hugetlb.c revision ac09b3a15154af5f081fed509c6c3662e79de785
1/*
2 * Generic hugetlb support.
3 * (C) William Irwin, April 2004
4 */
5#include <linux/gfp.h>
6#include <linux/list.h>
7#include <linux/init.h>
8#include <linux/module.h>
9#include <linux/mm.h>
10#include <linux/sysctl.h>
11#include <linux/highmem.h>
12#include <linux/nodemask.h>
13#include <linux/pagemap.h>
14#include <linux/mempolicy.h>
15#include <linux/cpuset.h>
16#include <linux/mutex.h>
17
18#include <asm/page.h>
19#include <asm/pgtable.h>
20
21#include <linux/hugetlb.h>
22#include "internal.h"
23
24const unsigned long hugetlb_zero = 0, hugetlb_infinity = ~0UL;
25static unsigned long nr_huge_pages, free_huge_pages, resv_huge_pages;
26static unsigned long surplus_huge_pages;
27static unsigned long nr_overcommit_huge_pages;
28unsigned long max_huge_pages;
29unsigned long sysctl_overcommit_huge_pages;
30static struct list_head hugepage_freelists[MAX_NUMNODES];
31static unsigned int nr_huge_pages_node[MAX_NUMNODES];
32static unsigned int free_huge_pages_node[MAX_NUMNODES];
33static unsigned int surplus_huge_pages_node[MAX_NUMNODES];
34static gfp_t htlb_alloc_mask = GFP_HIGHUSER;
35unsigned long hugepages_treat_as_movable;
36static int hugetlb_next_nid;
37
38/*
39 * Protects updates to hugepage_freelists, nr_huge_pages, and free_huge_pages
40 */
41static DEFINE_SPINLOCK(hugetlb_lock);
42
43static void clear_huge_page(struct page *page, unsigned long addr)
44{
45	int i;
46
47	might_sleep();
48	for (i = 0; i < (HPAGE_SIZE/PAGE_SIZE); i++) {
49		cond_resched();
50		clear_user_highpage(page + i, addr + i * PAGE_SIZE);
51	}
52}
53
54static void copy_huge_page(struct page *dst, struct page *src,
55			   unsigned long addr, struct vm_area_struct *vma)
56{
57	int i;
58
59	might_sleep();
60	for (i = 0; i < HPAGE_SIZE/PAGE_SIZE; i++) {
61		cond_resched();
62		copy_user_highpage(dst + i, src + i, addr + i*PAGE_SIZE, vma);
63	}
64}
65
66static void enqueue_huge_page(struct page *page)
67{
68	int nid = page_to_nid(page);
69	list_add(&page->lru, &hugepage_freelists[nid]);
70	free_huge_pages++;
71	free_huge_pages_node[nid]++;
72}
73
74static struct page *dequeue_huge_page(struct vm_area_struct *vma,
75				unsigned long address)
76{
77	int nid;
78	struct page *page = NULL;
79	struct mempolicy *mpol;
80	struct zonelist *zonelist = huge_zonelist(vma, address,
81					htlb_alloc_mask, &mpol);
82	struct zone **z;
83
84	for (z = zonelist->zones; *z; z++) {
85		nid = zone_to_nid(*z);
86		if (cpuset_zone_allowed_softwall(*z, htlb_alloc_mask) &&
87		    !list_empty(&hugepage_freelists[nid])) {
88			page = list_entry(hugepage_freelists[nid].next,
89					  struct page, lru);
90			list_del(&page->lru);
91			free_huge_pages--;
92			free_huge_pages_node[nid]--;
93			if (vma && vma->vm_flags & VM_MAYSHARE)
94				resv_huge_pages--;
95			break;
96		}
97	}
98	mpol_free(mpol);	/* unref if mpol !NULL */
99	return page;
100}
101
102static void update_and_free_page(struct page *page)
103{
104	int i;
105	nr_huge_pages--;
106	nr_huge_pages_node[page_to_nid(page)]--;
107	for (i = 0; i < (HPAGE_SIZE / PAGE_SIZE); i++) {
108		page[i].flags &= ~(1 << PG_locked | 1 << PG_error | 1 << PG_referenced |
109				1 << PG_dirty | 1 << PG_active | 1 << PG_reserved |
110				1 << PG_private | 1<< PG_writeback);
111	}
112	set_compound_page_dtor(page, NULL);
113	set_page_refcounted(page);
114	__free_pages(page, HUGETLB_PAGE_ORDER);
115}
116
117static void free_huge_page(struct page *page)
118{
119	int nid = page_to_nid(page);
120	struct address_space *mapping;
121
122	mapping = (struct address_space *) page_private(page);
123	set_page_private(page, 0);
124	BUG_ON(page_count(page));
125	INIT_LIST_HEAD(&page->lru);
126
127	spin_lock(&hugetlb_lock);
128	if (surplus_huge_pages_node[nid]) {
129		update_and_free_page(page);
130		surplus_huge_pages--;
131		surplus_huge_pages_node[nid]--;
132	} else {
133		enqueue_huge_page(page);
134	}
135	spin_unlock(&hugetlb_lock);
136	if (mapping)
137		hugetlb_put_quota(mapping, 1);
138}
139
140/*
141 * Increment or decrement surplus_huge_pages.  Keep node-specific counters
142 * balanced by operating on them in a round-robin fashion.
143 * Returns 1 if an adjustment was made.
