;
899		list_del(&page->lru);
900		enqueue_huge_page(h, page);
901	}
902
903	/* Free unnecessary surplus pages to the buddy allocator */
904	if (!list_empty(&surplus_list)) {
905		spin_unlock(&hugetlb_lock);
906		list_for_each_entry_safe(page, tmp, &surplus_list, lru) {
907			list_del(&page->lru);
908			/*
909			 * The page has a reference count of zero already, so
910			 * call free_huge_page directly instead of using
911			 * put_page.  This must be done with hugetlb_lock
912			 * unlocked which is safe because free_huge_page takes
913			 * hugetlb_lock before deciding how to free the page.
914			 */
915			free_huge_page(page);
916		}
917		spin_lock(&hugetlb_lock);
918	}
919
920	return ret;
921}
922
923/*
924 * When releasing a hugetlb pool reservation, any surplus pages that were
925 * allocated to satisfy the reservation must be explicitly freed if they were
926 * never used.
927 * Called with hugetlb_lock held.
928 */
929static void return_unused_surplus_pages(struct hstate *h,
930					unsigned long unused_resv_pages)
931{
932	unsigned long nr_pages;
933
934	/* Uncommit the reservation */
935	h->resv_huge_pages -= unused_resv_pages;
936
937	/* Cannot return gigantic pages currently */
938	if (h->order >= MAX_ORDER)
939		return;
940
941	nr_pages = min(unused_resv_pages, h->surplus_huge_pages);
942
943	/*
944	 * We want to release as many surplus pages as possible, spread
945	 * evenly across all nodes with memory. Iterate across these nodes
946	 * until we can no longer free unreserved surplus pages. This occurs
947	 * when the nodes with surplus pages have no free pages.
948	 * free_pool_huge_page() will balance the the freed pages across the
949	 * on-line nodes with memory and will handle the hstate accounting.
950	 */
951	while (nr_pages--) {
952		if (!free_pool_huge_page(h, &node_states[N_HIGH_MEMORY], 1))
953			break;
954	}
955}
956
957/*
958 * Determine if the huge page at addr within the vma has an associated
959 * reservation.  Where it does not we will need to logically increase
960 * reservation and actually increase quota before an allocation can occur.
961 * Where any new reservation would be required the reservation change is
962 * prepared, but not committed.  Once the page has been quota'd allocated
963 * an instantiated the change should be committed via vma_commit_reservation.
964 * No action is required on failure.
965 */
966static long vma_needs_reservation(struct hstate *h,
967			struct vm_area_struct *vma, unsigned long addr)
968{
969	struct address_space *mapping = vma->vm_file->f_mapping;
970	struct inode *inode = mapping->host;
971
972	if (vma->vm_flags & VM_MAYSHARE) {
973		pgoff_t idx = vma_hugecache_offset(h, vma, addr);
974		return region_chg(&inode->i_mapping->private_list,
975							idx, idx + 1);
976
977	} else if (!is_vma_resv_set(vma, HPAGE_RESV_OWNER)) {
978		return 1;
979
980	} else  {
981		long err;
982		pgoff_t idx = vma_hugecache_offset(h, vma, addr);
983		struct resv_map *reservations = vma_resv_map(vma);
984
985		err = region_chg(&reservations->regions, idx, idx + 1);
986		if (err < 0)
987			return err;
988		return 0;
989	}
990}
991static void vma_commit_reservation(struct hstate *h,
992			struct vm_area_struct *vma, unsigned long addr)
993{
994	struct address_space *mapping = vma->vm_file->f_mapping;
995	struct inode *inode = mapping->host;
996
997	if (vma->vm_flags & VM_MAYSHARE) {
998		pgoff_t idx = vma_hugecache_offset(h, vma, addr);
999		region_add(&inode->i_mapping->private_list, idx, idx + 1);
1000
1001	} else if (is_vma_resv_set(vma, HPAGE_RESV_OWNER)) {
1002		pgoff_t idx = vma_hugecache_offset(h, vma, addr);
1003		struct resv_map *reservations = vma_resv_map(vma);
1004
1005		/* Mark this page used in the map. */
1006		region_add(&reservations->regions, idx, idx + 1);
1007	}
1008}
1009
1010static struct page *alloc_huge_page(struct vm_area_struct *vma,
1011				    unsigned long addr, int avoid_reserve)
1012{
1013	struct hstate *h = hstate_vma(vma);
1014	struct page *page;
1015	struct address_space *mapping = vma->vm_file->f_mapping;
1016	struct inode *inode = mapping->host;
1017	long chg;
1018
1019	/*
1020	 * Processes that did not create the mapping will have no reserves and
1021	 * will not have accounted against quota. Check that the quota can be
1022	 * made before satisfying the allocation
1023	 * MAP_NORESERVE mappings may also need pages and quota allocated
1024	 * if no reserve mapping overlaps.
1025	 */
1026	chg = vma_needs_reservation(h, vma, addr);
1027	if (chg < 0)
1028		return ERR_PTR(chg);
1029	if (chg)
1030		if (hugetlb_get_quota(inode->i_mapping, chg))
1031			return ERR_PTR(-ENOSPC);
1032
1033	spin_lock(&hugetlb_lock);
1034	page = dequeue_huge_page_vma(h, vma, addr, avoid_reserve);
1035	spin_unlock(&hugetlb_lock);
1036
1037	if (!page) {
1038		page = alloc_buddy_huge_page(h, vma, addr);
1039		if (!page) {
1040			hugetlb_put_quota(inode->i_mapping, chg);
1041			return ERR_PTR(-VM_FAULT_OOM);
1042		}
1043	}
1044
1045	set_page_refcounted(page);
1046	set_page_private(page, (unsigned long) mapping);
1047
1048	vma_commit_reservation(h, vma, addr);
1049
1050	return page;
1051}
1052
1053int __weak alloc_bootmem_huge_page(struct hstate *h)
1054{
1055	struct huge_bootmem_page *m;
1056	int nr_nodes = nodes_weight(node_states[N_HIGH_MEMORY]);
1057
1058	while (nr_nodes) {
1059		void *addr;
1060
1061		addr = __alloc_bootmem_node_nopanic(
1062				NODE_DATA(hstate_next_node_to_alloc(h,
1063						&node_states[N_HIGH_MEMORY])),
1064				huge_page_size(h), huge_page_size(h), 0);
1065
1066		if (addr) {
1067			/*
1068			 * Use the beginning of the huge page to store the
1069			 * huge_bootmem_page struct (until gather_bootmem
1070			 * puts them into the mem_map).
1071			 */
1072			m = addr;
1073			goto found;
1074		}
1075		nr_nodes--;
1076	}
1077	return 0;
1078
1079found:
1080	BUG_ON((unsigned long)virt_to_phys(m) & (huge_page_size(h) - 1));
1081	/* Put them into a private list first because mem_map is not up yet */
1082	list_add(&m->list, &huge_boot_pages);
1083	m->hstate = h;
1084	return 1;
1085}
1086
1087static void prep_compound_huge_page(struct page *page, int order)
1088{
1089	if (unlikely(order > (MAX_ORDER - 1)))
1090		prep_compound_gigantic_page(page, order);
1091	else
1092		prep_compound_page(page, order);
1093}
1094
1095/* Put bootmem huge pages into the standard lists after mem_map is up */
1096static void __init gather_bootmem_prealloc(void)
1097{
1098	struct huge_bootmem_page *m;
1099
1100	list_for_each_entry(m, &huge_boot_pages, list) {
1101		struct page *page = virt_to_page(m);
1102		struct hstate *h = m->hstate;
1103		__ClearPageReserved(page);
1104		WARN_ON(page_count(page) != 1);
1105		prep_compound_huge_page(page, h->order);
1106		prep_new_huge_page(h, page, page_to_nid(page));
1107	}
1108}
1109
1110static void __init hugetlb_hstate_alloc_pages(struct hstate *h)
1111{
1112	unsigned long i;
1113
1114	for (i = 0; i < h->max_huge_pages; ++i) {
1115		if (h->order >= MAX_ORDER) {
1116			if (!alloc_bootmem_huge_page(h))
1117				break;
1118		} else if (!alloc_fresh_huge_page(h,
1119					 &node_states[N_HIGH_MEMORY]))
1120			break;
1121	}
1122	h->max_huge_pages = i;
1123}
1124
1125static void __init hugetlb_init_hstates(void)
1126{
1127	struct hstate *h;
1128
1129	for_each_hstate(h) {
1130		/* oversize hugepages were init'ed in early boot */
1131		if (h->order < MAX_ORDER)
1132			hugetlb_hstate_alloc_pages(h);
1133	}
1134}
1135
1136static char * __init memfmt(char *buf, unsigned long n)
1137{
1138	if (n >= (1UL << 30))
1139		sprintf(buf, "%lu GB", n >> 30);
1140	else if (n >= (1UL << 20))
1141		sprintf(buf, "%lu MB", n >> 20);
1142	else
1143		sprintf(buf, "%lu KB", n >> 10);
1144	return buf;
1145}
1146
1147static void __init report_hugepages(void)
1148{
1149	struct hstate *h;
1150
1151	for_each_hstate(h) {
1152		char buf[32];
1153		printk(KERN_INFO "HugeTLB registered %s page size, "
1154				 "pre-allocated %ld pages\n",
1155			memfmt(buf, huge_page_size(h)),
1156			h->free_huge_pages);
1157	}
1158}
1159
1160#ifdef CONFIG_HIGHMEM
1161static void try_to_free_low(struct hstate *h, unsigned long count,
1162						nodemask_t *nodes_allowed)
1163{
1164	int i;
1165
1166	if (h->order >= MAX_ORDER)
1167		return;
1168
1169	for_each_node_mask(i, *nodes_allowed) {
1170		struct page *page, *next;
1171		struct list_head *freel = &h->hugepage_freelists[i];
1172		list_for_each_entry_safe(page, next, freel, lru) {
1173			if (count >= h->nr_huge_pages)
1174				return;
1175			if (PageHighMem(page))
1176				continue;
1177			list_del(&page->lru);
1178			update_and_free_page(h, page);
1179			h->free_huge_pages--;
1180			h->free_huge_pages_node[page_to_nid(page)]--;
1181		}
1182	}
1183}
1184#else
1185static inline void try_to_free_low(struct hstate *h, unsigned long count,
1186						nodemask_t *nodes_allowed)
1187{
1188}
1189#endif
1190
1191/*
1192 * Increment or decrement surplus_huge_pages.  Keep node-specific counters
1193 * balanced by operating on them in a round-robin fashion.
