hugetlb.c revision 8a63011275e1a0ec9389e8c7d9b08caab8957ca0
1/*
2 * Generic hugetlb support.
3 * (C) William Irwin, April 2004
4 */
5#include <linux/gfp.h>
6#include <linux/list.h>
7#include <linux/init.h>
8#include <linux/module.h>
9#include <linux/mm.h>
10#include <linux/sysctl.h>
11#include <linux/highmem.h>
12#include <linux/nodemask.h>
13#include <linux/pagemap.h>
14#include <linux/mempolicy.h>
15#include <linux/cpuset.h>
16#include <linux/mutex.h>
17
18#include <asm/page.h>
19#include <asm/pgtable.h>
20
21#include <linux/hugetlb.h>
22#include "internal.h"
23
24const unsigned long hugetlb_zero = 0, hugetlb_infinity = ~0UL;
25static unsigned long nr_huge_pages, free_huge_pages, resv_huge_pages;
26unsigned long max_huge_pages;
27static struct list_head hugepage_freelists[MAX_NUMNODES];
28static unsigned int nr_huge_pages_node[MAX_NUMNODES];
29static unsigned int free_huge_pages_node[MAX_NUMNODES];
30/*
31 * Protects updates to hugepage_freelists, nr_huge_pages, and free_huge_pages
32 */
33static DEFINE_SPINLOCK(hugetlb_lock);
34
35static void clear_huge_page(struct page *page, unsigned long addr)
36{
37	int i;
38
39	might_sleep();
40	for (i = 0; i < (HPAGE_SIZE/PAGE_SIZE); i++) {
41		cond_resched();
42		clear_user_highpage(page + i, addr);
43	}
44}
45
46static void copy_huge_page(struct page *dst, struct page *src,
47			   unsigned long addr, struct vm_area_struct *vma)
48{
49	int i;
50
51	might_sleep();
52	for (i = 0; i < HPAGE_SIZE/PAGE_SIZE; i++) {
53		cond_resched();
54		copy_user_highpage(dst + i, src + i, addr + i*PAGE_SIZE, vma);
55	}
56}
57
58static void enqueue_huge_page(struct page *page)
59{
60	int nid = page_to_nid(page);
61	list_add(&page->lru, &hugepage_freelists[nid]);
62	free_huge_pages++;
63	free_huge_pages_node[nid]++;
64}
65
66static struct page *dequeue_huge_page(struct vm_area_struct *vma,
67				unsigned long address)
68{
69	int nid = numa_node_id();
70	struct page *page = NULL;
71	struct zonelist *zonelist = huge_zonelist(vma, address);
72	struct zone **z;
73
74	for (z = zonelist->zones; *z; z++) {
75		nid = zone_to_nid(*z);
76		if (cpuset_zone_allowed_softwall(*z, GFP_HIGHUSER) &&
77		    !list_empty(&hugepage_freelists[nid]))
78			break;
79	}
80
81	if (*z) {
82		page = list_entry(hugepage_freelists[nid].next,
83				  struct page, lru);
84		list_del(&page->lru);
85		free_huge_pages--;
86		free_huge_pages_node[nid]--;
87	}
88	return page;
89}
90
91static void free_huge_page(struct page *page)
92{
93	BUG_ON(page_count(page));
94
95	INIT_LIST_HEAD(&page->lru);
96
97	spin_lock(&hugetlb_lock);
98	enqueue_huge_page(page);
99	spin_unlock(&hugetlb_lock);
100}
101
102static int alloc_fresh_huge_page(void)
103{
104	static int nid = 0;
105	struct page *page;
106	page = alloc_pages_node(nid, GFP_HIGHUSER|__GFP_COMP|__GFP_NOWARN,
107					HUGETLB_PAGE_ORDER);
108	nid = next_node(nid, node_online_map);
109	if (nid == MAX_NUMNODES)
110		nid = first_node(node_online_map);
111	if (page) {
112		set_compound_page_dtor(page, free_huge_page);
113		spin_lock(&hugetlb_lock);
114		nr_huge_pages++;
115		nr_huge_pages_node[page_to_nid(page)]++;
116		spin_unlock(&hugetlb_lock);
117		put_page(page); /* free it into the hugepage allocator */
118		return 1;
119	}
120	return 0;
121}
122
123static struct page *alloc_huge_page(struct vm_area_struct *vma,
124				    unsigned long addr)
125{
126	struct page *page;