144 */
145static int adjust_pool_surplus(int delta)
146{
147	static int prev_nid;
148	int nid = prev_nid;
149	int ret = 0;
150
151	VM_BUG_ON(delta != -1 && delta != 1);
152	do {
153		nid = next_node(nid, node_online_map);
154		if (nid == MAX_NUMNODES)
155			nid = first_node(node_online_map);
156
157		/* To shrink on this node, there must be a surplus page */
158		if (delta < 0 && !surplus_huge_pages_node[nid])
159			continue;
160		/* Surplus cannot exceed the total number of pages */
161		if (delta > 0 && surplus_huge_pages_node[nid] >=
162						nr_huge_pages_node[nid])
163			continue;
164
165		surplus_huge_pages += delta;
166		surplus_huge_pages_node[nid] += delta;
167		ret = 1;
168		break;
169	} while (nid != prev_nid);
170
171	prev_nid = nid;
172	return ret;
173}
174
175static struct page *alloc_fresh_huge_page_node(int nid)
176{
177	struct page *page;
178
179	page = alloc_pages_node(nid,
180		htlb_alloc_mask|__GFP_COMP|__GFP_THISNODE|__GFP_NOWARN,
181		HUGETLB_PAGE_ORDER);
182	if (page) {
183		set_compound_page_dtor(page, free_huge_page);
184		spin_lock(&hugetlb_lock);
185		nr_huge_pages++;
186		nr_huge_pages_node[nid]++;
187		spin_unlock(&hugetlb_lock);
188		put_page(page); /* free it into the hugepage allocator */
189	}
190
191	return page;
192}
193
194static int alloc_fresh_huge_page(void)
195{
196	struct page *page;
197	int start_nid;
198	int next_nid;
199	int ret = 0;
200
201	start_nid = hugetlb_next_nid;
202
203	do {
204		page = alloc_fresh_huge_page_node(hugetlb_next_nid);
205		if (page)
206			ret = 1;
207		/*
208		 * Use a helper variable to find the next node and then
209		 * copy it back to hugetlb_next_nid afterwards:
210		 * otherwise there's a window in which a racer might
211		 * pass invalid nid MAX_NUMNODES to alloc_pages_node.
212		 * But we don't need to use a spin_lock here: it really
213		 * doesn't matter if occasionally a racer chooses the
214		 * same nid as we do.  Move nid forward in the mask even
215		 * if we just successfully allocated a hugepage so that
216		 * the next caller gets hugepages on the next node.
217		 */
218		next_nid = next_node(hugetlb_next_nid, node_online_map);
219		if (next_nid == MAX_NUMNODES)
220			next_nid = first_node(node_online_map);
221		hugetlb_next_nid = next_nid;
222	} while (!page && hugetlb_next_nid != start_nid);
223
224	return ret;
225}
226
227static struct page *alloc_buddy_huge_page(struct vm_area_struct *vma,
228						unsigned long address)
229{
230	struct page *page;
231	unsigned int nid;
232
233	/*
234	 * Assume we will successfully allocate the surplus page to
235	 * prevent racing processes from causing the surplus to exceed
236	 * overcommit
237	 *
238	 * This however introduces a different race, where a process B
239	 * tries to grow the static hugepage pool while alloc_pages() is
240	 * called by process A. B will only examine the per-node
241	 * counters in determining if surplus huge pages can be
242	 * converted to normal huge pages in adjust_pool_surplus(). A
243	 * won't be able to increment the per-node counter, until the
244	 * lock is dropped by B, but B doesn't drop hugetlb_lock until
245	 * no more huge pages can be converted from surplus to normal
246	 * state (and doesn't try to convert again). Thus, we have a
247	 * case where a surplus huge page exists, the pool is grown, and
248	 * the surplus huge page still exists after, even though it
249	 * should just have been converted to a normal huge page. This
250	 * does not leak memory, though, as the hugepage will be freed
251	 * once it is out of use. It also does not allow the counters to
252	 * go out of whack in adjust_pool_surplus() as we don't modify
253	 * the node values until we've gotten the hugepage and only the
254	 * per-node value is checked there.
255	 */
256	spin_lock(&hugetlb_lock);
257	if (surplus_huge_pages >= nr_overcommit_huge_pages) {
258		spin_unlock(&hugetlb_lock);
259		return NULL;
260	} else {
261		nr_huge_pages++;
262		surplus_huge_pages++;
263	}
264	spin_unlock(&hugetlb_lock);
265
266	page = alloc_pages(htlb_alloc_mask|__GFP_COMP|__GFP_NOWARN,
267					HUGETLB_PAGE_ORDER);
268
269	spin_lock(&hugetlb_lock);
270	if (page) {
271		nid = page_to_nid(page);
272		set_compound_page_dtor(page, free_huge_page);
273		/*
274		 * We incremented the global counters already
275		 */
276		nr_huge_pages_node[nid]++;
277		surplus_huge_pages_node[nid]++;
278	} else {
279		nr_huge_pages--;
280		surplus_huge_pages--;
281	}
282	spin_unlock(&hugetlb_lock);
283
284	return page;
285}
286
287/*
288 * Increase the hugetlb pool such that it can accomodate a reservation
289 * of size 'delta'.