1194 * Returns 1 if an adjustment was made.
1195 */
1196static int adjust_pool_surplus(struct hstate *h, nodemask_t *nodes_allowed,
1197				int delta)
1198{
1199	int start_nid, next_nid;
1200	int ret = 0;
1201
1202	VM_BUG_ON(delta != -1 && delta != 1);
1203
1204	if (delta < 0)
1205		start_nid = hstate_next_node_to_alloc(h, nodes_allowed);
1206	else
1207		start_nid = hstate_next_node_to_free(h, nodes_allowed);
1208	next_nid = start_nid;
1209
1210	do {
1211		int nid = next_nid;
1212		if (delta < 0)  {
1213			/*
1214			 * To shrink on this node, there must be a surplus page
1215			 */
1216			if (!h->surplus_huge_pages_node[nid]) {
1217				next_nid = hstate_next_node_to_alloc(h,
1218								nodes_allowed);
1219				continue;
1220			}
1221		}
1222		if (delta > 0) {
1223			/*
1224			 * Surplus cannot exceed the total number of pages
1225			 */
1226			if (h->surplus_huge_pages_node[nid] >=
1227						h->nr_huge_pages_node[nid]) {
1228				next_nid = hstate_next_node_to_free(h,
1229								nodes_allowed);
1230				continue;
1231			}
1232		}
1233
1234		h->surplus_huge_pages += delta;
1235		h->surplus_huge_pages_node[nid] += delta;
1236		ret = 1;
1237		break;
1238	} while (next_nid != start_nid);
1239
1240	return ret;
1241}
1242
1243#define persistent_huge_pages(h) (h->nr_huge_pages - h->surplus_huge_pages)
1244static unsigned long set_max_huge_pages(struct hstate *h, unsigned long count,
1245						nodemask_t *nodes_allowed)
1246{
1247	unsigned long min_count, ret;
1248
1249	if (h->order >= MAX_ORDER)
1250		return h->max_huge_pages;
1251
1252	/*
1253	 * Increase the pool size
1254	 * First take pages out of surplus state.  Then make up the
1255	 * remaining difference by allocating fresh huge pages.
1256	 *
1257	 * We might race with alloc_buddy_huge_page() here and be unable
1258	 * to convert a surplus huge page to a normal huge page. That is
1259	 * not critical, though, it just means the overall size of the
1260	 * pool might be one hugepage larger than it needs to be, but
1261	 * within all the constraints specified by the sysctls.
1262	 */
1263	spin_lock(&hugetlb_lock);
1264	while (h->surplus_huge_pages && count > persistent_huge_pages(h)) {
1265		if (!adjust_pool_surplus(h, nodes_allowed, -1))
1266			break;
1267	}
1268
1269	while (count > persistent_huge_pages(h)) {
1270		/*
1271		 * If this allocation races such that we no longer need the
1272		 * page, free_huge_page will handle it by freeing the page
1273		 * and reducing the surplus.
1274		 */
1275		spin_unlock(&hugetlb_lock);
1276		ret = alloc_fresh_huge_page(h, nodes_allowed);
1277		spin_lock(&hugetlb_lock);
1278		if (!ret)
1279			goto out;
1280
1281		/* Bail for signals. Probably ctrl-c from user */
1282		if (signal_pending(current))
1283			goto out;
1284	}
1285
1286	/*
1287	 * Decrease the pool size
1288	 * First return free pages to the buddy allocator (being careful
1289	 * to keep enough around to satisfy reservations).  Then place
1290	 * pages into surplus state as needed so the pool will shrink
1291	 * to the desired size as pages become free.
1292	 *
1293	 * By placing pages into the surplus state independent of the
1294	 * overcommit value, we are allowing the surplus pool size to
1295	 * exceed overcommit. There are few sane options here. Since
1296	 * alloc_buddy_huge_page() is checking the global counter,
1297	 * though, we'll note that we're not allowed to exceed surplus
1298	 * and won't grow the pool anywhere else. Not until one of the
1299	 * sysctls are changed, or the surplus pages go out of use.
1300	 */
1301	min_count = h->resv_huge_pages + h->nr_huge_pages - h->free_huge_pages;
1302	min_count = max(count, min_count);
1303	try_to_free_low(h, min_count, nodes_allowed);
1304	while (min_count < persistent_huge_pages(h)) {
1305		if (!free_pool_huge_page(h, nodes_allowed, 0))
1306			break;
1307	}
1308	while (count < persistent_huge_pages(h)) {
1309		if (!adjust_pool_surplus(h, nodes_allowed, 1))
1310			break;
1311	}
1312out:
1313	ret = persistent_huge_pages(h);
1314	spin_unlock(&hugetlb_lock);
1315	return ret;
1316}
1317
1318#define HSTATE_ATTR_RO(_name) \
1319	static struct kobj_attribute _name##_attr = __ATTR_RO(_name)
1320
1321#define HSTATE_ATTR(_name) \
1322	static struct kobj_attribute _name##_attr = \
1323		__ATTR(_name, 0644, _name##_show, _name##_store)
1324
1325static struct kobject *hugepages_kobj;
1326static struct kobject *hstate_kobjs[HUGE_MAX_HSTATE];
1327
1328static struct hstate *kobj_to_node_hstate(struct kobject *kobj, int *nidp);
1329
1330static struct hstate *kobj_to_hstate(struct kobject *kobj, int *nidp)
1331{
1332	int i;
1333
1334	for (i = 0; i < HUGE_MAX_HSTATE; i++)
1335		if (hstate_kobjs[i] == kobj) {
1336			if (nidp)
1337				*nidp = NUMA_NO_NODE;
1338			return &hstates[i];
1339		}
1340
1341	return kobj_to_node_hstate(kobj, nidp);
1342}
1343
1344static ssize_t nr_hugepages_show_common(struct kobject *kobj,
1345					struct kobj_attribute *attr, char *buf)
1346{
1347	struct hstate *h;
1348	unsigned long nr_huge_pages;
1349	int nid;
1350
1351	h = kobj_to_hstate(kobj, &nid);
1352	if (nid == NUMA_NO_NODE)
1353		nr_huge_pages = h->nr_huge_pages;
1354	else
1355		nr_huge_pages = h->nr_huge_pages_node[nid];
1356
1357	return sprintf(buf, "%lu\n", nr_huge_pages);
1358}
1359static ssize_t nr_hugepages_store_common(bool obey_mempolicy,
1360			struct kobject *kobj, struct kobj_attribute *attr,
1361			const char *buf, size_t len)
1362{
1363	int err;
1364	int nid;
1365	unsigned long count;
1366	struct hstate *h;
1367	NODEMASK_ALLOC(nodemask_t, nodes_allowed, GFP_KERNEL | __GFP_NORETRY);
1368
1369	err = strict_strtoul(buf, 10, &count);
1370	if (err)
1371		return 0;
1372
1373	h = kobj_to_hstate(kobj, &nid);
1374	if (nid == NUMA_NO_NODE) {
1375		/*
1376		 * global hstate attribute
1377		 */
1378		if (!(obey_mempolicy &&
1379				init_nodemask_of_mempolicy(nodes_allowed))) {
1380			NODEMASK_FREE(nodes_allowed);
1381			nodes_allowed = &node_states[N_HIGH_MEMORY];
1382		}
1383	} else if (nodes_allowed) {
1384		/*
1385		 * per node hstate attribute: adjust count to global,
1386		 * but restrict alloc/free to the specified node.
