hugetlb.c revision ebdd4aea8d736e3b5ce27ab0a26860c9fded341b
1/*
2 * Generic hugetlb support.
3 * (C) William Irwin, April 2004
4 */
5#include <linux/gfp.h>
6#include <linux/list.h>
7#include <linux/init.h>
8#include <linux/module.h>
9#include <linux/mm.h>
10#include <linux/seq_file.h>
11#include <linux/sysctl.h>
12#include <linux/highmem.h>
13#include <linux/mmu_notifier.h>
14#include <linux/nodemask.h>
15#include <linux/pagemap.h>
16#include <linux/mempolicy.h>
17#include <linux/cpuset.h>
18#include <linux/mutex.h>
19#include <linux/bootmem.h>
20#include <linux/sysfs.h>
21
22#include <asm/page.h>
23#include <asm/pgtable.h>
24#include <asm/io.h>
25
26#include <linux/hugetlb.h>
27#include "internal.h"
28
29const unsigned long hugetlb_zero = 0, hugetlb_infinity = ~0UL;
30static gfp_t htlb_alloc_mask = GFP_HIGHUSER;
31unsigned long hugepages_treat_as_movable;
32
33static int max_hstate;
34unsigned int default_hstate_idx;
35struct hstate hstates[HUGE_MAX_HSTATE];
36
37__initdata LIST_HEAD(huge_boot_pages);
38
39/* for command line parsing */
40static struct hstate * __initdata parsed_hstate;
41static unsigned long __initdata default_hstate_max_huge_pages;
42static unsigned long __initdata default_hstate_size;
43
44#define for_each_hstate(h) \
45	for ((h) = hstates; (h) < &hstates[max_hstate]; (h)++)
46
47/*
48 * Protects updates to hugepage_freelists, nr_huge_pages, and free_huge_pages
49 */
50static DEFINE_SPINLOCK(hugetlb_lock);
51
52/*
53 * Region tracking -- allows tracking of reservations and instantiated pages
54 *                    across the pages in a mapping.
55 *
56 * The region data structures are protected by a combination of the mmap_sem
57 * and the hugetlb_instantion_mutex.  To access or modify a region the caller
58 * must either hold the mmap_sem for write, or the mmap_sem for read and
59 * the hugetlb_instantiation mutex:
60 *
61 * 	down_write(&mm->mmap_sem);
62 * or
63 * 	down_read(&mm->mmap_sem);
64 * 	mutex_lock(&hugetlb_instantiation_mutex);
65 */
66struct file_region {
67	struct list_head link;
68	long from;
69	long to;
70};
71
72static long region_add(struct list_head *head, long f, long t)
73{
74	struct file_region *rg, *nrg, *trg;
75
76	/* Locate the region we are either in or before. */
77	list_for_each_entry(rg, head, link)
78		if (f <= rg->to)
79			break;
80
81	/* Round our left edge to the current segment if it encloses us. */
82	if (f > rg->from)
83		f = rg->from;
84
85	/* Check for and consume any regions we now overlap with. */
86	nrg = rg;
87	list_for_each_entry_safe(rg, trg, rg->link.prev, link) {
88		if (&rg->link == head)
89			break;
90		if (rg->from > t)
91			break;
92
93		/* If this area reaches higher then extend our area to
94		 * include it completely.  If this is not the first area
95		 * which we intend to reuse, free it. */
96		if (rg->to > t)
97			t = rg->to;
98		if (rg != nrg) {
99			list_del(&rg->link);
100			kfree(rg);
101		}
102	}
103	nrg->from = f;
104	nrg->to = t;
105	return 0;
106}
107
108static long region_chg(struct list_head *head, long f, long t)
109{
110	struct file_region *rg, *nrg;
111	long chg = 0;
112
113	/* Locate the region we are before or in. */
114	list_for_each_entry(rg, head, link)
115		if (f <= rg->to)
116			break;
117
118	/* If we are below the current region then a new region is required.
119	 * Subtle, allocate a new region at the position but make it zero
120	 * size such that we can guarantee to record the reservation. */
121	if (&rg->link == head || t < rg->from) {
122		nrg = kmalloc(sizeof(*nrg), GFP_KERNEL);
123		if (!nrg)
124			return -ENOMEM;
125		nrg->from = f;
126		nrg->to   = f;
127		INIT_LIST_HEAD(&nrg->link);
128		list_add(&nrg->link, rg->link.prev);
129
130		return t - f;
131	}
132
133	/* Round our left edge to the current segment if it encloses us. */
134	if (f > rg->from)
135		f = rg->from;
136	chg = t - f;
137
138	/* Check for and consume any regions we now overlap with. */
139	list_for_each_entry(rg, rg->link.prev, link) {
140		if (&rg->link == head)
141			break;
142		if (rg->from > t)
143			return chg;
144
145		/* We overlap with this area, if it extends futher than
146		 * us then we must extend ourselves.  Account for its
147		 * existing reservation. */
148		if (rg->to > t) {
149			chg += rg->to - t;
150			t = rg->to;
151		}
152		chg -= rg->to - rg->from;
153	}
154	return chg;
155}
156
157static long region_truncate(struct list_head *head, long end)
158{
159	struct file_region *rg, *trg;
160	long chg = 0;
161
162	/* Locate the region we are either in or before. */
163	list_for_each_entry(rg, head, link)
164		if (end <= rg->to)
165			break;
166	if (&rg->link == head)
167		return 0;
168
169	/* If we are in the middle of a region then adjust it. */
170	if (end > rg->from) {
171		chg = rg->to - end;
172		rg->to = end;
173		rg = list_entry(rg->link.next, typeof(*rg), link);
174	}
175
176	/* Drop any remaining regions. */
177	list_for_each_entry_safe(rg, trg, rg->link.prev, link) {
178		if (&rg->link == head)
179			break;
180		chg += rg->to - rg->from;
181		list_del(&rg->link);
182		kfree(rg);
183	}
184	return chg;
185}
186
187static long region_count(struct list_head *head, long f, long t)
188{
189	struct file_region *rg;
190	long chg = 0;
191
192	/* Locate each segment we overlap with, and count that overlap. */
193	list_for_each_entry(rg, head, link) {
194		int seg_from;
195		int seg_to;
196
197		if (rg->to <= f)
198			continue;
199		if (rg->from >= t)
200			break;
201
202		seg_from = max(rg->from, f);
203		seg_to = min(rg->to, t);
204
205		chg += seg_to - seg_from;
206	}
207
208	return chg;
209}
210
211/*
212 * Convert the address within this vma to the page offset within
213 * the mapping, in pagecache page units; huge pages here.
