hugetlb.c revision 4eb2b1dcd598f8489130405c81c60c289896d92a
1/*
2 * Generic hugetlb support.
3 * (C) William Irwin, April 2004
4 */
5#include <linux/gfp.h>
6#include <linux/list.h>
7#include <linux/init.h>
8#include <linux/module.h>
9#include <linux/mm.h>
10#include <linux/seq_file.h>
11#include <linux/sysctl.h>
12#include <linux/highmem.h>
13#include <linux/mmu_notifier.h>
14#include <linux/nodemask.h>
15#include <linux/pagemap.h>
16#include <linux/mempolicy.h>
17#include <linux/cpuset.h>
18#include <linux/mutex.h>
19#include <linux/bootmem.h>
20#include <linux/sysfs.h>
21
22#include <asm/page.h>
23#include <asm/pgtable.h>
24#include <asm/io.h>
25
26#include <linux/hugetlb.h>
27#include <linux/node.h>
28#include "internal.h"
29
30const unsigned long hugetlb_zero = 0, hugetlb_infinity = ~0UL;
31static gfp_t htlb_alloc_mask = GFP_HIGHUSER;
32unsigned long hugepages_treat_as_movable;
33
34static int max_hstate;
35unsigned int default_hstate_idx;
36struct hstate hstates[HUGE_MAX_HSTATE];
37
38__initdata LIST_HEAD(huge_boot_pages);
39
40/* for command line parsing */
41static struct hstate * __initdata parsed_hstate;
42static unsigned long __initdata default_hstate_max_huge_pages;
43static unsigned long __initdata default_hstate_size;
44
45#define for_each_hstate(h) \
46	for ((h) = hstates; (h) < &hstates[max_hstate]; (h)++)
47
48/*
49 * Protects updates to hugepage_freelists, nr_huge_pages, and free_huge_pages
50 */
51static DEFINE_SPINLOCK(hugetlb_lock);
52
53/*
54 * Region tracking -- allows tracking of reservations and instantiated pages
55 *                    across the pages in a mapping.
56 *
57 * The region data structures are protected by a combination of the mmap_sem
58 * and the hugetlb_instantion_mutex.  To access or modify a region the caller
59 * must either hold the mmap_sem for write, or the mmap_sem for read and
60 * the hugetlb_instantiation mutex:
61 *
62 * 	down_write(&mm->mmap_sem);
63 * or
64 * 	down_read(&mm->mmap_sem);
65 * 	mutex_lock(&hugetlb_instantiation_mutex);
66 */
67struct file_region {
68	struct list_head link;
69	long from;
70	long to;
71};
72
73static long region_add(struct list_head *head, long f, long t)
74{
75	struct file_region *rg, *nrg, *trg;
76
77	/* Locate the region we are either in or before. */
78	list_for_each_entry(rg, head, link)
79		if (f <= rg->to)
80			break;
81
82	/* Round our left edge to the current segment if it encloses us. */
83	if (f > rg->from)
84		f = rg->from;
85
86	/* Check for and consume any regions we now overlap with. */
87	nrg = rg;
88	list_for_each_entry_safe(rg, trg, rg->link.prev, link) {
89		if (&rg->link == head)
90			break;
91		if (rg->from > t)
92			break;
93
94		/* If this area reaches higher then extend our area to
95		 * include it completely.  If this is not the first area
96		 * which we intend to reuse, free it. */
97		if (rg->to > t)
98			t = rg->to;
99		if (rg != nrg) {
100			list_del(&rg->link);
101			kfree(rg);
102		}
103	}
104	nrg->from = f;
105	nrg->to = t;
106	return 0;
107}
108
109static long region_chg(struct list_head *head, long f, long t)
110{
111	struct file_region *rg, *nrg;
112	long chg = 0;
113
114	/* Locate the region we are before or in. */
115	list_for_each_entry(rg, head, link)
116		if (f <= rg->to)
117			break;
118
119	/* If we are below the current region then a new region is required.
120	 * Subtle, allocate a new region at the position but make it zero
121	 * size such that we can guarantee to record the reservation. */
122	if (&rg->link == head || t < rg->from) {
123		nrg = kmalloc(sizeof(*nrg), GFP_KERNEL);
124		if (!nrg)
125			return -ENOMEM;
126		nrg->from = f;
127		nrg->to   = f;
128		INIT_LIST_HEAD(&nrg->link);
129		list_add(&nrg->link, rg->link.prev);
130
131		return t - f;
132	}
133
134	/* Round our left edge to the current segment if it encloses us. */
135	if (f > rg->from)
136		f = rg->from;
137	chg = t - f;
138
139	/* Check for and consume any regions we now overlap with. */
140	list_for_each_entry(rg, rg->link.prev, link) {
141		if (&rg->link == head)
142			break;
143		if (rg->from > t)
144			return chg;
145
146		/* We overlap with this area, if it extends futher than
147		 * us then we must extend ourselves.  Account for its
148		 * existing reservation. */
149		if (rg->to > t) {
150			chg += rg->to - t;
151			t = rg->to;
152		}
153		chg -= rg->to - rg->from;
154	}
155	return chg;
156}
157
158static long region_truncate(struct list_head *head, long end)
159{
160	struct file_region *rg, *trg;
161	long chg = 0;
162
163	/* Locate the region we are either in or before. */
164	list_for_each_entry(rg, head, link)
165		if (end <= rg->to)
166			break;
167	if (&rg->link == head)
168		return 0;
169
170	/* If we are in the middle of a region then adjust it. */
171	if (end > rg->from) {
172		chg = rg->to - end;
173		rg->to = end;
174		rg = list_entry(rg->link.next, typeof(*rg), link);
175	}
176
177	/* Drop any remaining regions. */
178	list_for_each_entry_safe(rg, trg, rg->link.prev, link) {
179		if (&rg->link == head)
180			break;
181		chg += rg->to - rg->from;
182		list_del(&rg->link);
183		kfree(rg);
184	}
185	return chg;
186}
187
188static long region_count(struct list_head *head, long f, long t)
189{
190	struct file_region *rg;
191	long chg = 0;
192
193	/* Locate each segment we overlap with, and count that overlap. */
194	list_for_each_entry(rg, head, link) {
195		int seg_from;
196		int seg_to;
197
198		if (rg->to <= f)
199			continue;
200		if (rg->from >= t)
201			break;
202
203		seg_from = max(rg->from, f);
204		seg_to = min(rg->to, t);
205
206		chg += seg_to - seg_from;
207	}
208
209	return chg;
210}
211
212/*
213 * Convert the address within this vma to the page offset within
214 * the mapping, in pagecache page units; huge pages here.
215 */
216static pgoff_t vma_hugecache_offset(struct hstate *h,
217			struct vm_area_struct *vma, unsigned long address)
218{
219	return ((address - vma->vm_start) >> huge_page_shift(h)) +
220			(vma->vm_pgoff >> huge_page_order(h));
221}
222
223/*
224 * Return the size of the pages allocated when backing a VMA. In the majority
225 * cases this will be same size as used by the page table entries.
226 */
227unsigned long vma_kernel_pagesize(struct vm_area_struct *vma)
228{
229	struct hstate *hstate;
230
231	if (!is_vm_hugetlb_page(vma))
232		return PAGE_SIZE;
233
234	hstate = hstate_vma(vma);
235
236	return 1UL << (hstate->order + PAGE_SHIFT);
237}
238EXPORT_SYMBOL_GPL(vma_kernel_pagesize);
239
240/*
241 * Return the page size being used by the MMU to back a VMA. In the majority
242 * of cases, the page size used by the kernel matches the MMU size. On
243 * architectures where it differs, an architecture-specific version of this
244 * function is required.
245 */
246#ifndef vma_mmu_pagesize
247unsigned long vma_mmu_pagesize(struct vm_area_struct *vma)
248{
249	return vma_kernel_pagesize(vma);
250}
251#endif
252
253/*
254 * Flags for MAP_PRIVATE reservations.  These are stored in the bottom
255 * bits of the reservation map pointer, which are always clear due to
256 * alignment.
257 */
258#define HPAGE_RESV_OWNER    (1UL << 0)
259#define HPAGE_RESV_UNMAPPED (1UL << 1)
260#define HPAGE_RESV_MASK (HPAGE_RESV_OWNER | HPAGE_RESV_UNMAPPED)
261
262/*
263 * These helpers are used to track how many pages are reserved for
264 * faults in a MAP_PRIVATE mapping. Only the process that called mmap()
265 * is guaranteed to have their future faults succeed.
266 *
267 * With the exception of reset_vma_resv_huge_pages() which is called at fork(),
268 * the reserve counters are updated with the hugetlb_lock held. It is safe
269 * to reset the VMA at fork() time as it is not in use yet and there is no
270 * chance of the global counters getting corrupted as a result of the values.
271 *
272 * The private mapping reservation is represented in a subtly different
273 * manner to a shared mapping.  A shared mapping has a region map associated
274 * with the underlying file, this region map represents the backing file
275 * pages which have ever had a reservation assigned which this persists even
276 * after the page is instantiated.  A private mapping has a region map
277 * associated with the original mmap which is attached to all VMAs which
278 * reference it, this region map represents those offsets which have consumed
279 * reservation ie. where pages have been instantiated.
280 */
281static unsigned long get_vma_private_data(struct vm_area_struct *vma)
282{
283	return (unsigned long)vma->vm_private_data;
284}
285
286static void set_vma_private_data(struct vm_area_struct *vma,
287							unsigned long value)
288{
289	vma->vm_private_data = (void *)value;
290}
291
292struct resv_map {
293	struct kref refs;
294	struct list_head regions;
295};
296
297static struct resv_map *resv_map_alloc(void)
298{
299	struct resv_map *resv_map = kmalloc(sizeof(*resv_map), GFP_KERNEL);
300	if (!resv_map)
301		return NULL;
302
303	kref_init(&resv_map->refs);
304	INIT_LIST_HEAD(&resv_map->regions);
305
306	return resv_map;
307}
308
309static void resv_map_release(struct kref *ref)
310{
311	struct resv_map *resv_map = container_of(ref, struct resv_map, refs);
312
313	/* Clear out any active regions before we release the map. */
314	region_truncate(&resv_map->regions, 0);
315	kfree(resv_map);
316}
317
318static struct resv_map *vma_resv_map(struct vm_area_struct *vma)
319{
320	VM_BUG_ON(!is_vm_hugetlb_page(vma));
321	if (!(vma->vm_flags & VM_MAYSHARE))
322		return (struct resv_map *)(get_vma_private_data(vma) &
323							~HPAGE_RESV_MASK);
324	return NULL;
325}
326
327static void set_vma_resv_map(struct vm_area_struct *vma, struct resv_map *map)
328{
329	VM_BUG_ON(!is_vm_hugetlb_page(vma));
330	VM_BUG_ON(vma->vm_flags & VM_MAYSHARE);
331
332	set_vma_private_data(vma, (get_vma_private_data(vma) &
333				HPAGE_RESV_MASK) | (unsigned long)map);
334}
335
336static void set_vma_resv_flags(struct vm_area_struct *vma, unsigned long flags)
337{
338	VM_BUG_ON(!is_vm_hugetlb_page(vma));
339	VM_BUG_ON(vma->vm_flags & VM_MAYSHARE);
340
341	set_vma_private_data(vma, get_vma_private_data(vma) | flags);
342}
343
344static int is_vma_resv_set(struct vm_area_struct *vma, unsigned long flag)
345{
346	VM_BUG_ON(!is_vm_hugetlb_page(vma));
347
348	return (get_vma_private_data(vma) & flag) != 0;
349}
350
351/* Decrement the reserved pages in the hugepage pool by one */
352static void decrement_hugepage_resv_vma(struct hstate *h,
353			struct vm_area_struct *vma)
354{
355	if (vma->vm_flags & VM_NORESERVE)
356		return;
357
358	if (vma->vm_flags & VM_MAYSHARE) {
359		/* Shared mappings always use reserves */
360		h->resv_huge_pages--;
361	} else if (is_vma_resv_set(vma, HPAGE_RESV_OWNER)) {
362		/*
363		 * Only the process that called mmap() has reserves for
364		 * private mappings.
