hugetlb.c revision b45b5bd65f668a665db40d093e4e1fe563533608
1/*
2 * Generic hugetlb support.
3 * (C) William Irwin, April 2004
4 */
5#include <linux/gfp.h>
6#include <linux/list.h>
7#include <linux/init.h>
8#include <linux/module.h>
9#include <linux/mm.h>
10#include <linux/sysctl.h>
11#include <linux/highmem.h>
12#include <linux/nodemask.h>
13#include <linux/pagemap.h>
14#include <linux/mempolicy.h>
15#include <linux/cpuset.h>
16#include <linux/mutex.h>
17
18#include <asm/page.h>
19#include <asm/pgtable.h>
20
21#include <linux/hugetlb.h>
22#include "internal.h"
23
24const unsigned long hugetlb_zero = 0, hugetlb_infinity = ~0UL;
25static unsigned long nr_huge_pages, free_huge_pages, reserved_huge_pages;
26unsigned long max_huge_pages;
27static struct list_head hugepage_freelists[MAX_NUMNODES];
28static unsigned int nr_huge_pages_node[MAX_NUMNODES];
29static unsigned int free_huge_pages_node[MAX_NUMNODES];
30/*
31 * Protects updates to hugepage_freelists, nr_huge_pages, and free_huge_pages
32 */
33static DEFINE_SPINLOCK(hugetlb_lock);
34
35static void clear_huge_page(struct page *page, unsigned long addr)
36{
37	int i;
38
39	might_sleep();
40	for (i = 0; i < (HPAGE_SIZE/PAGE_SIZE); i++) {
41		cond_resched();
42		clear_user_highpage(page + i, addr);
43	}
44}
45
46static void copy_huge_page(struct page *dst, struct page *src,
47			   unsigned long addr)
48{
49	int i;
50
51	might_sleep();
52	for (i = 0; i < HPAGE_SIZE/PAGE_SIZE; i++) {
53		cond_resched();
54		copy_user_highpage(dst + i, src + i, addr + i*PAGE_SIZE);
55	}
56}
57
58static void enqueue_huge_page(struct page *page)
59{
60	int nid = page_to_nid(page);
61	list_add(&page->lru, &hugepage_freelists[nid]);
62	free_huge_pages++;
63	free_huge_pages_node[nid]++;
64}
65
66static struct page *dequeue_huge_page(struct vm_area_struct *vma,
67				unsigned long address)
68{
69	int nid = numa_node_id();
70	struct page *page = NULL;
71	struct zonelist *zonelist = huge_zonelist(vma, address);
72	struct zone **z;
73
74	for (z = zonelist->zones; *z; z++) {
75		nid = (*z)->zone_pgdat->node_id;
76		if (cpuset_zone_allowed(*z, GFP_HIGHUSER) &&
77		    !list_empty(&hugepage_freelists[nid]))
78			break;
79	}
80
81	if (*z) {
82		page = list_entry(hugepage_freelists[nid].next,
83				  struct page, lru);
84		list_del(&page->lru);
85		free_huge_pages--;
86		free_huge_pages_node[nid]--;
87	}
88	return page;
89}
90
91static int alloc_fresh_huge_page(void)
92{
93	static int nid = 0;
94	struct page *page;
95	page = alloc_pages_node(nid, GFP_HIGHUSER|__GFP_COMP|__GFP_NOWARN,
96					HUGETLB_PAGE_ORDER);
97	nid = (nid + 1) % num_online_nodes();
98	if (page) {
99		page[1].lru.next = (void *)free_huge_page;	/* dtor */
100		spin_lock(&hugetlb_lock);
101		nr_huge_pages++;
102		nr_huge_pages_node[page_to_nid(page)]++;
103		spin_unlock(&hugetlb_lock);
104		put_page(page); /* free it into the hugepage allocator */
105		return 1;
106	}
107	return 0;
108}
109
110void free_huge_page(struct page *page)
111{
112	BUG_ON(page_count(page));
113
114	INIT_LIST_HEAD(&page->lru);
115
116	spin_lock(&hugetlb_lock);
117	enqueue_huge_page(page);
118	spin_unlock(&hugetlb_lock);
119}
120