1387		 */
1388		count += h->nr_huge_pages - h->nr_huge_pages_node[nid];
1389		init_nodemask_of_node(nodes_allowed, nid);
1390	} else
1391		nodes_allowed = &node_states[N_HIGH_MEMORY];
1392
1393	h->max_huge_pages = set_max_huge_pages(h, count, nodes_allowed);
1394
1395	if (nodes_allowed != &node_states[N_HIGH_MEMORY])
1396		NODEMASK_FREE(nodes_allowed);
1397
1398	return len;
1399}
1400
1401static ssize_t nr_hugepages_show(struct kobject *kobj,
1402				       struct kobj_attribute *attr, char *buf)
1403{
1404	return nr_hugepages_show_common(kobj, attr, buf);
1405}
1406
1407static ssize_t nr_hugepages_store(struct kobject *kobj,
1408	       struct kobj_attribute *attr, const char *buf, size_t len)
1409{
1410	return nr_hugepages_store_common(false, kobj, attr, buf, len);
1411}
1412HSTATE_ATTR(nr_hugepages);
1413
1414#ifdef CONFIG_NUMA
1415
1416/*
1417 * hstate attribute for optionally mempolicy-based constraint on persistent
1418 * huge page alloc/free.
1419 */
1420static ssize_t nr_hugepages_mempolicy_show(struct kobject *kobj,
1421				       struct kobj_attribute *attr, char *buf)
1422{
1423	return nr_hugepages_show_common(kobj, attr, buf);
1424}
1425
1426static ssize_t nr_hugepages_mempolicy_store(struct kobject *kobj,
1427	       struct kobj_attribute *attr, const char *buf, size_t len)
1428{
1429	return nr_hugepages_store_common(true, kobj, attr, buf, len);
1430}
1431HSTATE_ATTR(nr_hugepages_mempolicy);
1432#endif
1433
1434
1435static ssize_t nr_overcommit_hugepages_show(struct kobject *kobj,
1436					struct kobj_attribute *attr, char *buf)
1437{
1438	struct hstate *h = kobj_to_hstate(kobj, NULL);
1439	return sprintf(buf, "%lu\n", h->nr_overcommit_huge_pages);
1440}
1441static ssize_t nr_overcommit_hugepages_store(struct kobject *kobj,
1442		struct kobj_attribute *attr, const char *buf, size_t count)
1443{
1444	int err;
1445	unsigned long input;
1446	struct hstate *h = kobj_to_hstate(kobj, NULL);
1447
1448	err = strict_strtoul(buf, 10, &input);
1449	if (err)
1450		return 0;
1451
1452	spin_lock(&hugetlb_lock);
1453	h->nr_overcommit_huge_pages = input;
1454	spin_unlock(&hugetlb_lock);
1455
1456	return count;
1457}
1458HSTATE_ATTR(nr_overcommit_hugepages);
1459
1460static ssize_t free_hugepages_show(struct kobject *kobj,
1461					struct kobj_attribute *attr, char *buf)
1462{
1463	struct hstate *h;
1464	unsigned long free_huge_pages;
1465	int nid;
1466
1467	h = kobj_to_hstate(kobj, &nid);
1468	if (nid == NUMA_NO_NODE)
1469		free_huge_pages = h->free_huge_pages;
1470	else
1471		free_huge_pages = h->free_huge_pages_node[nid];
1472
1473	return sprintf(buf, "%lu\n", free_huge_pages);
1474}
1475HSTATE_ATTR_RO(free_hugepages);
1476
1477static ssize_t resv_hugepages_show(struct kobject *kobj,
1478					struct kobj_attribute *attr, char *buf)
1479{
1480	struct hstate *h = kobj_to_hstate(kobj, NULL);
1481	return sprintf(buf, "%lu\n", h->resv_huge_pages);
1482}
1483HSTATE_ATTR_RO(resv_hugepages);
1484
1485static ssize_t surplus_hugepages_show(struct kobject *kobj,
1486					struct kobj_attribute *attr, char *buf)
1487{
1488	struct hstate *h;
1489	unsigned long surplus_huge_pages;
1490	int nid;
1491
1492	h = kobj_to_hstate(kobj, &nid);
1493	if (nid == NUMA_NO_NODE)
1494		surplus_huge_pages = h->surplus_huge_pages;
1495	else
1496		surplus_huge_pages = h->surplus_huge_pages_node[nid];
1497
1498	return sprintf(buf, "%lu\n", surplus_huge_pages);
1499}
1500HSTATE_ATTR_RO(surplus_hugepages);
1501
1502static struct attribute *hstate_attrs[] = {
1503	&nr_hugepages_attr.attr,
1504	&nr_overcommit_hugepages_attr.attr,
1505	&free_hugepages_attr.attr,
1506	&resv_hugepages_attr.attr,
1507	&surplus_hugepages_attr.attr,
1508#ifdef CONFIG_NUMA
1509	&nr_hugepages_mempolicy_attr.attr,
1510#endif
1511	NULL,
1512};
1513
1514static struct attribute_group hstate_attr_group = {
1515	.attrs = hstate_attrs,
1516};
1517
1518static int hugetlb_sysfs_add_hstate(struct hstate *h, struct kobject *parent,
1519				    struct kobject **hstate_kobjs,
1520				    struct attribute_group *hstate_attr_group)
1521{
1522	int retval;
1523	int hi = h - hstates;
1524
1525	hstate_kobjs[hi] = kobject_create_and_add(h->name, parent);
1526	if (!hstate_kobjs[hi])
1527		return -ENOMEM;
1528
1529	retval = sysfs_create_group(hstate_kobjs[hi], hstate_attr_group);
1530	if (retval)
1531		kobject_put(hstate_kobjs[hi]);
1532
1533	return retval;
1534}
1535
1536static void __init hugetlb_sysfs_init(void)
1537{
1538	struct hstate *h;
1539	int err;
1540
1541	hugepages_kobj = kobject_create_and_add("hugepages", mm_kobj);
1542	if (!hugepages_kobj)
1543		return;
1544
1545	for_each_hstate(h) {
1546		err = hugetlb_sysfs_add_hstate(h, hugepages_kobj,
1547					 hstate_kobjs, &hstate_attr_group);
1548		if (err)
1549			printk(KERN_ERR "Hugetlb: Unable to add hstate %s",
1550								h->name);
1551	}
1552}
1553
1554#ifdef CONFIG_NUMA
1555
1556/*
1557 * node_hstate/s - associate per node hstate attributes, via their kobjects,
1558 * with node sysdevs in node_devices[] using a parallel array.  The array
1559 * index of a node sysdev or _hstate == node id.
1560 * This is here to avoid any static dependency of the node sysdev driver, in
1561 * the base kernel, on the hugetlb module.
1562 */
1563struct node_hstate {
1564	struct kobject		*hugepages_kobj;
1565	struct kobject		*hstate_kobjs[HUGE_MAX_HSTATE];
1566};
1567struct node_hstate node_hstates[MAX_NUMNODES];
1568
1569/*
1570 * A subset of global hstate attributes for node sysdevs
1571 */
1572static struct attribute *per_node_hstate_attrs[] = {
1573	&nr_hugepages_attr.attr,
1574	&free_hugepages_attr.attr,
1575	&surplus_hugepages_attr.attr,
1576	NULL,
1577};
1578
1579static struct attribute_group per_node_hstate_attr_group = {
1580	.attrs = per_node_hstate_attrs,
1581};
1582
1583/*
1584 * kobj_to_node_hstate - lookup global hstate for node sysdev hstate attr kobj.
1585 * Returns node id via non-NULL nidp.
1586 */
1587static struct hstate *kobj_to_node_hstate(struct kobject *kobj, int *nidp)
1588{
1589	int nid;
1590
1591	for (nid = 0; nid < nr_node_ids; nid++) {
1592		struct node_hstate *nhs = &node_hstates[nid];
1593		int i;
1594		for (i = 0; i < HUGE_MAX_HSTATE; i++)
1595			if (nhs->hstate_kobjs[i] == kobj) {
1596				if (nidp)
1597					*nidp = nid;
1598				return &hstates[i];
1599			}
1600	}
1601
1602	BUG();
1603	return NULL;
1604}
1605
1606/*
1607 * Unregister hstate attributes from a single node sysdev.
1608 * No-op if no hstate attributes attached.