365		 */
366		h->resv_huge_pages--;
367	}
368}
369
370/* Reset counters to 0 and clear all HPAGE_RESV_* flags */
371void reset_vma_resv_huge_pages(struct vm_area_struct *vma)
372{
373	VM_BUG_ON(!is_vm_hugetlb_page(vma));
374	if (!(vma->vm_flags & VM_MAYSHARE))
375		vma->vm_private_data = (void *)0;
376}
377
378/* Returns true if the VMA has associated reserve pages */
379static int vma_has_reserves(struct vm_area_struct *vma)
380{
381	if (vma->vm_flags & VM_MAYSHARE)
382		return 1;
383	if (is_vma_resv_set(vma, HPAGE_RESV_OWNER))
384		return 1;
385	return 0;
386}
387
388static void clear_gigantic_page(struct page *page,
389			unsigned long addr, unsigned long sz)
390{
391	int i;
392	struct page *p = page;
393
394	might_sleep();
395	for (i = 0; i < sz/PAGE_SIZE; i++, p = mem_map_next(p, page, i)) {
396		cond_resched();
397		clear_user_highpage(p, addr + i * PAGE_SIZE);
398	}
399}
400static void clear_huge_page(struct page *page,
401			unsigned long addr, unsigned long sz)
402{
403	int i;
404
405	if (unlikely(sz > MAX_ORDER_NR_PAGES)) {
406		clear_gigantic_page(page, addr, sz);
407		return;
408	}
409
410	might_sleep();
411	for (i = 0; i < sz/PAGE_SIZE; i++) {
412		cond_resched();
413		clear_user_highpage(page + i, addr + i * PAGE_SIZE);
414	}
415}
416
417static void copy_gigantic_page(struct page *dst, struct page *src,
418			   unsigned long addr, struct vm_area_struct *vma)
419{
420	int i;
421	struct hstate *h = hstate_vma(vma);
422	struct page *dst_base = dst;
423	struct page *src_base = src;
424	might_sleep();
425	for (i = 0; i < pages_per_huge_page(h); ) {
426		cond_resched();
427		copy_user_highpage(dst, src, addr + i*PAGE_SIZE, vma);
428
429		i++;
430		dst = mem_map_next(dst, dst_base, i);
431		src = mem_map_next(src, src_base, i);
432	}
433}
434static void copy_huge_page(struct page *dst, struct page *src,
435			   unsigned long addr, struct vm_area_struct *vma)
436{
437	int i;
438	struct hstate *h = hstate_vma(vma);
439
440	if (unlikely(pages_per_huge_page(h) > MAX_ORDER_NR_PAGES)) {
441		copy_gigantic_page(dst, src, addr, vma);
442		return;
443	}
444
445	might_sleep();
446	for (i = 0; i < pages_per_huge_page(h); i++) {
447		cond_resched();
448		copy_user_highpage(dst + i, src + i, addr + i*PAGE_SIZE, vma);
449	}
450}
451
452static void enqueue_huge_page(struct hstate *h, struct page *page)
453{
454	int nid = page_to_nid(page);
455	list_add(&page->lru, &h->hugepage_freelists[nid]);
456	h->free_huge_pages++;
457	h->free_huge_pages_node[nid]++;
458}
459
460static struct page *dequeue_huge_page_vma(struct hstate *h,
461				struct vm_area_struct *vma,
462				unsigned long address, int avoid_reserve)
463{
464	int nid;
465	struct page *page = NULL;
466	struct mempolicy *mpol;
467	nodemask_t *nodemask;
468	struct zonelist *zonelist = huge_zonelist(vma, address,
469					htlb_alloc_mask, &mpol, &nodemask);
470	struct zone *zone;
471	struct zoneref *z;
472
473	/*
474	 * A child process with MAP_PRIVATE mappings created by their parent
475	 * have no page reserves. This check ensures that reservations are
476	 * not "stolen". The child may still get SIGKILLed
477	 */
478	if (!vma_has_reserves(vma) &&
479			h->free_huge_pages - h->resv_huge_pages == 0)
480		return NULL;
481
482	/* If reserves cannot be used, ensure enough pages are in the pool */
483	if (avoid_reserve && h->free_huge_pages - h->resv_huge_pages == 0)
484		return NULL;
485
486	for_each_zone_zonelist_nodemask(zone, z, zonelist,
487						MAX_NR_ZONES - 1, nodemask) {
488		nid = zone_to_nid(zone);
489		if (cpuset_zone_allowed_softwall(zone, htlb_alloc_mask) &&
490		    !list_empty(&h->hugepage_freelists[nid])) {
491			page = list_entry(h->hugepage_freelists[nid].next,
492					  struct page, lru);
493			list_del(&page->lru);
494			h->free_huge_pages--;
495			h->free_huge_pages_node[nid]--;
496
497			if (!avoid_reserve)
498				decrement_hugepage_resv_vma(h, vma);
499
500			break;
501		}
502	}
503	mpol_cond_put(mpol);
504	return page;
505}
506
507static void update_and_free_page(struct hstate *h, struct page *page)
508{
509	int i;
510
511	VM_BUG_ON(h->order >= MAX_ORDER);
512
513	h->nr_huge_pages--;
514	h->nr_huge_pages_node[page_to_nid(page)]--;
515	for (i = 0; i < pages_per_huge_page(h); i++) {
516		page[i].flags &= ~(1 << PG_locked | 1 << PG_error | 1 << PG_referenced |
517				1 << PG_dirty | 1 << PG_active | 1 << PG_reserved |
518				1 << PG_private | 1<< PG_writeback);
519	}
520	set_compound_page_dtor(page, NULL);
521	set_page_refcounted(page);
522	arch_release_hugepage(page);
523	__free_pages(page, huge_page_order(h));
524}
525
526struct hstate *size_to_hstate(unsigned long size)
527{
528	struct hstate *h;
529
530	for_each_hstate(h) {
531		if (huge_page_size(h) == size)
532			return h;
533	}
534	return NULL;
535}
536
537static void free_huge_page(struct page *page)
538{
539	/*
540	 * Can't pass hstate in here because it is called from the
541	 * compound page destructor.
542	 */
543	struct hstate *h = page_hstate(page);
544	int nid = page_to_nid(page);
545	struct address_space *mapping;
546
547	mapping = (struct address_space *) page_private(page);
548	set_page_private(page, 0);
549	BUG_ON(page_count(page));
550	INIT_LIST_HEAD(&page->lru);
551
552	spin_lock(&hugetlb_lock);
553	if (h->surplus_huge_pages_node[nid] && huge_page_order(h) < MAX_ORDER) {
554		update_and_free_page(h, page);
555		h->surplus_huge_pages--;
556		h->surplus_huge_pages_node[nid]--;
557	} else {
558		enqueue_huge_page(h, page);
559	}
560	spin_unlock(&hugetlb_lock);
561	if (mapping)
562		hugetlb_put_quota(mapping, 1);
563}
564
565static void prep_new_huge_page(struct hstate *h, struct page *page, int nid)
566{
567	set_compound_page_dtor(page, free_huge_page);
568	spin_lock(&hugetlb_lock);
569	h->nr_huge_pages++;
570	h->nr_huge_pages_node[nid]++;
571	spin_unlock(&hugetlb_lock);
572	put_page(page); /* free it into the hugepage allocator */
573}
574
575static void prep_compound_gigantic_page(struct page *page, unsigned long order)
576{
577	int i;
578	int nr_pages = 1 << order;
579	struct page *p = page + 1;
580
581	/* we rely on prep_new_huge_page to set the destructor */
582	set_compound_order(page, order);
583	__SetPageHead(page);
584	for (i = 1; i < nr_pages; i++, p = mem_map_next(p, page, i)) {
585		__SetPageTail(p);
586		p->first_page = page;
587	}
588}
589
590int PageHuge(struct page *page)
591{
592	compound_page_dtor *dtor;
593
594	if (!PageCompound(page))
595		return 0;
596
597	page = compound_head(page);
598	dtor = get_compound_page_dtor(page);
599
600	return dtor == free_huge_page;
601}
602
603static struct page *alloc_fresh_huge_page_node(struct hstate *h, int nid)
604{
605	struct page *page;
606
607	if (h->order >= MAX_ORDER)
608		return NULL;
609
610	page = alloc_pages_exact_node(nid,
611		htlb_alloc_mask|__GFP_COMP|__GFP_THISNODE|
612						__GFP_REPEAT|__GFP_NOWARN,
613		huge_page_order(h));
614	if (page) {
615		if (arch_prepare_hugepage(page)) {
616			__free_pages(page, huge_page_order(h));
617			return NULL;
618		}
619		prep_new_huge_page(h, page, nid);
620	}
621
622	return page;
623}
624
625/*
626 * common helper functions for hstate_next_node_to_{alloc|free}.
627 * We may have allocated or freed a huge page based on a different
628 * nodes_allowed previously, so h->next_node_to_{alloc|free} might
629 * be outside of *nodes_allowed.  Ensure that we use an allowed
630 * node for alloc or free.
631 */
632static int next_node_allowed(int nid, nodemask_t *nodes_allowed)
633{
634	nid = next_node(nid, *nodes_allowed);
635	if (nid == MAX_NUMNODES)
636		nid = first_node(*nodes_allowed);
637	VM_BUG_ON(nid >= MAX_NUMNODES);
638
639	return nid;
640}
641
642static int get_valid_node_allowed(int nid, nodemask_t *nodes_allowed)
643{
644	if (!node_isset(nid, *nodes_allowed))
645		nid = next_node_allowed(nid, nodes_allowed);
646	return nid;
647}
648
649/*
650 * returns the previously saved node ["this node"] from which to
651 * allocate a persistent huge page for the pool and advance the
652 * next node from which to allocate, handling wrap at end of node
653 * mask.
654 */
655static int hstate_next_node_to_alloc(struct hstate *h,
656					nodemask_t *nodes_allowed)
657{
658	int nid;
659
660	VM_BUG_ON(!nodes_allowed);
661
662	nid = get_valid_node_allowed(h->next_nid_to_alloc, nodes_allowed);
663	h->next_nid_to_alloc = next_node_allowed(nid, nodes_allowed);
664
665	return nid;
666}
667
668static int alloc_fresh_huge_page(struct hstate *h, nodemask_t *nodes_allowed)
669{
670	struct page *page;
671	int start_nid;
672	int next_nid;
673	int ret = 0;
674
675	start_nid = hstate_next_node_to_alloc(h, nodes_allowed);
676	next_nid = start_nid;
677
678	do {
679		page = alloc_fresh_huge_page_node(h, next_nid);
680		if (page) {
681			ret = 1;
682			break;
683		}
684		next_nid = hstate_next_node_to_alloc(h, nodes_allowed);
685	} while (next_nid != start_nid);
686
687	if (ret)
688		count_vm_event(HTLB_BUDDY_PGALLOC);
689	else
690		count_vm_event(HTLB_BUDDY_PGALLOC_FAIL);
691
692	return ret;
693}
694
695/*
696 * helper for free_pool_huge_page() - return the previously saved
697 * node ["this node"] from which to free a huge page.  Advance the
698 * next node id whether or not we find a free huge page to free so
699 * that the next attempt to free addresses the next node.
700 */
701static int hstate_next_node_to_free(struct hstate *h, nodemask_t *nodes_allowed)
702{
703	int nid;
704
705	VM_BUG_ON(!nodes_allowed);
706
707	nid = get_valid_node_allowed(h->next_nid_to_free, nodes_allowed);
708	h->next_nid_to_free = next_node_allowed(nid, nodes_allowed);
709
710	return nid;
711}
712
713/*
714 * Free huge page from pool from next node to free.
715 * Attempt to keep persistent huge pages more or less
716 * balanced over allowed nodes.
717 * Called with hugetlb_lock locked.
718 */
719static int free_pool_huge_page(struct hstate *h, nodemask_t *nodes_allowed,
720							 bool acct_surplus)
721{
722	int start_nid;
723	int next_nid;
724	int ret = 0;
725
726	start_nid = hstate_next_node_to_free(h, nodes_allowed);
727	next_nid = start_nid;
728
729	do {
730		/*
731		 * If we're returning unused surplus pages, only examine
732		 * nodes with surplus pages.