127
128	spin_lock(&hugetlb_lock);
129	if (vma->vm_flags & VM_MAYSHARE)
130		resv_huge_pages--;
131	else if (free_huge_pages <= resv_huge_pages)
132		goto fail;
133
134	page = dequeue_huge_page(vma, addr);
135	if (!page)
136		goto fail;
137
138	spin_unlock(&hugetlb_lock);
139	set_page_refcounted(page);
140	return page;
141
142fail:
143	if (vma->vm_flags & VM_MAYSHARE)
144		resv_huge_pages++;
145	spin_unlock(&hugetlb_lock);
146	return NULL;
147}
148
149static int __init hugetlb_init(void)
150{
151	unsigned long i;
152
153	if (HPAGE_SHIFT == 0)
154		return 0;
155
156	for (i = 0; i < MAX_NUMNODES; ++i)
157		INIT_LIST_HEAD(&hugepage_freelists[i]);
158
159	for (i = 0; i < max_huge_pages; ++i) {
160		if (!alloc_fresh_huge_page())
161			break;
162	}
163	max_huge_pages = free_huge_pages = nr_huge_pages = i;
164	printk("Total HugeTLB memory allocated, %ld\n", free_huge_pages);
165	return 0;
166}
167module_init(hugetlb_init);
168
169static int __init hugetlb_setup(char *s)
170{
171	if (sscanf(s, "%lu", &max_huge_pages) <= 0)
172		max_huge_pages = 0;
173	return 1;
174}
175__setup("hugepages=", hugetlb_setup);
176
177static unsigned int cpuset_mems_nr(unsigned int *array)
178{
179	int node;
180	unsigned int nr = 0;
181
182	for_each_node_mask(node, cpuset_current_mems_allowed)
183		nr += array[node];
184
185	return nr;
186}
187
188#ifdef CONFIG_SYSCTL
189static void update_and_free_page(struct page *page)
190{
191	int i;
192	nr_huge_pages--;
193	nr_huge_pages_node[page_to_nid(page)]--;
194	for (i = 0; i < (HPAGE_SIZE / PAGE_SIZE); i++) {
195		page[i].flags &= ~(1 << PG_locked | 1 << PG_error | 1 << PG_referenced |
196				1 << PG_dirty | 1 << PG_active | 1 << PG_reserved |
197				1 << PG_private | 1<< PG_writeback);
198	}
199	page[1].lru.next = NULL;
200	set_page_refcounted(page);
201	__free_pages(page, HUGETLB_PAGE_ORDER);
202}
203
204#ifdef CONFIG_HIGHMEM
205static void try_to_free_low(unsigned long count)
206{
207	int i;
208
209	for (i = 0; i < MAX_NUMNODES; ++i) {
210		struct page *page, *next;
211		list_for_each_entry_safe(page, next, &hugepage_freelists[i], lru) {
212			if (PageHighMem(page))
213				continue;
214			list_del(&page->lru);
215			update_and_free_page(page);
216			free_huge_pages--;
217			free_huge_pages_node[page_to_nid(page)]--;
218			if (count >= nr_huge_pages)
219				return;
220		}
221	}
222}
223#else
224static inline void try_to_free_low(unsigned long count)
225{
226}
227#endif
228
229static unsigned long set_max_huge_pages(unsigned long count)
230{
231	while (count > nr_huge_pages) {
232		if (!alloc_fresh_huge_page())
233			return nr_huge_pages;
234	}
235	if (count >= nr_huge_pages)
236		return nr_huge_pages;
237
238	spin_lock(&hugetlb_lock);
239	count = max(count, resv_huge_pages);
240	try_to_free_low(count);
241	while (count < nr_huge_pages) {
242		struct page *page = dequeue_huge_page(NULL, 0);
243		if (!page)
244			break;
245		update_and_free_page(page);
246	}
247	spin_unlock(&hugetlb_lock);
248	return nr_huge_pages;
249}
250
251int hugetlb_sysctl_handler(struct ctl_table *table, int write,
252			   struct file *file, void __user *buffer,
253			   size_t *length, loff_t *ppos)
254{
255	proc_doulongvec_minmax(table, write, file, buffer, length, ppos);
256	max_huge_pages = set_max_huge_pages(max_huge_pages);
257	return 0;
258}
259#endif /* CONFIG_SYSCTL */
260
261int hugetlb_report_meminfo(char *buf)