214 */
215static pgoff_t vma_hugecache_offset(struct hstate *h,
216			struct vm_area_struct *vma, unsigned long address)
217{
218	return ((address - vma->vm_start) >> huge_page_shift(h)) +
219			(vma->vm_pgoff >> huge_page_order(h));
220}
221
222/*
223 * Return the size of the pages allocated when backing a VMA. In the majority
224 * cases this will be same size as used by the page table entries.
225 */
226unsigned long vma_kernel_pagesize(struct vm_area_struct *vma)
227{
228	struct hstate *hstate;
229
230	if (!is_vm_hugetlb_page(vma))
231		return PAGE_SIZE;
232
233	hstate = hstate_vma(vma);
234
235	return 1UL << (hstate->order + PAGE_SHIFT);
236}
237
238/*
239 * Return the page size being used by the MMU to back a VMA. In the majority
240 * of cases, the page size used by the kernel matches the MMU size. On
241 * architectures where it differs, an architecture-specific version of this
242 * function is required.
243 */
244#ifndef vma_mmu_pagesize
245unsigned long vma_mmu_pagesize(struct vm_area_struct *vma)
246{
247	return vma_kernel_pagesize(vma);
248}
249#endif
250
251/*
252 * Flags for MAP_PRIVATE reservations.  These are stored in the bottom
253 * bits of the reservation map pointer, which are always clear due to
254 * alignment.
255 */
256#define HPAGE_RESV_OWNER    (1UL << 0)
257#define HPAGE_RESV_UNMAPPED (1UL << 1)
258#define HPAGE_RESV_MASK (HPAGE_RESV_OWNER | HPAGE_RESV_UNMAPPED)
259
260/*
261 * These helpers are used to track how many pages are reserved for
262 * faults in a MAP_PRIVATE mapping. Only the process that called mmap()
263 * is guaranteed to have their future faults succeed.
264 *
265 * With the exception of reset_vma_resv_huge_pages() which is called at fork(),
266 * the reserve counters are updated with the hugetlb_lock held. It is safe
267 * to reset the VMA at fork() time as it is not in use yet and there is no
268 * chance of the global counters getting corrupted as a result of the values.
269 *
270 * The private mapping reservation is represented in a subtly different
271 * manner to a shared mapping.  A shared mapping has a region map associated
272 * with the underlying file, this region map represents the backing file
273 * pages which have ever had a reservation assigned which this persists even
274 * after the page is instantiated.  A private mapping has a region map
275 * associated with the original mmap which is attached to all VMAs which
276 * reference it, this region map represents those offsets which have consumed
277 * reservation ie. where pages have been instantiated.
278 */
279static unsigned long get_vma_private_data(struct vm_area_struct *vma)
280{
281	return (unsigned long)vma->vm_private_data;
282}
283
284static void set_vma_private_data(struct vm_area_struct *vma,
285							unsigned long value)
286{
287	vma->vm_private_data = (void *)value;
288}
289
290struct resv_map {
291	struct kref refs;
292	struct list_head regions;
293};
294
295static struct resv_map *resv_map_alloc(void)
296{
297	struct resv_map *resv_map = kmalloc(sizeof(*resv_map), GFP_KERNEL);
298	if (!resv_map)
299		return NULL;
300
301	kref_init(&resv_map->refs);
302	INIT_LIST_HEAD(&resv_map->regions);
303
304	return resv_map;
305}
306
307static void resv_map_release(struct kref *ref)
308{
309	struct resv_map *resv_map = container_of(ref, struct resv_map, refs);
310
311	/* Clear out any active regions before we release the map. */
312	region_truncate(&resv_map->regions, 0);
313	kfree(resv_map);
314}
315
316static struct resv_map *vma_resv_map(struct vm_area_struct *vma)
317{
318	VM_BUG_ON(!is_vm_hugetlb_page(vma));
319	if (!(vma->vm_flags & VM_SHARED))
320		return (struct resv_map *)(get_vma_private_data(vma) &
321							~HPAGE_RESV_MASK);
322	return NULL;
323}
324
325static void set_vma_resv_map(struct vm_area_struct *vma, struct resv_map *map)
326{
327	VM_BUG_ON(!is_vm_hugetlb_page(vma));
328	VM_BUG_ON(vma->vm_flags & VM_SHARED);
329
330	set_vma_private_data(vma, (get_vma_private_data(vma) &
331				HPAGE_RESV_MASK) | (unsigned long)map);
332}
333
334static void set_vma_resv_flags(struct vm_area_struct *vma, unsigned long flags)
335{
336	VM_BUG_ON(!is_vm_hugetlb_page(vma));
337	VM_BUG_ON(vma->vm_flags & VM_SHARED);
338
339	set_vma_private_data(vma, get_vma_private_data(vma) | flags);
340}
341
342static int is_vma_resv_set(struct vm_area_struct *vma, unsigned long flag)
343{
344	VM_BUG_ON(!is_vm_hugetlb_page(vma));
345
346	return (get_vma_private_data(vma) & flag) != 0;
347}
348
349/* Decrement the reserved pages in the hugepage pool by one */
350static void decrement_hugepage_resv_vma(struct hstate *h,
351			struct vm_area_struct *vma)
352{
353	if (vma->vm_flags & VM_NORESERVE)
354		return;
355
356	if (vma->vm_flags & VM_SHARED) {
357		/* Shared mappings always use reserves */
358		h->resv_huge_pages--;
359	} else if (is_vma_resv_set(vma, HPAGE_RESV_OWNER)) {
360		/*
361		 * Only the process that called mmap() has reserves for
362		 * private mappings.