733		 */
734		if ((!acct_surplus || h->surplus_huge_pages_node[next_nid]) &&
735		    !list_empty(&h->hugepage_freelists[next_nid])) {
736			struct page *page =
737				list_entry(h->hugepage_freelists[next_nid].next,
738					  struct page, lru);
739			list_del(&page->lru);
740			h->free_huge_pages--;
741			h->free_huge_pages_node[next_nid]--;
742			if (acct_surplus) {
743				h->surplus_huge_pages--;
744				h->surplus_huge_pages_node[next_nid]--;
745			}
746			update_and_free_page(h, page);
747			ret = 1;
748			break;
749		}
750		next_nid = hstate_next_node_to_free(h, nodes_allowed);
751	} while (next_nid != start_nid);
752
753	return ret;
754}
755
756static struct page *alloc_buddy_huge_page(struct hstate *h,
757			struct vm_area_struct *vma, unsigned long address)
758{
759	struct page *page;
760	unsigned int nid;
761
762	if (h->order >= MAX_ORDER)
763		return NULL;
764
765	/*
766	 * Assume we will successfully allocate the surplus page to
767	 * prevent racing processes from causing the surplus to exceed
768	 * overcommit
769	 *
770	 * This however introduces a different race, where a process B
771	 * tries to grow the static hugepage pool while alloc_pages() is
772	 * called by process A. B will only examine the per-node
773	 * counters in determining if surplus huge pages can be
774	 * converted to normal huge pages in adjust_pool_surplus(). A
775	 * won't be able to increment the per-node counter, until the
776	 * lock is dropped by B, but B doesn't drop hugetlb_lock until
777	 * no more huge pages can be converted from surplus to normal
778	 * state (and doesn't try to convert again). Thus, we have a
779	 * case where a surplus huge page exists, the pool is grown, and
780	 * the surplus huge page still exists after, even though it
781	 * should just have been converted to a normal huge page. This
782	 * does not leak memory, though, as the hugepage will be freed
783	 * once it is out of use. It also does not allow the counters to
784	 * go out of whack in adjust_pool_surplus() as we don't modify
785	 * the node values until we've gotten the hugepage and only the
786	 * per-node value is checked there.
787	 */
788	spin_lock(&hugetlb_lock);
789	if (h->surplus_huge_pages >= h->nr_overcommit_huge_pages) {
790		spin_unlock(&hugetlb_lock);
791		return NULL;
792	} else {
793		h->nr_huge_pages++;
794		h->surplus_huge_pages++;
795	}
796	spin_unlock(&hugetlb_lock);
797
798	page = alloc_pages(htlb_alloc_mask|__GFP_COMP|
799					__GFP_REPEAT|__GFP_NOWARN,
800					huge_page_order(h));
801
802	if (page && arch_prepare_hugepage(page)) {
803		__free_pages(page, huge_page_order(h));
804		return NULL;
805	}
806
807	spin_lock(&hugetlb_lock);
808	if (page) {
809		/*
810		 * This page is now managed by the hugetlb allocator and has
811		 * no users -- drop the buddy allocator's reference.
812		 */
813		put_page_testzero(page);
814		VM_BUG_ON(page_count(page));
815		nid = page_to_nid(page);
816		set_compound_page_dtor(page, free_huge_page);
817		/*
818		 * We incremented the global counters already
819		 */
820		h->nr_huge_pages_node[nid]++;
821		h->surplus_huge_pages_node[nid]++;
822		__count_vm_event(HTLB_BUDDY_PGALLOC);
823	} else {
824		h->nr_huge_pages--;
825		h->surplus_huge_pages--;
826		__count_vm_event(HTLB_BUDDY_PGALLOC_FAIL);
827	}
828	spin_unlock(&hugetlb_lock);
829
830	return page;
831}
832
833/*
834 * Increase the hugetlb pool such that it can accomodate a reservation
835 * of size 'delta'.
836 */
837static int gather_surplus_pages(struct hstate *h, int delta)
838{
839	struct list_head surplus_list;
840	struct page *page, *tmp;
841	int ret, i;
842	int needed, allocated;
843
844	needed = (h->resv_huge_pages + delta) - h->free_huge_pages;
845	if (needed <= 0) {
846		h->resv_huge_pages += delta;
847		return 0;
848	}
849
850	allocated = 0;
851	INIT_LIST_HEAD(&surplus_list);
852
853	ret = -ENOMEM;
854retry:
855	spin_unlock(&hugetlb_lock);
856	for (i = 0; i < needed; i++) {
857		page = alloc_buddy_huge_page(h, NULL, 0);
858		if (!page) {
859			/*
860			 * We were not able to allocate enough pages to
861			 * satisfy the entire reservation so we free what
862			 * we've allocated so far.
863			 */
864			spin_lock(&hugetlb_lock);
865			needed = 0;
866			goto free;
867		}
868
869		list_add(&page->lru, &surplus_list);
870	}
871	allocated += needed;
872
873	/*
874	 * After retaking hugetlb_lock, we need to recalculate 'needed'
875	 * because either resv_huge_pages or free_huge_pages may have changed.
876	 */
877	spin_lock(&hugetlb_lock);
878	needed = (h->resv_huge_pages + delta) -
879			(h->free_huge_pages + allocated);
880	if (needed > 0)
881		goto retry;
882
883	/*
884	 * The surplus_list now contains _at_least_ the number of extra pages
885	 * needed to accomodate the reservation.  Add the appropriate number
886	 * of pages to the hugetlb pool and free the extras back to the buddy
887	 * allocator.  Commit the entire reservation here to prevent another
888	 * process from stealing the pages as they are added to the pool but
889	 * before they are reserved.
890	 */
891	needed += allocated;
892	h->resv_huge_pages += delta;
893	ret = 0;
894free:
895	/* Free the needed pages to the hugetlb pool */
896	list_for_each_entry_safe(page, tmp, &surplus_list, lru) {
897		if ((--needed) < 0)
898			break;
899		list_del(&page->lru);
900		enqueue_huge_page(h, page);
901	}
902
903	/* Free unnecessary surplus pages to the buddy allocator */
904	if (!list_empty(&surplus_list)) {
905		spin_unlock(&hugetlb_lock);
906		list_for_each_entry_safe(page, tmp, &surplus_list, lru) {
907			list_del(&page->lru);
908			/*
909			 * The page has a reference count of zero already, so
910			 * call free_huge_page directly instead of using
911			 * put_page.  This must be done with hugetlb_lock
912			 * unlocked which is safe because free_huge_page takes
913			 * hugetlb_lock before deciding how to free the page.
914			 */
915			free_huge_page(page);
916		}
917		spin_lock(&hugetlb_lock);
918	}
919
920	return ret;
921}
922
923/*
924 * When releasing a hugetlb pool reservation, any surplus pages that were
925 * allocated to satisfy the reservation must be explicitly freed if they were
926 * never used.
927 * Called with hugetlb_lock held.
928 */
929static void return_unused_surplus_pages(struct hstate *h,
930					unsigned long unused_resv_pages)
931{
932	unsigned long nr_pages;
933
934	/* Uncommit the reservation */
935	h->resv_huge_pages -= unused_resv_pages;
936
937	/* Cannot return gigantic pages currently */
938	if (h->order >= MAX_ORDER)
939		return;
940
941	nr_pages = min(unused_resv_pages, h->surplus_huge_pages);
942
943	/*
944	 * We want to release as many surplus pages as possible, spread
945	 * evenly across all nodes with memory. Iterate across these nodes
946	 * until we can no longer free unreserved surplus pages. This occurs
947	 * when the nodes with surplus pages have no free pages.
948	 * free_pool_huge_page() will balance the the freed pages across the
949	 * on-line nodes with memory and will handle the hstate accounting.
950	 */
951	while (nr_pages--) {
952		if (!free_pool_huge_page(h, &node_states[N_HIGH_MEMORY], 1))
953			break;
954	}
955}
956
957/*
958 * Determine if the huge page at addr within the vma has an associated
959 * reservation.  Where it does not we will need to logically increase
960 * reservation and actually increase quota before an allocation can occur.
961 * Where any new reservation would be required the reservation change is
962 * prepared, but not committed.  Once the page has been quota'd allocated
963 * an instantiated the change should be committed via vma_commit_reservation.
964 * No action is required on failure.
965 */
966static long vma_needs_reservation(struct hstate *h,
967			struct vm_area_struct *vma, unsigned long addr)
968{
969	struct address_space *mapping = vma->vm_file->f_mapping;
970	struct inode *inode = mapping->host;
971
972	if (vma->vm_flags & VM_MAYSHARE) {
973		pgoff_t idx = vma_hugecache_offset(h, vma, addr);
974		return region_chg(&inode->i_mapping->private_list,
975							idx, idx + 1);
976
977	} else if (!is_vma_resv_set(vma, HPAGE_RESV_OWNER)) {
978		return 1;
979
980	} else  {
981		long err;
982		pgoff_t idx = vma_hugecache_offset(h, vma, addr);
983		struct resv_map *reservations = vma_resv_map(vma);
984
985		err = region_chg(&reservations->regions, idx, idx + 1);
986		if (err < 0)
987			return err;
988		return 0;
989	}
990}
991static void vma_commit_reservation(struct hstate *h,
992			struct vm_area_struct *vma, unsigned long addr)
993{
994	struct address_space *mapping = vma->vm_file->f_mapping;
995	struct inode *inode = mapping->host;
996
997	if (vma->vm_flags & VM_MAYSHARE) {
998		pgoff_t idx = vma_hugecache_offset(h, vma, addr);
999		region_add(&inode->i_mapping->private_list, idx, idx + 1);
1000
1001	} else if (is_vma_resv_set(vma, HPAGE_RESV_OWNER)) {
1002		pgoff_t idx = vma_hugecache_offset(h, vma, addr);
1003		struct resv_map *reservations = vma_resv_map(vma);
1004
1005		/* Mark this page used in the map. */
1006		region_add(&reservations->regions, idx, idx + 1);
1007	}
1008}
1009
1010static struct page *alloc_huge_page(struct vm_area_struct *vma,
1011				    unsigned long addr, int avoid_reserve)
1012{
1013	struct hstate *h = hstate_vma(vma);
1014	struct page *page;
1015	struct address_space *mapping = vma->vm_file->f_mapping;
1016	struct inode *inode = mapping->host;
1017	long chg;
1018
1019	/*
1020	 * Processes that did not create the mapping will have no reserves and
1021	 * will not have accounted against quota. Check that the quota can be
1022	 * made before satisfying the allocation
1023	 * MAP_NORESERVE mappings may also need pages and quota allocated
1024	 * if no reserve mapping overlaps.
1025	 */
1026	chg = vma_needs_reservation(h, vma, addr);
1027	if (chg < 0)
1028		return ERR_PTR(chg);
1029	if (chg)
1030		if (hugetlb_get_quota(inode->i_mapping, chg))
1031			return ERR_PTR(-ENOSPC);
1032
1033	spin_lock(&hugetlb_lock);
1034	page = dequeue_huge_page_vma(h, vma, addr, avoid_reserve);
1035	spin_unlock(&hugetlb_lock);
1036
1037	if (!page) {
1038		page = alloc_buddy_huge_page(h, vma, addr);
1039		if (!page) {
1040			hugetlb_put_quota(inode->i_mapping, chg);
1041			return ERR_PTR(-VM_FAULT_OOM);
1042		}
1043	}
1044
1045	set_page_refcounted(page);
1046	set_page_private(page, (unsigned long) mapping);
1047
1048	vma_commit_reservation(h, vma, addr);
1049
1050	return page;
1051}
1052
1053int __weak alloc_bootmem_huge_page(struct hstate *h)
1054{
1055	struct huge_bootmem_page *m;
1056	int nr_nodes = nodes_weight(node_states[N_HIGH_MEMORY]);
1057
1058	while (nr_nodes) {
1059		void *addr;
1060
1061		addr = __alloc_bootmem_node_nopanic(
1062				NODE_DATA(hstate_next_node_to_alloc(h,
1063						&node_states[N_HIGH_MEMORY])),
1064				huge_page_size(h), huge_page_size(h), 0);
1065
1066		if (addr) {
1067			/*
1068			 * Use the beginning of the huge page to store the
1069			 * huge_bootmem_page struct (until gather_bootmem
1070			 * puts them into the mem_map).
