hugetlb.c revision 19fc3f0acde32636529969570055c7e2a744787c
1/*
2 * Generic hugetlb support.
3 * (C) William Irwin, April 2004
4 */
5#include <linux/gfp.h>
6#include <linux/list.h>
7#include <linux/init.h>
8#include <linux/module.h>
9#include <linux/mm.h>
10#include <linux/sysctl.h>
11#include <linux/highmem.h>
12#include <linux/nodemask.h>
13#include <linux/pagemap.h>
14#include <linux/mempolicy.h>
15#include <linux/cpuset.h>
16#include <linux/mutex.h>
17
18#include <asm/page.h>
19#include <asm/pgtable.h>
20
21#include <linux/hugetlb.h>
22#include "internal.h"
23
24const unsigned long hugetlb_zero = 0, hugetlb_infinity = ~0UL;
25static unsigned long nr_huge_pages, free_huge_pages, resv_huge_pages;
26static unsigned long surplus_huge_pages;
27static unsigned long nr_overcommit_huge_pages;
28unsigned long max_huge_pages;
29unsigned long sysctl_overcommit_huge_pages;
30static struct list_head hugepage_freelists[MAX_NUMNODES];
31static unsigned int nr_huge_pages_node[MAX_NUMNODES];
32static unsigned int free_huge_pages_node[MAX_NUMNODES];
33static unsigned int surplus_huge_pages_node[MAX_NUMNODES];
34static gfp_t htlb_alloc_mask = GFP_HIGHUSER;
35unsigned long hugepages_treat_as_movable;
36static int hugetlb_next_nid;
37
38/*
39 * Protects updates to hugepage_freelists, nr_huge_pages, and free_huge_pages
40 */
41static DEFINE_SPINLOCK(hugetlb_lock);
42
43static void clear_huge_page(struct page *page, unsigned long addr)
44{
45	int i;
46
47	might_sleep();
48	for (i = 0; i < (HPAGE_SIZE/PAGE_SIZE); i++) {
49		cond_resched();
50		clear_user_highpage(page + i, addr + i * PAGE_SIZE);
51	}
52}
53
54static void copy_huge_page(struct page *dst, struct page *src,
55			   unsigned long addr, struct vm_area_struct *vma)
56{
57	int i;
58
59	might_sleep();
60	for (i = 0; i < HPAGE_SIZE/PAGE_SIZE; i++) {
61		cond_resched();
62		copy_user_highpage(dst + i, src + i, addr + i*PAGE_SIZE, vma);
63	}
64}
65
66static void enqueue_huge_page(struct page *page)
67{
68	int nid = page_to_nid(page);
69	list_add(&page->lru, &hugepage_freelists[nid]);
70	free_huge_pages++;
71	free_huge_pages_node[nid]++;
72}
73
74static struct page *dequeue_huge_page(void)
75{
76	int nid;
77	struct page *page = NULL;
78
79	for (nid = 0; nid < MAX_NUMNODES; ++nid) {
80		if (!list_empty(&hugepage_freelists[nid])) {
81			page = list_entry(hugepage_freelists[nid].next,
82					  struct page, lru);
83			list_del(&page->lru);
84			free_huge_pages--;
85			free_huge_pages_node[nid]--;
86			break;
87		}
88	}
89	return page;
90}
91
92static struct page *dequeue_huge_page_vma(struct vm_area_struct *vma,
93				unsigned long address)
94{
95	int nid;
96	struct page *page = NULL;
97	struct mempolicy *mpol;
98	nodemask_t *nodemask;
99	struct zonelist *zonelist = huge_zonelist(vma, address,
100					htlb_alloc_mask, &mpol, &nodemask);
101	struct zone *zone;
102	struct zoneref *z;
103
104	for_each_zone_zonelist_nodemask(zone, z, zonelist,
105						MAX_NR_ZONES - 1, nodemask) {
106		nid = zone_to_nid(zone);
107		if (cpuset_zone_allowed_softwall(zone, htlb_alloc_mask) &&
108		    !list_empty(&hugepage_freelists[nid])) {
109			page = list_entry(hugepage_freelists[nid].next,
110					  struct page, lru);
111			list_del(&page->lru);
112			free_huge_pages--;
113			free_huge_pages_node[nid]--;
114			if (vma && vma->vm_flags & VM_MAYSHARE)
115				resv_huge_pages--;
116			break;
117		}
118	}
119	mpol_free(mpol);	/* unref if mpol !NULL */
120	return page;
121}
122
123static void update_and_free_page(struct page *page)
124{
125	int i;
126	nr_huge_pages--;
127	nr_huge_pages_node[page_to_nid(page)]--;
128	for (i = 0; i < (HPAGE_SIZE / PAGE_SIZE); i++) {
129		page[i].flags &= ~(1 << PG_locked | 1 << PG_error | 1 << PG_referenced |
130				1 << PG_dirty | 1 << PG_active | 1 << PG_reserved |
131				1 << PG_private | 1<< PG_writeback);
132	}
133	set_compound_page_dtor(page, NULL);
134	set_page_refcounted(page);
135	__free_pages(page, HUGETLB_PAGE_ORDER);
136}
137
138static void free_huge_page(struct page *page)
139{
140	int nid = page_to_nid(page);
141	struct address_space *mapping;
142
143	mapping = (struct address_space *) page_private(page);
144	set_page_private(page, 0);
145	BUG_ON(page_count(page));
146	INIT_LIST_HEAD(&page->lru);
147
148	spin_lock(&hugetlb_lock);
149	if (surplus_huge_pages_node[nid]) {
150		update_and_free_page(page);
151		surplus_huge_pages--;
152		surplus_huge_pages_node[nid]--;
153	} else {
154		enqueue_huge_page(page);
155	}
156	spin_unlock(&hugetlb_lock);
157	if (mapping)
158		hugetlb_put_quota(mapping, 1);
159}
160
161/*
162 * Increment or decrement surplus_huge_pages.  Keep node-specific counters
163 * balanced by operating on them in a round-robin fashion.