262{
263	return sprintf(buf,
264			"HugePages_Total: %5lu\n"
265			"HugePages_Free:  %5lu\n"
266			"HugePages_Rsvd:  %5lu\n"
267			"Hugepagesize:    %5lu kB\n",
268			nr_huge_pages,
269			free_huge_pages,
270			resv_huge_pages,
271			HPAGE_SIZE/1024);
272}
273
274int hugetlb_report_node_meminfo(int nid, char *buf)
275{
276	return sprintf(buf,
277		"Node %d HugePages_Total: %5u\n"
278		"Node %d HugePages_Free:  %5u\n",
279		nid, nr_huge_pages_node[nid],
280		nid, free_huge_pages_node[nid]);
281}
282
283/* Return the number pages of memory we physically have, in PAGE_SIZE units. */
284unsigned long hugetlb_total_pages(void)
285{
286	return nr_huge_pages * (HPAGE_SIZE / PAGE_SIZE);
287}
288
289/*
290 * We cannot handle pagefaults against hugetlb pages at all.  They cause
291 * handle_mm_fault() to try to instantiate regular-sized pages in the
292 * hugegpage VMA.  do_page_fault() is supposed to trap this, so BUG is we get
293 * this far.
294 */
295static struct page *hugetlb_nopage(struct vm_area_struct *vma,
296				unsigned long address, int *unused)
297{
298	BUG();
299	return NULL;
300}
301
302struct vm_operations_struct hugetlb_vm_ops = {
303	.nopage = hugetlb_nopage,
304};
305
306static pte_t make_huge_pte(struct vm_area_struct *vma, struct page *page,
307				int writable)
308{
309	pte_t entry;
310
311	if (writable) {
312		entry =
313		    pte_mkwrite(pte_mkdirty(mk_pte(page, vma->vm_page_prot)));
314	} else {
315		entry = pte_wrprotect(mk_pte(page, vma->vm_page_prot));
316	}
317	entry = pte_mkyoung(entry);
318	entry = pte_mkhuge(entry);
319
320	return entry;
321}
322
323static void set_huge_ptep_writable(struct vm_area_struct *vma,
324				   unsigned long address, pte_t *ptep)
325{
326	pte_t entry;
327
328	entry = pte_mkwrite(pte_mkdirty(*ptep));
329	ptep_set_access_flags(vma, address, ptep, entry, 1);
330	update_mmu_cache(vma, address, entry);
331	lazy_mmu_prot_update(entry);
332}
333
334
335int copy_hugetlb_page_range(struct mm_struct *dst, struct mm_struct *src,
336			    struct vm_area_struct *vma)
337{
338	pte_t *src_pte, *dst_pte, entry;
339	struct page *ptepage;
340	unsigned long addr;
341	int cow;
342
343	cow = (vma->vm_flags & (VM_SHARED | VM_MAYWRITE)) == VM_MAYWRITE;
344
345	for (addr = vma->vm_start; addr < vma->vm_end; addr += HPAGE_SIZE) {
346		src_pte = huge_pte_offset(src, addr);
347		if (!src_pte)
348			continue;
349		dst_pte = huge_pte_alloc(dst, addr);
350		if (!dst_pte)
351			goto nomem;
352		spin_lock(&dst->page_table_lock);
353		spin_lock(&src->page_table_lock);
354		if (!pte_none(*src_pte)) {
355			if (cow)
356				ptep_set_wrprotect(src, addr, src_pte);
357			entry = *src_pte;
358			ptepage = pte_page(entry);
359			get_page(ptepage);
360			set_huge_pte_at(dst, addr, dst_pte, entry);
361		}
362		spin_unlock(&src->page_table_lock);
363		spin_unlock(&dst->page_table_lock);
364	}
365	return 0;
366
367nomem:
368	return -ENOMEM;
369}
370
371void __unmap_hugepage_range(struct vm_area_struct *vma, unsigned long start,
372			    unsigned long end)
373{
374	struct mm_struct *mm = vma->vm_mm;
375	unsigned long address;
376	pte_t *ptep;
377	pte_t pte;
378	struct page *page;
379	struct page *tmp;
380	/*
381	 * A page gathering list, protected by per file i_mmap_lock. The
382	 * lock is used to avoid list corruption from multiple unmapping
383	 * of the same page since we are using page->lru.