1071			 */
1072			m = addr;
1073			goto found;
1074		}
1075		nr_nodes--;
1076	}
1077	return 0;
1078
1079found:
1080	BUG_ON((unsigned long)virt_to_phys(m) & (huge_page_size(h) - 1));
1081	/* Put them into a private list first because mem_map is not up yet */
1082	list_add(&m->list, &huge_boot_pages);
1083	m->hstate = h;
1084	return 1;
1085}
1086
1087static void prep_compound_huge_page(struct page *page, int order)
1088{
1089	if (unlikely(order > (MAX_ORDER - 1)))
1090		prep_compound_gigantic_page(page, order);
1091	else
1092		prep_compound_page(page, order);
1093}
1094
1095/* Put bootmem huge pages into the standard lists after mem_map is up */
1096static void __init gather_bootmem_prealloc(void)
1097{
1098	struct huge_bootmem_page *m;
1099
1100	list_for_each_entry(m, &huge_boot_pages, list) {
1101		struct page *page = virt_to_page(m);
1102		struct hstate *h = m->hstate;
1103		__ClearPageReserved(page);
1104		WARN_ON(page_count(page) != 1);
1105		prep_compound_huge_page(page, h->order);
1106		prep_new_huge_page(h, page, page_to_nid(page));
1107	}
1108}
1109
1110static void __init hugetlb_hstate_alloc_pages(struct hstate *h)
1111{
1112	unsigned long i;
1113
1114	for (i = 0; i < h->max_huge_pages; ++i) {
1115		if (h->order >= MAX_ORDER) {
1116			if (!alloc_bootmem_huge_page(h))
1117				break;
1118		} else if (!alloc_fresh_huge_page(h,
1119					 &node_states[N_HIGH_MEMORY]))
1120			break;
1121	}
1122	h->max_huge_pages = i;
1123}
1124
1125static void __init hugetlb_init_hstates(void)
1126{
1127	struct hstate *h;
1128
1129	for_each_hstate(h) {
1130		/* oversize hugepages were init'ed in early boot */
1131		if (h->order < MAX_ORDER)
1132			hugetlb_hstate_alloc_pages(h);
1133	}
1134}
1135
1136static char * __init memfmt(char *buf, unsigned long n)
1137{
1138	if (n >= (1UL << 30))
1139		sprintf(buf, "%lu GB", n >> 30);
1140	else if (n >= (1UL << 20))
1141		sprintf(buf, "%lu MB", n >> 20);
1142	else
1143		sprintf(buf, "%lu KB", n >> 10);
1144	return buf;
1145}
1146
1147static void __init report_hugepages(void)
1148{
1149	struct hstate *h;
1150
1151	for_each_hstate(h) {
1152		char buf[32];
1153		printk(KERN_INFO "HugeTLB registered %s page size, "
1154				 "pre-allocated %ld pages\n",
1155			memfmt(buf, huge_page_size(h)),
1156			h->free_huge_pages);
1157	}
1158}
1159
1160#ifdef CONFIG_HIGHMEM
1161static void try_to_free_low(struct hstate *h, unsigned long count,
1162						nodemask_t *nodes_allowed)
1163{
1164	int i;
1165
1166	if (h->order >= MAX_ORDER)
1167		return;
1168
1169	for_each_node_mask(i, *nodes_allowed) {
1170		struct page *page, *next;
1171		struct list_head *freel = &h->hugepage_freelists[i];
1172		list_for_each_entry_safe(page, next, freel, lru) {
1173			if (count >= h->nr_huge_pages)
1174				return;
1175			if (PageHighMem(page))
1176				continue;
1177			list_del(&page->lru);
1178			update_and_free_page(h, page);
1179			h->free_huge_pages--;
1180			h->free_huge_pages_node[page_to_nid(page)]--;
1181		}
1182	}
1183}
1184#else
1185static inline void try_to_free_low(struct hstate *h, unsigned long count,
1186						nodemask_t *nodes_allowed)
1187{
1188}
1189#endif
1190
1191/*
1192 * Increment or decrement surplus_huge_pages.  Keep node-specific counters
1193 * balanced by operating on them in a round-robin fashion.
1194 * Returns 1 if an adjustment was made.
1195 */
1196static int adjust_pool_surplus(struct hstate *h, nodemask_t *nodes_allowed,
1197				int delta)
1198{
1199	int start_nid, next_nid;
1200	int ret = 0;
1201
1202	VM_BUG_ON(delta != -1 && delta != 1);
1203
1204	if (delta < 0)
1205		start_nid = hstate_next_node_to_alloc(h, nodes_allowed);
1206	else
1207		start_nid = hstate_next_node_to_free(h, nodes_allowed);
1208	next_nid = start_nid;
1209
1210	do {
1211		int nid = next_nid;
1212		if (delta < 0)  {
1213			/*
1214			 * To shrink on this node, there must be a surplus page
1215			 */
1216			if (!h->surplus_huge_pages_node[nid]) {
1217				next_nid = hstate_next_node_to_alloc(h,
1218								nodes_allowed);
1219				continue;
1220			}
1221		}
1222		if (delta > 0) {
1223			/*
1224			 * Surplus cannot exceed the total number of pages
1225			 */
1226			if (h->surplus_huge_pages_node[nid] >=
1227						h->nr_huge_pages_node[nid]) {
1228				next_nid = hstate_next_node_to_free(h,
1229								nodes_allowed);
1230				continue;
1231			}
1232		}
1233
1234		h->surplus_huge_pages += delta;
1235		h->surplus_huge_pages_node[nid] += delta;
1236		ret = 1;
1237		break;
1238	} while (next_nid != start_nid);
1239
1240	return ret;
1241}
1242
1243#define persistent_huge_pages(h) (h->nr_huge_pages - h->surplus_huge_pages)
1244static unsigned long set_max_huge_pages(struct hstate *h, unsigned long count,
1245						nodemask_t *nodes_allowed)
1246{
1247	unsigned long min_count, ret;
1248
1249	if (h->order >= MAX_ORDER)
1250		return h->max_huge_pages;
1251
1252	/*
1253	 * Increase the pool size
1254	 * First take pages out of surplus state.  Then make up the
1255	 * remaining difference by allocating fresh huge pages.
1256	 *
1257	 * We might race with alloc_buddy_huge_page() here and be unable
1258	 * to convert a surplus huge page to a normal huge page. That is
1259	 * not critical, though, it just means the overall size of the
1260	 * pool might be one hugepage larger than it needs to be, but
1261	 * within all the constraints specified by the sysctls.
1262	 */
1263	spin_lock(&hugetlb_lock);
1264	while (h->surplus_huge_pages && count > persistent_huge_pages(h)) {
1265		if (!adjust_pool_surplus(h, nodes_allowed, -1))
1266			break;
1267	}
1268
1269	while (count > persistent_huge_pages(h)) {
1270		/*
1271		 * If this allocation races such that we no longer need the
1272		 * page, free_huge_page will handle it by freeing the page
1273		 * and reducing the surplus.
1274		 */
1275		spin_unlock(&hugetlb_lock);
1276		ret = alloc_fresh_huge_page(h, nodes_allowed);
1277		spin_lock(&hugetlb_lock);
1278		if (!ret)
1279			goto out;
1280
1281	}
1282
1283	/*
1284	 * Decrease the pool size
1285	 * First return free pages to the buddy allocator (being careful
1286	 * to keep enough around to satisfy reservations).  Then place
1287	 * pages into surplus state as needed so the pool will shrink
1288	 * to the desired size as pages become free.
1289	 *
1290	 * By placing pages into the surplus state independent of the
1291	 * overcommit value, we are allowing the surplus pool size to
1292	 * exceed overcommit. There are few sane options here. Since
1293	 * alloc_buddy_huge_page() is checking the global counter,
1294	 * though, we'll note that we're not allowed to exceed surplus
1295	 * and won't grow the pool anywhere else. Not until one of the
1296	 * sysctls are changed, or the surplus pages go out of use.
1297	 */
1298	min_count = h->resv_huge_pages + h->nr_huge_pages - h->free_huge_pages;
1299	min_count = max(count, min_count);
1300	try_to_free_low(h, min_count, nodes_allowed);
1301	while (min_count < persistent_huge_pages(h)) {
1302		if (!free_pool_huge_page(h, nodes_allowed, 0))
1303			break;
1304	}
1305	while (count < persistent_huge_pages(h)) {
1306		if (!adjust_pool_surplus(h, nodes_allowed, 1))
1307			break;
1308	}
1309out:
1310	ret = persistent_huge_pages(h);
1311	spin_unlock(&hugetlb_lock);
1312	return ret;
1313}
1314
1315#define HSTATE_ATTR_RO(_name) \
1316	static struct kobj_attribute _name##_attr = __ATTR_RO(_name)
1317
1318#define HSTATE_ATTR(_name) \
1319	static struct kobj_attribute _name##_attr = \
1320		__ATTR(_name, 0644, _name##_show, _name##_store)
1321
1322static struct kobject *hugepages_kobj;
1323static struct kobject *hstate_kobjs[HUGE_MAX_HSTATE];
1324
1325static struct hstate *kobj_to_node_hstate(struct kobject *kobj, int *nidp);
1326
1327static struct hstate *kobj_to_hstate(struct kobject *kobj, int *nidp)
1328{
1329	int i;
1330
1331	for (i = 0; i < HUGE_MAX_HSTATE; i++)
1332		if (hstate_kobjs[i] == kobj) {
1333			if (nidp)
1334				*nidp = NUMA_NO_NODE;
1335			return &hstates[i];
1336		}
1337
1338	return kobj_to_node_hstate(kobj, nidp);
1339}
1340
1341static ssize_t nr_hugepages_show_common(struct kobject *kobj,
1342					struct kobj_attribute *attr, char *buf)
1343{
1344	struct hstate *h;
1345	unsigned long nr_huge_pages;
1346	int nid;
1347
1348	h = kobj_to_hstate(kobj, &nid);
1349	if (nid == NUMA_NO_NODE)
1350		nr_huge_pages = h->nr_huge_pages;
1351	else
1352		nr_huge_pages = h->nr_huge_pages_node[nid];
1353
1354	return sprintf(buf, "%lu\n", nr_huge_pages);
1355}
1356static ssize_t nr_hugepages_store_common(bool obey_mempolicy,
1357			struct kobject *kobj, struct kobj_attribute *attr,
1358			const char *buf, size_t len)
1359{
1360	int err;
1361	int nid;
1362	unsigned long count;
1363	struct hstate *h;
1364	NODEMASK_ALLOC(nodemask_t, nodes_allowed, GFP_KERNEL | __GFP_NORETRY);
1365
1366	err = strict_strtoul(buf, 10, &count);
1367	if (err)
1368		return 0;
1369
1370	h = kobj_to_hstate(kobj, &nid);
1371	if (nid == NUMA_NO_NODE) {
1372		/*
1373		 * global hstate attribute
1374		 */
1375		if (!(obey_mempolicy &&
1376				init_nodemask_of_mempolicy(nodes_allowed))) {
1377			NODEMASK_FREE(nodes_allowed);
1378			nodes_allowed = &node_states[N_HIGH_MEMORY];
1379		}
1380	} else if (nodes_allowed) {
1381		/*
1382		 * per node hstate attribute: adjust count to global,
1383		 * but restrict alloc/free to the specified node.
1384		 */
1385		count += h->nr_huge_pages - h->nr_huge_pages_node[nid];
1386		init_nodemask_of_node(nodes_allowed, nid);
1387	} else
1388		nodes_allowed = &node_states[N_HIGH_MEMORY];
1389
1390	h->max_huge_pages = set_max_huge_pages(h, count, nodes_allowed);
1391
1392	if (nodes_allowed != &node_states[N_HIGH_MEMORY])
1393		NODEMASK_FREE(nodes_allowed);
1394
1395	return len;
1396}
1397
1398static ssize_t nr_hugepages_show(struct kobject *kobj,
1399				       struct kobj_attribute *attr, char *buf)
1400{
1401	return nr_hugepages_show_common(kobj, attr, buf);
1402}
1403
1404static ssize_t nr_hugepages_store(struct kobject *kobj,
1405	       struct kobj_attribute *attr, const char *buf, size_t len)
1406{
1407	return nr_hugepages_store_common(false, kobj, attr, buf, len);
1408}
1409HSTATE_ATTR(nr_hugepages);
1410
1411#ifdef CONFIG_NUMA
1412
1413/*
1414 * hstate attribute for optionally mempolicy-based constraint on persistent
1415 * huge page alloc/free.