363		 */
364		h->resv_huge_pages--;
365	}
366}
367
368/* Reset counters to 0 and clear all HPAGE_RESV_* flags */
369void reset_vma_resv_huge_pages(struct vm_area_struct *vma)
370{
371	VM_BUG_ON(!is_vm_hugetlb_page(vma));
372	if (!(vma->vm_flags & VM_SHARED))
373		vma->vm_private_data = (void *)0;
374}
375
376/* Returns true if the VMA has associated reserve pages */
377static int vma_has_reserves(struct vm_area_struct *vma)
378{
379	if (vma->vm_flags & VM_SHARED)
380		return 1;
381	if (is_vma_resv_set(vma, HPAGE_RESV_OWNER))
382		return 1;
383	return 0;
384}
385
386static void clear_gigantic_page(struct page *page,
387			unsigned long addr, unsigned long sz)
388{
389	int i;
390	struct page *p = page;
391
392	might_sleep();
393	for (i = 0; i < sz/PAGE_SIZE; i++, p = mem_map_next(p, page, i)) {
394		cond_resched();
395		clear_user_highpage(p, addr + i * PAGE_SIZE);
396	}
397}
398static void clear_huge_page(struct page *page,
399			unsigned long addr, unsigned long sz)
400{
401	int i;
402
403	if (unlikely(sz > MAX_ORDER_NR_PAGES)) {
404		clear_gigantic_page(page, addr, sz);
405		return;
406	}
407
408	might_sleep();
409	for (i = 0; i < sz/PAGE_SIZE; i++) {
410		cond_resched();
411		clear_user_highpage(page + i, addr + i * PAGE_SIZE);
412	}
413}
414
415static void copy_gigantic_page(struct page *dst, struct page *src,
416			   unsigned long addr, struct vm_area_struct *vma)
417{
418	int i;
419	struct hstate *h = hstate_vma(vma);
420	struct page *dst_base = dst;
421	struct page *src_base = src;
422	might_sleep();
423	for (i = 0; i < pages_per_huge_page(h); ) {
424		cond_resched();
425		copy_user_highpage(dst, src, addr + i*PAGE_SIZE, vma);
426
427		i++;
428		dst = mem_map_next(dst, dst_base, i);
429		src = mem_map_next(src, src_base, i);
430	}
431}
432static void copy_huge_page(struct page *dst, struct page *src,
433			   unsigned long addr, struct vm_area_struct *vma)
434{
435	int i;
436	struct hstate *h = hstate_vma(vma);
437
438	if (unlikely(pages_per_huge_page(h) > MAX_ORDER_NR_PAGES)) {
439		copy_gigantic_page(dst, src, addr, vma);
440		return;
441	}
442
443	might_sleep();
444	for (i = 0; i < pages_per_huge_page(h); i++) {
445		cond_resched();
446		copy_user_highpage(dst + i, src + i, addr + i*PAGE_SIZE, vma);
447	}
448}
449
450static void enqueue_huge_page(struct hstate *h, struct page *page)
451{
452	int nid = page_to_nid(page);
453	list_add(&page->lru, &h->hugepage_freelists[nid]);
454	h->free_huge_pages++;
455	h->free_huge_pages_node[nid]++;
456}
457
458static struct page *dequeue_huge_page(struct hstate *h)
459{
460	int nid;
461	struct page *page = NULL;
462
463	for (nid = 0; nid < MAX_NUMNODES; ++nid) {
464		if (!list_empty(&h->hugepage_freelists[nid])) {
465			page = list_entry(h->hugepage_freelists[nid].next,
466					  struct page, lru);
467			list_del(&page->lru);
468			h->free_huge_pages--;
469			h->free_huge_pages_node[nid]--;
470			break;
471		}
472	}
473	return page;
474}
475
476static struct page *dequeue_huge_page_vma(struct hstate *h,
477				struct vm_area_struct *vma,
478				unsigned long address, int avoid_reserve)
479{
480	int nid;
481	struct page *page = NULL;
482	struct mempolicy *mpol;
483	nodemask_t *nodemask;
484	struct zonelist *zonelist = huge_zonelist(vma, address,
485					htlb_alloc_mask, &mpol, &nodemask);
486	struct zone *zone;
487	struct zoneref *z;
488
489	/*
490	 * A child process with MAP_PRIVATE mappings created by their parent
491	 * have no page reserves. This check ensures that reservations are
492	 * not "stolen". The child may still get SIGKILLed
493	 */
494	if (!vma_has_reserves(vma) &&
495			h->free_huge_pages - h->resv_huge_pages == 0)
496		return NULL;
497
498	/* If reserves cannot be used, ensure enough pages are in the pool */
499	if (avoid_reserve && h->free_huge_pages - h->resv_huge_pages == 0)
500		return NULL;
501
502	for_each_zone_zonelist_nodemask(zone, z, zonelist,
503						MAX_NR_ZONES - 1, nodemask) {
504		nid = zone_to_nid(zone);
505		if (cpuset_zone_allowed_softwall(zone, htlb_alloc_mask) &&
506		    !list_empty(&h->hugepage_freelists[nid])) {
507			page = list_entry(h->hugepage_freelists[nid].next,
508					  struct page, lru);
509			list_del(&page->lru);