384	 */
385	LIST_HEAD(page_list);
386
387	WARN_ON(!is_vm_hugetlb_page(vma));
388	BUG_ON(start & ~HPAGE_MASK);
389	BUG_ON(end & ~HPAGE_MASK);
390
391	spin_lock(&mm->page_table_lock);
392	for (address = start; address < end; address += HPAGE_SIZE) {
393		ptep = huge_pte_offset(mm, address);
394		if (!ptep)
395			continue;
396
397		if (huge_pmd_unshare(mm, &address, ptep))
398			continue;
399
400		pte = huge_ptep_get_and_clear(mm, address, ptep);
401		if (pte_none(pte))
402			continue;
403
404		page = pte_page(pte);
405		if (pte_dirty(pte))
406			set_page_dirty(page);
407		list_add(&page->lru, &page_list);
408	}
409	spin_unlock(&mm->page_table_lock);
410	flush_tlb_range(vma, start, end);
411	list_for_each_entry_safe(page, tmp, &page_list, lru) {
412		list_del(&page->lru);
413		put_page(page);
414	}
415}
416
417void unmap_hugepage_range(struct vm_area_struct *vma, unsigned long start,
418			  unsigned long end)
419{
420	/*
421	 * It is undesirable to test vma->vm_file as it should be non-null
422	 * for valid hugetlb area. However, vm_file will be NULL in the error
423	 * cleanup path of do_mmap_pgoff. When hugetlbfs ->mmap method fails,
424	 * do_mmap_pgoff() nullifies vma->vm_file before calling this function
425	 * to clean up. Since no pte has actually been setup, it is safe to
426	 * do nothing in this case.
427	 */
428	if (vma->vm_file) {
429		spin_lock(&vma->vm_file->f_mapping->i_mmap_lock);
430		__unmap_hugepage_range(vma, start, end);
431		spin_unlock(&vma->vm_file->f_mapping->i_mmap_lock);
432	}
433}
434
435static int hugetlb_cow(struct mm_struct *mm, struct vm_area_struct *vma,
436			unsigned long address, pte_t *ptep, pte_t pte)
437{
438	struct page *old_page, *new_page;
439	int avoidcopy;
440
441	old_page = pte_page(pte);
442
443	/* If no-one else is actually using this page, avoid the copy
444	 * and just make the page writable */
445	avoidcopy = (page_count(old_page) == 1);
446	if (avoidcopy) {
447		set_huge_ptep_writable(vma, address, ptep);
448		return VM_FAULT_MINOR;
449	}
450
451	page_cache_get(old_page);
452	new_page = alloc_huge_page(vma, address);
453
454	if (!new_page) {
455		page_cache_release(old_page);
456		return VM_FAULT_OOM;
457	}
458
459	spin_unlock(&mm->page_table_lock);
460	copy_huge_page(new_page, old_page, address, vma);
461	spin_lock(&mm->page_table_lock);
462
463	ptep = huge_pte_offset(mm, address & HPAGE_MASK);
464	if (likely(pte_same(*ptep, pte))) {
465		/* Break COW */
466		set_huge_pte_at(mm, address, ptep,
467				make_huge_pte(vma, new_page, 1));
468		/* Make the old page be freed below */
469		new_page = old_page;
470	}
471	page_cache_release(new_page);
472	page_cache_release(old_page);
473	return VM_FAULT_MINOR;
474}
475
476int hugetlb_no_page(struct mm_struct *mm, struct vm_area_struct *vma,
477			unsigned long address, pte_t *ptep, int write_access)
478{
479	int ret = VM_FAULT_SIGBUS;
480	unsigned long idx;
481	unsigned long size;
482	struct page *page;
483	struct address_space *mapping;
484	pte_t new_pte;
485
486	mapping = vma->vm_file->f_mapping;
487	idx = ((address - vma->vm_start) >> HPAGE_SHIFT)
488		+ (vma->vm_pgoff >> (HPAGE_SHIFT - PAGE_SHIFT));
489
490	/*
491	 * Use page lock to guard against racing truncation
492	 * before we get page_table_lock.