1416 */
1417static ssize_t nr_hugepages_mempolicy_show(struct kobject *kobj,
1418				       struct kobj_attribute *attr, char *buf)
1419{
1420	return nr_hugepages_show_common(kobj, attr, buf);
1421}
1422
1423static ssize_t nr_hugepages_mempolicy_store(struct kobject *kobj,
1424	       struct kobj_attribute *attr, const char *buf, size_t len)
1425{
1426	return nr_hugepages_store_common(true, kobj, attr, buf, len);
1427}
1428HSTATE_ATTR(nr_hugepages_mempolicy);
1429#endif
1430
1431
1432static ssize_t nr_overcommit_hugepages_show(struct kobject *kobj,
1433					struct kobj_attribute *attr, char *buf)
1434{
1435	struct hstate *h = kobj_to_hstate(kobj, NULL);
1436	return sprintf(buf, "%lu\n", h->nr_overcommit_huge_pages);
1437}
1438static ssize_t nr_overcommit_hugepages_store(struct kobject *kobj,
1439		struct kobj_attribute *attr, const char *buf, size_t count)
1440{
1441	int err;
1442	unsigned long input;
1443	struct hstate *h = kobj_to_hstate(kobj, NULL);
1444
1445	err = strict_strtoul(buf, 10, &input);
1446	if (err)
1447		return 0;
1448
1449	spin_lock(&hugetlb_lock);
1450	h->nr_overcommit_huge_pages = input;
1451	spin_unlock(&hugetlb_lock);
1452
1453	return count;
1454}
1455HSTATE_ATTR(nr_overcommit_hugepages);
1456
1457static ssize_t free_hugepages_show(struct kobject *kobj,
1458					struct kobj_attribute *attr, char *buf)
1459{
1460	struct hstate *h;
1461	unsigned long free_huge_pages;
1462	int nid;
1463
1464	h = kobj_to_hstate(kobj, &nid);
1465	if (nid == NUMA_NO_NODE)
1466		free_huge_pages = h->free_huge_pages;
1467	else
1468		free_huge_pages = h->free_huge_pages_node[nid];
1469
1470	return sprintf(buf, "%lu\n", free_huge_pages);
1471}
1472HSTATE_ATTR_RO(free_hugepages);
1473
1474static ssize_t resv_hugepages_show(struct kobject *kobj,
1475					struct kobj_attribute *attr, char *buf)
1476{
1477	struct hstate *h = kobj_to_hstate(kobj, NULL);
1478	return sprintf(buf, "%lu\n", h->resv_huge_pages);
1479}
1480HSTATE_ATTR_RO(resv_hugepages);
1481
1482static ssize_t surplus_hugepages_show(struct kobject *kobj,
1483					struct kobj_attribute *attr, char *buf)
1484{
1485	struct hstate *h;
1486	unsigned long surplus_huge_pages;
1487	int nid;
1488
1489	h = kobj_to_hstate(kobj, &nid);
1490	if (nid == NUMA_NO_NODE)
1491		surplus_huge_pages = h->surplus_huge_pages;
1492	else
1493		surplus_huge_pages = h->surplus_huge_pages_node[nid];
1494
1495	return sprintf(buf, "%lu\n", surplus_huge_pages);
1496}
1497HSTATE_ATTR_RO(surplus_hugepages);
1498
1499static struct attribute *hstate_attrs[] = {
1500	&nr_hugepages_attr.attr,
1501	&nr_overcommit_hugepages_attr.attr,
1502	&free_hugepages_attr.attr,
1503	&resv_hugepages_attr.attr,
1504	&surplus_hugepages_attr.attr,
1505#ifdef CONFIG_NUMA
1506	&nr_hugepages_mempolicy_attr.attr,
1507#endif
1508	NULL,
1509};
1510
1511static struct attribute_group hstate_attr_group = {
1512	.attrs = hstate_attrs,
1513};
1514
1515static int __init hugetlb_sysfs_add_hstate(struct hstate *h,
1516				struct kobject *parent,
1517				struct kobject **hstate_kobjs,
1518				struct attribute_group *hstate_attr_group)
1519{
1520	int retval;
1521	int hi = h - hstates;
1522
1523	hstate_kobjs[hi] = kobject_create_and_add(h->name, parent);
1524	if (!hstate_kobjs[hi])
1525		return -ENOMEM;
1526
1527	retval = sysfs_create_group(hstate_kobjs[hi], hstate_attr_group);
1528	if (retval)
1529		kobject_put(hstate_kobjs[hi]);
1530
1531	return retval;
1532}
1533
1534static void __init hugetlb_sysfs_init(void)
1535{
1536	struct hstate *h;
1537	int err;
1538
1539	hugepages_kobj = kobject_create_and_add("hugepages", mm_kobj);
1540	if (!hugepages_kobj)
1541		return;
1542
1543	for_each_hstate(h) {
1544		err = hugetlb_sysfs_add_hstate(h, hugepages_kobj,
1545					 hstate_kobjs, &hstate_attr_group);
1546		if (err)
1547			printk(KERN_ERR "Hugetlb: Unable to add hstate %s",
1548								h->name);
1549	}
1550}
1551
1552#ifdef CONFIG_NUMA
1553
1554/*
1555 * node_hstate/s - associate per node hstate attributes, via their kobjects,
1556 * with node sysdevs in node_devices[] using a parallel array.  The array
1557 * index of a node sysdev or _hstate == node id.
1558 * This is here to avoid any static dependency of the node sysdev driver, in
1559 * the base kernel, on the hugetlb module.
1560 */
1561struct node_hstate {
1562	struct kobject		*hugepages_kobj;
1563	struct kobject		*hstate_kobjs[HUGE_MAX_HSTATE];
1564};
1565struct node_hstate node_hstates[MAX_NUMNODES];
1566
1567/*
1568 * A subset of global hstate attributes for node sysdevs
1569 */
1570static struct attribute *per_node_hstate_attrs[] = {
1571	&nr_hugepages_attr.attr,
1572	&free_hugepages_attr.attr,
1573	&surplus_hugepages_attr.attr,
1574	NULL,
1575};
1576
1577static struct attribute_group per_node_hstate_attr_group = {
1578	.attrs = per_node_hstate_attrs,
1579};
1580
1581/*
1582 * kobj_to_node_hstate - lookup global hstate for node sysdev hstate attr kobj.
1583 * Returns node id via non-NULL nidp.
1584 */
1585static struct hstate *kobj_to_node_hstate(struct kobject *kobj, int *nidp)
1586{
1587	int nid;
1588
1589	for (nid = 0; nid < nr_node_ids; nid++) {
1590		struct node_hstate *nhs = &node_hstates[nid];
1591		int i;
1592		for (i = 0; i < HUGE_MAX_HSTATE; i++)
1593			if (nhs->hstate_kobjs[i] == kobj) {
1594				if (nidp)
1595					*nidp = nid;
1596				return &hstates[i];
1597			}
1598	}
1599
1600	BUG();
1601	return NULL;
1602}
1603
1604/*
1605 * Unregister hstate attributes from a single node sysdev.
1606 * No-op if no hstate attributes attached.
1607 */
1608void hugetlb_unregister_node(struct node *node)
1609{
1610	struct hstate *h;
1611	struct node_hstate *nhs = &node_hstates[node->sysdev.id];
1612
1613	if (!nhs->hugepages_kobj)
1614		return;		/* no hstate attributes */
1615
1616	for_each_hstate(h)
1617		if (nhs->hstate_kobjs[h - hstates]) {
1618			kobject_put(nhs->hstate_kobjs[h - hstates]);
1619			nhs->hstate_kobjs[h - hstates] = NULL;
1620		}
1621
1622	kobject_put(nhs->hugepages_kobj);
1623	nhs->hugepages_kobj = NULL;
1624}
1625
1626/*
1627 * hugetlb module exit:  unregister hstate attributes from node sysdevs
1628 * that have them.
1629 */
1630static void hugetlb_unregister_all_nodes(void)
1631{
1632	int nid;
1633
1634	/*
1635	 * disable node sysdev registrations.
1636	 */
1637	register_hugetlbfs_with_node(NULL, NULL);
1638
1639	/*
1640	 * remove hstate attributes from any nodes that have them.
1641	 */
1642	for (nid = 0; nid < nr_node_ids; nid++)
1643		hugetlb_unregister_node(&node_devices[nid]);
1644}
1645
1646/*
1647 * Register hstate attributes for a single node sysdev.
1648 * No-op if attributes already registered.
1649 */
1650void hugetlb_register_node(struct node *node)
1651{
1652	struct hstate *h;
1653	struct node_hstate *nhs = &node_hstates[node->sysdev.id];
1654	int err;
1655
1656	if (nhs->hugepages_kobj)
1657		return;		/* already allocated */
1658
1659	nhs->hugepages_kobj = kobject_create_and_add("hugepages",
1660							&node->sysdev.kobj);
1661	if (!nhs->hugepages_kobj)
1662		return;
1663
1664	for_each_hstate(h) {
1665		err = hugetlb_sysfs_add_hstate(h, nhs->hugepages_kobj,
1666						nhs->hstate_kobjs,
1667						&per_node_hstate_attr_group);
1668		if (err) {
1669			printk(KERN_ERR "Hugetlb: Unable to add hstate %s"
1670					" for node %d\n",
1671						h->name, node->sysdev.id);
1672			hugetlb_unregister_node(node);
1673			break;
1674		}
1675	}
1676}
1677
1678/*
1679 * hugetlb init time:  register hstate attributes for all registered node
1680 * sysdevs of nodes that have memory.  All on-line nodes should have
1681 * registered their associated sysdev by this time.
1682 */
1683static void hugetlb_register_all_nodes(void)
1684{
1685	int nid;
1686
1687	for_each_node_state(nid, N_HIGH_MEMORY) {
1688		struct node *node = &node_devices[nid];
1689		if (node->sysdev.id == nid)
1690			hugetlb_register_node(node);
1691	}
1692
1693	/*
1694	 * Let the node sysdev driver know we're here so it can
1695	 * [un]register hstate attributes on node hotplug.
1696	 */
1697	register_hugetlbfs_with_node(hugetlb_register_node,
1698				     hugetlb_unregister_node);
1699}
1700#else	/* !CONFIG_NUMA */
1701
1702static struct hstate *kobj_to_node_hstate(struct kobject *kobj, int *nidp)
1703{
1704	BUG();
1705	if (nidp)
1706		*nidp = -1;
1707	return NULL;
1708}
1709
1710static void hugetlb_unregister_all_nodes(void) { }
1711
1712static void hugetlb_register_all_nodes(void) { }
1713
1714#endif
1715
1716static void __exit hugetlb_exit(void)
1717{
1718	struct hstate *h;
1719
1720	hugetlb_unregister_all_nodes();
1721
1722	for_each_hstate(h) {
1723		kobject_put(hstate_kobjs[h - hstates]);
1724	}
1725
1726	kobject_put(hugepages_kobj);
1727}
1728module_exit(hugetlb_exit);
1729
1730static int __init hugetlb_init(void)
1731{
1732	/* Some platform decide whether they support huge pages at boot
1733	 * time. On these, such as powerpc, HPAGE_SHIFT is set to 0 when
1734	 * there is no such support
1735	 */
1736	if (HPAGE_SHIFT == 0)
1737		return 0;
1738
1739	if (!size_to_hstate(default_hstate_size)) {
1740		default_hstate_size = HPAGE_SIZE;
1741		if (!size_to_hstate(default_hstate_size))
1742			hugetlb_add_hstate(HUGETLB_PAGE_ORDER);
1743	}
1744	default_hstate_idx = size_to_hstate(default_hstate_size) - hstates;
1745	if (default_hstate_max_huge_pages)
1746		default_hstate.max_huge_pages = default_hstate_max_huge_pages;
1747
1748	hugetlb_init_hstates();
1749
1750	gather_bootmem_prealloc();
1751
1752	report_hugepages();
1753
1754	hugetlb_sysfs_init();
1755
1756	hugetlb_register_all_nodes();
1757
1758	return 0;
1759}
1760module_init(hugetlb_init);
1761
1762/* Should be called on processing a hugepagesz=... option */
1763void __init hugetlb_add_hstate(unsigned order)
1764{
1765	struct hstate *h;
1766	unsigned long i;
1767
1768	if (size_to_hstate(PAGE_SIZE << order)) {
1769		printk(KERN_WARNING "hugepagesz= specified twice, ignoring\n");
1770		return;
1771	}
1772	BUG_ON(max_hstate >= HUGE_MAX_HSTATE);
1773	BUG_ON(order == 0);
1774	h = &hstates[max_hstate++];
1775	h->order = order;
1776	h->mask = ~((1ULL << (order + PAGE_SHIFT)) - 1);
1777	h->nr_huge_pages = 0;
1778	h->free_huge_pages = 0;
1779	for (i = 0; i < MAX_NUMNODES; ++i)
1780		INIT_LIST_HEAD(&h->hugepage_freelists[i]);
1781	h->next_nid_to_alloc = first_node(node_states[N_HIGH_MEMORY]);
1782	h->next_nid_to_free = first_node(node_states[N_HIGH_MEMORY]);
1783	snprintf(h->name, HSTATE_NAME_LEN, "hugepages-%lukB",
1784					huge_page_size(h)/1024);
1785
1786	parsed_hstate = h;
1787}
1788
1789static int __init hugetlb_nrpages_setup(char *s)
1790{
1791	unsigned long *mhp;
1792	static unsigned long *last_mhp;
1793
1794	/*
1795	 * !max_hstate means we haven't parsed a hugepagesz= parameter yet,
1796	 * so this hugepages= parameter goes to the "default hstate".