121struct page *alloc_huge_page(struct vm_area_struct *vma, unsigned long addr)
122{
123	struct inode *inode = vma->vm_file->f_dentry->d_inode;
124	struct page *page;
125	int use_reserve = 0;
126	unsigned long idx;
127
128	spin_lock(&hugetlb_lock);
129
130	if (vma->vm_flags & VM_MAYSHARE) {
131
132		/* idx = radix tree index, i.e. offset into file in
133		 * HPAGE_SIZE units */
134		idx = ((addr - vma->vm_start) >> HPAGE_SHIFT)
135			+ (vma->vm_pgoff >> (HPAGE_SHIFT - PAGE_SHIFT));
136
137		/* The hugetlbfs specific inode info stores the number
138		 * of "guaranteed available" (huge) pages.  That is,
139		 * the first 'prereserved_hpages' pages of the inode
140		 * are either already instantiated, or have been
141		 * pre-reserved (by hugetlb_reserve_for_inode()). Here
142		 * we're in the process of instantiating the page, so
143		 * we use this to determine whether to draw from the
144		 * pre-reserved pool or the truly free pool. */
145		if (idx < HUGETLBFS_I(inode)->prereserved_hpages)
146			use_reserve = 1;
147	}
148
149	if (!use_reserve) {
150		if (free_huge_pages <= reserved_huge_pages)
151			goto fail;
152	} else {
153		BUG_ON(reserved_huge_pages == 0);
154		reserved_huge_pages--;
155	}
156
157	page = dequeue_huge_page(vma, addr);
158	if (!page)
159		goto fail;
160
161	spin_unlock(&hugetlb_lock);
162	set_page_refcounted(page);
163	return page;
164
165 fail:
166	WARN_ON(use_reserve); /* reserved allocations shouldn't fail */
167	spin_unlock(&hugetlb_lock);
168	return NULL;
169}
170
171/* hugetlb_extend_reservation()
172 *
173 * Ensure that at least 'atleast' hugepages are, and will remain,
174 * available to instantiate the first 'atleast' pages of the given
175 * inode.  If the inode doesn't already have this many pages reserved
176 * or instantiated, set aside some hugepages in the reserved pool to
177 * satisfy later faults (or fail now if there aren't enough, rather
178 * than getting the SIGBUS later).
179 */
180int hugetlb_extend_reservation(struct hugetlbfs_inode_info *info,
181			       unsigned long atleast)
182{
183	struct inode *inode = &info->vfs_inode;
184	unsigned long change_in_reserve = 0;
185	int ret = 0;
186
187	spin_lock(&hugetlb_lock);
188	read_lock_irq(&inode->i_mapping->tree_lock);
189
190	if (info->prereserved_hpages >= atleast)
191		goto out;
192
193	/* Because we always call this on shared mappings, none of the
194	 * pages beyond info->prereserved_hpages can have been
195	 * instantiated, so we need to reserve all of them now. */
196	change_in_reserve = atleast - info->prereserved_hpages;
197
198	if ((reserved_huge_pages + change_in_reserve) > free_huge_pages) {
199		ret = -ENOMEM;
200		goto out;
201	}
202
203	reserved_huge_pages += change_in_reserve;
204	info->prereserved_hpages = atleast;
205
206 out:
207	read_unlock_irq(&inode->i_mapping->tree_lock);
208	spin_unlock(&hugetlb_lock);
209
210	return ret;
211}
212
213/* hugetlb_truncate_reservation()
214 *
215 * This returns pages reserved for the given inode to the general free
216 * hugepage pool.  If the inode has any pages prereserved, but not
217 * instantiated, beyond offset (atmost << HPAGE_SIZE), then release
218 * them.