1609 */
1610void hugetlb_unregister_node(struct node *node)
1611{
1612	struct hstate *h;
1613	struct node_hstate *nhs = &node_hstates[node->sysdev.id];
1614
1615	if (!nhs->hugepages_kobj)
1616		return;		/* no hstate attributes */
1617
1618	for_each_hstate(h)
1619		if (nhs->hstate_kobjs[h - hstates]) {
1620			kobject_put(nhs->hstate_kobjs[h - hstates]);
1621			nhs->hstate_kobjs[h - hstates] = NULL;
1622		}
1623
1624	kobject_put(nhs->hugepages_kobj);
1625	nhs->hugepages_kobj = NULL;
1626}
1627
1628/*
1629 * hugetlb module exit:  unregister hstate attributes from node sysdevs
1630 * that have them.
1631 */
1632static void hugetlb_unregister_all_nodes(void)
1633{
1634	int nid;
1635
1636	/*
1637	 * disable node sysdev registrations.
1638	 */
1639	register_hugetlbfs_with_node(NULL, NULL);
1640
1641	/*
1642	 * remove hstate attributes from any nodes that have them.
1643	 */
1644	for (nid = 0; nid < nr_node_ids; nid++)
1645		hugetlb_unregister_node(&node_devices[nid]);
1646}
1647
1648/*
1649 * Register hstate attributes for a single node sysdev.
1650 * No-op if attributes already registered.
1651 */
1652void hugetlb_register_node(struct node *node)
1653{
1654	struct hstate *h;
1655	struct node_hstate *nhs = &node_hstates[node->sysdev.id];
1656	int err;
1657
1658	if (nhs->hugepages_kobj)
1659		return;		/* already allocated */
1660
1661	nhs->hugepages_kobj = kobject_create_and_add("hugepages",
1662							&node->sysdev.kobj);
1663	if (!nhs->hugepages_kobj)
1664		return;
1665
1666	for_each_hstate(h) {
1667		err = hugetlb_sysfs_add_hstate(h, nhs->hugepages_kobj,
1668						nhs->hstate_kobjs,
1669						&per_node_hstate_attr_group);
1670		if (err) {
1671			printk(KERN_ERR "Hugetlb: Unable to add hstate %s"
1672					" for node %d\n",
1673						h->name, node->sysdev.id);
1674			hugetlb_unregister_node(node);
1675			break;
1676		}
1677	}
1678}
1679
1680/*
1681 * hugetlb init time:  register hstate attributes for all registered node
1682 * sysdevs of nodes that have memory.  All on-line nodes should have
1683 * registered their associated sysdev by this time.
1684 */
1685static void hugetlb_register_all_nodes(void)
1686{
1687	int nid;
1688
1689	for_each_node_state(nid, N_HIGH_MEMORY) {
1690		struct node *node = &node_devices[nid];
1691		if (node->sysdev.id == nid)
1692			hugetlb_register_node(node);
1693	}
1694
1695	/*
1696	 * Let the node sysdev driver know we're here so it can
1697	 * [un]register hstate attributes on node hotplug.
1698	 */
1699	register_hugetlbfs_with_node(hugetlb_register_node,
1700				     hugetlb_unregister_node);
1701}
1702#else	/* !CONFIG_NUMA */
1703
1704static struct hstate *kobj_to_node_hstate(struct kobject *kobj, int *nidp)
1705{
1706	BUG();
1707	if (nidp)
1708		*nidp = -1;
1709	return NULL;
1710}
1711
1712static void hugetlb_unregister_all_nodes(void) { }
1713
1714static void hugetlb_register_all_nodes(void) { }
1715
1716#endif
1717
1718static void __exit hugetlb_exit(void)
1719{
1720	struct hstate *h;
1721
1722	hugetlb_unregister_all_nodes();
1723
1724	for_each_hstate(h) {
1725		kobject_put(hstate_kobjs[h - hstates]);
1726	}
1727
1728	kobject_put(hugepages_kobj);
1729}
1730module_exit(hugetlb_exit);
1731
1732static int __init hugetlb_init(void)
1733{
1734	/* Some platform decide whether they support huge pages at boot
1735	 * time. On these, such as powerpc, HPAGE_SHIFT is set to 0 when
1736	 * there is no such support
1737	 */
1738	if (HPAGE_SHIFT == 0)
1739		return 0;
1740
1741	if (!size_to_hstate(default_hstate_size)) {
1742		default_hstate_size = HPAGE_SIZE;
1743		if (!size_to_hstate(default_hstate_size))
1744			hugetlb_add_hstate(HUGETLB_PAGE_ORDER);
1745	}
1746	default_hstate_idx = size_to_hstate(default_hstate_size) - hstates;
1747	if (default_hstate_max_huge_pages)
1748		default_hstate.max_huge_pages = default_hstate_max_huge_pages;
1749
1750	hugetlb_init_hstates();
1751
1752	gather_bootmem_prealloc();
1753
1754	report_hugepages();
1755
1756	hugetlb_sysfs_init();
1757
1758	hugetlb_register_all_nodes();
1759
1760	return 0;
1761}
1762module_init(hugetlb_init);
1763
1764/* Should be called on processing a hugepagesz=... option */
1765void __init hugetlb_add_hstate(unsigned order)
1766{
1767	struct hstate *h;
1768	unsigned long i;
1769
1770	if (size_to_hstate(PAGE_SIZE << order)) {
1771		printk(KERN_WARNING "hugepagesz= specified twice, ignoring\n");
1772		return;
1773	}
1774	BUG_ON(max_hstate >= HUGE_MAX_HSTATE);
1775	BUG_ON(order == 0);
1776	h = &hstates[max_hstate++];
1777	h->order = order;
1778	h->mask = ~((1ULL << (order + PAGE_SHIFT)) - 1);
1779	h->nr_huge_pages = 0;
1780	h->free_huge_pages = 0;
1781	for (i = 0; i < MAX_NUMNODES; ++i)
1782		INIT_LIST_HEAD(&h->hugepage_freelists[i]);
1783	h->next_nid_to_alloc = first_node(node_states[N_HIGH_MEMORY]);
1784	h->next_nid_to_free = first_node(node_states[N_HIGH_MEMORY]);
1785	snprintf(h->name, HSTATE_NAME_LEN, "hugepages-%lukB",
1786					huge_page_size(h)/1024);
1787
1788	parsed_hstate = h;
1789}
1790
1791static int __init hugetlb_nrpages_setup(char *s)
1792{
1793	unsigned long *mhp;
1794	static unsigned long *last_mhp;
1795
1796	/*
1797	 * !max_hstate means we haven't parsed a hugepagesz= parameter yet,
1798	 * so this hugepages= parameter goes to the "default hstate".
1799	 */
1800	if (!max_hstate)
1801		mhp = &default_hstate_max_huge_pages;
1802	else
1803		mhp = &parsed_hstate->max_huge_pages;
1804
1805	if (mhp == last_mhp) {
1806		printk(KERN_WARNING "hugepages= specified twice without "
1807			"interleaving hugepagesz=, ignoring\n");
1808		return 1;
1809	}
1810
1811	if (sscanf(s, "%lu", mhp) <= 0)
1812		*mhp = 0;
1813
1814	/*
1815	 * Global state is always initialized later in hugetlb_init.
1816	 * But we need to allocate >= MAX_ORDER hstates here early to still
1817	 * use the bootmem allocator.