510			h->free_huge_pages--;
511			h->free_huge_pages_node[nid]--;
512
513			if (!avoid_reserve)
514				decrement_hugepage_resv_vma(h, vma);
515
516			break;
517		}
518	}
519	mpol_cond_put(mpol);
520	return page;
521}
522
523static void update_and_free_page(struct hstate *h, struct page *page)
524{
525	int i;
526
527	VM_BUG_ON(h->order >= MAX_ORDER);
528
529	h->nr_huge_pages--;
530	h->nr_huge_pages_node[page_to_nid(page)]--;
531	for (i = 0; i < pages_per_huge_page(h); i++) {
532		page[i].flags &= ~(1 << PG_locked | 1 << PG_error | 1 << PG_referenced |
533				1 << PG_dirty | 1 << PG_active | 1 << PG_reserved |
534				1 << PG_private | 1<< PG_writeback);
535	}
536	set_compound_page_dtor(page, NULL);
537	set_page_refcounted(page);
538	arch_release_hugepage(page);
539	__free_pages(page, huge_page_order(h));
540}
541
542struct hstate *size_to_hstate(unsigned long size)
543{
544	struct hstate *h;
545
546	for_each_hstate(h) {
547		if (huge_page_size(h) == size)
548			return h;
549	}
550	return NULL;
551}
552
553static void free_huge_page(struct page *page)
554{
555	/*
556	 * Can't pass hstate in here because it is called from the
557	 * compound page destructor.
558	 */
559	struct hstate *h = page_hstate(page);
560	int nid = page_to_nid(page);
561	struct address_space *mapping;
562
563	mapping = (struct address_space *) page_private(page);
564	set_page_private(page, 0);
565	BUG_ON(page_count(page));
566	INIT_LIST_HEAD(&page->lru);
567
568	spin_lock(&hugetlb_lock);
569	if (h->surplus_huge_pages_node[nid] && huge_page_order(h) < MAX_ORDER) {
570		update_and_free_page(h, page);
571		h->surplus_huge_pages--;
572		h->surplus_huge_pages_node[nid]--;
573	} else {
574		enqueue_huge_page(h, page);
575	}
576	spin_unlock(&hugetlb_lock);
577	if (mapping)
578		hugetlb_put_quota(mapping, 1);
579}
580
581/*
582 * Increment or decrement surplus_huge_pages.  Keep node-specific counters
583 * balanced by operating on them in a round-robin fashion.
584 * Returns 1 if an adjustment was made.
585 */
586static int adjust_pool_surplus(struct hstate *h, int delta)
587{
588	static int prev_nid;
589	int nid = prev_nid;
590	int ret = 0;
591
592	VM_BUG_ON(delta != -1 && delta != 1);
593	do {
594		nid = next_node(nid, node_online_map);
595		if (nid == MAX_NUMNODES)
596			nid = first_node(node_online_map);
597
598		/* To shrink on this node, there must be a surplus page */
599		if (delta < 0 && !h->surplus_huge_pages_node[nid])
600			continue;
601		/* Surplus cannot exceed the total number of pages */
602		if (delta > 0 && h->surplus_huge_pages_node[nid] >=
603						h->nr_huge_pages_node[nid])
604			continue;
605
606		h->surplus_huge_pages += delta;
607		h->surplus_huge_pages_node[nid] += delta;
608		ret = 1;
609		break;
610	} while (nid != prev_nid);
611
612	prev_nid = nid;
613	return ret;
614}
615
616static void prep_new_huge_page(struct hstate *h, struct page *page, int nid)
617{
618	set_compound_page_dtor(page, free_huge_page);
619	spin_lock(&hugetlb_lock);
620	h->nr_huge_pages++;
621	h->nr_huge_pages_node[nid]++;
622	spin_unlock(&hugetlb_lock);
623	put_page(page); /* free it into the hugepage allocator */
624}
625
626static struct page *alloc_fresh_huge_page_node(struct hstate *h, int nid)
627{
628	struct page *page;
629
630	if (h->order >= MAX_ORDER)
631		return NULL;
632
633	page = alloc_pages_node(nid,
634		htlb_alloc_mask|__GFP_COMP|__GFP_THISNODE|
635						__GFP_REPEAT|__GFP_NOWARN,
636		huge_page_order(h));
637	if (page) {
638		if (arch_prepare_hugepage(page)) {
639			__free_pages(page, huge_page_order(h));
640			return NULL;
641		}
642		prep_new_huge_page(h, page, nid);
643	}
644
645	return page;
646}
647
648/*
649 * Use a helper variable to find the next node and then
650 * copy it back to hugetlb_next_nid afterwards:
651 * otherwise there's a window in which a racer might
652 * pass invalid nid MAX_NUMNODES to alloc_pages_node.
653 * But we don't need to use a spin_lock here: it really
654 * doesn't matter if occasionally a racer chooses the
655 * same nid as we do.  Move nid forward in the mask even
656 * if we just successfully allocated a hugepage so that
657 * the next caller gets hugepages on the next node.