219 */
220void hugetlb_truncate_reservation(struct hugetlbfs_inode_info *info,
221				  unsigned long atmost)
222{
223	struct inode *inode = &info->vfs_inode;
224	struct address_space *mapping = inode->i_mapping;
225	unsigned long idx;
226	unsigned long change_in_reserve = 0;
227	struct page *page;
228
229	spin_lock(&hugetlb_lock);
230	read_lock_irq(&inode->i_mapping->tree_lock);
231
232	if (info->prereserved_hpages <= atmost)
233		goto out;
234
235	/* Count pages which were reserved, but not instantiated, and
236	 * which we can now release. */
237	for (idx = atmost; idx < info->prereserved_hpages; idx++) {
238		page = radix_tree_lookup(&mapping->page_tree, idx);
239		if (!page)
240			/* Pages which are already instantiated can't
241			 * be unreserved (and in fact have already
242			 * been removed from the reserved pool) */
243			change_in_reserve++;
244	}
245
246	BUG_ON(reserved_huge_pages < change_in_reserve);
247	reserved_huge_pages -= change_in_reserve;
248	info->prereserved_hpages = atmost;
249
250 out:
251	read_unlock_irq(&inode->i_mapping->tree_lock);
252	spin_unlock(&hugetlb_lock);
253}
254
255static int __init hugetlb_init(void)
256{
257	unsigned long i;
258
259	if (HPAGE_SHIFT == 0)
260		return 0;
261
262	for (i = 0; i < MAX_NUMNODES; ++i)
263		INIT_LIST_HEAD(&hugepage_freelists[i]);
264
265	for (i = 0; i < max_huge_pages; ++i) {
266		if (!alloc_fresh_huge_page())
267			break;
268	}
269	max_huge_pages = free_huge_pages = nr_huge_pages = i;
270	printk("Total HugeTLB memory allocated, %ld\n", free_huge_pages);
271	return 0;
272}
273module_init(hugetlb_init);
274
275static int __init hugetlb_setup(char *s)
276{
277	if (sscanf(s, "%lu", &max_huge_pages) <= 0)
278		max_huge_pages = 0;
279	return 1;
280}
281__setup("hugepages=", hugetlb_setup);
282
283#ifdef CONFIG_SYSCTL
284static void update_and_free_page(struct page *page)
285{
286	int i;
287	nr_huge_pages--;
288	nr_huge_pages_node[page_zone(page)->zone_pgdat->node_id]--;
289	for (i = 0; i < (HPAGE_SIZE / PAGE_SIZE); i++) {
290		page[i].flags &= ~(1 << PG_locked | 1 << PG_error | 1 << PG_referenced |
291				1 << PG_dirty | 1 << PG_active | 1 << PG_reserved |
292				1 << PG_private | 1<< PG_writeback);
293	}
294	page[1].lru.next = NULL;
295	set_page_refcounted(page);
296	__free_pages(page, HUGETLB_PAGE_ORDER);
297}
298
299#ifdef CONFIG_HIGHMEM
300static void try_to_free_low(unsigned long count)
301{
302	int i, nid;
303	for (i = 0; i < MAX_NUMNODES; ++i) {
304		struct page *page, *next;
305		list_for_each_entry_safe(page, next, &hugepage_freelists[i], lru) {
306			if (PageHighMem(page))
307				continue;
308			list_del(&page->lru);
309			update_and_free_page(page);
310			nid = page_zone(page)->zone_pgdat->node_id;
311			free_huge_pages--;
312			free_huge_pages_node[nid]--;
313			if (count >= nr_huge_pages)
314				return;
315		}
316	}
317}
318#else
319static inline void try_to_free_low(unsigned long count)
320{
321}
322#endif
323
324static unsigned long set_max_huge_pages(unsigned long count)
325{
326	while (count > nr_huge_pages) {
327		if (!alloc_fresh_huge_page())
328			return nr_huge_pages;
329	}
330	if (count >= nr_huge_pages)
331		return nr_huge_pages;
332
333	spin_lock(&hugetlb_lock);
334	try_to_free_low(count);
335	while (count < nr_huge_pages) {
336		struct page *page = dequeue_huge_page(NULL, 0);
337		if (!page)
338			break;
339		update_and_free_page(page);
340	}
341	spin_unlock(&hugetlb_lock);
342	return nr_huge_pages;
343}
344
345int hugetlb_sysctl_handler(struct ctl_table *table, int write,
346			   struct file *file, void __user *buffer,
347			   size_t *length, loff_t *ppos)
348{
349	proc_doulongvec_minmax(table, write, file, buffer, length, ppos);
350	max_huge_pages = set_max_huge_pages(max_huge_pages);
351	return 0;
352}
353#endif /* CONFIG_SYSCTL */
354
355int hugetlb_report_meminfo(char *buf)
356{
357	return sprintf(buf,
358			"HugePages_Total: %5lu\n"
359			"HugePages_Free:  %5lu\n"
360		        "HugePages_Rsvd:  %5lu\n"
361			"Hugepagesize:    %5lu kB\n",
362			nr_huge_pages,
363			free_huge_pages,
364		        reserved_huge_pages,
365			HPAGE_SIZE/1024);
366}
367
368int hugetlb_report_node_meminfo(int nid, char *buf)
369{
370	return sprintf(buf,
371		"Node %d HugePages_Total: %5u\n"
372		"Node %d HugePages_Free:  %5u\n",
373		nid, nr_huge_pages_node[nid],
374		nid, free_huge_pages_node[nid]);
375}
376
377/* Return the number pages of memory we physically have, in PAGE_SIZE units. */
378unsigned long hugetlb_total_pages(void)
379{
380	return nr_huge_pages * (HPAGE_SIZE / PAGE_SIZE);
381}
382
383/*
384 * We cannot handle pagefaults against hugetlb pages at all.  They cause
385 * handle_mm_fault() to try to instantiate regular-sized pages in the
386 * hugegpage VMA.  do_page_fault() is supposed to trap this, so BUG is we get
387 * this far.