1797	 */
1798	if (!max_hstate)
1799		mhp = &default_hstate_max_huge_pages;
1800	else
1801		mhp = &parsed_hstate->max_huge_pages;
1802
1803	if (mhp == last_mhp) {
1804		printk(KERN_WARNING "hugepages= specified twice without "
1805			"interleaving hugepagesz=, ignoring\n");
1806		return 1;
1807	}
1808
1809	if (sscanf(s, "%lu", mhp) <= 0)
1810		*mhp = 0;
1811
1812	/*
1813	 * Global state is always initialized later in hugetlb_init.
1814	 * But we need to allocate >= MAX_ORDER hstates here early to still
1815	 * use the bootmem allocator.
1816	 */
1817	if (max_hstate && parsed_hstate->order >= MAX_ORDER)
1818		hugetlb_hstate_alloc_pages(parsed_hstate);
1819
1820	last_mhp = mhp;
1821
1822	return 1;
1823}
1824__setup("hugepages=", hugetlb_nrpages_setup);
1825
1826static int __init hugetlb_default_setup(char *s)
1827{
1828	default_hstate_size = memparse(s, &s);
1829	return 1;
1830}
1831__setup("default_hugepagesz=", hugetlb_default_setup);
1832
1833static unsigned int cpuset_mems_nr(unsigned int *array)
1834{
1835	int node;
1836	unsigned int nr = 0;
1837
1838	for_each_node_mask(node, cpuset_current_mems_allowed)
1839		nr += array[node];
1840
1841	return nr;
1842}
1843
1844#ifdef CONFIG_SYSCTL
1845static int hugetlb_sysctl_handler_common(bool obey_mempolicy,
1846			 struct ctl_table *table, int write,
1847			 void __user *buffer, size_t *length, loff_t *ppos)
1848{
1849	struct hstate *h = &default_hstate;
1850	unsigned long tmp;
1851
1852	if (!write)
1853		tmp = h->max_huge_pages;
1854
1855	table->data = &tmp;
1856	table->maxlen = sizeof(unsigned long);
1857	proc_doulongvec_minmax(table, write, buffer, length, ppos);
1858
1859	if (write) {
1860		NODEMASK_ALLOC(nodemask_t, nodes_allowed,
1861						GFP_KERNEL | __GFP_NORETRY);
1862		if (!(obey_mempolicy &&
1863			       init_nodemask_of_mempolicy(nodes_allowed))) {
1864			NODEMASK_FREE(nodes_allowed);
1865			nodes_allowed = &node_states[N_HIGH_MEMORY];
1866		}
1867		h->max_huge_pages = set_max_huge_pages(h, tmp, nodes_allowed);
1868
1869		if (nodes_allowed != &node_states[N_HIGH_MEMORY])
1870			NODEMASK_FREE(nodes_allowed);
1871	}
1872
1873	return 0;
1874}
1875
1876int hugetlb_sysctl_handler(struct ctl_table *table, int write,
1877			  void __user *buffer, size_t *length, loff_t *ppos)
1878{
1879
1880	return hugetlb_sysctl_handler_common(false, table, write,
1881							buffer, length, ppos);
1882}
1883
1884#ifdef CONFIG_NUMA
1885int hugetlb_mempolicy_sysctl_handler(struct ctl_table *table, int write,
1886			  void __user *buffer, size_t *length, loff_t *ppos)
1887{
1888	return hugetlb_sysctl_handler_common(true, table, write,
1889							buffer, length, ppos);
1890}
1891#endif /* CONFIG_NUMA */
1892
1893int hugetlb_treat_movable_handler(struct ctl_table *table, int write,
1894			void __user *buffer,
1895			size_t *length, loff_t *ppos)
1896{
1897	proc_dointvec(table, write, buffer, length, ppos);
1898	if (hugepages_treat_as_movable)
1899		htlb_alloc_mask = GFP_HIGHUSER_MOVABLE;
1900	else
1901		htlb_alloc_mask = GFP_HIGHUSER;
1902	return 0;
1903}
1904
1905int hugetlb_overcommit_handler(struct ctl_table *table, int write,
1906			void __user *buffer,
1907			size_t *length, loff_t *ppos)
1908{
1909	struct hstate *h = &default_hstate;
1910	unsigned long tmp;
1911
1912	if (!write)
1913		tmp = h->nr_overcommit_huge_pages;
1914
1915	table->data = &tmp;
1916	table->maxlen = sizeof(unsigned long);
1917	proc_doulongvec_minmax(table, write, buffer, length, ppos);
1918
1919	if (write) {
1920		spin_lock(&hugetlb_lock);
1921		h->nr_overcommit_huge_pages = tmp;
1922		spin_unlock(&hugetlb_lock);
1923	}
1924
1925	return 0;
1926}
1927
1928#endif /* CONFIG_SYSCTL */
1929
1930void hugetlb_report_meminfo(struct seq_file *m)
1931{
1932	struct hstate *h = &default_hstate;
1933	seq_printf(m,
1934			"HugePages_Total:   %5lu\n"
1935			"HugePages_Free:    %5lu\n"
1936			"HugePages_Rsvd:    %5lu\n"
1937			"HugePages_Surp:    %5lu\n"
1938			"Hugepagesize:   %8lu kB\n",
1939			h->nr_huge_pages,
1940			h->free_huge_pages,
1941			h->resv_huge_pages,
1942			h->surplus_huge_pages,
1943			1UL << (huge_page_order(h) + PAGE_SHIFT - 10));
1944}
1945
1946int hugetlb_report_node_meminfo(int nid, char *buf)
1947{
1948	struct hstate *h = &default_hstate;
1949	return sprintf(buf,
1950		"Node %d HugePages_Total: %5u\n"
1951		"Node %d HugePages_Free:  %5u\n"
1952		"Node %d HugePages_Surp:  %5u\n",
1953		nid, h->nr_huge_pages_node[nid],
1954		nid, h->free_huge_pages_node[nid],
1955		nid, h->surplus_huge_pages_node[nid]);
1956}
1957
1958/* Return the number pages of memory we physically have, in PAGE_SIZE units. */
1959unsigned long hugetlb_total_pages(void)
1960{
1961	struct hstate *h = &default_hstate;
1962	return h->nr_huge_pages * pages_per_huge_page(h);
1963}
1964
1965static int hugetlb_acct_memory(struct hstate *h, long delta)
1966{
1967	int ret = -ENOMEM;
1968
1969	spin_lock(&hugetlb_lock);
1970	/*
1971	 * When cpuset is configured, it breaks the strict hugetlb page
1972	 * reservation as the accounting is done on a global variable. Such
1973	 * reservation is completely rubbish in the presence of cpuset because
1974	 * the reservation is not checked against page availability for the
1975	 * current cpuset. Application can still potentially OOM'ed by kernel
1976	 * with lack of free htlb page in cpuset that the task is in.
1977	 * Attempt to enforce strict accounting with cpuset is almost
1978	 * impossible (or too ugly) because cpuset is too fluid that
1979	 * task or memory node can be dynamically moved between cpusets.
1980	 *
1981	 * The change of semantics for shared hugetlb mapping with cpuset is
1982	 * undesirable. However, in order to preserve some of the semantics,
1983	 * we fall back to check against current free page availability as
1984	 * a best attempt and hopefully to minimize the impact of changing
1985	 * semantics that cpuset has.
1986	 */
1987	if (delta > 0) {
1988		if (gather_surplus_pages(h, delta) < 0)
1989			goto out;
1990
1991		if (delta > cpuset_mems_nr(h->free_huge_pages_node)) {
1992			return_unused_surplus_pages(h, delta);
1993			goto out;
1994		}
1995	}
1996
1997	ret = 0;
1998	if (delta < 0)
1999		return_unused_surplus_pages(h, (unsigned long) -delta);
2000
2001out:
2002	spin_unlock(&hugetlb_lock);
2003	return ret;
2004}
2005
2006static void hugetlb_vm_op_open(struct vm_area_struct *vma)
2007{
2008	struct resv_map *reservations = vma_resv_map(vma);
2009
2010	/*
2011	 * This new VMA should share its siblings reservation map if present.
2012	 * The VMA will only ever have a valid reservation map pointer where
2013	 * it is being copied for another still existing VMA.  As that VMA
2014	 * has a reference to the reservation map it cannot dissappear until
2015	 * after this open call completes.  It is therefore safe to take a
2016	 * new reference here without additional locking.
2017	 */
2018	if (reservations)
2019		kref_get(&reservations->refs);
2020}
2021
2022static void hugetlb_vm_op_close(struct vm_area_struct *vma)
2023{
2024	struct hstate *h = hstate_vma(vma);
2025	struct resv_map *reservations = vma_resv_map(vma);
2026	unsigned long reserve;
2027	unsigned long start;
2028	unsigned long end;
2029
2030	if (reservations) {
2031		start = vma_hugecache_offset(h, vma, vma->vm_start);
2032		end = vma_hugecache_offset(h, vma, vma->vm_end);
2033
2034		reserve = (end - start) -
2035			region_count(&reservations->regions, start, end);
2036
2037		kref_put(&reservations->refs, resv_map_release);
2038
2039		if (reserve) {
2040			hugetlb_acct_memory(h, -reserve);
2041			hugetlb_put_quota(vma->vm_file->f_mapping, reserve);
2042		}
2043	}
2044}
2045
2046/*
2047 * We cannot handle pagefaults against hugetlb pages at all.  They cause
2048 * handle_mm_fault() to try to instantiate regular-sized pages in the
2049 * hugegpage VMA.  do_page_fault() is supposed to trap this, so BUG is we get
2050 * this far.
2051 */
2052static int hugetlb_vm_op_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
2053{
2054	BUG();
2055	return 0;
2056}
2057
2058const struct vm_operations_struct hugetlb_vm_ops = {
2059	.fault = hugetlb_vm_op_fault,
2060	.open = hugetlb_vm_op_open,
2061	.close = hugetlb_vm_op_close,
2062};
2063
2064static pte_t make_huge_pte(struct vm_area_struct *vma, struct page *page,
2065				int writable)
2066{
2067	pte_t entry;
2068
2069	if (writable) {
2070		entry =
2071		    pte_mkwrite(pte_mkdirty(mk_pte(page, vma->vm_page_prot)));
2072	} else {
2073		entry = huge_pte_wrprotect(mk_pte(page, vma->vm_page_prot));
2074	}
2075	entry = pte_mkyoung(entry);
2076	entry = pte_mkhuge(entry);
2077
2078	return entry;
2079}
2080
2081static void set_huge_ptep_writable(struct vm_area_struct *vma,
2082				   unsigned long address, pte_t *ptep)
2083{
2084	pte_t entry;
2085
2086	entry = pte_mkwrite(pte_mkdirty(huge_ptep_get(ptep)));
2087	if (huge_ptep_set_access_flags(vma, address, ptep, entry, 1)) {
2088		update_mmu_cache(vma, address, entry);
2089	}
2090}
2091
2092
2093int copy_hugetlb_page_range(struct mm_struct *dst, struct mm_struct *src,
2094			    struct vm_area_struct *vma)
2095{
2096	pte_t *src_pte, *dst_pte, entry;
2097	struct page *ptepage;
2098	unsigned long addr;
2099	int cow;
2100	struct hstate *h = hstate_vma(vma);
2101	unsigned long sz = huge_page_size(h);
2102
2103	cow = (vma->vm_flags & (VM_SHARED | VM_MAYWRITE)) == VM_MAYWRITE;
2104
2105	for (addr = vma->vm_start; addr < vma->vm_end; addr += sz) {
2106		src_pte = huge_pte_offset(src, addr);
2107		if (!src_pte)
2108			continue;
2109		dst_pte = huge_pte_alloc(dst, addr, sz);
2110		if (!dst_pte)
2111			goto nomem;
2112
2113		/* If the pagetables are shared don't copy or take references */
2114		if (dst_pte == src_pte)
2115			continue;
2116
2117		spin_lock(&dst->page_table_lock);
2118		spin_lock_nested(&src->page_table_lock, SINGLE_DEPTH_NESTING);
2119		if (!huge_pte_none(huge_ptep_get(src_pte))) {
2120			if (cow)
2121				huge_ptep_set_wrprotect(src, addr, src_pte);
2122			entry = huge_ptep_get(src_pte);
2123			ptepage = pte_page(entry);
2124			get_page(ptepage);
2125			set_huge_pte_at(dst, addr, dst_pte, entry);
2126		}
2127		spin_unlock(&src->page_table_lock);
2128		spin_unlock(&dst->page_table_lock);
2129	}
2130	return 0;
2131
2132nomem:
2133	return -ENOMEM;
2134}
2135
2136void __unmap_hugepage_range(struct vm_area_struct *vma, unsigned long start,
2137			    unsigned long end, struct page *ref_page)
2138{
2139	struct mm_struct *mm = vma->vm_mm;
2140	unsigned long address;
2141	pte_t *ptep;
2142	pte_t pte;
2143	struct page *page;
2144	struct page *tmp;
2145	struct hstate *h = hstate_vma(vma);
2146	unsigned long sz = huge_page_size(h);
2147
2148	/*
2149	 * A page gathering list, protected by per file i_mmap_lock. The
2150	 * lock is used to avoid list corruption from multiple unmapping
2151	 * of the same page since we are using page->lru.