1818	 */
1819	if (max_hstate && parsed_hstate->order >= MAX_ORDER)
1820		hugetlb_hstate_alloc_pages(parsed_hstate);
1821
1822	last_mhp = mhp;
1823
1824	return 1;
1825}
1826__setup("hugepages=", hugetlb_nrpages_setup);
1827
1828static int __init hugetlb_default_setup(char *s)
1829{
1830	default_hstate_size = memparse(s, &s);
1831	return 1;
1832}
1833__setup("default_hugepagesz=", hugetlb_default_setup);
1834
1835static unsigned int cpuset_mems_nr(unsigned int *array)
1836{
1837	int node;
1838	unsigned int nr = 0;
1839
1840	for_each_node_mask(node, cpuset_current_mems_allowed)
1841		nr += array[node];
1842
1843	return nr;
1844}
1845
1846#ifdef CONFIG_SYSCTL
1847static int hugetlb_sysctl_handler_common(bool obey_mempolicy,
1848			 struct ctl_table *table, int write,
1849			 void __user *buffer, size_t *length, loff_t *ppos)
1850{
1851	struct hstate *h = &default_hstate;
1852	unsigned long tmp;
1853
1854	if (!write)
1855		tmp = h->max_huge_pages;
1856
1857	table->data = &tmp;
1858	table->maxlen = sizeof(unsigned long);
1859	proc_doulongvec_minmax(table, write, buffer, length, ppos);
1860
1861	if (write) {
1862		NODEMASK_ALLOC(nodemask_t, nodes_allowed,
1863						GFP_KERNEL | __GFP_NORETRY);
1864		if (!(obey_mempolicy &&
1865			       init_nodemask_of_mempolicy(nodes_allowed))) {
1866			NODEMASK_FREE(nodes_allowed);
1867			nodes_allowed = &node_states[N_HIGH_MEMORY];
1868		}
1869		h->max_huge_pages = set_max_huge_pages(h, tmp, nodes_allowed);
1870
1871		if (nodes_allowed != &node_states[N_HIGH_MEMORY])
1872			NODEMASK_FREE(nodes_allowed);
1873	}
1874
1875	return 0;
1876}
1877
1878int hugetlb_sysctl_handler(struct ctl_table *table, int write,
1879			  void __user *buffer, size_t *length, loff_t *ppos)
1880{
1881
1882	return hugetlb_sysctl_handler_common(false, table, write,
1883							buffer, length, ppos);
1884}
1885
1886#ifdef CONFIG_NUMA
1887int hugetlb_mempolicy_sysctl_handler(struct ctl_table *table, int write,
1888			  void __user *buffer, size_t *length, loff_t *ppos)
1889{
1890	return hugetlb_sysctl_handler_common(true, table, write,
1891							buffer, length, ppos);
1892}
1893#endif /* CONFIG_NUMA */
1894
1895int hugetlb_treat_movable_handler(struct ctl_table *table, int write,
1896			void __user *buffer,
1897			size_t *length, loff_t *ppos)
1898{
1899	proc_dointvec(table, write, buffer, length, ppos);
1900	if (hugepages_treat_as_movable)
1901		htlb_alloc_mask = GFP_HIGHUSER_MOVABLE;
1902	else
1903		htlb_alloc_mask = GFP_HIGHUSER;
1904	return 0;
1905}
1906
1907int hugetlb_overcommit_handler(struct ctl_table *table, int write,
1908			void __user *buffer,
1909			size_t *length, loff_t *ppos)
1910{
1911	struct hstate *h = &default_hstate;
1912	unsigned long tmp;
1913
1914	if (!write)
1915		tmp = h->nr_overcommit_huge_pages;
1916
1917	table->data = &tmp;
1918	table->maxlen = sizeof(unsigned long);
1919	proc_doulongvec_minmax(table, write, buffer, length, ppos);
1920
1921	if (write) {
1922		spin_lock(&hugetlb_lock);
1923		h->nr_overcommit_huge_pages = tmp;
1924		spin_unlock(&hugetlb_lock);
1925	}
1926
1927	return 0;
1928}
1929
1930#endif /* CONFIG_SYSCTL */
1931
1932void hugetlb_report_meminfo(struct seq_file *m)
1933{
1934	struct hstate *h = &default_hstate;
1935	seq_printf(m,
1936			"HugePages_Total:   %5lu\n"
1937			"HugePages_Free:    %5lu\n"
1938			"HugePages_Rsvd:    %5lu\n"
1939			"HugePages_Surp:    %5lu\n"
1940			"Hugepagesize:   %8lu kB\n",
1941			h->nr_huge_pages,
1942			h->free_huge_pages,
1943			h->resv_huge_pages,
1944			h->surplus_huge_pages,
1945			1UL << (huge_page_order(h) + PAGE_SHIFT - 10));
1946}
1947
1948int hugetlb_report_node_meminfo(int nid, char *buf)
1949{
1950	struct hstate *h = &default_hstate;
1951	return sprintf(buf,
1952		"Node %d HugePages_Total: %5u\n"
1953		"Node %d HugePages_Free:  %5u\n"
1954		"Node %d HugePages_Surp:  %5u\n",
1955		nid, h->nr_huge_pages_node[nid],
1956		nid, h->free_huge_pages_node[nid],
1957		nid, h->surplus_huge_pages_node[nid]);
1958}
1959
1960/* Return the number pages of memory we physically have, in PAGE_SIZE units. */
1961unsigned long hugetlb_total_pages(void)
1962{
1963	struct hstate *h = &default_hstate;
1964	return h->nr_huge_pages * pages_per_huge_page(h);
1965}
1966
1967static int hugetlb_acct_memory(struct hstate *h, long delta)
1968{
1969	int ret = -ENOMEM;
1970
1971	spin_lock(&hugetlb_lock);
1972	/*
1973	 * When cpuset is configured, it breaks the strict hugetlb page
1974	 * reservation as the accounting is done on a global variable. Such
1975	 * reservation is completely rubbish in the presence of cpuset because
1976	 * the reservation is not checked against page availability for the
1977	 * current cpuset. Application can still potentially OOM'ed by kernel
1978	 * with lack of free htlb page in cpuset that the task is in.
1979	 * Attempt to enforce strict accounting with cpuset is almost
1980	 * impossible (or too ugly) because cpuset is too fluid that
1981	 * task or memory node can be dynamically moved between cpusets.
1982	 *
1983	 * The change of semantics for shared hugetlb mapping with cpuset is
1984	 * undesirable. However, in order to preserve some of the semantics,
1985	 * we fall back to check against current free page availability as
1986	 * a best attempt and hopefully to minimize the impact of changing
1987	 * semantics that cpuset has.
1988	 */
1989	if (delta > 0) {
1990		if (gather_surplus_pages(h, delta) < 0)
1991			goto out;
1992
1993		if (delta > cpuset_mems_nr(h->free_huge_pages_node)) {
1994			return_unused_surplus_pages(h, delta);
1995			goto out;
1996		}
1997	}
1998
1999	ret = 0;
2000	if (delta < 0)
2001		return_unused_surplus_pages(h, (unsigned long) -delta);
2002
2003out:
2004	spin_unlock(&hugetlb_lock);
2005	return ret;
2006}
2007
2008static void hugetlb_vm_op_open(struct vm_area_struct *vma)
2009{
2010	struct resv_map *reservations = vma_resv_map(vma);
2011
2012	/*
2013	 * This new VMA should share its siblings reservation map if present.
2014	 * The VMA will only ever have a valid reservation map pointer where
2015	 * it is being copied for another still existing VMA.  As that VMA
2016	 * has a reference to the reservation map it cannot dissappear until
2017	 * after this open call completes.  It is therefore safe to take a
2018	 * new reference here without additional locking.
2019	 */
2020	if (reservations)
2021		kref_get(&reservations->refs);
2022}
2023
2024static void hugetlb_vm_op_close(struct vm_area_struct *vma)
2025{
2026	struct hstate *h = hstate_vma(vma);
2027	struct resv_map *reservations = vma_resv_map(vma);
2028	unsigned long reserve;
2029	unsigned long start;
2030	unsigned long end;
2031
2032	if (reservations) {
2033		start = vma_hugecache_offset(h, vma, vma->vm_start);
2034		end = vma_hugecache_offset(h, vma, vma->vm_end);
2035
2036		reserve = (end - start) -
2037			region_count(&reservations->regions, start, end);
2038
2039		kref_put(&reservations->refs, resv_map_release);
2040
2041		if (reserve) {
2042			hugetlb_acct_memory(h, -reserve);
2043			hugetlb_put_quota(vma->vm_file->f_mapping, reserve);
2044		}
2045	}
2046}
2047
2048/*
2049 * We cannot handle pagefaults against hugetlb pages at all.  They cause
2050 * handle_mm_fault() to try to instantiate regular-sized pages in the
2051 * hugegpage VMA.  do_page_fault() is supposed to trap this, so BUG is we get
2052 * this far.