290 */
291static int gather_surplus_pages(int delta)
292{
293	struct list_head surplus_list;
294	struct page *page, *tmp;
295	int ret, i;
296	int needed, allocated;
297
298	needed = (resv_huge_pages + delta) - free_huge_pages;
299	if (needed <= 0) {
300		resv_huge_pages += delta;
301		return 0;
302	}
303
304	allocated = 0;
305	INIT_LIST_HEAD(&surplus_list);
306
307	ret = -ENOMEM;
308retry:
309	spin_unlock(&hugetlb_lock);
310	for (i = 0; i < needed; i++) {
311		page = alloc_buddy_huge_page(NULL, 0);
312		if (!page) {
313			/*
314			 * We were not able to allocate enough pages to
315			 * satisfy the entire reservation so we free what
316			 * we've allocated so far.
317			 */
318			spin_lock(&hugetlb_lock);
319			needed = 0;
320			goto free;
321		}
322
323		list_add(&page->lru, &surplus_list);
324	}
325	allocated += needed;
326
327	/*
328	 * After retaking hugetlb_lock, we need to recalculate 'needed'
329	 * because either resv_huge_pages or free_huge_pages may have changed.
330	 */
331	spin_lock(&hugetlb_lock);
332	needed = (resv_huge_pages + delta) - (free_huge_pages + allocated);
333	if (needed > 0)
334		goto retry;
335
336	/*
337	 * The surplus_list now contains _at_least_ the number of extra pages
338	 * needed to accomodate the reservation.  Add the appropriate number
339	 * of pages to the hugetlb pool and free the extras back to the buddy
340	 * allocator.  Commit the entire reservation here to prevent another
341	 * process from stealing the pages as they are added to the pool but
342	 * before they are reserved.
343	 */
344	needed += allocated;
345	resv_huge_pages += delta;
346	ret = 0;
347free:
348	list_for_each_entry_safe(page, tmp, &surplus_list, lru) {
349		list_del(&page->lru);
350		if ((--needed) >= 0)
351			enqueue_huge_page(page);
352		else {
353			/*
354			 * Decrement the refcount and free the page using its
355			 * destructor.  This must be done with hugetlb_lock
356			 * unlocked which is safe because free_huge_page takes
357			 * hugetlb_lock before deciding how to free the page.
358			 */
359			spin_unlock(&hugetlb_lock);
360			put_page(page);
361			spin_lock(&hugetlb_lock);
362		}
363	}
364
365	return ret;
366}
367
368/*
369 * When releasing a hugetlb pool reservation, any surplus pages that were
370 * allocated to satisfy the reservation must be explicitly freed if they were
371 * never used.
372 */
373static void return_unused_surplus_pages(unsigned long unused_resv_pages)
374{
375	static int nid = -1;
376	struct page *page;
377	unsigned long nr_pages;
378
379	/* Uncommit the reservation */
380	resv_huge_pages -= unused_resv_pages;
381
382	nr_pages = min(unused_resv_pages, surplus_huge_pages);
383
384	while (nr_pages) {
385		nid = next_node(nid, node_online_map);
386		if (nid == MAX_NUMNODES)
387			nid = first_node(node_online_map);
388
389		if (!surplus_huge_pages_node[nid])
390			continue;
391
392		if (!list_empty(&hugepage_freelists[nid])) {
393			page = list_entry(hugepage_freelists[nid].next,
394					  struct page, lru);
395			list_del(&page->lru);
396			update_and_free_page(page);
397			free_huge_pages--;
398			free_huge_pages_node[nid]--;
399			surplus_huge_pages--;
400			surplus_huge_pages_node[nid]--;
401			nr_pages--;
402		}
403	}
404}
405
406
407static struct page *alloc_huge_page_shared(struct vm_area_struct *vma,
408						unsigned long addr)
409{
410	struct page *page;
411
412	spin_lock(&hugetlb_lock);
413	page = dequeue_huge_page(vma, addr);
414	spin_unlock(&hugetlb_lock);
415	return page ? page : ERR_PTR(-VM_FAULT_OOM);
416}
417
418static struct page *alloc_huge_page_private(struct vm_area_struct *vma,
419						unsigned long addr)
420{
421	struct page *page = NULL;
422
423	if (hugetlb_get_quota(vma->vm_file->f_mapping, 1))
424		return ERR_PTR(-VM_FAULT_SIGBUS);
425
426	spin_lock(&hugetlb_lock);
427	if (free_huge_pages > resv_huge_pages)
428		page = dequeue_huge_page(vma, addr);
429	spin_unlock(&hugetlb_lock);
430	if (!page) {
431		page = alloc_buddy_huge_page(vma, addr);
432		if (!page) {
433			hugetlb_put_quota(vma->vm_file->f_mapping, 1);
434			return ERR_PTR(-VM_FAULT_OOM);
435		}
436	}
437	return page;
438}
439
440static struct page *alloc_huge_page(struct vm_area_struct *vma,
441				    unsigned long addr)
442{
443	struct page *page;
444	struct address_space *mapping = vma->vm_file->f_mapping;
445
446	if (vma->vm_flags & VM_MAYSHARE)
447		page = alloc_huge_page_shared(vma, addr);
448	else
449		page = alloc_huge_page_private(vma, addr);
450
451	if (!IS_ERR(page)) {
452		set_page_refcounted(page);
453		set_page_private(page, (unsigned long) mapping);
454	}
455	return page;
456}
457
458static int __init hugetlb_init(void)
459{
460	unsigned long i;
461
462	if (HPAGE_SHIFT == 0)
463		return 0;
464
465	for (i = 0; i < MAX_NUMNODES; ++i)
466		INIT_LIST_HEAD(&hugepage_freelists[i]);
467
468	hugetlb_next_nid = first_node(node_online_map);
469
470	for (i = 0; i < max_huge_pages; ++i) {
471		if (!alloc_fresh_huge_page())
472			break;
473	}
474	max_huge_pages = free_huge_pages = nr_huge_pages = i;
475	printk("Total HugeTLB memory allocated, %ld\n", free_huge_pages);
476	return 0;
477}
478module_init(hugetlb_init);
479
480static int __init hugetlb_setup(char *s)
481{
482	if (sscanf(s, "%lu", &max_huge_pages) <= 0)
483		max_huge_pages = 0;
484	return 1;
485}
486__setup("hugepages=", hugetlb_setup);
487
488static unsigned int cpuset_mems_nr(unsigned int *array)