388 */
389static struct page *hugetlb_nopage(struct vm_area_struct *vma,
390				unsigned long address, int *unused)
391{
392	BUG();
393	return NULL;
394}
395
396struct vm_operations_struct hugetlb_vm_ops = {
397	.nopage = hugetlb_nopage,
398};
399
400static pte_t make_huge_pte(struct vm_area_struct *vma, struct page *page,
401				int writable)
402{
403	pte_t entry;
404
405	if (writable) {
406		entry =
407		    pte_mkwrite(pte_mkdirty(mk_pte(page, vma->vm_page_prot)));
408	} else {
409		entry = pte_wrprotect(mk_pte(page, vma->vm_page_prot));
410	}
411	entry = pte_mkyoung(entry);
412	entry = pte_mkhuge(entry);
413
414	return entry;
415}
416
417static void set_huge_ptep_writable(struct vm_area_struct *vma,
418				   unsigned long address, pte_t *ptep)
419{
420	pte_t entry;
421
422	entry = pte_mkwrite(pte_mkdirty(*ptep));
423	ptep_set_access_flags(vma, address, ptep, entry, 1);
424	update_mmu_cache(vma, address, entry);
425	lazy_mmu_prot_update(entry);
426}
427
428
429int copy_hugetlb_page_range(struct mm_struct *dst, struct mm_struct *src,
430			    struct vm_area_struct *vma)
431{
432	pte_t *src_pte, *dst_pte, entry;
433	struct page *ptepage;
434	unsigned long addr;
435	int cow;
436
437	cow = (vma->vm_flags & (VM_SHARED | VM_MAYWRITE)) == VM_MAYWRITE;
438
439	for (addr = vma->vm_start; addr < vma->vm_end; addr += HPAGE_SIZE) {
440		src_pte = huge_pte_offset(src, addr);
441		if (!src_pte)
442			continue;
443		dst_pte = huge_pte_alloc(dst, addr);
444		if (!dst_pte)
445			goto nomem;
446		spin_lock(&dst->page_table_lock);
447		spin_lock(&src->page_table_lock);
448		if (!pte_none(*src_pte)) {
449			if (cow)
450				ptep_set_wrprotect(src, addr, src_pte);
451			entry = *src_pte;
452			ptepage = pte_page(entry);
453			get_page(ptepage);
454			add_mm_counter(dst, file_rss, HPAGE_SIZE / PAGE_SIZE);
455			set_huge_pte_at(dst, addr, dst_pte, entry);
456		}
457		spin_unlock(&src->page_table_lock);
458		spin_unlock(&dst->page_table_lock);
459	}
460	return 0;
461
462nomem:
463	return -ENOMEM;
464}
465
466void unmap_hugepage_range(struct vm_area_struct *vma, unsigned long start,
467			  unsigned long end)
468{
469	struct mm_struct *mm = vma->vm_mm;
470	unsigned long address;
471	pte_t *ptep;
472	pte_t pte;
473	struct page *page;
474
475	WARN_ON(!is_vm_hugetlb_page(vma));
476	BUG_ON(start & ~HPAGE_MASK);
477	BUG_ON(end & ~HPAGE_MASK);
478
479	spin_lock(&mm->page_table_lock);
480
481	/* Update high watermark before we lower rss */
482	update_hiwater_rss(mm);
483
484	for (address = start; address < end; address += HPAGE_SIZE) {
485		ptep = huge_pte_offset(mm, address);
486		if (!ptep)
487			continue;
488
489		pte = huge_ptep_get_and_clear(mm, address, ptep);
490		if (pte_none(pte))
491			continue;
492
493		page = pte_page(pte);
494		put_page(page);
495		add_mm_counter(mm, file_rss, (int) -(HPAGE_SIZE / PAGE_SIZE));
496	}
497
498	spin_unlock(&mm->page_table_lock);
499	flush_tlb_range(vma, start, end);
500}
501
502static int hugetlb_cow(struct mm_struct *mm, struct vm_area_struct *vma,
503			unsigned long address, pte_t *ptep, pte_t pte)
504{
505	struct page *old_page, *new_page;
506	int avoidcopy;
507
508	old_page = pte_page(pte);
509
510	/* If no-one else is actually using this page, avoid the copy
511	 * and just make the page writable */
512	avoidcopy = (page_count(old_page) == 1);