2053 */
2054static int hugetlb_vm_op_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
2055{
2056	BUG();
2057	return 0;
2058}
2059
2060const struct vm_operations_struct hugetlb_vm_ops = {
2061	.fault = hugetlb_vm_op_fault,
2062	.open = hugetlb_vm_op_open,
2063	.close = hugetlb_vm_op_close,
2064};
2065
2066static pte_t make_huge_pte(struct vm_area_struct *vma, struct page *page,
2067				int writable)
2068{
2069	pte_t entry;
2070
2071	if (writable) {
2072		entry =
2073		    pte_mkwrite(pte_mkdirty(mk_pte(page, vma->vm_page_prot)));
2074	} else {
2075		entry = huge_pte_wrprotect(mk_pte(page, vma->vm_page_prot));
2076	}
2077	entry = pte_mkyoung(entry);
2078	entry = pte_mkhuge(entry);
2079
2080	return entry;
2081}
2082
2083static void set_huge_ptep_writable(struct vm_area_struct *vma,
2084				   unsigned long address, pte_t *ptep)
2085{
2086	pte_t entry;
2087
2088	entry = pte_mkwrite(pte_mkdirty(huge_ptep_get(ptep)));
2089	if (huge_ptep_set_access_flags(vma, address, ptep, entry, 1)) {
2090		update_mmu_cache(vma, address, entry);
2091	}
2092}
2093
2094
2095int copy_hugetlb_page_range(struct mm_struct *dst, struct mm_struct *src,
2096			    struct vm_area_struct *vma)
2097{
2098	pte_t *src_pte, *dst_pte, entry;
2099	struct page *ptepage;
2100	unsigned long addr;
2101	int cow;
2102	struct hstate *h = hstate_vma(vma);
2103	unsigned long sz = huge_page_size(h);
2104
2105	cow = (vma->vm_flags & (VM_SHARED | VM_MAYWRITE)) == VM_MAYWRITE;
2106
2107	for (addr = vma->vm_start; addr < vma->vm_end; addr += sz) {
2108		src_pte = huge_pte_offset(src, addr);
2109		if (!src_pte)
2110			continue;
2111		dst_pte = huge_pte_alloc(dst, addr, sz);
2112		if (!dst_pte)
2113			goto nomem;
2114
2115		/* If the pagetables are shared don't copy or take references */
2116		if (dst_pte == src_pte)
2117			continue;
2118
2119		spin_lock(&dst->page_table_lock);
2120		spin_lock_nested(&src->page_table_lock, SINGLE_DEPTH_NESTING);
2121		if (!huge_pte_none(huge_ptep_get(src_pte))) {
2122			if (cow)
2123				huge_ptep_set_wrprotect(src, addr, src_pte);
2124			entry = huge_ptep_get(src_pte);
2125			ptepage = pte_page(entry);
2126			get_page(ptepage);
2127			set_huge_pte_at(dst, addr, dst_pte, entry);
2128		}
2129		spin_unlock(&src->page_table_lock);
2130		spin_unlock(&dst->page_table_lock);
2131	}
2132	return 0;
2133
2134nomem:
2135	return -ENOMEM;
2136}
2137
2138void __unmap_hugepage_range(struct vm_area_struct *vma, unsigned long start,
2139			    unsigned long end, struct page *ref_page)
2140{
2141	struct mm_struct *mm = vma->vm_mm;
2142	unsigned long address;
2143	pte_t *ptep;
2144	pte_t pte;
2145	struct page *page;
2146	struct page *tmp;
2147	struct hstate *h = hstate_vma(vma);
2148	unsigned long sz = huge_page_size(h);
2149
2150	/*
2151	 * A page gathering list, protected by per file i_mmap_lock. The
2152	 * lock is used to avoid list corruption from multiple unmapping
2153	 * of the same page since we are using page->lru.
2154	 */
2155	LIST_HEAD(page_list);
2156
2157	WARN_ON(!is_vm_hugetlb_page(vma));
2158	BUG_ON(start & ~huge_page_mask(h));
2159	BUG_ON(end & ~huge_page_mask(h));
2160
2161	mmu_notifier_invalidate_range_start(mm, start, end);
2162	spin_lock(&mm->page_table_lock);
2163	for (address = start; address < end; address += sz) {
2164		ptep = huge_pte_offset(mm, address);
2165		if (!ptep)
2166			continue;
2167
2168		if (huge_pmd_unshare(mm, &address, ptep))
2169			continue;
2170
2171		/*
2172		 * If a reference page is supplied, it is because a specific
2173		 * page is being unmapped, not a range. Ensure the page we
2174		 * are about to unmap is the actual page of interest.
2175		 */
2176		if (ref_page) {
2177			pte = huge_ptep_get(ptep);
2178			if (huge_pte_none(pte))
2179				continue;
2180			page = pte_page(pte);
2181			if (page != ref_page)
2182				continue;
2183
2184			/*
2185			 * Mark the VMA as having unmapped its page so that
2186			 * future faults in this VMA will fail rather than
2187			 * looking like data was lost
2188			 */
2189			set_vma_resv_flags(vma, HPAGE_RESV_UNMAPPED);
2190		}
2191
2192		pte = huge_ptep_get_and_clear(mm, address, ptep);
2193		if (huge_pte_none(pte))
2194			continue;
2195
2196		page = pte_page(pte);
2197		if (pte_dirty(pte))
2198			set_page_dirty(page);
2199		list_add(&page->lru, &page_list);
2200	}
2201	spin_unlock(&mm->page_table_lock);
2202	flush_tlb_range(vma, start, end);
2203	mmu_notifier_invalidate_range_end(mm, start, end);
2204	list_for_each_entry_safe(page, tmp, &page_list, lru) {
2205		list_del(&page->lru);
2206		put_page(page);
2207	}
2208}
2209
2210void unmap_hugepage_range(struct vm_area_struct *vma, unsigned long start,
2211			  unsigned long end, struct page *ref_page)
2212{
2213	spin_lock(&vma->vm_file->f_mapping->i_mmap_lock);
2214	__unmap_hugepage_range(vma, start, end, ref_page);
2215	spin_unlock(&vma->vm_file->f_mapping->i_mmap_lock);
2216}
2217
2218/*
2219 * This is called when the original mapper is failing to COW a MAP_PRIVATE
2220 * mappping it owns the reserve page for. The intention is to unmap the page
2221 * from other VMAs and let the children be SIGKILLed if they are faulting the
2222 * same region.
2223 */
2224static int unmap_ref_private(struct mm_struct *mm, struct vm_area_struct *vma,
2225				struct page *page, unsigned long address)
2226{
2227	struct hstate *h = hstate_vma(vma);
2228	struct vm_area_struct *iter_vma;
2229	struct address_space *mapping;
2230	struct prio_tree_iter iter;
2231	pgoff_t pgoff;
2232
2233	/*
2234	 * vm_pgoff is in PAGE_SIZE units, hence the different calculation
2235	 * from page cache lookup which is in HPAGE_SIZE units.
2236	 */
2237	address = address & huge_page_mask(h);
2238	pgoff = ((address - vma->vm_start) >> PAGE_SHIFT)
2239		+ (vma->vm_pgoff >> PAGE_SHIFT);
2240	mapping = (struct address_space *)page_private(page);
2241
2242	/*
2243	 * Take the mapping lock for the duration of the table walk. As
2244	 * this mapping should be shared between all the VMAs,
2245	 * __unmap_hugepage_range() is called as the lock is already held
2246	 */
2247	spin_lock(&mapping->i_mmap_lock);
2248	vma_prio_tree_foreach(iter_vma, &iter, &mapping->i_mmap, pgoff, pgoff) {
2249		/* Do not unmap the current VMA */
2250		if (iter_vma == vma)
2251			continue;
2252
2253		/*
2254		 * Unmap the page from other VMAs without their own reserves.
2255		 * They get marked to be SIGKILLed if they fault in these
2256		 * areas. This is because a future no-page fault on this VMA
2257		 * could insert a zeroed page instead of the data existing
2258		 * from the time of fork. This would look like data corruption
2259		 */
2260		if (!is_vma_resv_set(iter_vma, HPAGE_RESV_OWNER))
2261			__unmap_hugepage_range(iter_vma,
2262				address, address + huge_page_size(h),
2263				page);
2264	}
2265	spin_unlock(&mapping->i_mmap_lock);
2266
2267	return 1;
2268}
2269
2270static int hugetlb_cow(struct mm_struct *mm, struct vm_area_struct *vma,
2271			unsigned long address, pte_t *ptep, pte_t pte,
2272			struct page *pagecache_page)
2273{
2274	struct hstate *h = hstate_vma(vma);
2275	struct page *old_page, *new_page;
2276	int avoidcopy;
2277	int outside_reserve = 0;
2278
2279	old_page = pte_page(pte);
2280
2281retry_avoidcopy:
2282	/* If no-one else is actually using this page, avoid the copy
2283	 * and just make the page writable */
2284	avoidcopy = (page_count(old_page) == 1);
2285	if (avoidcopy) {
2286		set_huge_ptep_writable(vma, address, ptep);
2287		return 0;
2288	}
2289
2290	/*
2291	 * If the process that created a MAP_PRIVATE mapping is about to
2292	 * perform a COW due to a shared page count, attempt to satisfy
2293	 * the allocation without using the existing reserves. The pagecache
2294	 * page is used to determine if the reserve at this address was
2295	 * consumed or not. If reserves were used, a partial faulted mapping
2296	 * at the time of fork() could consume its reserves on COW instead
2297	 * of the full address range.
2298	 */
2299	if (!(vma->vm_flags & VM_MAYSHARE) &&
2300			is_vma_resv_set(vma, HPAGE_RESV_OWNER) &&
2301			old_page != pagecache_page)
2302		outside_reserve = 1;
2303
2304	page_cache_get(old_page);
2305
2306	/* Drop page_table_lock as buddy allocator may be called */
2307	spin_unlock(&mm->page_table_lock);
2308	new_page = alloc_huge_page(vma, address, outside_reserve);
2309
2310	if (IS_ERR(new_page)) {
2311		page_cache_release(old_page);
2312
2313		/*
2314		 * If a process owning a MAP_PRIVATE mapping fails to COW,
2315		 * it is due to references held by a child and an insufficient
2316		 * huge page pool. To guarantee the original mappers
2317		 * reliability, unmap the page from child processes. The child
2318		 * may get SIGKILLed if it later faults.