489{
490	int node;
491	unsigned int nr = 0;
492
493	for_each_node_mask(node, cpuset_current_mems_allowed)
494		nr += array[node];
495
496	return nr;
497}
498
499#ifdef CONFIG_SYSCTL
500#ifdef CONFIG_HIGHMEM
501static void try_to_free_low(unsigned long count)
502{
503	int i;
504
505	for (i = 0; i < MAX_NUMNODES; ++i) {
506		struct page *page, *next;
507		list_for_each_entry_safe(page, next, &hugepage_freelists[i], lru) {
508			if (count >= nr_huge_pages)
509				return;
510			if (PageHighMem(page))
511				continue;
512			list_del(&page->lru);
513			update_and_free_page(page);
514			free_huge_pages--;
515			free_huge_pages_node[page_to_nid(page)]--;
516		}
517	}
518}
519#else
520static inline void try_to_free_low(unsigned long count)
521{
522}
523#endif
524
525#define persistent_huge_pages (nr_huge_pages - surplus_huge_pages)
526static unsigned long set_max_huge_pages(unsigned long count)
527{
528	unsigned long min_count, ret;
529
530	/*
531	 * Increase the pool size
532	 * First take pages out of surplus state.  Then make up the
533	 * remaining difference by allocating fresh huge pages.
534	 *
535	 * We might race with alloc_buddy_huge_page() here and be unable
536	 * to convert a surplus huge page to a normal huge page. That is
537	 * not critical, though, it just means the overall size of the
538	 * pool might be one hugepage larger than it needs to be, but
539	 * within all the constraints specified by the sysctls.
540	 */
541	spin_lock(&hugetlb_lock);
542	while (surplus_huge_pages && count > persistent_huge_pages) {
543		if (!adjust_pool_surplus(-1))
544			break;
545	}
546
547	while (count > persistent_huge_pages) {
548		int ret;
549		/*
550		 * If this allocation races such that we no longer need the
551		 * page, free_huge_page will handle it by freeing the page
552		 * and reducing the surplus.
553		 */
554		spin_unlock(&hugetlb_lock);
555		ret = alloc_fresh_huge_page();
556		spin_lock(&hugetlb_lock);
557		if (!ret)
558			goto out;
559
560	}
561
562	/*
563	 * Decrease the pool size
564	 * First return free pages to the buddy allocator (being careful
565	 * to keep enough around to satisfy reservations).  Then place
566	 * pages into surplus state as needed so the pool will shrink
567	 * to the desired size as pages become free.
568	 *
569	 * By placing pages into the surplus state independent of the
570	 * overcommit value, we are allowing the surplus pool size to
571	 * exceed overcommit. There are few sane options here. Since
572	 * alloc_buddy_huge_page() is checking the global counter,
573	 * though, we'll note that we're not allowed to exceed surplus
574	 * and won't grow the pool anywhere else. Not until one of the
575	 * sysctls are changed, or the surplus pages go out of use.
576	 */
577	min_count = resv_huge_pages + nr_huge_pages - free_huge_pages;
578	min_count = max(count, min_count);
579	try_to_free_low(min_count);
580	while (min_count < persistent_huge_pages) {
581		struct page *page = dequeue_huge_page(NULL, 0);
582		if (!page)
583			break;
584		update_and_free_page(page);
585	}
586	while (count < persistent_huge_pages) {
587		if (!adjust_pool_surplus(1))
588			break;
589	}
590out:
591	ret = persistent_huge_pages;
592	spin_unlock(&hugetlb_lock);
593	return ret;
594}
595
596int hugetlb_sysctl_handler(struct ctl_table *table, int write,
597			   struct file *file, void __user *buffer,
598			   size_t *length, loff_t *ppos)
599{
600	proc_doulongvec_minmax(table, write, file, buffer, length, ppos);
601	max_huge_pages = set_max_huge_pages(max_huge_pages);
602	return 0;
603}
604
605int hugetlb_treat_movable_handler(struct ctl_table *table, int write,
606			struct file *file, void __user *buffer,
607			size_t *length, loff_t *ppos)
608{
609	proc_dointvec(table, write, file, buffer, length, ppos);
610	if (hugepages_treat_as_movable)
611		htlb_alloc_mask = GFP_HIGHUSER_MOVABLE;
612	else
613		htlb_alloc_mask = GFP_HIGHUSER;
614	return 0;
615}
616
617int hugetlb_overcommit_handler(struct ctl_table *table, int write,
618			struct file *file, void __user *buffer,
619			size_t *length, loff_t *ppos)
620{
621	proc_doulongvec_minmax(table, write, file, buffer, length, ppos);
622	spin_lock(&hugetlb_lock);
623	nr_overcommit_huge_pages = sysctl_overcommit_huge_pages;
624	spin_unlock(&hugetlb_lock);
625	return 0;
626}
627
628#endif /* CONFIG_SYSCTL */
629
630int hugetlb_report_meminfo(char *buf)
631{
632	return sprintf(buf,
633			"HugePages_Total: %5lu\n"
634			"HugePages_Free:  %5lu\n"
635			"HugePages_Rsvd:  %5lu\n"
636			"HugePages_Surp:  %5lu\n"
637			"Hugepagesize:    %5lu kB\n",
638			nr_huge_pages,
639			free_huge_pages,
640			resv_huge_pages,
641			surplus_huge_pages,
642			HPAGE_SIZE/1024);
643}
644
645int hugetlb_report_node_meminfo(int nid, char *buf)
646{
647	return sprintf(buf,
648		"Node %d HugePages_Total: %5u\n"
649		"Node %d HugePages_Free:  %5u\n",
650		nid, nr_huge_pages_node[nid],
651		nid, free_huge_pages_node[nid]);
652}
653
654/* Return the number pages of memory we physically have, in PAGE_SIZE units. */
655unsigned long hugetlb_total_pages(void)
656{
657	return nr_huge_pages * (HPAGE_SIZE / PAGE_SIZE);
658}
659
660/*
661 * We cannot handle pagefaults against hugetlb pages at all.  They cause
662 * handle_mm_fault() to try to instantiate regular-sized pages in the
663 * hugegpage VMA.  do_page_fault() is supposed to trap this, so BUG is we get
664 * this far.