493	 */
494retry:
495	page = find_lock_page(mapping, idx);
496	if (!page) {
497		size = i_size_read(mapping->host) >> HPAGE_SHIFT;
498		if (idx >= size)
499			goto out;
500		if (hugetlb_get_quota(mapping))
501			goto out;
502		page = alloc_huge_page(vma, address);
503		if (!page) {
504			hugetlb_put_quota(mapping);
505			ret = VM_FAULT_OOM;
506			goto out;
507		}
508		clear_huge_page(page, address);
509
510		if (vma->vm_flags & VM_SHARED) {
511			int err;
512
513			err = add_to_page_cache(page, mapping, idx, GFP_KERNEL);
514			if (err) {
515				put_page(page);
516				hugetlb_put_quota(mapping);
517				if (err == -EEXIST)
518					goto retry;
519				goto out;
520			}
521		} else
522			lock_page(page);
523	}
524
525	spin_lock(&mm->page_table_lock);
526	size = i_size_read(mapping->host) >> HPAGE_SHIFT;
527	if (idx >= size)
528		goto backout;
529
530	ret = VM_FAULT_MINOR;
531	if (!pte_none(*ptep))
532		goto backout;
533
534	new_pte = make_huge_pte(vma, page, ((vma->vm_flags & VM_WRITE)
535				&& (vma->vm_flags & VM_SHARED)));
536	set_huge_pte_at(mm, address, ptep, new_pte);
537
538	if (write_access && !(vma->vm_flags & VM_SHARED)) {
539		/* Optimization, do the COW without a second fault */
540		ret = hugetlb_cow(mm, vma, address, ptep, new_pte);
541	}
542
543	spin_unlock(&mm->page_table_lock);
544	unlock_page(page);
545out:
546	return ret;
547
548backout:
549	spin_unlock(&mm->page_table_lock);
550	hugetlb_put_quota(mapping);
551	unlock_page(page);
552	put_page(page);
553	goto out;
554}
555
556int hugetlb_fault(struct mm_struct *mm, struct vm_area_struct *vma,
557			unsigned long address, int write_access)
558{
559	pte_t *ptep;
560	pte_t entry;
561	int ret;
562	static DEFINE_MUTEX(hugetlb_instantiation_mutex);
563
564	ptep = huge_pte_alloc(mm, address);
565	if (!ptep)
566		return VM_FAULT_OOM;
567
568	/*
569	 * Serialize hugepage allocation and instantiation, so that we don't
570	 * get spurious allocation failures if two CPUs race to instantiate
571	 * the same page in the page cache.
572	 */
573	mutex_lock(&hugetlb_instantiation_mutex);
574	entry = *ptep;
575	if (pte_none(entry)) {
576		ret = hugetlb_no_page(mm, vma, address, ptep, write_access);
577		mutex_unlock(&hugetlb_instantiation_mutex);
578		return ret;
579	}
580
581	ret = VM_FAULT_MINOR;
582
583	spin_lock(&mm->page_table_lock);
584	/* Check for a racing update before calling hugetlb_cow */
585	if (likely(pte_same(entry, *ptep)))
586		if (write_access && !pte_write(entry))
587			ret = hugetlb_cow(mm, vma, address, ptep, entry);
588	spin_unlock(&mm->page_table_lock);
589	mutex_unlock(&hugetlb_instantiation_mutex);
590
591	return ret;
592}
593
594int follow_hugetlb_page(struct mm_struct *mm, struct vm_area_struct *vma,
595			struct page **pages, struct vm_area_struct **vmas,
596			unsigned long *position, int *length, int i)
597{
598	unsigned long pfn_offset;
599	unsigned long vaddr = *position;
600	int remainder = *length;
601
602	spin_lock(&mm->page_table_lock);
603	while (vaddr < vma->vm_end && remainder) {
604		pte_t *pte;
605		struct page *page;
606
607		/*
608		 * Some archs (sparc64, sh*) have multiple pte_ts to
609		 * each hugepage.  We have to make * sure we get the
610		 * first, for the page indexing below to work.