164 * Returns 1 if an adjustment was made.
165 */
166static int adjust_pool_surplus(int delta)
167{
168	static int prev_nid;
169	int nid = prev_nid;
170	int ret = 0;
171
172	VM_BUG_ON(delta != -1 && delta != 1);
173	do {
174		nid = next_node(nid, node_online_map);
175		if (nid == MAX_NUMNODES)
176			nid = first_node(node_online_map);
177
178		/* To shrink on this node, there must be a surplus page */
179		if (delta < 0 && !surplus_huge_pages_node[nid])
180			continue;
181		/* Surplus cannot exceed the total number of pages */
182		if (delta > 0 && surplus_huge_pages_node[nid] >=
183						nr_huge_pages_node[nid])
184			continue;
185
186		surplus_huge_pages += delta;
187		surplus_huge_pages_node[nid] += delta;
188		ret = 1;
189		break;
190	} while (nid != prev_nid);
191
192	prev_nid = nid;
193	return ret;
194}
195
196static struct page *alloc_fresh_huge_page_node(int nid)
197{
198	struct page *page;
199
200	page = alloc_pages_node(nid,
201		htlb_alloc_mask|__GFP_COMP|__GFP_THISNODE|__GFP_NOWARN,
202		HUGETLB_PAGE_ORDER);
203	if (page) {
204		set_compound_page_dtor(page, free_huge_page);
205		spin_lock(&hugetlb_lock);
206		nr_huge_pages++;
207		nr_huge_pages_node[nid]++;
208		spin_unlock(&hugetlb_lock);
209		put_page(page); /* free it into the hugepage allocator */
210	}
211
212	return page;
213}
214
215static int alloc_fresh_huge_page(void)
216{
217	struct page *page;
218	int start_nid;
219	int next_nid;
220	int ret = 0;
221
222	start_nid = hugetlb_next_nid;
223
224	do {
225		page = alloc_fresh_huge_page_node(hugetlb_next_nid);
226		if (page)
227			ret = 1;
228		/*
229		 * Use a helper variable to find the next node and then
230		 * copy it back to hugetlb_next_nid afterwards:
231		 * otherwise there's a window in which a racer might
232		 * pass invalid nid MAX_NUMNODES to alloc_pages_node.
233		 * But we don't need to use a spin_lock here: it really
234		 * doesn't matter if occasionally a racer chooses the
235		 * same nid as we do.  Move nid forward in the mask even
236		 * if we just successfully allocated a hugepage so that
237		 * the next caller gets hugepages on the next node.
238		 */
239		next_nid = next_node(hugetlb_next_nid, node_online_map);
240		if (next_nid == MAX_NUMNODES)
241			next_nid = first_node(node_online_map);
242		hugetlb_next_nid = next_nid;
243	} while (!page && hugetlb_next_nid != start_nid);
244
245	return ret;
246}
247
248static struct page *alloc_buddy_huge_page(struct vm_area_struct *vma,
249						unsigned long address)
250{
251	struct page *page;
252	unsigned int nid;
253
254	/*
255	 * Assume we will successfully allocate the surplus page to
256	 * prevent racing processes from causing the surplus to exceed
257	 * overcommit
258	 *
259	 * This however introduces a different race, where a process B
260	 * tries to grow the static hugepage pool while alloc_pages() is
261	 * called by process A. B will only examine the per-node
262	 * counters in determining if surplus huge pages can be
263	 * converted to normal huge pages in adjust_pool_surplus(). A
264	 * won't be able to increment the per-node counter, until the
265	 * lock is dropped by B, but B doesn't drop hugetlb_lock until
266	 * no more huge pages can be converted from surplus to normal
267	 * state (and doesn't try to convert again). Thus, we have a
268	 * case where a surplus huge page exists, the pool is grown, and
269	 * the surplus huge page still exists after, even though it
270	 * should just have been converted to a normal huge page. This
271	 * does not leak memory, though, as the hugepage will be freed
272	 * once it is out of use. It also does not allow the counters to
273	 * go out of whack in adjust_pool_surplus() as we don't modify
274	 * the node values until we've gotten the hugepage and only the
275	 * per-node value is checked there.
276	 */
277	spin_lock(&hugetlb_lock);
278	if (surplus_huge_pages >= nr_overcommit_huge_pages) {
279		spin_unlock(&hugetlb_lock);
280		return NULL;
281	} else {
282		nr_huge_pages++;
283		surplus_huge_pages++;
284	}
285	spin_unlock(&hugetlb_lock);
286
287	page = alloc_pages(htlb_alloc_mask|__GFP_COMP|__GFP_NOWARN,
288					HUGETLB_PAGE_ORDER);
289
290	spin_lock(&hugetlb_lock);
291	if (page) {
292		/*
293		 * This page is now managed by the hugetlb allocator and has
294		 * no users -- drop the buddy allocator's reference.
295		 */
296		put_page_testzero(page);
297		VM_BUG_ON(page_count(page));
298		nid = page_to_nid(page);
299		set_compound_page_dtor(page, free_huge_page);
300		/*
301		 * We incremented the global counters already
302		 */
303		nr_huge_pages_node[nid]++;
304		surplus_huge_pages_node[nid]++;
305	} else {
306		nr_huge_pages--;
307		surplus_huge_pages--;
308	}
309	spin_unlock(&hugetlb_lock);
310
311	return page;
312}
313
314/*
315 * Increase the hugetlb pool such that it can accomodate a reservation
316 * of size 'delta'.