665 */
666static int hugetlb_vm_op_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
667{
668	BUG();
669	return 0;
670}
671
672struct vm_operations_struct hugetlb_vm_ops = {
673	.fault = hugetlb_vm_op_fault,
674};
675
676static pte_t make_huge_pte(struct vm_area_struct *vma, struct page *page,
677				int writable)
678{
679	pte_t entry;
680
681	if (writable) {
682		entry =
683		    pte_mkwrite(pte_mkdirty(mk_pte(page, vma->vm_page_prot)));
684	} else {
685		entry = pte_wrprotect(mk_pte(page, vma->vm_page_prot));
686	}
687	entry = pte_mkyoung(entry);
688	entry = pte_mkhuge(entry);
689
690	return entry;
691}
692
693static void set_huge_ptep_writable(struct vm_area_struct *vma,
694				   unsigned long address, pte_t *ptep)
695{
696	pte_t entry;
697
698	entry = pte_mkwrite(pte_mkdirty(*ptep));
699	if (ptep_set_access_flags(vma, address, ptep, entry, 1)) {
700		update_mmu_cache(vma, address, entry);
701	}
702}
703
704
705int copy_hugetlb_page_range(struct mm_struct *dst, struct mm_struct *src,
706			    struct vm_area_struct *vma)
707{
708	pte_t *src_pte, *dst_pte, entry;
709	struct page *ptepage;
710	unsigned long addr;
711	int cow;
712
713	cow = (vma->vm_flags & (VM_SHARED | VM_MAYWRITE)) == VM_MAYWRITE;
714
715	for (addr = vma->vm_start; addr < vma->vm_end; addr += HPAGE_SIZE) {
716		src_pte = huge_pte_offset(src, addr);
717		if (!src_pte)
718			continue;
719		dst_pte = huge_pte_alloc(dst, addr);
720		if (!dst_pte)
721			goto nomem;
722
723		/* If the pagetables are shared don't copy or take references */
724		if (dst_pte == src_pte)
725			continue;
726
727		spin_lock(&dst->page_table_lock);
728		spin_lock(&src->page_table_lock);
729		if (!pte_none(*src_pte)) {
730			if (cow)
731				ptep_set_wrprotect(src, addr, src_pte);
732			entry = *src_pte;
733			ptepage = pte_page(entry);
734			get_page(ptepage);
735			set_huge_pte_at(dst, addr, dst_pte, entry);
736		}
737		spin_unlock(&src->page_table_lock);
738		spin_unlock(&dst->page_table_lock);
739	}
740	return 0;
741
742nomem:
743	return -ENOMEM;
744}
745
746void __unmap_hugepage_range(struct vm_area_struct *vma, unsigned long start,
747			    unsigned long end)
748{
749	struct mm_struct *mm = vma->vm_mm;
750	unsigned long address;
751	pte_t *ptep;
752	pte_t pte;
753	struct page *page;
754	struct page *tmp;
755	/*
756	 * A page gathering list, protected by per file i_mmap_lock. The
757	 * lock is used to avoid list corruption from multiple unmapping
758	 * of the same page since we are using page->lru.
759	 */
760	LIST_HEAD(page_list);
761
762	WARN_ON(!is_vm_hugetlb_page(vma));
763	BUG_ON(start & ~HPAGE_MASK);
764	BUG_ON(end & ~HPAGE_MASK);
765
766	spin_lock(&mm->page_table_lock);
767	for (address = start; address < end; address += HPAGE_SIZE) {
768		ptep = huge_pte_offset(mm, address);
769		if (!ptep)
770			continue;
771
772		if (huge_pmd_unshare(mm, &address, ptep))
773			continue;
774
775		pte = huge_ptep_get_and_clear(mm, address, ptep);
776		if (pte_none(pte))
777			continue;
778
779		page = pte_page(pte);
780		if (pte_dirty(pte))
781			set_page_dirty(page);
782		list_add(&page->lru, &page_list);
783	}
784	spin_unlock(&mm->page_table_lock);
785	flush_tlb_range(vma, start, end);
786	list_for_each_entry_safe(page, tmp, &page_list, lru) {
787		list_del(&page->lru);
788		put_page(page);
789	}
790}
791
792void unmap_hugepage_range(struct vm_area_struct *vma, unsigned long start,
793			  unsigned long end)
794{
795	/*
796	 * It is undesirable to test vma->vm_file as it should be non-null
797	 * for valid hugetlb area. However, vm_file will be NULL in the error
798	 * cleanup path of do_mmap_pgoff. When hugetlbfs ->mmap method fails,
799	 * do_mmap_pgoff() nullifies vma->vm_file before calling this function
800	 * to clean up. Since no pte has actually been setup, it is safe to
801	 * do nothing in this case.