513	if (avoidcopy) {
514		set_huge_ptep_writable(vma, address, ptep);
515		return VM_FAULT_MINOR;
516	}
517
518	page_cache_get(old_page);
519	new_page = alloc_huge_page(vma, address);
520
521	if (!new_page) {
522		page_cache_release(old_page);
523		return VM_FAULT_OOM;
524	}
525
526	spin_unlock(&mm->page_table_lock);
527	copy_huge_page(new_page, old_page, address);
528	spin_lock(&mm->page_table_lock);
529
530	ptep = huge_pte_offset(mm, address & HPAGE_MASK);
531	if (likely(pte_same(*ptep, pte))) {
532		/* Break COW */
533		set_huge_pte_at(mm, address, ptep,
534				make_huge_pte(vma, new_page, 1));
535		/* Make the old page be freed below */
536		new_page = old_page;
537	}
538	page_cache_release(new_page);
539	page_cache_release(old_page);
540	return VM_FAULT_MINOR;
541}
542
543int hugetlb_no_page(struct mm_struct *mm, struct vm_area_struct *vma,
544			unsigned long address, pte_t *ptep, int write_access)
545{
546	int ret = VM_FAULT_SIGBUS;
547	unsigned long idx;
548	unsigned long size;
549	struct page *page;
550	struct address_space *mapping;
551	pte_t new_pte;
552
553	mapping = vma->vm_file->f_mapping;
554	idx = ((address - vma->vm_start) >> HPAGE_SHIFT)
555		+ (vma->vm_pgoff >> (HPAGE_SHIFT - PAGE_SHIFT));
556
557	/*
558	 * Use page lock to guard against racing truncation
559	 * before we get page_table_lock.
560	 */
561retry:
562	page = find_lock_page(mapping, idx);
563	if (!page) {
564		if (hugetlb_get_quota(mapping))
565			goto out;
566		page = alloc_huge_page(vma, address);
567		if (!page) {
568			hugetlb_put_quota(mapping);
569			ret = VM_FAULT_OOM;
570			goto out;
571		}
572		clear_huge_page(page, address);
573
574		if (vma->vm_flags & VM_SHARED) {
575			int err;
576
577			err = add_to_page_cache(page, mapping, idx, GFP_KERNEL);
578			if (err) {
579				put_page(page);
580				hugetlb_put_quota(mapping);
581				if (err == -EEXIST)
582					goto retry;
583				goto out;
584			}
585		} else
586			lock_page(page);
587	}
588
589	spin_lock(&mm->page_table_lock);
590	size = i_size_read(mapping->host) >> HPAGE_SHIFT;
591	if (idx >= size)
592		goto backout;
593
594	ret = VM_FAULT_MINOR;
595	if (!pte_none(*ptep))
596		goto backout;
597
598	add_mm_counter(mm, file_rss, HPAGE_SIZE / PAGE_SIZE);
599	new_pte = make_huge_pte(vma, page, ((vma->vm_flags & VM_WRITE)
600				&& (vma->vm_flags & VM_SHARED)));
601	set_huge_pte_at(mm, address, ptep, new_pte);
602
603	if (write_access && !(vma->vm_flags & VM_SHARED)) {
604		/* Optimization, do the COW without a second fault */
605		ret = hugetlb_cow(mm, vma, address, ptep, new_pte);
606	}
607
608	spin_unlock(&mm->page_table_lock);
609	unlock_page(page);
610out:
611	return ret;
612
613backout:
614	spin_unlock(&mm->page_table_lock);
615	hugetlb_put_quota(mapping);
616	unlock_page(page);
617	put_page(page);
618	goto out;
619}
620
621int hugetlb_fault(struct mm_struct *mm, struct vm_area_struct *vma,
622			unsigned long address, int write_access)
623{
624	pte_t *ptep;
625	pte_t entry;
626	int ret;
627	static DEFINE_MUTEX(hugetlb_instantiation_mutex);
628
629	ptep = huge_pte_alloc(mm, address);
630	if (!ptep)
631		return VM_FAULT_OOM;
632
633	/*
634	 * Serialize hugepage allocation and instantiation, so that we don't
635	 * get spurious allocation failures if two CPUs race to instantiate
636	 * the same page in the page cache.