317 */
318static int gather_surplus_pages(int delta)
319{
320	struct list_head surplus_list;
321	struct page *page, *tmp;
322	int ret, i;
323	int needed, allocated;
324
325	needed = (resv_huge_pages + delta) - free_huge_pages;
326	if (needed <= 0) {
327		resv_huge_pages += delta;
328		return 0;
329	}
330
331	allocated = 0;
332	INIT_LIST_HEAD(&surplus_list);
333
334	ret = -ENOMEM;
335retry:
336	spin_unlock(&hugetlb_lock);
337	for (i = 0; i < needed; i++) {
338		page = alloc_buddy_huge_page(NULL, 0);
339		if (!page) {
340			/*
341			 * We were not able to allocate enough pages to
342			 * satisfy the entire reservation so we free what
343			 * we've allocated so far.
344			 */
345			spin_lock(&hugetlb_lock);
346			needed = 0;
347			goto free;
348		}
349
350		list_add(&page->lru, &surplus_list);
351	}
352	allocated += needed;
353
354	/*
355	 * After retaking hugetlb_lock, we need to recalculate 'needed'
356	 * because either resv_huge_pages or free_huge_pages may have changed.
357	 */
358	spin_lock(&hugetlb_lock);
359	needed = (resv_huge_pages + delta) - (free_huge_pages + allocated);
360	if (needed > 0)
361		goto retry;
362
363	/*
364	 * The surplus_list now contains _at_least_ the number of extra pages
365	 * needed to accomodate the reservation.  Add the appropriate number
366	 * of pages to the hugetlb pool and free the extras back to the buddy
367	 * allocator.  Commit the entire reservation here to prevent another
368	 * process from stealing the pages as they are added to the pool but
369	 * before they are reserved.
370	 */
371	needed += allocated;
372	resv_huge_pages += delta;
373	ret = 0;
374free:
375	/* Free the needed pages to the hugetlb pool */
376	list_for_each_entry_safe(page, tmp, &surplus_list, lru) {
377		if ((--needed) < 0)
378			break;
379		list_del(&page->lru);
380		enqueue_huge_page(page);
381	}
382
383	/* Free unnecessary surplus pages to the buddy allocator */
384	if (!list_empty(&surplus_list)) {
385		spin_unlock(&hugetlb_lock);
386		list_for_each_entry_safe(page, tmp, &surplus_list, lru) {
387			list_del(&page->lru);
388			/*
389			 * The page has a reference count of zero already, so
390			 * call free_huge_page directly instead of using
391			 * put_page.  This must be done with hugetlb_lock
392			 * unlocked which is safe because free_huge_page takes
393			 * hugetlb_lock before deciding how to free the page.
394			 */
395			free_huge_page(page);
396		}
397		spin_lock(&hugetlb_lock);
398	}
399
400	return ret;
401}
402
403/*
404 * When releasing a hugetlb pool reservation, any surplus pages that were
405 * allocated to satisfy the reservation must be explicitly freed if they were
406 * never used.
407 */
408static void return_unused_surplus_pages(unsigned long unused_resv_pages)
409{
410	static int nid = -1;
411	struct page *page;
412	unsigned long nr_pages;
413
414	/*
415	 * We want to release as many surplus pages as possible, spread
416	 * evenly across all nodes. Iterate across all nodes until we
417	 * can no longer free unreserved surplus pages. This occurs when
418	 * the nodes with surplus pages have no free pages.
419	 */
420	unsigned long remaining_iterations = num_online_nodes();
421
422	/* Uncommit the reservation */
423	resv_huge_pages -= unused_resv_pages;
424
425	nr_pages = min(unused_resv_pages, surplus_huge_pages);
426
427	while (remaining_iterations-- && nr_pages) {
428		nid = next_node(nid, node_online_map);
429		if (nid == MAX_NUMNODES)
430			nid = first_node(node_online_map);
431
432		if (!surplus_huge_pages_node[nid])
433			continue;
434
435		if (!list_empty(&hugepage_freelists[nid])) {
436			page = list_entry(hugepage_freelists[nid].next,
437					  struct page, lru);
438			list_del(&page->lru);
439			update_and_free_page(page);
440			free_huge_pages--;
441			free_huge_pages_node[nid]--;
442			surplus_huge_pages--;
443			surplus_huge_pages_node[nid]--;
444			nr_pages--;
445			remaining_iterations = num_online_nodes();
446		}
447	}
448}
449
450
451static struct page *alloc_huge_page_shared(struct vm_area_struct *vma,
452						unsigned long addr)
453{
454	struct page *page;
455
456	spin_lock(&hugetlb_lock);
457	page = dequeue_huge_page_vma(vma, addr);
458	spin_unlock(&hugetlb_lock);
459	return page ? page : ERR_PTR(-VM_FAULT_OOM);
460}
461
462static struct page *alloc_huge_page_private(struct vm_area_struct *vma,
463						unsigned long addr)
464{
465	struct page *page = NULL;
466