2319		 */
2320		if (outside_reserve) {
2321			BUG_ON(huge_pte_none(pte));
2322			if (unmap_ref_private(mm, vma, old_page, address)) {
2323				BUG_ON(page_count(old_page) != 1);
2324				BUG_ON(huge_pte_none(pte));
2325				spin_lock(&mm->page_table_lock);
2326				goto retry_avoidcopy;
2327			}
2328			WARN_ON_ONCE(1);
2329		}
2330
2331		/* Caller expects lock to be held */
2332		spin_lock(&mm->page_table_lock);
2333		return -PTR_ERR(new_page);
2334	}
2335
2336	copy_huge_page(new_page, old_page, address, vma);
2337	__SetPageUptodate(new_page);
2338
2339	/*
2340	 * Retake the page_table_lock to check for racing updates
2341	 * before the page tables are altered
2342	 */
2343	spin_lock(&mm->page_table_lock);
2344	ptep = huge_pte_offset(mm, address & huge_page_mask(h));
2345	if (likely(pte_same(huge_ptep_get(ptep), pte))) {
2346		/* Break COW */
2347		huge_ptep_clear_flush(vma, address, ptep);
2348		set_huge_pte_at(mm, address, ptep,
2349				make_huge_pte(vma, new_page, 1));
2350		/* Make the old page be freed below */
2351		new_page = old_page;
2352	}
2353	page_cache_release(new_page);
2354	page_cache_release(old_page);
2355	return 0;
2356}
2357
2358/* Return the pagecache page at a given address within a VMA */
2359static struct page *hugetlbfs_pagecache_page(struct hstate *h,
2360			struct vm_area_struct *vma, unsigned long address)
2361{
2362	struct address_space *mapping;
2363	pgoff_t idx;
2364
2365	mapping = vma->vm_file->f_mapping;
2366	idx = vma_hugecache_offset(h, vma, address);
2367
2368	return find_lock_page(mapping, idx);
2369}
2370
2371/*
2372 * Return whether there is a pagecache page to back given address within VMA.
2373 * Caller follow_hugetlb_page() holds page_table_lock so we cannot lock_page.
2374 */
2375static bool hugetlbfs_pagecache_present(struct hstate *h,
2376			struct vm_area_struct *vma, unsigned long address)
2377{
2378	struct address_space *mapping;
2379	pgoff_t idx;
2380	struct page *page;
2381
2382	mapping = vma->vm_file->f_mapping;
2383	idx = vma_hugecache_offset(h, vma, address);
2384
2385	page = find_get_page(mapping, idx);
2386	if (page)
2387		put_page(page);
2388	return page != NULL;
2389}
2390
2391static int hugetlb_no_page(struct mm_struct *mm, struct vm_area_struct *vma,
2392			unsigned long address, pte_t *ptep, unsigned int flags)
2393{
2394	struct hstate *h = hstate_vma(vma);
2395	int ret = VM_FAULT_SIGBUS;
2396	pgoff_t idx;
2397	unsigned long size;
2398	struct page *page;
2399	struct address_space *mapping;
2400	pte_t new_pte;
2401
2402	/*
2403	 * Currently, we are forced to kill the process in the event the
2404	 * original mapper has unmapped pages from the child due to a failed
2405	 * COW. Warn that such a situation has occured as it may not be obvious
2406	 */
2407	if (is_vma_resv_set(vma, HPAGE_RESV_UNMAPPED)) {
2408		printk(KERN_WARNING
2409			"PID %d killed due to inadequate hugepage pool\n",
2410			current->pid);
2411		return ret;
2412	}
2413
2414	mapping = vma->vm_file->f_mapping;
2415	idx = vma_hugecache_offset(h, vma, address);
2416
2417	/*
2418	 * Use page lock to guard against racing truncation
2419	 * before we get page_table_lock.
2420	 */
2421retry:
2422	page = find_lock_page(mapping, idx);
2423	if (!page) {
2424		size = i_size_read(mapping->host) >> huge_page_shift(h);
2425		if (idx >= size)
2426			goto out;
2427		page = alloc_huge_page(vma, address, 0);
2428		if (IS_ERR(page)) {
2429			ret = -PTR_ERR(page);
2430			goto out;
2431		}
2432		clear_huge_page(page, address, huge_page_size(h));
2433		__SetPageUptodate(page);
2434
2435		if (vma->vm_flags & VM_MAYSHARE) {
2436			int err;
2437			struct inode *inode = mapping->host;
2438
2439			err = add_to_page_cache(page, mapping, idx, GFP_KERNEL);
2440			if (err) {
2441				put_page(page);
2442				if (err == -EEXIST)
2443					goto retry;
2444				goto out;
2445			}
2446
2447			spin_lock(&inode->i_lock);
2448			inode->i_blocks += blocks_per_huge_page(h);
2449			spin_unlock(&inode->i_lock);
2450		} else
2451			lock_page(page);
2452	}
2453
2454	/*
2455	 * If we are going to COW a private mapping later, we examine the
2456	 * pending reservations for this page now. This will ensure that
2457	 * any allocations necessary to record that reservation occur outside
2458	 * the spinlock.
2459	 */
2460	if ((flags & FAULT_FLAG_WRITE) && !(vma->vm_flags & VM_SHARED))
2461		if (vma_needs_reservation(h, vma, address) < 0) {
2462			ret = VM_FAULT_OOM;
2463			goto backout_unlocked;
2464		}
2465
2466	spin_lock(&mm->page_table_lock);
2467	size = i_size_read(mapping->host) >> huge_page_shift(h);
2468	if (idx >= size)
2469		goto backout;
2470
2471	ret = 0;
2472	if (!huge_pte_none(huge_ptep_get(ptep)))
2473		goto backout;
2474
2475	new_pte = make_huge_pte(vma, page, ((vma->vm_flags & VM_WRITE)
2476				&& (vma->vm_flags & VM_SHARED)));
2477	set_huge_pte_at(mm, address, ptep, new_pte);
2478
2479	if ((flags & FAULT_FLAG_WRITE) && !(vma->vm_flags & VM_SHARED)) {
2480		/* Optimization, do the COW without a second fault */
2481		ret = hugetlb_cow(mm, vma, address, ptep, new_pte, page);
2482	}
2483
2484	spin_unlock(&mm->page_table_lock);
2485	unlock_page(page);
2486out:
2487	return ret;
2488
2489backout:
2490	spin_unlock(&mm->page_table_lock);
2491backout_unlocked:
2492	unlock_page(page);
2493	put_page(page);
2494	goto out;
2495}
2496
2497int hugetlb_fault(struct mm_struct *mm, struct vm_area_struct *vma,
2498			unsigned long address, unsigned int flags)
2499{
2500	pte_t *ptep;
2501	pte_t entry;
2502	int ret;
2503	struct page *pagecache_page = NULL;
2504	static DEFINE_MUTEX(hugetlb_instantiation_mutex);
2505	struct hstate *h = hstate_vma(vma);
2506
2507	ptep = huge_pte_alloc(mm, address, huge_page_size(h));
2508	if (!ptep)
2509		return VM_FAULT_OOM;
2510
2511	/*
2512	 * Serialize hugepage allocation and instantiation, so that we don't
2513	 * get spurious allocation failures if two CPUs race to instantiate
2514	 * the same page in the page cache.
2515	 */
2516	mutex_lock(&hugetlb_instantiation_mutex);
2517	entry = huge_ptep_get(ptep);
2518	if (huge_pte_none(entry)) {
2519		ret = hugetlb_no_page(mm, vma, address, ptep, flags);
2520		goto out_mutex;
2521	}
2522
2523	ret = 0;
2524
2525	/*
2526	 * If we are going to COW the mapping later, we examine the pending
2527	 * reservations for this page now. This will ensure that any
2528	 * allocations necessary to record that reservation occur outside the
2529	 * spinlock. For private mappings, we also lookup the pagecache
2530	 * page now as it is used to determine if a reservation has been
2531	 * consumed.