802	 */
803	if (vma->vm_file) {
804		spin_lock(&vma->vm_file->f_mapping->i_mmap_lock);
805		__unmap_hugepage_range(vma, start, end);
806		spin_unlock(&vma->vm_file->f_mapping->i_mmap_lock);
807	}
808}
809
810static int hugetlb_cow(struct mm_struct *mm, struct vm_area_struct *vma,
811			unsigned long address, pte_t *ptep, pte_t pte)
812{
813	struct page *old_page, *new_page;
814	int avoidcopy;
815
816	old_page = pte_page(pte);
817
818	/* If no-one else is actually using this page, avoid the copy
819	 * and just make the page writable */
820	avoidcopy = (page_count(old_page) == 1);
821	if (avoidcopy) {
822		set_huge_ptep_writable(vma, address, ptep);
823		return 0;
824	}
825
826	page_cache_get(old_page);
827	new_page = alloc_huge_page(vma, address);
828
829	if (IS_ERR(new_page)) {
830		page_cache_release(old_page);
831		return -PTR_ERR(new_page);
832	}
833
834	spin_unlock(&mm->page_table_lock);
835	copy_huge_page(new_page, old_page, address, vma);
836	__SetPageUptodate(new_page);
837	spin_lock(&mm->page_table_lock);
838
839	ptep = huge_pte_offset(mm, address & HPAGE_MASK);
840	if (likely(pte_same(*ptep, pte))) {
841		/* Break COW */
842		set_huge_pte_at(mm, address, ptep,
843				make_huge_pte(vma, new_page, 1));
844		/* Make the old page be freed below */
845		new_page = old_page;
846	}
847	page_cache_release(new_page);
848	page_cache_release(old_page);
849	return 0;
850}
851
852static int hugetlb_no_page(struct mm_struct *mm, struct vm_area_struct *vma,
853			unsigned long address, pte_t *ptep, int write_access)
854{
855	int ret = VM_FAULT_SIGBUS;
856	unsigned long idx;
857	unsigned long size;
858	struct page *page;
859	struct address_space *mapping;
860	pte_t new_pte;
861
862	mapping = vma->vm_file->f_mapping;
863	idx = ((address - vma->vm_start) >> HPAGE_SHIFT)
864		+ (vma->vm_pgoff >> (HPAGE_SHIFT - PAGE_SHIFT));
865
866	/*
867	 * Use page lock to guard against racing truncation
868	 * before we get page_table_lock.
869	 */
870retry:
871	page = find_lock_page(mapping, idx);
872	if (!page) {
873		size = i_size_read(mapping->host) >> HPAGE_SHIFT;
874		if (idx >= size)
875			goto out;
876		page = alloc_huge_page(vma, address);
877		if (IS_ERR(page)) {
878			ret = -PTR_ERR(page);
879			goto out;
880		}
881		clear_huge_page(page, address);
882		__SetPageUptodate(page);
883
884		if (vma->vm_flags & VM_SHARED) {
885			int err;
886			struct inode *inode = mapping->host;
887
888			err = add_to_page_cache(page, mapping, idx, GFP_KERNEL);
889			if (err) {
890				put_page(page);
891				if (err == -EEXIST)
892					goto retry;
893				goto out;
894			}
895
896			spin_lock(&inode->i_lock);
897			inode->i_blocks += BLOCKS_PER_HUGEPAGE;
898			spin_unlock(&inode->i_lock);
899		} else
900			lock_page(page);
901	}
902
903	spin_lock(&mm->page_table_lock);
904	size = i_size_read(mapping->host) >> HPAGE_SHIFT;
905	if (idx >= size)
906		goto backout;
907
908	ret = 0;
909	if (!pte_none(*ptep))
910		goto backout;
911
912	new_pte = make_huge_pte(vma, page, ((vma->vm_flags & VM_WRITE)
913				&& (vma->vm_flags & VM_SHARED)));
914	set_huge_pte_at(mm, address, ptep, new_pte);
915
916	if (write_access && !(vma->vm_flags & VM_SHARED)) {
917		/* Optimization, do the COW without a second fault */
918		ret = hugetlb_cow(mm, vma, address, ptep, new_pte);
919	}
920
921	spin_unlock(&mm->page_table_lock);
922	unlock_page(page);
923out:
924	return ret;
925
926backout:
927	spin_unlock(&mm->page_table_lock);
928	unlock_page(page);
929	put_page(page);
930	goto out;
931}
932
933int hugetlb_fault(struct mm_struct *mm, struct vm_area_struct *vma,
934			unsigned long address, int write_access)
935{
936	pte_t *ptep;
937	pte_t entry;
938	int ret;
939	static DEFINE_MUTEX(hugetlb_instantiation_mutex);
940
941	ptep = huge_pte_alloc(mm, address);
942	if (!ptep)
943		return VM_FAULT_OOM;
944
945	/*
946	 * Serialize hugepage allocation and instantiation, so that we don't
947	 * get spurious allocation failures if two CPUs race to instantiate
948	 * the same page in the page cache.