467	if (hugetlb_get_quota(vma->vm_file->f_mapping, 1))
468		return ERR_PTR(-VM_FAULT_SIGBUS);
469
470	spin_lock(&hugetlb_lock);
471	if (free_huge_pages > resv_huge_pages)
472		page = dequeue_huge_page_vma(vma, addr);
473	spin_unlock(&hugetlb_lock);
474	if (!page) {
475		page = alloc_buddy_huge_page(vma, addr);
476		if (!page) {
477			hugetlb_put_quota(vma->vm_file->f_mapping, 1);
478			return ERR_PTR(-VM_FAULT_OOM);
479		}
480	}
481	return page;
482}
483
484static struct page *alloc_huge_page(struct vm_area_struct *vma,
485				    unsigned long addr)
486{
487	struct page *page;
488	struct address_space *mapping = vma->vm_file->f_mapping;
489
490	if (vma->vm_flags & VM_MAYSHARE)
491		page = alloc_huge_page_shared(vma, addr);
492	else
493		page = alloc_huge_page_private(vma, addr);
494
495	if (!IS_ERR(page)) {
496		set_page_refcounted(page);
497		set_page_private(page, (unsigned long) mapping);
498	}
499	return page;
500}
501
502static int __init hugetlb_init(void)
503{
504	unsigned long i;
505
506	if (HPAGE_SHIFT == 0)
507		return 0;
508
509	for (i = 0; i < MAX_NUMNODES; ++i)
510		INIT_LIST_HEAD(&hugepage_freelists[i]);
511
512	hugetlb_next_nid = first_node(node_online_map);
513
514	for (i = 0; i < max_huge_pages; ++i) {
515		if (!alloc_fresh_huge_page())
516			break;
517	}
518	max_huge_pages = free_huge_pages = nr_huge_pages = i;
519	printk("Total HugeTLB memory allocated, %ld\n", free_huge_pages);
520	return 0;
521}
522module_init(hugetlb_init);
523
524static int __init hugetlb_setup(char *s)
525{
526	if (sscanf(s, "%lu", &max_huge_pages) <= 0)
527		max_huge_pages = 0;
528	return 1;
529}
530__setup("hugepages=", hugetlb_setup);
531
532static unsigned int cpuset_mems_nr(unsigned int *array)
533{
534	int node;
535	unsigned int nr = 0;
536
537	for_each_node_mask(node, cpuset_current_mems_allowed)
538		nr += array[node];
539
540	return nr;
541}
542
543#ifdef CONFIG_SYSCTL
544#ifdef CONFIG_HIGHMEM
545static void try_to_free_low(unsigned long count)
546{
547	int i;
548
549	for (i = 0; i < MAX_NUMNODES; ++i) {
550		struct page *page, *next;
551		list_for_each_entry_safe(page, next, &hugepage_freelists[i], lru) {
552			if (count >= nr_huge_pages)
553				return;
554			if (PageHighMem(page))
555				continue;
556			list_del(&page->lru);
557			update_and_free_page(page);
558			free_huge_pages--;
559			free_huge_pages_node[page_to_nid(page)]--;
560		}
561	}
562}
563#else
564static inline void try_to_free_low(unsigned long count)
565{
566}
567#endif
568
569#define persistent_huge_pages (nr_huge_pages - surplus_huge_pages)
570static unsigned long set_max_huge_pages(unsigned long count)
571{
572	unsigned long min_count, ret;
573
574	/*
575	 * Increase the pool size
576	 * First take pages out of surplus state.  Then make up the
577	 * remaining difference by allocating fresh huge pages.
578	 *
579	 * We might race with alloc_buddy_huge_page() here and be unable
580	 * to convert a surplus huge page to a normal huge page. That is
581	 * not critical, though, it just means the overall size of the
582	 * pool might be one hugepage larger than it needs to be, but
583	 * within all the constraints specified by the sysctls.
584	 */
585	spin_lock(&hugetlb_lock);
586	while (surplus_huge_pages && count > persistent_huge_pages) {
587		if (!adjust_pool_surplus(-1))
588			break;
589	}
590
591	while (count > persistent_huge_pages) {
592		int ret;
593		/*
594		 * If this allocation races such that we no longer need the
595		 * page, free_huge_page will handle it by freeing the page
596		 * and reducing the surplus.
597		 */
598		spin_unlock(&hugetlb_lock);
599		ret = alloc_fresh_huge_page();
600		spin_lock(&hugetlb_lock);
601		if (!ret)
602			goto out;
603
604	}
605
606	/*
607	 * Decrease the pool size
608	 * First return free pages to the buddy allocator (being careful
609	 * to keep enough around to satisfy reservations).  Then place
610	 * pages into surplus state as needed so the pool will shrink
611	 * to the desired size as pages become free.
612	 *
613	 * By placing pages into the surplus state independent of the
614	 * overcommit value, we are allowing the surplus pool size to
615	 * exceed overcommit. There are few sane options here. Since
616	 * alloc_buddy_huge_page() is checking the global counter,
617	 * though, we'll note that we're not allowed to exceed surplus
618	 * and won't grow the pool anywhere else. Not until one of the
619	 * sysctls are changed, or the surplus pages go out of use.