611		 */
612		pte = huge_pte_offset(mm, vaddr & HPAGE_MASK);
613
614		if (!pte || pte_none(*pte)) {
615			int ret;
616
617			spin_unlock(&mm->page_table_lock);
618			ret = hugetlb_fault(mm, vma, vaddr, 0);
619			spin_lock(&mm->page_table_lock);
620			if (ret == VM_FAULT_MINOR)
621				continue;
622
623			remainder = 0;
624			if (!i)
625				i = -EFAULT;
626			break;
627		}
628
629		pfn_offset = (vaddr & ~HPAGE_MASK) >> PAGE_SHIFT;
630		page = pte_page(*pte);
631same_page:
632		if (pages) {
633			get_page(page);
634			pages[i] = page + pfn_offset;
635		}
636
637		if (vmas)
638			vmas[i] = vma;
639
640		vaddr += PAGE_SIZE;
641		++pfn_offset;
642		--remainder;
643		++i;
644		if (vaddr < vma->vm_end && remainder &&
645				pfn_offset < HPAGE_SIZE/PAGE_SIZE) {
646			/*
647			 * We use pfn_offset to avoid touching the pageframes
648			 * of this compound page.
649			 */
650			goto same_page;
651		}
652	}
653	spin_unlock(&mm->page_table_lock);
654	*length = remainder;
655	*position = vaddr;
656
657	return i;
658}
659
660void hugetlb_change_protection(struct vm_area_struct *vma,
661		unsigned long address, unsigned long end, pgprot_t newprot)
662{
663	struct mm_struct *mm = vma->vm_mm;
664	unsigned long start = address;
665	pte_t *ptep;
666	pte_t pte;
667
668	BUG_ON(address >= end);
669	flush_cache_range(vma, address, end);
670
671	spin_lock(&vma->vm_file->f_mapping->i_mmap_lock);
672	spin_lock(&mm->page_table_lock);
673	for (; address < end; address += HPAGE_SIZE) {
674		ptep = huge_pte_offset(mm, address);
675		if (!ptep)
676			continue;
677		if (huge_pmd_unshare(mm, &address, ptep))
678			continue;
679		if (!pte_none(*ptep)) {
680			pte = huge_ptep_get_and_clear(mm, address, ptep);
681			pte = pte_mkhuge(pte_modify(pte, newprot));
682			set_huge_pte_at(mm, address, ptep, pte);
683			lazy_mmu_prot_update(pte);
684		}
685	}
686	spin_unlock(&mm->page_table_lock);
687	spin_unlock(&vma->vm_file->f_mapping->i_mmap_lock);
688
689	flush_tlb_range(vma, start, end);
690}
691
692struct file_region {
693	struct list_head link;
694	long from;
695	long to;
696};
697
698static long region_add(struct list_head *head, long f, long t)
699{
700	struct file_region *rg, *nrg, *trg;
701
702	/* Locate the region we are either in or before. */
703	list_for_each_entry(rg, head, link)
704		if (f <= rg->to)
705			break;
706
707	/* Round our left edge to the current segment if it encloses us. */
708	if (f > rg->from)
709		f = rg->from;
710
711	/* Check for and consume any regions we now overlap with. */
712	nrg = rg;
713	list_for_each_entry_safe(rg, trg, rg->link.prev, link) {
714		if (&rg->link == head)
715			break;
716		if (rg->from > t)
717			break;
718
719		/* If this area reaches higher then extend our area to
720		 * include it completely.  If this is not the first area
721		 * which we intend to reuse, free it. */
722		if (rg->to > t)
723			t = rg->to;
724		if (rg != nrg) {
725			list_del(&rg->link);
726			kfree(rg);
727		}
728	}
729	nrg->from = f;
730	nrg->to = t;
731	return 0;
732}
733
734static long region_chg(struct list_head *head, long f, long t)
735{
736	struct file_region *rg, *nrg;
737	long chg = 0;
738
739	/* Locate the region we are before or in. */
740	list_for_each_entry(rg, head, link)
741		if (f <= rg->to)
742			break;
743
744	/* If we are below the current region then a new region is required.