637	 */
638	mutex_lock(&hugetlb_instantiation_mutex);
639	entry = *ptep;
640	if (pte_none(entry)) {
641		ret = hugetlb_no_page(mm, vma, address, ptep, write_access);
642		mutex_unlock(&hugetlb_instantiation_mutex);
643		return ret;
644	}
645
646	ret = VM_FAULT_MINOR;
647
648	spin_lock(&mm->page_table_lock);
649	/* Check for a racing update before calling hugetlb_cow */
650	if (likely(pte_same(entry, *ptep)))
651		if (write_access && !pte_write(entry))
652			ret = hugetlb_cow(mm, vma, address, ptep, entry);
653	spin_unlock(&mm->page_table_lock);
654	mutex_unlock(&hugetlb_instantiation_mutex);
655
656	return ret;
657}
658
659int follow_hugetlb_page(struct mm_struct *mm, struct vm_area_struct *vma,
660			struct page **pages, struct vm_area_struct **vmas,
661			unsigned long *position, int *length, int i)
662{
663	unsigned long vpfn, vaddr = *position;
664	int remainder = *length;
665
666	vpfn = vaddr/PAGE_SIZE;
667	spin_lock(&mm->page_table_lock);
668	while (vaddr < vma->vm_end && remainder) {
669		pte_t *pte;
670		struct page *page;
671
672		/*
673		 * Some archs (sparc64, sh*) have multiple pte_ts to
674		 * each hugepage.  We have to make * sure we get the
675		 * first, for the page indexing below to work.
676		 */
677		pte = huge_pte_offset(mm, vaddr & HPAGE_MASK);
678
679		if (!pte || pte_none(*pte)) {
680			int ret;
681
682			spin_unlock(&mm->page_table_lock);
683			ret = hugetlb_fault(mm, vma, vaddr, 0);
684			spin_lock(&mm->page_table_lock);
685			if (ret == VM_FAULT_MINOR)
686				continue;
687
688			remainder = 0;
689			if (!i)
690				i = -EFAULT;
691			break;
692		}
693
694		if (pages) {
695			page = &pte_page(*pte)[vpfn % (HPAGE_SIZE/PAGE_SIZE)];
696			get_page(page);
697			pages[i] = page;
698		}
699
700		if (vmas)
701			vmas[i] = vma;
702
703		vaddr += PAGE_SIZE;
704		++vpfn;
705		--remainder;
706		++i;
707	}
708	spin_unlock(&mm->page_table_lock);
709	*length = remainder;
710	*position = vaddr;
711
712	return i;
713}
714
715void hugetlb_change_protection(struct vm_area_struct *vma,
716		unsigned long address, unsigned long end, pgprot_t newprot)
717{
718	struct mm_struct *mm = vma->vm_mm;
719	unsigned long start = address;
720	pte_t *ptep;
721	pte_t pte;
722
723	BUG_ON(address >= end);
724	flush_cache_range(vma, address, end);
725
726	spin_lock(&mm->page_table_lock);
727	for (; address < end; address += HPAGE_SIZE) {
728		ptep = huge_pte_offset(mm, address);
729		if (!ptep)
730			continue;
731		if (!pte_none(*ptep)) {
732			pte = huge_ptep_get_and_clear(mm, address, ptep);
733			pte = pte_mkhuge(pte_modify(pte, newprot));
734			set_huge_pte_at(mm, address, ptep, pte);
735			lazy_mmu_prot_update(pte);
736		}
737	}
738	spin_unlock(&mm->page_table_lock);
739
740	flush_tlb_range(vma, start, end);
741}
742
743