620	 */
621	min_count = resv_huge_pages + nr_huge_pages - free_huge_pages;
622	min_count = max(count, min_count);
623	try_to_free_low(min_count);
624	while (min_count < persistent_huge_pages) {
625		struct page *page = dequeue_huge_page();
626		if (!page)
627			break;
628		update_and_free_page(page);
629	}
630	while (count < persistent_huge_pages) {
631		if (!adjust_pool_surplus(1))
632			break;
633	}
634out:
635	ret = persistent_huge_pages;
636	spin_unlock(&hugetlb_lock);
637	return ret;
638}
639
640int hugetlb_sysctl_handler(struct ctl_table *table, int write,
641			   struct file *file, void __user *buffer,
642			   size_t *length, loff_t *ppos)
643{
644	proc_doulongvec_minmax(table, write, file, buffer, length, ppos);
645	max_huge_pages = set_max_huge_pages(max_huge_pages);
646	return 0;
647}
648
649int hugetlb_treat_movable_handler(struct ctl_table *table, int write,
650			struct file *file, void __user *buffer,
651			size_t *length, loff_t *ppos)
652{
653	proc_dointvec(table, write, file, buffer, length, ppos);
654	if (hugepages_treat_as_movable)
655		htlb_alloc_mask = GFP_HIGHUSER_MOVABLE;
656	else
657		htlb_alloc_mask = GFP_HIGHUSER;
658	return 0;
659}
660
661int hugetlb_overcommit_handler(struct ctl_table *table, int write,
662			struct file *file, void __user *buffer,
663			size_t *length, loff_t *ppos)
664{
665	proc_doulongvec_minmax(table, write, file, buffer, length, ppos);
666	spin_lock(&hugetlb_lock);
667	nr_overcommit_huge_pages = sysctl_overcommit_huge_pages;
668	spin_unlock(&hugetlb_lock);
669	return 0;
670}
671
672#endif /* CONFIG_SYSCTL */
673
674int hugetlb_report_meminfo(char *buf)
675{
676	return sprintf(buf,
677			"HugePages_Total: %5lu\n"
678			"HugePages_Free:  %5lu\n"
679			"HugePages_Rsvd:  %5lu\n"
680			"HugePages_Surp:  %5lu\n"
681			"Hugepagesize:    %5lu kB\n",
682			nr_huge_pages,
683			free_huge_pages,
684			resv_huge_pages,
685			surplus_huge_pages,
686			HPAGE_SIZE/1024);
687}
688
689int hugetlb_report_node_meminfo(int nid, char *buf)
690{
691	return sprintf(buf,
692		"Node %d HugePages_Total: %5u\n"
693		"Node %d HugePages_Free:  %5u\n"
694		"Node %d HugePages_Surp:  %5u\n",
695		nid, nr_huge_pages_node[nid],
696		nid, free_huge_pages_node[nid],
697		nid, surplus_huge_pages_node[nid]);
698}
699
700/* Return the number pages of memory we physically have, in PAGE_SIZE units. */
701unsigned long hugetlb_total_pages(void)
702{
703	return nr_huge_pages * (HPAGE_SIZE / PAGE_SIZE);
704}
705
706/*
707 * We cannot handle pagefaults against hugetlb pages at all.  They cause
708 * handle_mm_fault() to try to instantiate regular-sized pages in the
709 * hugegpage VMA.  do_page_fault() is supposed to trap this, so BUG is we get
710 * this far.
711 */
712static int hugetlb_vm_op_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
713{
714	BUG();
715	return 0;
716}
717
718struct vm_operations_struct hugetlb_vm_ops = {
719	.fault = hugetlb_vm_op_fault,
720};
721
722static pte_t make_huge_pte(struct vm_area_struct *vma, struct page *page,
723				int writable)
724{
725	pte_t entry;
726
727	if (writable) {
728		entry =
729		    pte_mkwrite(pte_mkdirty(mk_pte(page, vma->vm_page_prot)));
730	} else {
731		entry = pte_wrprotect(mk_pte(page, vma->vm_page_prot));
732	}
733	entry = pte_mkyoung(entry);
734	entry = pte_mkhuge(entry);
735
736	return entry;
737}
738
739static void set_huge_ptep_writable(struct vm_area_struct *vma,
740				   unsigned long address, pte_t *ptep)
741{
742	pte_t entry;
743
744	entry = pte_mkwrite(pte_mkdirty(*ptep));
745	if (ptep_set_access_flags(vma, address, ptep, entry, 1)) {
746		update_mmu_cache(vma, address, entry);
747	}
748}
749
750
751int copy_hugetlb_page_range(struct mm_struct *dst, struct mm_struct *src,
752			    struct vm_area_struct *vma)
753{
754	pte_t *src_pte, *dst_pte, entry;
755	struct page *ptepage;
756	unsigned long addr;
757	int cow;
758
759	cow = (vma->vm_flags & (VM_SHARED | VM_MAYWRITE)) == VM_MAYWRITE;
760
761	for (addr = vma->vm_start; addr < vma->vm_end; addr += HPAGE_SIZE) {
762		src_pte = huge_pte_offset(src, addr);
763		if (!src_pte)
764			continue;
765		dst_pte = huge_pte_alloc(dst, addr);
766		if (!dst_pte)
767			goto nomem;
768
769		/* If the pagetables are shared don't copy or take references */
770		if (dst_pte == src_pte)
771			continue;
772
773		spin_lock(&dst->page_table_lock);
774		spin_lock(&src->page_table_lock);
775		if (!pte_none(*src_pte)) {
776			if (cow)
777				ptep_set_wrprotect(src, addr, src_pte);
778			entry = *src_pte;
779			ptepage = pte_page(entry);
780			get_page(ptepage);
781			set_huge_pte_at(dst, addr, dst_pte, entry);
782		}
783		spin_unlock(&src->page_table_lock);
784		spin_unlock(&dst->page_table_lock);
785	}
786	return 0;
787
788nomem:
789	return -ENOMEM;
790}
791
792void __unmap_hugepage_range(struct vm_area_struct *vma, unsigned long start,
793			    unsigned long end)
794{
795	struct mm_struct *mm = vma->vm_mm;
796	unsigned long address;
797	pte_t *ptep;
798	pte_t pte;
799	struct page *page;
800	struct page *tmp;
801	/*
802	 * A page gathering list, protected by per file i_mmap_lock. The
803	 * lock is used to avoid list corruption from multiple unmapping
804	 * of the same page since we are using page->lru.