745	 * Subtle, allocate a new region at the position but make it zero
746	 * size such that we can guarentee to record the reservation. */
747	if (&rg->link == head || t < rg->from) {
748		nrg = kmalloc(sizeof(*nrg), GFP_KERNEL);
749		if (nrg == 0)
750			return -ENOMEM;
751		nrg->from = f;
752		nrg->to   = f;
753		INIT_LIST_HEAD(&nrg->link);
754		list_add(&nrg->link, rg->link.prev);
755
756		return t - f;
757	}
758
759	/* Round our left edge to the current segment if it encloses us. */
760	if (f > rg->from)
761		f = rg->from;
762	chg = t - f;
763
764	/* Check for and consume any regions we now overlap with. */
765	list_for_each_entry(rg, rg->link.prev, link) {
766		if (&rg->link == head)
767			break;
768		if (rg->from > t)
769			return chg;
770
771		/* We overlap with this area, if it extends futher than
772		 * us then we must extend ourselves.  Account for its
773		 * existing reservation. */
774		if (rg->to > t) {
775			chg += rg->to - t;
776			t = rg->to;
777		}
778		chg -= rg->to - rg->from;
779	}
780	return chg;
781}
782
783static long region_truncate(struct list_head *head, long end)
784{
785	struct file_region *rg, *trg;
786	long chg = 0;
787
788	/* Locate the region we are either in or before. */
789	list_for_each_entry(rg, head, link)
790		if (end <= rg->to)
791			break;
792	if (&rg->link == head)
793		return 0;
794
795	/* If we are in the middle of a region then adjust it. */
796	if (end > rg->from) {
797		chg = rg->to - end;
798		rg->to = end;
799		rg = list_entry(rg->link.next, typeof(*rg), link);
800	}
801
802	/* Drop any remaining regions. */
803	list_for_each_entry_safe(rg, trg, rg->link.prev, link) {
804		if (&rg->link == head)
805			break;
806		chg += rg->to - rg->from;
807		list_del(&rg->link);
808		kfree(rg);
809	}
810	return chg;
811}
812
813static int hugetlb_acct_memory(long delta)
814{
815	int ret = -ENOMEM;
816
817	spin_lock(&hugetlb_lock);
818	if ((delta + resv_huge_pages) <= free_huge_pages) {
819		resv_huge_pages += delta;
820		ret = 0;
821	}
822	spin_unlock(&hugetlb_lock);
823	return ret;
824}
825
826int hugetlb_reserve_pages(struct inode *inode, long from, long to)
827{
828	long ret, chg;
829
830	chg = region_chg(&inode->i_mapping->private_list, from, to);
831	if (chg < 0)
832		return chg;
833	/*
834	 * When cpuset is configured, it breaks the strict hugetlb page
835	 * reservation as the accounting is done on a global variable. Such
836	 * reservation is completely rubbish in the presence of cpuset because
837	 * the reservation is not checked against page availability for the
838	 * current cpuset. Application can still potentially OOM'ed by kernel
839	 * with lack of free htlb page in cpuset that the task is in.
840	 * Attempt to enforce strict accounting with cpuset is almost
841	 * impossible (or too ugly) because cpuset is too fluid that
842	 * task or memory node can be dynamically moved between cpusets.
843	 *
844	 * The change of semantics for shared hugetlb mapping with cpuset is
845	 * undesirable. However, in order to preserve some of the semantics,
846	 * we fall back to check against current free page availability as
847	 * a best attempt and hopefully to minimize the impact of changing
848	 * semantics that cpuset has.
849	 */
850	if (chg > cpuset_mems_nr(free_huge_pages_node))
851		return -ENOMEM;
852
853	ret = hugetlb_acct_memory(chg);
854	if (ret < 0)
855		return ret;
856	region_add(&inode->i_mapping->private_list, from, to);
857	return 0;
858}
859
860void hugetlb_unreserve_pages(struct inode *inode, long offset, long freed)
861{
862	long chg = region_truncate(&inode->i_mapping->private_list, offset);
863	hugetlb_acct_memory(freed - chg);
864}
865