949	 */
950	mutex_lock(&hugetlb_instantiation_mutex);
951	entry = *ptep;
952	if (pte_none(entry)) {
953		ret = hugetlb_no_page(mm, vma, address, ptep, write_access);
954		mutex_unlock(&hugetlb_instantiation_mutex);
955		return ret;
956	}
957
958	ret = 0;
959
960	spin_lock(&mm->page_table_lock);
961	/* Check for a racing update before calling hugetlb_cow */
962	if (likely(pte_same(entry, *ptep)))
963		if (write_access && !pte_write(entry))
964			ret = hugetlb_cow(mm, vma, address, ptep, entry);
965	spin_unlock(&mm->page_table_lock);
966	mutex_unlock(&hugetlb_instantiation_mutex);
967
968	return ret;
969}
970
971int follow_hugetlb_page(struct mm_struct *mm, struct vm_area_struct *vma,
972			struct page **pages, struct vm_area_struct **vmas,
973			unsigned long *position, int *length, int i,
974			int write)
975{
976	unsigned long pfn_offset;
977	unsigned long vaddr = *position;
978	int remainder = *length;
979
980	spin_lock(&mm->page_table_lock);
981	while (vaddr < vma->vm_end && remainder) {
982		pte_t *pte;
983		struct page *page;
984
985		/*
986		 * Some archs (sparc64, sh*) have multiple pte_ts to
987		 * each hugepage.  We have to make * sure we get the
988		 * first, for the page indexing below to work.
989		 */
990		pte = huge_pte_offset(mm, vaddr & HPAGE_MASK);
991
992		if (!pte || pte_none(*pte) || (write && !pte_write(*pte))) {
993			int ret;
994
995			spin_unlock(&mm->page_table_lock);
996			ret = hugetlb_fault(mm, vma, vaddr, write);
997			spin_lock(&mm->page_table_lock);
998			if (!(ret & VM_FAULT_ERROR))
999				continue;
1000
1001			remainder = 0;
1002			if (!i)
1003				i = -EFAULT;
1004			break;
1005		}
1006
1007		pfn_offset = (vaddr & ~HPAGE_MASK) >> PAGE_SHIFT;
1008		page = pte_page(*pte);
1009same_page:
1010		if (pages) {
1011			get_page(page);
1012			pages[i] = page + pfn_offset;
1013		}
1014
1015		if (vmas)
1016			vmas[i] = vma;
1017
1018		vaddr += PAGE_SIZE;
1019		++pfn_offset;
1020		--remainder;
1021		++i;
1022		if (vaddr < vma->vm_end && remainder &&
1023				pfn_offset < HPAGE_SIZE/PAGE_SIZE) {
1024			/*
1025			 * We use pfn_offset to avoid touching the pageframes
1026			 * of this compound page.
1027			 */
1028			goto same_page;
1029		}
1030	}
1031	spin_unlock(&mm->page_table_lock);
1032	*length = remainder;
1033	*position = vaddr;
1034
1035	return i;
1036}
1037
1038void hugetlb_change_protection(struct vm_area_struct *vma,
1039		unsigned long address, unsigned long end, pgprot_t newprot)
1040{
1041	struct mm_struct *mm = vma->vm_mm;
1042	unsigned long start = address;
1043	pte_t *ptep;
1044	pte_t pte;
1045
1046	BUG_ON(address >= end);
1047	flush_cache_range(vma, address, end);
1048
1049	spin_lock(&vma->vm_file->f_mapping->i_mmap_lock);
1050	spin_lock(&mm->page_table_lock);
1051	for (; address < end; address += HPAGE_SIZE) {
1052		ptep = huge_pte_offset(mm, address);
1053		if (!ptep)
1054			continue;
1055		if (huge_pmd_unshare(mm, &address, ptep))
1056			continue;
1057		if (!pte_none(*ptep)) {
1058			pte = huge_ptep_get_and_clear(mm, address, ptep);
1059			pte = pte_mkhuge(pte_modify(pte, newprot));
1060			set_huge_pte_at(mm, address, ptep, pte);
1061		}
1062	}
1063	spin_unlock(&mm->page_table_lock);
1064	spin_unlock(&vma->vm_file->f_mapping->i_mmap_lock);
1065
1066	flush_tlb_range(vma, start, end);
1067}
1068
1069struct file_region {
1070	struct list_head link;
1071	long from;
1072	long to;
1073};
1074
1075static long region_add(struct list_head *head, long f, long t)
1076{
1077	struct file_region *rg, *nrg, *trg;
1078
1079	/* Locate the region we are either in or before. */
1080	list_for_each_entry(rg, head, link)
1081		if (f <= rg->to)
1082			break;
1083
1084	/* Round our left edge to the current segment if it encloses us. */
1085	if (f > rg->from)
1086		f = rg->from;
1087
1088	/* Check for and consume any regions we now overlap with. */
1089	nrg = rg;
1090	list_for_each_entry_safe(rg, trg, rg->link.prev, link) {
1091		if (&rg->link == head)
1092			break;
1093		if (rg->from > t)
1094			break;
1095
1096		/* If this area reaches higher then extend our area to
1097		 * include it completely.  If this is not the first area
1098		 * which we intend to reuse, free it. */
1099		if (rg->to > t)
1100			t = rg->to;
1101		if (rg != nrg) {
1102			list_del(&rg->link);
1103			kfree(rg);
1104		}
1105	}
1106	nrg->from = f;
1107	nrg->to = t;
1108	return 0;
1109}
1110
1111static long region_chg(struct list_head *head, long f, long t)
1112{
1113	struct file_region *rg, *nrg;
1114	long chg = 0;
1115
1116	/* Locate the region we are before or in. */
1117	list_for_each_entry(rg, head, link)
1118		if (f <= rg->to)
1119			break;
1120
1121	/* If we are below the current region then a new region is required.