805	 */
806	LIST_HEAD(page_list);
807
808	WARN_ON(!is_vm_hugetlb_page(vma));
809	BUG_ON(start & ~HPAGE_MASK);
810	BUG_ON(end & ~HPAGE_MASK);
811
812	spin_lock(&mm->page_table_lock);
813	for (address = start; address < end; address += HPAGE_SIZE) {
814		ptep = huge_pte_offset(mm, address);
815		if (!ptep)
816			continue;
817
818		if (huge_pmd_unshare(mm, &address, ptep))
819			continue;
820
821		pte = huge_ptep_get_and_clear(mm, address, ptep);
822		if (pte_none(pte))
823			continue;
824
825		page = pte_page(pte);
826		if (pte_dirty(pte))
827			set_page_dirty(page);
828		list_add(&page->lru, &page_list);
829	}
830	spin_unlock(&mm->page_table_lock);
831	flush_tlb_range(vma, start, end);
832	list_for_each_entry_safe(page, tmp, &page_list, lru) {
833		list_del(&page->lru);
834		put_page(page);
835	}
836}
837
838void unmap_hugepage_range(struct vm_area_struct *vma, unsigned long start,
839			  unsigned long end)
840{
841	/*
842	 * It is undesirable to test vma->vm_file as it should be non-null
843	 * for valid hugetlb area. However, vm_file will be NULL in the error
844	 * cleanup path of do_mmap_pgoff. When hugetlbfs ->mmap method fails,
845	 * do_mmap_pgoff() nullifies vma->vm_file before calling this function
846	 * to clean up. Since no pte has actually been setup, it is safe to
847	 * do nothing in this case.
848	 */
849	if (vma->vm_file) {
850		spin_lock(&vma->vm_file->f_mapping->i_mmap_lock);
851		__unmap_hugepage_range(vma, start, end);
852		spin_unlock(&vma->vm_file->f_mapping->i_mmap_lock);
853	}
854}
855
856static int hugetlb_cow(struct mm_struct *mm, struct vm_area_struct *vma,
857			unsigned long address, pte_t *ptep, pte_t pte)
858{
859	struct page *old_page, *new_page;
860	int avoidcopy;
861
862	old_page = pte_page(pte);
863
864	/* If no-one else is actually using this page, avoid the copy
865	 * and just make the page writable */
866	avoidcopy = (page_count(old_page) == 1);
867	if (avoidcopy) {
868		set_huge_ptep_writable(vma, address, ptep);
869		return 0;
870	}
871
872	page_cache_get(old_page);
873	new_page = alloc_huge_page(vma, address);
874
875	if (IS_ERR(new_page)) {
876		page_cache_release(old_page);
877		return -PTR_ERR(new_page);
878	}
879
880	spin_unlock(&mm->page_table_lock);
881	copy_huge_page(new_page, old_page, address, vma);
882	__SetPageUptodate(new_page);
883	spin_lock(&mm->page_table_lock);
884
885	ptep = huge_pte_offset(mm, address & HPAGE_MASK);
886	if (likely(pte_same(*ptep, pte))) {
887		/* Break COW */
888		set_huge_pte_at(mm, address, ptep,
889				make_huge_pte(vma, new_page, 1));
890		/* Make the old page be freed below */
891		new_page = old_page;
892	}
893	page_cache_release(new_page);
894	page_cache_release(old_page);
895	return 0;
896}
897
898static int hugetlb_no_page(struct mm_struct *mm, struct vm_area_struct *vma,
899			unsigned long address, pte_t *ptep, int write_access)
900{
901	int ret = VM_FAULT_SIGBUS;
902	unsigned long idx;
903	unsigned long size;
904	struct page *page;
905	struct address_space *mapping;
906	pte_t new_pte;
907
908	mapping = vma->vm_file->f_mapping;
909	idx = ((address - vma->vm_start) >> HPAGE_SHIFT)
910		+ (vma->vm_pgoff >> (HPAGE_SHIFT - PAGE_SHIFT));
911
912	/*
913	 * Use page lock to guard against racing truncation
914	 * before we get page_table_lock.
915	 */
916retry:
917	page = find_lock_page(mapping, idx);
918	if (!page) {
919		size = i_size_read(mapping->host) >> HPAGE_SHIFT;
920		if (idx >= size)
921			goto out;
922		page = alloc_huge_page(vma, address);
923		if (IS_ERR(page)) {
924			ret = -PTR_ERR(page);
925			goto out;
926		}
927		clear_huge_page(page, address);
928		__SetPageUptodate(page);
929
930		if (vma->vm_flags & VM_SHARED) {
931			int err;
932			struct inode *inode = mapping->host;
933
934			err = add_to_page_cache(page, mapping, idx, GFP_KERNEL);
935			if (err) {
936				put_page(page);
937				if (err == -EEXIST)
938					goto retry;
939				goto out;
940			}
941
942			spin_lock(&inode->i_lock);
943			inode->i_blocks += BLOCKS_PER_HUGEPAGE;
944			spin_unlock(&inode->i_lock);
945		} else
946			lock_page(page);
947	}
948
949	spin_lock(&mm->page_table_lock);
950	size = i_size_read(mapping->host) >> HPAGE_SHIFT;
951	if (idx >= size)
952		goto backout;
953
954	ret = 0;
955	if (!pte_none(*ptep))
956		goto backout;
957
958	new_pte = make_huge_pte(vma, page, ((vma->vm_flags & VM_WRITE)
959				&& (vma->vm_flags & VM_SHARED)));
960	set_huge_pte_at(mm, address, ptep, new_pte);
961
962	if (write_access && !(vma->vm_flags & VM_SHARED)) {
963		/* Optimization, do the COW without a second fault */
964		ret = hugetlb_cow(mm, vma, address, ptep, new_pte);
965	}
966
967	spin_unlock(&mm->page_table_lock);
968	unlock_page(page);
969out:
970	return ret;
971
972backout:
973	spin_unlock(&mm->page_table_lock);
974	unlock_page(page);
975	put_page(page);
976	goto out;
977}
978
979int hugetlb_fault(struct mm_struct *mm, struct vm_area_struct *vma,
980			unsigned long address, int write_access)
981{
982	pte_t *ptep;
983	pte_t entry;
984	int ret;
985	static DEFINE_MUTEX(hugetlb_instantiation_mutex);
986
987	ptep = huge_pte_alloc(mm, address);
988	if (!ptep)
989		return VM_FAULT_OOM;
990
991	/*
992	 * Serialize hugepage allocation and instantiation, so that we don't
993	 * get spurious allocation failures if two CPUs race to instantiate
994	 * the same page in the page cache.