2152	 */
2153	LIST_HEAD(page_list);
2154
2155	WARN_ON(!is_vm_hugetlb_page(vma));
2156	BUG_ON(start & ~huge_page_mask(h));
2157	BUG_ON(end & ~huge_page_mask(h));
2158
2159	mmu_notifier_invalidate_range_start(mm, start, end);
2160	spin_lock(&mm->page_table_lock);
2161	for (address = start; address < end; address += sz) {
2162		ptep = huge_pte_offset(mm, address);
2163		if (!ptep)
2164			continue;
2165
2166		if (huge_pmd_unshare(mm, &address, ptep))
2167			continue;
2168
2169		/*
2170		 * If a reference page is supplied, it is because a specific
2171		 * page is being unmapped, not a range. Ensure the page we
2172		 * are about to unmap is the actual page of interest.
2173		 */
2174		if (ref_page) {
2175			pte = huge_ptep_get(ptep);
2176			if (huge_pte_none(pte))
2177				continue;
2178			page = pte_page(pte);
2179			if (page != ref_page)
2180				continue;
2181
2182			/*
2183			 * Mark the VMA as having unmapped its page so that
2184			 * future faults in this VMA will fail rather than
2185			 * looking like data was lost
2186			 */
2187			set_vma_resv_flags(vma, HPAGE_RESV_UNMAPPED);
2188		}
2189
2190		pte = huge_ptep_get_and_clear(mm, address, ptep);
2191		if (huge_pte_none(pte))
2192			continue;
2193
2194		page = pte_page(pte);
2195		if (pte_dirty(pte))
2196			set_page_dirty(page);
2197		list_add(&page->lru, &page_list);
2198	}
2199	spin_unlock(&mm->page_table_lock);
2200	flush_tlb_range(vma, start, end);
2201	mmu_notifier_invalidate_range_end(mm, start, end);
2202	list_for_each_entry_safe(page, tmp, &page_list, lru) {
2203		list_del(&page->lru);
2204		put_page(page);
2205	}
2206}
2207
2208void unmap_hugepage_range(struct vm_area_struct *vma, unsigned long start,
2209			  unsigned long end, struct page *ref_page)
2210{
2211	spin_lock(&vma->vm_file->f_mapping->i_mmap_lock);
2212	__unmap_hugepage_range(vma, start, end, ref_page);
2213	spin_unlock(&vma->vm_file->f_mapping->i_mmap_lock);
2214}
2215
2216/*
2217 * This is called when the original mapper is failing to COW a MAP_PRIVATE
2218 * mappping it owns the reserve page for. The intention is to unmap the page
2219 * from other VMAs and let the children be SIGKILLed if they are faulting the
2220 * same region.
2221 */
2222static int unmap_ref_private(struct mm_struct *mm, struct vm_area_struct *vma,
2223				struct page *page, unsigned long address)
2224{
2225	struct hstate *h = hstate_vma(vma);
2226	struct vm_area_struct *iter_vma;
2227	struct address_space *mapping;
2228	struct prio_tree_iter iter;
2229	pgoff_t pgoff;
2230
2231	/*
2232	 * vm_pgoff is in PAGE_SIZE units, hence the different calculation
2233	 * from page cache lookup which is in HPAGE_SIZE units.
2234	 */
2235	address = address & huge_page_mask(h);
2236	pgoff = ((address - vma->vm_start) >> PAGE_SHIFT)
2237		+ (vma->vm_pgoff >> PAGE_SHIFT);
2238	mapping = (struct address_space *)page_private(page);
2239
2240	/*
2241	 * Take the mapping lock for the duration of the table walk. As
2242	 * this mapping should be shared between all the VMAs,
2243	 * __unmap_hugepage_range() is called as the lock is already held
2244	 */
2245	spin_lock(&mapping->i_mmap_lock);
2246	vma_prio_tree_foreach(iter_vma, &iter, &mapping->i_mmap, pgoff, pgoff) {
2247		/* Do not unmap the current VMA */
2248		if (iter_vma == vma)
2249			continue;
2250
2251		/*
2252		 * Unmap the page from other VMAs without their own reserves.
2253		 * They get marked to be SIGKILLed if they fault in these
2254		 * areas. This is because a future no-page fault on this VMA
2255		 * could insert a zeroed page instead of the data existing
2256		 * from the time of fork. This would look like data corruption
2257		 */
2258		if (!is_vma_resv_set(iter_vma, HPAGE_RESV_OWNER))
2259			__unmap_hugepage_range(iter_vma,
2260				address, address + huge_page_size(h),
2261				page);
2262	}
2263	spin_unlock(&mapping->i_mmap_lock);
2264
2265	return 1;
2266}
2267
2268static int hugetlb_cow(struct mm_struct *mm, struct vm_area_struct *vma,
2269			unsigned long address, pte_t *ptep, pte_t pte,
2270			struct page *pagecache_page)
2271{
2272	struct hstate *h = hstate_vma(vma);
2273	struct page *old_page, *new_page;
2274	int avoidcopy;
2275	int outside_reserve = 0;
2276
2277	old_page = pte_page(pte);
2278
2279retry_avoidcopy:
2280	/* If no-one else is actually using this page, avoid the copy
2281	 * and just make the page writable */
2282	avoidcopy = (page_count(old_page) == 1);
2283	if (avoidcopy) {
2284		set_huge_ptep_writable(vma, address, ptep);
2285		return 0;
2286	}
2287
2288	/*
2289	 * If the process that created a MAP_PRIVATE mapping is about to
2290	 * perform a COW due to a shared page count, attempt to satisfy
2291	 * the allocation without using the existing reserves. The pagecache
2292	 * page is used to determine if the reserve at this address was
2293	 * consumed or not. If reserves were used, a partial faulted mapping
2294	 * at the time of fork() could consume its reserves on COW instead
2295	 * of the full address range.
2296	 */
2297	if (!(vma->vm_flags & VM_MAYSHARE) &&
2298			is_vma_resv_set(vma, HPAGE_RESV_OWNER) &&
2299			old_page != pagecache_page)
2300		outside_reserve = 1;
2301
2302	page_cache_get(old_page);
2303
2304	/* Drop page_table_lock as buddy allocator may be called */
2305	spin_unlock(&mm->page_table_lock);
2306	new_page = alloc_huge_page(vma, address, outside_reserve);
2307
2308	if (IS_ERR(new_page)) {
2309		page_cache_release(old_page);
2310
2311		/*
2312		 * If a process owning a MAP_PRIVATE mapping fails to COW,
2313		 * it is due to references held by a child and an insufficient
2314		 * huge page pool. To guarantee the original mappers
2315		 * reliability, unmap the page from child processes. The child
2316		 * may get SIGKILLed if it later faults.
2317		 */
2318		if (outside_reserve) {
2319			BUG_ON(huge_pte_none(pte));
2320			if (unmap_ref_private(mm, vma, old_page, address)) {
2321				BUG_ON(page_count(old_page) != 1);
2322				BUG_ON(huge_pte_none(pte));
2323				spin_lock(&mm->page_table_lock);
2324				goto retry_avoidcopy;
2325			}
2326			WARN_ON_ONCE(1);
2327		}
2328
2329		/* Caller expects lock to be held */
2330		spin_lock(&mm->page_table_lock);
2331		return -PTR_ERR(new_page);
2332	}
2333
2334	copy_huge_page(new_page, old_page, address, vma);
2335	__SetPageUptodate(new_page);
2336
2337	/*
2338	 * Retake the page_table_lock to check for racing updates
2339	 * before the page tables are altered
2340	 */
2341	spin_lock(&mm->page_table_lock);
2342	ptep = huge_pte_offset(mm, address & huge_page_mask(h));
2343	if (likely(pte_same(huge_ptep_get(ptep), pte))) {
2344		/* Break COW */
2345		huge_ptep_clear_flush(vma, address, ptep);
2346		set_huge_pte_at(mm, address, ptep,
2347				make_huge_pte(vma, new_page, 1));
2348		/* Make the old page be freed below */
2349		new_page = old_page;
2350	}
2351	page_cache_release(new_page);
2352	page_cache_release(old_page);
2353	return 0;
2354}
2355
2356/* Return the pagecache page at a given address within a VMA */
2357static struct page *hugetlbfs_pagecache_page(struct hstate *h,
2358			struct vm_area_struct *vma, unsigned long address)
2359{
2360	struct address_space *mapping;
2361	pgoff_t idx;
2362
2363	mapping = vma->vm_file->f_mapping;
2364	idx = vma_hugecache_offset(h, vma, address);
2365
2366	return find_lock_page(mapping, idx);
2367}
2368
2369/*
2370 * Return whether there is a pagecache page to back given address within VMA.
2371 * Caller follow_hugetlb_page() holds page_table_lock so we cannot lock_page.
2372 */
2373static bool hugetlbfs_pagecache_present(struct hstate *h,
2374			struct vm_area_struct *vma, unsigned long address)
2375{
2376	struct address_space *mapping;
2377	pgoff_t idx;
2378	struct page *page;
2379
2380	mapping = vma->vm_file->f_mapping;
2381	idx = vma_hugecache_offset(h, vma, address);
2382
2383	page = find_get_page(mapping, idx);
2384	if (page)
2385		put_page(page);
2386	return page != NULL;
2387}
2388
2389static int hugetlb_no_page(struct mm_struct *mm, struct vm_area_struct *vma,
2390			unsigned long address, pte_t *ptep, unsigned int flags)
2391{
2392	struct hstate *h = hstate_vma(vma);
2393	int ret = VM_FAULT_SIGBUS;
2394	pgoff_t idx;
2395	unsigned long size;
2396	struct page *page;
2397	struct address_space *mapping;
2398	pte_t new_pte;
2399
2400	/*
2401	 * Currently, we are forced to kill the process in the event the
2402	 * original mapper has unmapped pages from the child due to a failed
2403	 * COW. Warn that such a situation has occured as it may not be obvious
2404	 */
2405	if (is_vma_resv_set(vma, HPAGE_RESV_UNMAPPED)) {
2406		printk(KERN_WARNING
2407			"PID %d killed due to inadequate hugepage pool\n",
2408			current->pid);
2409		return ret;
2410	}
2411
2412	mapping = vma->vm_file->f_mapping;
2413	idx = vma_hugecache_offset(h, vma, address);
2414
2415	/*
2416	 * Use page lock to guard against racing truncation
2417	 * before we get page_table_lock.
2418	 */
2419retry:
2420	page = find_lock_page(mapping, idx);
2421	if (!page) {
2422		size = i_size_read(mapping->host) >> huge_page_shift(h);
2423		if (idx >= size)
2424			goto out;
2425		page = alloc_huge_page(vma, address, 0);
2426		if (IS_ERR(page)) {
2427			ret = -PTR_ERR(page);
2428			goto out;
2429		}
2430		clear_huge_page(page, address, huge_page_size(h));
2431		__SetPageUptodate(page);
2432
2433		if (vma->vm_flags & VM_MAYSHARE) {
2434			int err;
2435			struct inode *inode = mapping->host;
2436
2437			err = add_to_page_cache(page, mapping, idx, GFP_KERNEL);
2438			if (err) {
2439				put_page(page);
2440				if (err == -EEXIST)
2441					goto retry;
2442				goto out;
2443			}
2444
2445			spin_lock(&inode->i_lock);
2446			inode->i_blocks += blocks_per_huge_page(h);
2447			spin_unlock(&inode->i_lock);
2448		} else
2449			lock_page(page);
2450	}
2451
2452	/*
2453	 * If we are going to COW a private mapping later, we examine the
2454	 * pending reservations for this page now. This will ensure that
2455	 * any allocations necessary to record that reservation occur outside
2456	 * the spinlock.