658 */
659static int hstate_next_node(struct hstate *h)
660{
661	int next_nid;
662	next_nid = next_node(h->hugetlb_next_nid, node_online_map);
663	if (next_nid == MAX_NUMNODES)
664		next_nid = first_node(node_online_map);
665	h->hugetlb_next_nid = next_nid;
666	return next_nid;
667}
668
669static int alloc_fresh_huge_page(struct hstate *h)
670{
671	struct page *page;
672	int start_nid;
673	int next_nid;
674	int ret = 0;
675
676	start_nid = h->hugetlb_next_nid;
677
678	do {
679		page = alloc_fresh_huge_page_node(h, h->hugetlb_next_nid);
680		if (page)
681			ret = 1;
682		next_nid = hstate_next_node(h);
683	} while (!page && h->hugetlb_next_nid != start_nid);
684
685	if (ret)
686		count_vm_event(HTLB_BUDDY_PGALLOC);
687	else
688		count_vm_event(HTLB_BUDDY_PGALLOC_FAIL);
689
690	return ret;
691}
692
693static struct page *alloc_buddy_huge_page(struct hstate *h,
694			struct vm_area_struct *vma, unsigned long address)
695{
696	struct page *page;
697	unsigned int nid;
698
699	if (h->order >= MAX_ORDER)
700		return NULL;
701
702	/*
703	 * Assume we will successfully allocate the surplus page to
704	 * prevent racing processes from causing the surplus to exceed
705	 * overcommit
706	 *
707	 * This however introduces a different race, where a process B
708	 * tries to grow the static hugepage pool while alloc_pages() is
709	 * called by process A. B will only examine the per-node
710	 * counters in determining if surplus huge pages can be
711	 * converted to normal huge pages in adjust_pool_surplus(). A
712	 * won't be able to increment the per-node counter, until the
713	 * lock is dropped by B, but B doesn't drop hugetlb_lock until
714	 * no more huge pages can be converted from surplus to normal
715	 * state (and doesn't try to convert again). Thus, we have a
716	 * case where a surplus huge page exists, the pool is grown, and
717	 * the surplus huge page still exists after, even though it
718	 * should just have been converted to a normal huge page. This
719	 * does not leak memory, though, as the hugepage will be freed
720	 * once it is out of use. It also does not allow the counters to
721	 * go out of whack in adjust_pool_surplus() as we don't modify
722	 * the node values until we've gotten the hugepage and only the
723	 * per-node value is checked there.
724	 */
725	spin_lock(&hugetlb_lock);
726	if (h->surplus_huge_pages >= h->nr_overcommit_huge_pages) {
727		spin_unlock(&hugetlb_lock);
728		return NULL;
729	} else {
730		h->nr_huge_pages++;
731		h->surplus_huge_pages++;
732	}
733	spin_unlock(&hugetlb_lock);
734
735	page = alloc_pages(htlb_alloc_mask|__GFP_COMP|
736					__GFP_REPEAT|__GFP_NOWARN,
737					huge_page_order(h));
738
739	if (page && arch_prepare_hugepage(page)) {
740		__free_pages(page, huge_page_order(h));
741		return NULL;
742	}
743
744	spin_lock(&hugetlb_lock);
745	if (page) {
746		/*
747		 * This page is now managed by the hugetlb allocator and has
748		 * no users -- drop the buddy allocator's reference.
749		 */
750		put_page_testzero(page);
751		VM_BUG_ON(page_count(page));
752		nid = page_to_nid(page);
753		set_compound_page_dtor(page, free_huge_page);
754		/*
755		 * We incremented the global counters already
756		 */
757		h->nr_huge_pages_node[nid]++;
758		h->surplus_huge_pages_node[nid]++;
759		__count_vm_event(HTLB_BUDDY_PGALLOC);
760	} else {
761		h->nr_huge_pages--;
762		h->surplus_huge_pages--;
763		__count_vm_event(HTLB_BUDDY_PGALLOC_FAIL);
764	}
765	spin_unlock(&hugetlb_lock);
766
767	return page;
768}
769
770/*
771 * Increase the hugetlb pool such that it can accomodate a reservation
772 * of size 'delta'.
773 */
774static int gather_surplus_pages(struct hstate *h, int delta)
775{
776	struct list_head surplus_list;
777	struct page *page, *tmp;
778	int ret, i;
779	int needed, allocated;
780
781	needed = (h->resv_huge_pages + delta) - h->free_huge_pages;
782	if (needed <= 0) {
783		h->resv_huge_pages += delta;
784		return 0;
785	}
786
787	allocated = 0;
788	INIT_LIST_HEAD(&surplus_list);
789
790	ret = -ENOMEM;
791retry:
792	spin_unlock(&hugetlb_lock);
793	for (i = 0; i < needed; i++) {
794		page = alloc_buddy_huge_page(h, NULL, 0);
795		if (!page) {
796			/*
797			 * We were not able to allocate enough pages to
798			 * satisfy the entire reservation so we free what
799			 * we've allocated so far.
800			 */
801			spin_lock(&hugetlb_lock);
802			needed = 0;
803			goto free;
804		}
805
806		list_add(&page->lru, &surplus_list);
807	}
808	allocated += needed;
809
810	/*
811	 * After retaking hugetlb_lock, we need to recalculate 'needed'
812	 * because either resv_huge_pages or free_huge_pages may have changed.
813	 */
814	spin_lock(&hugetlb_lock);
815	needed = (h->resv_huge_pages + delta) -
816			(h->free_huge_pages + allocated);
817	if (needed > 0)
818		goto retry;
819
820	/*
821	 * The surplus_list now contains _at_least_ the number of extra pages
822	 * needed to accomodate the reservation.  Add the appropriate number
823	 * of pages to the hugetlb pool and free the extras back to the buddy
824	 * allocator.  Commit the entire reservation here to prevent another
825	 * process from stealing the pages as they are added to the pool but
826	 * before they are reserved.