995	 */
996	mutex_lock(&hugetlb_instantiation_mutex);
997	entry = *ptep;
998	if (pte_none(entry)) {
999		ret = hugetlb_no_page(mm, vma, address, ptep, write_access);
1000		mutex_unlock(&hugetlb_instantiation_mutex);
1001		return ret;
1002	}
1003
1004	ret = 0;
1005
1006	spin_lock(&mm->page_table_lock);
1007	/* Check for a racing update before calling hugetlb_cow */
1008	if (likely(pte_same(entry, *ptep)))
1009		if (write_access && !pte_write(entry))
1010			ret = hugetlb_cow(mm, vma, address, ptep, entry);
1011	spin_unlock(&mm->page_table_lock);
1012	mutex_unlock(&hugetlb_instantiation_mutex);
1013
1014	return ret;
1015}
1016
1017int follow_hugetlb_page(struct mm_struct *mm, struct vm_area_struct *vma,
1018			struct page **pages, struct vm_area_struct **vmas,
1019			unsigned long *position, int *length, int i,
1020			int write)
1021{
1022	unsigned long pfn_offset;
1023	unsigned long vaddr = *position;
1024	int remainder = *length;
1025
1026	spin_lock(&mm->page_table_lock);
1027	while (vaddr < vma->vm_end && remainder) {
1028		pte_t *pte;
1029		struct page *page;
1030
1031		/*
1032		 * Some archs (sparc64, sh*) have multiple pte_ts to
1033		 * each hugepage.  We have to make * sure we get the
1034		 * first, for the page indexing below to work.
1035		 */
1036		pte = huge_pte_offset(mm, vaddr & HPAGE_MASK);
1037
1038		if (!pte || pte_none(*pte) || (write && !pte_write(*pte))) {
1039			int ret;
1040
1041			spin_unlock(&mm->page_table_lock);
1042			ret = hugetlb_fault(mm, vma, vaddr, write);
1043			spin_lock(&mm->page_table_lock);
1044			if (!(ret & VM_FAULT_ERROR))
1045				continue;
1046
1047			remainder = 0;
1048			if (!i)
1049				i = -EFAULT;
1050			break;
1051		}
1052
1053		pfn_offset = (vaddr & ~HPAGE_MASK) >> PAGE_SHIFT;
1054		page = pte_page(*pte);
1055same_page:
1056		if (pages) {
1057			get_page(page);
1058			pages[i] = page + pfn_offset;
1059		}
1060
1061		if (vmas)
1062			vmas[i] = vma;
1063
1064		vaddr += PAGE_SIZE;
1065		++pfn_offset;
1066		--remainder;
1067		++i;
1068		if (vaddr < vma->vm_end && remainder &&
1069				pfn_offset < HPAGE_SIZE/PAGE_SIZE) {
1070			/*
1071			 * We use pfn_offset to avoid touching the pageframes
1072			 * of this compound page.
1073			 */
1074			goto same_page;
1075		}
1076	}
1077	spin_unlock(&mm->page_table_lock);
1078	*length = remainder;
1079	*position = vaddr;
1080
1081	return i;
1082}
1083
1084void hugetlb_change_protection(struct vm_area_struct *vma,
1085		unsigned long address, unsigned long end, pgprot_t newprot)
1086{
1087	struct mm_struct *mm = vma->vm_mm;
1088	unsigned long start = address;
1089	pte_t *ptep;
1090	pte_t pte;
1091
1092	BUG_ON(address >= end);
1093	flush_cache_range(vma, address, end);
1094
1095	spin_lock(&vma->vm_file->f_mapping->i_mmap_lock);
1096	spin_lock(&mm->page_table_lock);
1097	for (; address < end; address += HPAGE_SIZE) {
1098		ptep = huge_pte_offset(mm, address);
1099		if (!ptep)
1100			continue;
1101		if (huge_pmd_unshare(mm, &address, ptep))
1102			continue;
1103		if (!pte_none(*ptep)) {
1104			pte = huge_ptep_get_and_clear(mm, address, ptep);
1105			pte = pte_mkhuge(pte_modify(pte, newprot));
1106			set_huge_pte_at(mm, address, ptep, pte);
1107		}
1108	}
1109	spin_unlock(&mm->page_table_lock);
1110	spin_unlock(&vma->vm_file->f_mapping->i_mmap_lock);
1111
1112	flush_tlb_range(vma, start, end);
1113}
1114
1115struct file_region {
1116	struct list_head link;
1117	long from;
1118	long to;
1119};
1120
1121static long region_add(struct list_head *head, long f, long t)
1122{
1123	struct file_region *rg, *nrg, *trg;
1124
1125	/* Locate the region we are either in or before. */
1126	list_for_each_entry(rg, head, link)
1127		if (f <= rg->to)
1128			break;
1129
1130	/* Round our left edge to the current segment if it encloses us. */
1131	if (f > rg->from)
1132		f = rg->from;
1133
1134	/* Check for and consume any regions we now overlap with. */
1135	nrg = rg;
1136	list_for_each_entry_safe(rg, trg, rg->link.prev, link) {
1137		if (&rg->link == head)
1138			break;
1139		if (rg->from > t)
1140			break;
1141
1142		/* If this area reaches higher then extend our area to
1143		 * include it completely.  If this is not the first area
1144		 * which we intend to reuse, free it. */
1145		if (rg->to > t)
1146			t = rg->to;
1147		if (rg != nrg) {
1148			list_del(&rg->link);
1149			kfree(rg);
1150		}
1151	}
1152	nrg->from = f;
1153	nrg->to = t;
1154	return 0;
1155}
1156
1157static long region_chg(struct list_head *head, long f, long t)
1158{
1159	struct file_region *rg, *nrg;
1160	long chg = 0;
1161
1162	/* Locate the region we are before or in. */
1163	list_for_each_entry(rg, head, link)
1164		if (f <= rg->to)
1165			break;
1166
1167	/* If we are below the current region then a new region is required.