2457	 */
2458	if ((flags & FAULT_FLAG_WRITE) && !(vma->vm_flags & VM_SHARED))
2459		if (vma_needs_reservation(h, vma, address) < 0) {
2460			ret = VM_FAULT_OOM;
2461			goto backout_unlocked;
2462		}
2463
2464	spin_lock(&mm->page_table_lock);
2465	size = i_size_read(mapping->host) >> huge_page_shift(h);
2466	if (idx >= size)
2467		goto backout;
2468
2469	ret = 0;
2470	if (!huge_pte_none(huge_ptep_get(ptep)))
2471		goto backout;
2472
2473	new_pte = make_huge_pte(vma, page, ((vma->vm_flags & VM_WRITE)
2474				&& (vma->vm_flags & VM_SHARED)));
2475	set_huge_pte_at(mm, address, ptep, new_pte);
2476
2477	if ((flags & FAULT_FLAG_WRITE) && !(vma->vm_flags & VM_SHARED)) {
2478		/* Optimization, do the COW without a second fault */
2479		ret = hugetlb_cow(mm, vma, address, ptep, new_pte, page);
2480	}
2481
2482	spin_unlock(&mm->page_table_lock);
2483	unlock_page(page);
2484out:
2485	return ret;
2486
2487backout:
2488	spin_unlock(&mm->page_table_lock);
2489backout_unlocked:
2490	unlock_page(page);
2491	put_page(page);
2492	goto out;
2493}
2494
2495int hugetlb_fault(struct mm_struct *mm, struct vm_area_struct *vma,
2496			unsigned long address, unsigned int flags)
2497{
2498	pte_t *ptep;
2499	pte_t entry;
2500	int ret;
2501	struct page *pagecache_page = NULL;
2502	static DEFINE_MUTEX(hugetlb_instantiation_mutex);
2503	struct hstate *h = hstate_vma(vma);
2504
2505	ptep = huge_pte_alloc(mm, address, huge_page_size(h));
2506	if (!ptep)
2507		return VM_FAULT_OOM;
2508
2509	/*
2510	 * Serialize hugepage allocation and instantiation, so that we don't
2511	 * get spurious allocation failures if two CPUs race to instantiate
2512	 * the same page in the page cache.
2513	 */
2514	mutex_lock(&hugetlb_instantiation_mutex);
2515	entry = huge_ptep_get(ptep);
2516	if (huge_pte_none(entry)) {
2517		ret = hugetlb_no_page(mm, vma, address, ptep, flags);
2518		goto out_mutex;
2519	}
2520
2521	ret = 0;
2522
2523	/*
2524	 * If we are going to COW the mapping later, we examine the pending
2525	 * reservations for this page now. This will ensure that any
2526	 * allocations necessary to record that reservation occur outside the
2527	 * spinlock. For private mappings, we also lookup the pagecache
2528	 * page now as it is used to determine if a reservation has been
2529	 * consumed.
2530	 */
2531	if ((flags & FAULT_FLAG_WRITE) && !pte_write(entry)) {
2532		if (vma_needs_reservation(h, vma, address) < 0) {
2533			ret = VM_FAULT_OOM;
2534			goto out_mutex;
2535		}
2536
2537		if (!(vma->vm_flags & VM_MAYSHARE))
2538			pagecache_page = hugetlbfs_pagecache_page(h,
2539								vma, address);
2540	}
2541
2542	spin_lock(&mm->page_table_lock);
2543	/* Check for a racing update before calling hugetlb_cow */
2544	if (unlikely(!pte_same(entry, huge_ptep_get(ptep))))
2545		goto out_page_table_lock;
2546
2547
2548	if (flags & FAULT_FLAG_WRITE) {
2549		if (!pte_write(entry)) {
2550			ret = hugetlb_cow(mm, vma, address, ptep, entry,
2551							pagecache_page);
2552			goto out_page_table_lock;
2553		}
2554		entry = pte_mkdirty(entry);
2555	}
2556	entry = pte_mkyoung(entry);
2557	if (huge_ptep_set_access_flags(vma, address, ptep, entry,
2558						flags & FAULT_FLAG_WRITE))
2559		update_mmu_cache(vma, address, entry);
2560
2561out_page_table_lock:
2562	spin_unlock(&mm->page_table_lock);
2563
2564	if (pagecache_page) {
2565		unlock_page(pagecache_page);
2566		put_page(pagecache_page);
2567	}
2568
2569out_mutex:
2570	mutex_unlock(&hugetlb_instantiation_mutex);
2571
2572	return ret;
2573}
2574
2575/* Can be overriden by architectures */
2576__attribute__((weak)) struct page *
2577follow_huge_pud(struct mm_struct *mm, unsigned long address,
2578	       pud_t *pud, int write)
2579{
2580	BUG();
2581	return NULL;
2582}
2583
2584int follow_hugetlb_page(struct mm_struct *mm, struct vm_area_struct *vma,
2585			struct page **pages, struct vm_area_struct **vmas,
2586			unsigned long *position, int *length, int i,
2587			unsigned int flags)
2588{
2589	unsigned long pfn_offset;
2590	unsigned long vaddr = *position;
2591	int remainder = *length;
2592	struct hstate *h = hstate_vma(vma);
2593
2594	spin_lock(&mm->page_table_lock);
2595	while (vaddr < vma->vm_end && remainder) {
2596		pte_t *pte;
2597		int absent;
2598		struct page *page;
2599
2600		/*
2601		 * Some archs (sparc64, sh*) have multiple pte_ts to
2602		 * each hugepage.  We have to make sure we get the
2603		 * first, for the page indexing below to work.
2604		 */
2605		pte = huge_pte_offset(mm, vaddr & huge_page_mask(h));
2606		absent = !pte || huge_pte_none(huge_ptep_get(pte));
2607
2608		/*
2609		 * When coredumping, it suits get_dump_page if we just return
2610		 * an error where there's an empty slot with no huge pagecache
2611		 * to back it.  This way, we avoid allocating a hugepage, and
2612		 * the sparse dumpfile avoids allocating disk blocks, but its
2613		 * huge holes still show up with zeroes where they need to be.
2614		 */
2615		if (absent && (flags & FOLL_DUMP) &&
2616		    !hugetlbfs_pagecache_present(h, vma, vaddr)) {
2617			remainder = 0;
2618			break;
2619		}
2620
2621		if (absent ||
2622		    ((flags & FOLL_WRITE) && !pte_write(huge_ptep_get(pte)))) {
2623			int ret;
2624
2625			spin_unlock(&mm->page_table_lock);
2626			ret = hugetlb_fault(mm, vma, vaddr,
2627				(flags & FOLL_WRITE) ? FAULT_FLAG_WRITE : 0);
2628			spin_lock(&mm->page_table_lock);
2629			if (!(ret & VM_FAULT_ERROR))
2630				continue;
2631
2632			remainder = 0;
2633			break;
2634		}
2635
2636		pfn_offset = (vaddr & ~huge_page_mask(h)) >> PAGE_SHIFT;
2637		page = pte_page(huge_ptep_get(pte));
2638same_page:
2639		if (pages) {
2640			pages[i] = mem_map_offset(page, pfn_offset);
2641			get_page(pages[i]);
2642		}
2643
2644		if (vmas)
2645			vmas[i] = vma;
2646
2647		vaddr += PAGE_SIZE;
2648		++pfn_offset;
2649		--remainder;
2650		++i;
2651		if (vaddr < vma->vm_end && remainder &&
2652				pfn_offset < pages_per_huge_page(h)) {
2653			/*
2654			 * We use pfn_offset to avoid touching the pageframes
2655			 * of this compound page.
2656			 */
2657			goto same_page;
2658		}
2659	}
2660	spin_unlock(&mm->page_table_lock);
2661	*length = remainder;
2662	*position = vaddr;
2663
2664	return i ? i : -EFAULT;
2665}
2666
2667void hugetlb_change_protection(struct vm_area_struct *vma,
2668		unsigned long address, unsigned long end, pgprot_t newprot)
2669{
2670	struct mm_struct *mm = vma->vm_mm;
2671	unsigned long start = address;
2672	pte_t *ptep;
2673	pte_t pte;
2674	struct hstate *h = hstate_vma(vma);
2675
2676	BUG_ON(address >= end);
2677	flush_cache_range(vma, address, end);
2678
2679	spin_lock(&vma->vm_file->f_mapping->i_mmap_lock);
2680	spin_lock(&mm->page_table_lock);
2681	for (; address < end; address += huge_page_size(h)) {
2682		ptep = huge_pte_offset(mm, address);
2683		if (!ptep)
2684			continue;
2685		if (huge_pmd_unshare(mm, &address, ptep))
2686			continue;
2687		if (!huge_pte_none(huge_ptep_get(ptep))) {
2688			pte = huge_ptep_get_and_clear(mm, address, ptep);
2689			pte = pte_mkhuge(pte_modify(pte, newprot));
2690			set_huge_pte_at(mm, address, ptep, pte);
2691		}
2692	}
2693	spin_unlock(&mm->page_table_lock);
2694	spin_unlock(&vma->vm_file->f_mapping->i_mmap_lock);
2695
2696	flush_tlb_range(vma, start, end);
2697}
2698
2699int hugetlb_reserve_pages(struct inode *inode,
2700					long from, long to,
2701					struct vm_area_struct *vma,
2702					int acctflag)
2703{
2704	long ret, chg;
2705	struct hstate *h = hstate_inode(inode);
2706
2707	/*
2708	 * Only apply hugepage reservation if asked. At fault time, an
2709	 * attempt will be made for VM_NORESERVE to allocate a page
2710	 * and filesystem quota without using reserves
2711	 */
2712	if (acctflag & VM_NORESERVE)
2713		return 0;
2714
2715	/*
2716	 * Shared mappings base their reservation on the number of pages that
2717	 * are already allocated on behalf of the file. Private mappings need
2718	 * to reserve the full area even if read-only as mprotect() may be
2719	 * called to make the mapping read-write. Assume !vma is a shm mapping
2720	 */
2721	if (!vma || vma->vm_flags & VM_MAYSHARE)
2722		chg = region_chg(&inode->i_mapping->private_list, from, to);
2723	else {
2724		struct resv_map *resv_map = resv_map_alloc();
2725		if (!resv_map)
2726			return -ENOMEM;
2727
2728		chg = to - from;
2729
2730		set_vma_resv_map(vma, resv_map);
2731		set_vma_resv_flags(vma, HPAGE_RESV_OWNER);
2732	}
2733
2734	if (chg < 0)
2735		return chg;
2736
2737	/* There must be enough filesystem quota for the mapping */
2738	if (hugetlb_get_quota(inode->i_mapping, chg))
2739		return -ENOSPC;
2740
2741	/*
2742	 * Check enough hugepages are available for the reservation.
2743	 * Hand back the quota if there are not
2744	 */
2745	ret = hugetlb_acct_memory(h, chg);
2746	if (ret < 0) {
2747		hugetlb_put_quota(inode->i_mapping, chg);
2748		return ret;
2749	}
2750
2751	/*
2752	 * Account for the reservations made. Shared mappings record regions
2753	 * that have reservations as they are shared by multiple VMAs.
2754	 * When the last VMA disappears, the region map says how much
2755	 * the reservation was and the page cache tells how much of
2756	 * the reservation was consumed. Private mappings are per-VMA and
2757	 * only the consumed reservations are tracked. When the VMA
2758	 * disappears, the original reservation is the VMA size and the
2759	 * consumed reservations are stored in the map. Hence, nothing
2760	 * else has to be done for private mappings here
2761	 */
2762	if (!vma || vma->vm_flags & VM_MAYSHARE)
2763		region_add(&inode->i_mapping->private_list, from, to);
2764	return 0;
2765}
2766
2767void hugetlb_unreserve_pages(struct inode *inode, long offset, long freed)
2768{
2769	struct hstate *h = hstate_inode(inode);
2770	long chg = region_truncate(&inode->i_mapping->private_list, offset);
2771
2772	spin_lock(&inode->i_lock);
2773	inode->i_blocks -= (blocks_per_huge_page(h) * freed);
2774	spin_unlock(&inode->i_lock);
2775
2776	hugetlb_put_quota(inode->i_mapping, (chg - freed));
2777	hugetlb_acct_memory(h, -(chg - freed));
2778}
2779