827	 */
828	needed += allocated;
829	h->resv_huge_pages += delta;
830	ret = 0;
831free:
832	/* Free the needed pages to the hugetlb pool */
833	list_for_each_entry_safe(page, tmp, &surplus_list, lru) {
834		if ((--needed) < 0)
835			break;
836		list_del(&page->lru);
837		enqueue_huge_page(h, page);
838	}
839
840	/* Free unnecessary surplus pages to the buddy allocator */
841	if (!list_empty(&surplus_list)) {
842		spin_unlock(&hugetlb_lock);
843		list_for_each_entry_safe(page, tmp, &surplus_list, lru) {
844			list_del(&page->lru);
845			/*
846			 * The page has a reference count of zero already, so
847			 * call free_huge_page directly instead of using
848			 * put_page.  This must be done with hugetlb_lock
849			 * unlocked which is safe because free_huge_page takes
850			 * hugetlb_lock before deciding how to free the page.
851			 */
852			free_huge_page(page);
853		}
854		spin_lock(&hugetlb_lock);
855	}
856
857	return ret;
858}
859
860/*
861 * When releasing a hugetlb pool reservation, any surplus pages that were
862 * allocated to satisfy the reservation must be explicitly freed if they were
863 * never used.
864 */
865static void return_unused_surplus_pages(struct hstate *h,
866					unsigned long unused_resv_pages)
867{
868	static int nid = -1;
869	struct page *page;
870	unsigned long nr_pages;
871
872	/*
873	 * We want to release as many surplus pages as possible, spread
874	 * evenly across all nodes. Iterate across all nodes until we
875	 * can no longer free unreserved surplus pages. This occurs when
876	 * the nodes with surplus pages have no free pages.
877	 */
878	unsigned long remaining_iterations = num_online_nodes();
879
880	/* Uncommit the reservation */
881	h->resv_huge_pages -= unused_resv_pages;
882
883	/* Cannot return gigantic pages currently */
884	if (h->order >= MAX_ORDER)
885		return;
886
887	nr_pages = min(unused_resv_pages, h->surplus_huge_pages);
888
889	while (remaining_iterations-- && nr_pages) {
890		nid = next_node(nid, node_online_map);
891		if (nid == MAX_NUMNODES)
892			nid = first_node(node_online_map);
893
894		if (!h->surplus_huge_pages_node[nid])
895			continue;
896
897		if (!list_empty(&h->hugepage_freelists[nid])) {
898			page = list_entry(h->hugepage_freelists[nid].next,
899					  struct page, lru);
900			list_del(&page->lru);
901			update_and_free_page(h, page);
902			h->free_huge_pages--;
903			h->free_huge_pages_node[nid]--;
904			h->surplus_huge_pages--;
905			h->surplus_huge_pages_node[nid]--;
906			nr_pages--;
907			remaining_iterations = num_online_nodes();
908		}
909	}
910}
911
912/*
913 * Determine if the huge page at addr within the vma has an associated
914 * reservation.  Where it does not we will need to logically increase
915 * reservation and actually increase quota before an allocation can occur.
916 * Where any new reservation would be required the reservation change is
917 * prepared, but not committed.  Once the page has been quota'd allocated
918 * an instantiated the change should be committed via vma_commit_reservation.
919 * No action is required on failure.
920 */
921static int vma_needs_reservation(struct hstate *h,
922			struct vm_area_struct *vma, unsigned long addr)
923{
924	struct address_space *mapping = vma->vm_file->f_mapping;
925	struct inode *inode = mapping->host;
926
927	if (vma->vm_flags & VM_SHARED) {
928		pgoff_t idx = vma_hugecache_offset(h, vma, addr);
929		return region_chg(&inode->i_mapping->private_list,
930							idx, idx + 1);
931
932	} else if (!is_vma_resv_set(vma, HPAGE_RESV_OWNER)) {
933		return 1;
934
935	} else  {
936		int err;
937		pgoff_t idx = vma_hugecache_offset(h, vma, addr);
938		struct resv_map *reservations = vma_resv_map(vma);
939
940		err = region_chg(&reservations->regions, idx, idx + 1);
941		if (err < 0)
942			return err;
943		return 0;
944	}
945}
946static void vma_commit_reservation(struct hstate *h,
947			struct vm_area_struct *vma, unsigned long addr)
948{
949	struct address_space *mapping = vma->vm_file->f_mapping;
950	struct inode *inode = mapping->host;
951
952	if (vma->vm_flags & VM_SHARED) {
953		pgoff_t idx = vma_hugecache_offset(h, vma, addr);
954		region_add(&inode->i_mapping->private_list, idx, idx + 1);
955
956	} else if (is_vma_resv_set(vma, HPAGE_RESV_OWNER)) {
957		pgoff_t idx = vma_hugecache_offset(h, vma, addr);
958		struct resv_map *reservations = vma_resv_map(vma);
959
960		/* Mark this page used in the map. */
961		region_add(&reservations->regions, idx, idx + 1);
962	}
963}
964
965static struct page *alloc_huge_page(struct vm_area_struct *vma,
966				    unsigned long addr, int avoid_reserve)
967{
968	struct hstate *h = hstate_vma(vma);
969	struct page *page;
970	struct address_space *mapping = vma->vm_file->f_mapping;
971	struct inode *inode = mapping->host;
972	unsigned int chg;
973
974	/*
975	 * Processes that did not create the mapping will have no reserves and
976	 * will not have accounted against quota. Check that the quota can be
977	 * made before satisfying the allocation
978	 * MAP_NORESERVE mappings may also need pages and quota allocated
979	 * if no reserve mapping overlaps.