1122	 * Subtle, allocate a new region at the position but make it zero
1123	 * size such that we can guarantee to record the reservation. */
1124	if (&rg->link == head || t < rg->from) {
1125		nrg = kmalloc(sizeof(*nrg), GFP_KERNEL);
1126		if (!nrg)
1127			return -ENOMEM;
1128		nrg->from = f;
1129		nrg->to   = f;
1130		INIT_LIST_HEAD(&nrg->link);
1131		list_add(&nrg->link, rg->link.prev);
1132
1133		return t - f;
1134	}
1135
1136	/* Round our left edge to the current segment if it encloses us. */
1137	if (f > rg->from)
1138		f = rg->from;
1139	chg = t - f;
1140
1141	/* Check for and consume any regions we now overlap with. */
1142	list_for_each_entry(rg, rg->link.prev, link) {
1143		if (&rg->link == head)
1144			break;
1145		if (rg->from > t)
1146			return chg;
1147
1148		/* We overlap with this area, if it extends futher than
1149		 * us then we must extend ourselves.  Account for its
1150		 * existing reservation. */
1151		if (rg->to > t) {
1152			chg += rg->to - t;
1153			t = rg->to;
1154		}
1155		chg -= rg->to - rg->from;
1156	}
1157	return chg;
1158}
1159
1160static long region_truncate(struct list_head *head, long end)
1161{
1162	struct file_region *rg, *trg;
1163	long chg = 0;
1164
1165	/* Locate the region we are either in or before. */
1166	list_for_each_entry(rg, head, link)
1167		if (end <= rg->to)
1168			break;
1169	if (&rg->link == head)
1170		return 0;
1171
1172	/* If we are in the middle of a region then adjust it. */
1173	if (end > rg->from) {
1174		chg = rg->to - end;
1175		rg->to = end;
1176		rg = list_entry(rg->link.next, typeof(*rg), link);
1177	}
1178
1179	/* Drop any remaining regions. */
1180	list_for_each_entry_safe(rg, trg, rg->link.prev, link) {
1181		if (&rg->link == head)
1182			break;
1183		chg += rg->to - rg->from;
1184		list_del(&rg->link);
1185		kfree(rg);
1186	}
1187	return chg;
1188}
1189
1190static int hugetlb_acct_memory(long delta)
1191{
1192	int ret = -ENOMEM;
1193
1194	spin_lock(&hugetlb_lock);
1195	/*
1196	 * When cpuset is configured, it breaks the strict hugetlb page
1197	 * reservation as the accounting is done on a global variable. Such
1198	 * reservation is completely rubbish in the presence of cpuset because
1199	 * the reservation is not checked against page availability for the
1200	 * current cpuset. Application can still potentially OOM'ed by kernel
1201	 * with lack of free htlb page in cpuset that the task is in.
1202	 * Attempt to enforce strict accounting with cpuset is almost
1203	 * impossible (or too ugly) because cpuset is too fluid that
1204	 * task or memory node can be dynamically moved between cpusets.
1205	 *
1206	 * The change of semantics for shared hugetlb mapping with cpuset is
1207	 * undesirable. However, in order to preserve some of the semantics,
1208	 * we fall back to check against current free page availability as
1209	 * a best attempt and hopefully to minimize the impact of changing
1210	 * semantics that cpuset has.
1211	 */
1212	if (delta > 0) {
1213		if (gather_surplus_pages(delta) < 0)
1214			goto out;
1215
1216		if (delta > cpuset_mems_nr(free_huge_pages_node)) {
1217			return_unused_surplus_pages(delta);
1218			goto out;
1219		}
1220	}
1221
1222	ret = 0;
1223	if (delta < 0)
1224		return_unused_surplus_pages((unsigned long) -delta);
1225
1226out:
1227	spin_unlock(&hugetlb_lock);
1228	return ret;
1229}
1230
1231int hugetlb_reserve_pages(struct inode *inode, long from, long to)
1232{
1233	long ret, chg;
1234
1235	chg = region_chg(&inode->i_mapping->private_list, from, to);
1236	if (chg < 0)
1237		return chg;
1238
1239	if (hugetlb_get_quota(inode->i_mapping, chg))
1240		return -ENOSPC;
1241	ret = hugetlb_acct_memory(chg);
1242	if (ret < 0) {
1243		hugetlb_put_quota(inode->i_mapping, chg);
1244		return ret;
1245	}
1246	region_add(&inode->i_mapping->private_list, from, to);
1247	return 0;
1248}
1249
1250void hugetlb_unreserve_pages(struct inode *inode, long offset, long freed)
1251{
1252	long chg = region_truncate(&inode->i_mapping->private_list, offset);
1253
1254	spin_lock(&inode->i_lock);
1255	inode->i_blocks -= BLOCKS_PER_HUGEPAGE * freed;
1256	spin_unlock(&inode->i_lock);
1257
1258	hugetlb_put_quota(inode->i_mapping, (chg - freed));
1259	hugetlb_acct_memory(-(chg - freed));
1260}
1261