2532	 */
2533	if ((flags & FAULT_FLAG_WRITE) && !pte_write(entry)) {
2534		if (vma_needs_reservation(h, vma, address) < 0) {
2535			ret = VM_FAULT_OOM;
2536			goto out_mutex;
2537		}
2538
2539		if (!(vma->vm_flags & VM_MAYSHARE))
2540			pagecache_page = hugetlbfs_pagecache_page(h,
2541								vma, address);
2542	}
2543
2544	spin_lock(&mm->page_table_lock);
2545	/* Check for a racing update before calling hugetlb_cow */
2546	if (unlikely(!pte_same(entry, huge_ptep_get(ptep))))
2547		goto out_page_table_lock;
2548
2549
2550	if (flags & FAULT_FLAG_WRITE) {
2551		if (!pte_write(entry)) {
2552			ret = hugetlb_cow(mm, vma, address, ptep, entry,
2553							pagecache_page);
2554			goto out_page_table_lock;
2555		}
2556		entry = pte_mkdirty(entry);
2557	}
2558	entry = pte_mkyoung(entry);
2559	if (huge_ptep_set_access_flags(vma, address, ptep, entry,
2560						flags & FAULT_FLAG_WRITE))
2561		update_mmu_cache(vma, address, entry);
2562
2563out_page_table_lock:
2564	spin_unlock(&mm->page_table_lock);
2565
2566	if (pagecache_page) {
2567		unlock_page(pagecache_page);
2568		put_page(pagecache_page);
2569	}
2570
2571out_mutex:
2572	mutex_unlock(&hugetlb_instantiation_mutex);
2573
2574	return ret;
2575}
2576
2577/* Can be overriden by architectures */
2578__attribute__((weak)) struct page *
2579follow_huge_pud(struct mm_struct *mm, unsigned long address,
2580	       pud_t *pud, int write)
2581{
2582	BUG();
2583	return NULL;
2584}
2585
2586int follow_hugetlb_page(struct mm_struct *mm, struct vm_area_struct *vma,
2587			struct page **pages, struct vm_area_struct **vmas,
2588			unsigned long *position, int *length, int i,
2589			unsigned int flags)
2590{
2591	unsigned long pfn_offset;
2592	unsigned long vaddr = *position;
2593	int remainder = *length;
2594	struct hstate *h = hstate_vma(vma);
2595
2596	spin_lock(&mm->page_table_lock);
2597	while (vaddr < vma->vm_end && remainder) {
2598		pte_t *pte;
2599		int absent;
2600		struct page *page;
2601
2602		/*
2603		 * Some archs (sparc64, sh*) have multiple pte_ts to
2604		 * each hugepage.  We have to make sure we get the
2605		 * first, for the page indexing below to work.
2606		 */
2607		pte = huge_pte_offset(mm, vaddr & huge_page_mask(h));
2608		absent = !pte || huge_pte_none(huge_ptep_get(pte));
2609
2610		/*
2611		 * When coredumping, it suits get_dump_page if we just return
2612		 * an error where there's an empty slot with no huge pagecache
2613		 * to back it.  This way, we avoid allocating a hugepage, and
2614		 * the sparse dumpfile avoids allocating disk blocks, but its
2615		 * huge holes still show up with zeroes where they need to be.
2616		 */
2617		if (absent && (flags & FOLL_DUMP) &&
2618		    !hugetlbfs_pagecache_present(h, vma, vaddr)) {
2619			remainder = 0;
2620			break;
2621		}
2622
2623		if (absent ||
2624		    ((flags & FOLL_WRITE) && !pte_write(huge_ptep_get(pte)))) {
2625			int ret;
2626
2627			spin_unlock(&mm->page_table_lock);
2628			ret = hugetlb_fault(mm, vma, vaddr,
2629				(flags & FOLL_WRITE) ? FAULT_FLAG_WRITE : 0);
2630			spin_lock(&mm->page_table_lock);
2631			if (!(ret & VM_FAULT_ERROR))
2632				continue;
2633
2634			remainder = 0;
2635			break;
2636		}
2637
2638		pfn_offset = (vaddr & ~huge_page_mask(h)) >> PAGE_SHIFT;
2639		page = pte_page(huge_ptep_get(pte));
2640same_page:
2641		if (pages) {
2642			pages[i] = mem_map_offset(page, pfn_offset);
2643			get_page(pages[i]);
2644		}
2645
2646		if (vmas)
2647			vmas[i] = vma;
2648
2649		vaddr += PAGE_SIZE;
2650		++pfn_offset;
2651		--remainder;
2652		++i;
2653		if (vaddr < vma->vm_end && remainder &&
2654				pfn_offset < pages_per_huge_page(h)) {
2655			/*
2656			 * We use pfn_offset to avoid touching the pageframes
2657			 * of this compound page.
2658			 */
2659			goto same_page;
2660		}
2661	}
2662	spin_unlock(&mm->page_table_lock);
2663	*length = remainder;
2664	*position = vaddr;
2665
2666	return i ? i : -EFAULT;
2667}
2668
2669void hugetlb_change_protection(struct vm_area_struct *vma,
2670		unsigned long address, unsigned long end, pgprot_t newprot)
2671{
2672	struct mm_struct *mm = vma->vm_mm;
2673	unsigned long start = address;
2674	pte_t *ptep;
2675	pte_t pte;
2676	struct hstate *h = hstate_vma(vma);
2677
2678	BUG_ON(address >= end);
2679	flush_cache_range(vma, address, end);
2680
2681	spin_lock(&vma->vm_file->f_mapping->i_mmap_lock);
2682	spin_lock(&mm->page_table_lock);
2683	for (; address < end; address += huge_page_size(h)) {
2684		ptep = huge_pte_offset(mm, address);
2685		if (!ptep)
2686			continue;
2687		if (huge_pmd_unshare(mm, &address, ptep))
2688			continue;
2689		if (!huge_pte_none(huge_ptep_get(ptep))) {
2690			pte = huge_ptep_get_and_clear(mm, address, ptep);
2691			pte = pte_mkhuge(pte_modify(pte, newprot));
2692			set_huge_pte_at(mm, address, ptep, pte);
2693		}
2694	}
2695	spin_unlock(&mm->page_table_lock);
2696	spin_unlock(&vma->vm_file->f_mapping->i_mmap_lock);
2697
2698	flush_tlb_range(vma, start, end);
2699}
2700
2701int hugetlb_reserve_pages(struct inode *inode,
2702					long from, long to,
2703					struct vm_area_struct *vma,
2704					int acctflag)
2705{
2706	long ret, chg;
2707	struct hstate *h = hstate_inode(inode);
2708
2709	/*
2710	 * Only apply hugepage reservation if asked. At fault time, an
2711	 * attempt will be made for VM_NORESERVE to allocate a page
2712	 * and filesystem quota without using reserves
2713	 */
2714	if (acctflag & VM_NORESERVE)
2715		return 0;
2716
2717	/*
2718	 * Shared mappings base their reservation on the number of pages that
2719	 * are already allocated on behalf of the file. Private mappings need
2720	 * to reserve the full area even if read-only as mprotect() may be
2721	 * called to make the mapping read-write. Assume !vma is a shm mapping
2722	 */
2723	if (!vma || vma->vm_flags & VM_MAYSHARE)
2724		chg = region_chg(&inode->i_mapping->private_list, from, to);
2725	else {
2726		struct resv_map *resv_map = resv_map_alloc();
2727		if (!resv_map)
2728			return -ENOMEM;
2729
2730		chg = to - from;
2731
2732		set_vma_resv_map(vma, resv_map);
2733		set_vma_resv_flags(vma, HPAGE_RESV_OWNER);
2734	}
2735
2736	if (chg < 0)
2737		return chg;
2738
2739	/* There must be enough filesystem quota for the mapping */
2740	if (hugetlb_get_quota(inode->i_mapping, chg))
2741		return -ENOSPC;
2742
2743	/*
2744	 * Check enough hugepages are available for the reservation.
2745	 * Hand back the quota if there are not
2746	 */
2747	ret = hugetlb_acct_memory(h, chg);
2748	if (ret < 0) {
2749		hugetlb_put_quota(inode->i_mapping, chg);
2750		return ret;
2751	}
2752
2753	/*
2754	 * Account for the reservations made. Shared mappings record regions
2755	 * that have reservations as they are shared by multiple VMAs.
2756	 * When the last VMA disappears, the region map says how much
2757	 * the reservation was and the page cache tells how much of
2758	 * the reservation was consumed. Private mappings are per-VMA and
2759	 * only the consumed reservations are tracked. When the VMA
2760	 * disappears, the original reservation is the VMA size and the
2761	 * consumed reservations are stored in the map. Hence, nothing
2762	 * else has to be done for private mappings here
2763	 */
2764	if (!vma || vma->vm_flags & VM_MAYSHARE)
2765		region_add(&inode->i_mapping->private_list, from, to);
2766	return 0;
2767}
2768
2769void hugetlb_unreserve_pages(struct inode *inode, long offset, long freed)
2770{
2771	struct hstate *h = hstate_inode(inode);
2772	long chg = region_truncate(&inode->i_mapping->private_list, offset);
2773
2774	spin_lock(&inode->i_lock);
2775	inode->i_blocks -= (blocks_per_huge_page(h) * freed);
2776	spin_unlock(&inode->i_lock);
2777
2778	hugetlb_put_quota(inode->i_mapping, (chg - freed));
2779	hugetlb_acct_memory(h, -(chg - freed));
2780}
2781