980	 */
981	chg = vma_needs_reservation(h, vma, addr);
982	if (chg < 0)
983		return ERR_PTR(chg);
984	if (chg)
985		if (hugetlb_get_quota(inode->i_mapping, chg))
986			return ERR_PTR(-ENOSPC);
987
988	spin_lock(&hugetlb_lock);
989	page = dequeue_huge_page_vma(h, vma, addr, avoid_reserve);
990	spin_unlock(&hugetlb_lock);
991
992	if (!page) {
993		page = alloc_buddy_huge_page(h, vma, addr);
994		if (!page) {
995			hugetlb_put_quota(inode->i_mapping, chg);
996			return ERR_PTR(-VM_FAULT_OOM);
997		}
998	}
999
1000	set_page_refcounted(page);
1001	set_page_private(page, (unsigned long) mapping);
1002
1003	vma_commit_reservation(h, vma, addr);
1004
1005	return page;
1006}
1007
1008__attribute__((weak)) int alloc_bootmem_huge_page(struct hstate *h)
1009{
1010	struct huge_bootmem_page *m;
1011	int nr_nodes = nodes_weight(node_online_map);
1012
1013	while (nr_nodes) {
1014		void *addr;
1015
1016		addr = __alloc_bootmem_node_nopanic(
1017				NODE_DATA(h->hugetlb_next_nid),
1018				huge_page_size(h), huge_page_size(h), 0);
1019
1020		if (addr) {
1021			/*
1022			 * Use the beginning of the huge page to store the
1023			 * huge_bootmem_page struct (until gather_bootmem
1024			 * puts them into the mem_map).
1025			 */
1026			m = addr;
1027			if (m)
1028				goto found;
1029		}
1030		hstate_next_node(h);
1031		nr_nodes--;
1032	}
1033	return 0;
1034
1035found:
1036	BUG_ON((unsigned long)virt_to_phys(m) & (huge_page_size(h) - 1));
1037	/* Put them into a private list first because mem_map is not up yet */
1038	list_add(&m->list, &huge_boot_pages);
1039	m->hstate = h;
1040	return 1;
1041}
1042
1043static void prep_compound_huge_page(struct page *page, int order)
1044{
1045	if (unlikely(order > (MAX_ORDER - 1)))
1046		prep_compound_gigantic_page(page, order);
1047	else
1048		prep_compound_page(page, order);
1049}
1050
1051/* Put bootmem huge pages into the standard lists after mem_map is up */
1052static void __init gather_bootmem_prealloc(void)
1053{
1054	struct huge_bootmem_page *m;
1055
1056	list_for_each_entry(m, &huge_boot_pages, list) {
1057		struct page *page = virt_to_page(m);
1058		struct hstate *h = m->hstate;
1059		__ClearPageReserved(page);
1060		WARN_ON(page_count(page) != 1);
1061		prep_compound_huge_page(page, h->order);
1062		prep_new_huge_page(h, page, page_to_nid(page));
1063	}
1064}
1065
1066static void __init hugetlb_hstate_alloc_pages(struct hstate *h)
1067{
1068	unsigned long i;
1069
1070	for (i = 0; i < h->max_huge_pages; ++i) {
1071		if (h->order >= MAX_ORDER) {
1072			if (!alloc_bootmem_huge_page(h))
1073				break;
1074		} else if (!alloc_fresh_huge_page(h))
1075			break;
1076	}
1077	h->max_huge_pages = i;
1078}
1079
1080static void __init hugetlb_init_hstates(void)
1081{
1082	struct hstate *h;
1083
1084	for_each_hstate(h) {
1085		/* oversize hugepages were init'ed in early boot */
1086		if (h->order < MAX_ORDER)
1087			hugetlb_hstate_alloc_pages(h);
1088	}
1089}
1090
1091static char * __init memfmt(char *buf, unsigned long n)
1092{
1093	if (n >= (1UL << 30))
1094		sprintf(buf, "%lu GB", n >> 30);
1095	else if (n >= (1UL << 20))
1096		sprintf(buf, "%lu MB", n >> 20);
1097	else
1098		sprintf(buf, "%lu KB", n >> 10);
1099	return buf;
1100}
1101
1102static void __init report_hugepages(void)
1103{
1104	struct hstate *h;
1105
1106	for_each_hstate(h) {
1107		char buf[32];
1108		printk(KERN_INFO "HugeTLB registered %s page size, "
1109				 "pre-allocated %ld pages\n",
1110			memfmt(buf, huge_page_size(h)),
1111			h->free_huge_pages);
1112	}
1113}
1114
1115#ifdef CONFIG_HIGHMEM
1116static void try_to_free_low(struct hstate *h, unsigned long count)
1117{
1118	int i;
1119
1120	if (h->order >= MAX_ORDER)
1121		return;
1122
1123	for (i = 0; i < MAX_NUMNODES; ++i) {
1124		struct page *page, *next;
1125		struct list_head *freel = &h->hugepage_freelists[i];
1126		list_for_each_entry_safe(page, next, freel, lru) {
1127			if (count >= h->nr_huge_pages)
1128				return;
1129			if (PageHighMem(page))
1130				continue;
1131			list_del(&page->lru);
1132			update_and_free_page(h, page);
1133			h->free_huge_pages--;
1134			h->free_huge_pages_node[page_to_nid(page)]--;
1135		}
1136	}
1137}
1138#else
1139static inline void try_to_free_low(struct hstate *h, unsigned long count)
1140{
1141}
1142#endif
1143
1144#define persistent_huge_pages(h) (h->nr_huge_pages - h->surplus_huge_pages)
1145static unsigned long set_max_huge_pages(struct hstate *h, unsigned long count)
1146{
1147	unsigned long min_count, ret;
1148
1149	if (h->order >= MAX_ORDER)
1150		return h->max_huge_pages;
1151
1152	/*
1153	 * Increase the pool size
1154	 * First take pages out of surplus state.  Then make up the
1155	 * remaining difference by allocating fresh huge pages.