1168	 * Subtle, allocate a new region at the position but make it zero
1169	 * size such that we can guarantee to record the reservation. */
1170	if (&rg->link == head || t < rg->from) {
1171		nrg = kmalloc(sizeof(*nrg), GFP_KERNEL);
1172		if (!nrg)
1173			return -ENOMEM;
1174		nrg->from = f;
1175		nrg->to   = f;
1176		INIT_LIST_HEAD(&nrg->link);
1177		list_add(&nrg->link, rg->link.prev);
1178
1179		return t - f;
1180	}
1181
1182	/* Round our left edge to the current segment if it encloses us. */
1183	if (f > rg->from)
1184		f = rg->from;
1185	chg = t - f;
1186
1187	/* Check for and consume any regions we now overlap with. */
1188	list_for_each_entry(rg, rg->link.prev, link) {
1189		if (&rg->link == head)
1190			break;
1191		if (rg->from > t)
1192			return chg;
1193
1194		/* We overlap with this area, if it extends futher than
1195		 * us then we must extend ourselves.  Account for its
1196		 * existing reservation. */
1197		if (rg->to > t) {
1198			chg += rg->to - t;
1199			t = rg->to;
1200		}
1201		chg -= rg->to - rg->from;
1202	}
1203	return chg;
1204}
1205
1206static long region_truncate(struct list_head *head, long end)
1207{
1208	struct file_region *rg, *trg;
1209	long chg = 0;
1210
1211	/* Locate the region we are either in or before. */
1212	list_for_each_entry(rg, head, link)
1213		if (end <= rg->to)
1214			break;
1215	if (&rg->link == head)
1216		return 0;
1217
1218	/* If we are in the middle of a region then adjust it. */
1219	if (end > rg->from) {
1220		chg = rg->to - end;
1221		rg->to = end;
1222		rg = list_entry(rg->link.next, typeof(*rg), link);
1223	}
1224
1225	/* Drop any remaining regions. */
1226	list_for_each_entry_safe(rg, trg, rg->link.prev, link) {
1227		if (&rg->link == head)
1228			break;
1229		chg += rg->to - rg->from;
1230		list_del(&rg->link);
1231		kfree(rg);
1232	}
1233	return chg;
1234}
1235
1236static int hugetlb_acct_memory(long delta)
1237{
1238	int ret = -ENOMEM;
1239
1240	spin_lock(&hugetlb_lock);
1241	/*
1242	 * When cpuset is configured, it breaks the strict hugetlb page
1243	 * reservation as the accounting is done on a global variable. Such
1244	 * reservation is completely rubbish in the presence of cpuset because
1245	 * the reservation is not checked against page availability for the
1246	 * current cpuset. Application can still potentially OOM'ed by kernel
1247	 * with lack of free htlb page in cpuset that the task is in.
1248	 * Attempt to enforce strict accounting with cpuset is almost
1249	 * impossible (or too ugly) because cpuset is too fluid that
1250	 * task or memory node can be dynamically moved between cpusets.
1251	 *
1252	 * The change of semantics for shared hugetlb mapping with cpuset is
1253	 * undesirable. However, in order to preserve some of the semantics,
1254	 * we fall back to check against current free page availability as
1255	 * a best attempt and hopefully to minimize the impact of changing
1256	 * semantics that cpuset has.
1257	 */
1258	if (delta > 0) {
1259		if (gather_surplus_pages(delta) < 0)
1260			goto out;
1261
1262		if (delta > cpuset_mems_nr(free_huge_pages_node)) {
1263			return_unused_surplus_pages(delta);
1264			goto out;
1265		}
1266	}
1267
1268	ret = 0;
1269	if (delta < 0)
1270		return_unused_surplus_pages((unsigned long) -delta);
1271
1272out:
1273	spin_unlock(&hugetlb_lock);
1274	return ret;
1275}
1276
1277int hugetlb_reserve_pages(struct inode *inode, long from, long to)
1278{
1279	long ret, chg;
1280
1281	chg = region_chg(&inode->i_mapping->private_list, from, to);
1282	if (chg < 0)
1283		return chg;
1284
1285	if (hugetlb_get_quota(inode->i_mapping, chg))
1286		return -ENOSPC;
1287	ret = hugetlb_acct_memory(chg);
1288	if (ret < 0) {
1289		hugetlb_put_quota(inode->i_mapping, chg);
1290		return ret;
1291	}
1292	region_add(&inode->i_mapping->private_list, from, to);
1293	return 0;
1294}
1295
1296void hugetlb_unreserve_pages(struct inode *inode, long offset, long freed)
1297{
1298	long chg = region_truncate(&inode->i_mapping->private_list, offset);
1299
1300	spin_lock(&inode->i_lock);
1301	inode->i_blocks -= BLOCKS_PER_HUGEPAGE * freed;
1302	spin_unlock(&inode->i_lock);
1303
1304	hugetlb_put_quota(inode->i_mapping, (chg - freed));
1305	hugetlb_acct_memory(-(chg - freed));
1306}
1307