1156	 *
1157	 * We might race with alloc_buddy_huge_page() here and be unable
1158	 * to convert a surplus huge page to a normal huge page. That is
1159	 * not critical, though, it just means the overall size of the
1160	 * pool might be one hugepage larger than it needs to be, but
1161	 * within all the constraints specified by the sysctls.
1162	 */
1163	spin_lock(&hugetlb_lock);
1164	while (h->surplus_huge_pages && count > persistent_huge_pages(h)) {
1165		if (!adjust_pool_surplus(h, -1))
1166			break;
1167	}
1168
1169	while (count > persistent_huge_pages(h)) {
1170		/*
1171		 * If this allocation races such that we no longer need the
1172		 * page, free_huge_page will handle it by freeing the page
1173		 * and reducing the surplus.
1174		 */
1175		spin_unlock(&hugetlb_lock);
1176		ret = alloc_fresh_huge_page(h);
1177		spin_lock(&hugetlb_lock);
1178		if (!ret)
1179			goto out;
1180
1181	}
1182
1183	/*
1184	 * Decrease the pool size
1185	 * First return free pages to the buddy allocator (being careful
1186	 * to keep enough around to satisfy reservations).  Then place
1187	 * pages into surplus state as needed so the pool will shrink
1188	 * to the desired size as pages become free.
1189	 *
1190	 * By placing pages into the surplus state independent of the
1191	 * overcommit value, we are allowing the surplus pool size to
1192	 * exceed overcommit. There are few sane options here. Since
1193	 * alloc_buddy_huge_page() is checking the global counter,
1194	 * though, we'll note that we're not allowed to exceed surplus
1195	 * and won't grow the pool anywhere else. Not until one of the
1196	 * sysctls are changed, or the surplus pages go out of use.
1197	 */
1198	min_count = h->resv_huge_pages + h->nr_huge_pages - h->free_huge_pages;
1199	min_count = max(count, min_count);
1200	try_to_free_low(h, min_count);
1201	while (min_count < persistent_huge_pages(h)) {
1202		struct page *page = dequeue_huge_page(h);
1203		if (!page)
1204			break;
1205		update_and_free_page(h, page);
1206	}
1207	while (count < persistent_huge_pages(h)) {
1208		if (!adjust_pool_surplus(h, 1))
1209			break;
1210	}
1211out:
1212	ret = persistent_huge_pages(h);
1213	spin_unlock(&hugetlb_lock);
1214	return ret;
1215}
1216
1217#define HSTATE_ATTR_RO(_name) \
1218	static struct kobj_attribute _name##_attr = __ATTR_RO(_name)
1219
1220#define HSTATE_ATTR(_name) \
1221	static struct kobj_attribute _name##_attr = \
1222		__ATTR(_name, 0644, _name##_show, _name##_store)
1223
1224static struct kobject *hugepages_kobj;
1225static struct kobject *hstate_kobjs[HUGE_MAX_HSTATE];
1226
1227static struct hstate *kobj_to_hstate(struct kobject *kobj)
1228{
1229	int i;
1230	for (i = 0; i < HUGE_MAX_HSTATE; i++)
1231		if (hstate_kobjs[i] == kobj)
1232			return &hstates[i];
1233	BUG();
1234	return NULL;
1235}
1236
1237static ssize_t nr_hugepages_show(struct kobject *kobj,
1238					struct kobj_attribute *attr, char *buf)
1239{
1240	struct hstate *h = kobj_to_hstate(kobj);
1241	return sprintf(buf, "%lu\n", h->nr_huge_pages);
1242}
1243static ssize_t nr_hugepages_store(struct kobject *kobj,
1244		struct kobj_attribute *attr, const char *buf, size_t count)
1245{
1246	int err;
1247	unsigned long input;
1248	struct hstate *h = kobj_to_hstate(kobj);
1249
1250	err = strict_strtoul(buf, 10, &input);
1251	if (err)
1252		return 0;
1253
1254	h->max_huge_pages = set_max_huge_pages(h, input);
1255
1256	return count;
1257}
1258HSTATE_ATTR(nr_hugepages);
1259
1260static ssize_t nr_overcommit_hugepages_show(struct kobject *kobj,
1261					struct kobj_attribute *attr, char *buf)
1262{
1263	struct hstate *h = kobj_to_hstate(kobj);
1264	return sprintf(buf, "%lu\n", h->nr_overcommit_huge_pages);
1265}
1266static ssize_t nr_overcommit_hugepages_store(struct kobject *kobj,
1267		struct kobj_attribute *attr, const char *buf, size_t count)
1268{
1269	int err;
1270	unsigned long input;
1271	struct hstate *h = kobj_to_hstate(kobj);
1272
1273	err = strict_strtoul(buf, 10, &input);
1274	if (err)
1275		return 0;
1276
1277	spin_lock(&hugetlb_lock);
1278	h->nr_overcommit_huge_pages = input;
1279	spin_unlock(&hugetlb_lock);
1280
1281	return count;
1282}
1283HSTATE_ATTR(nr_overcommit_hugepages);
1284
1285static ssize_t free_hugepages_show(struct kobject *kobj,
1286					struct kobj_attribute *attr, char *buf)
1287{
1288	struct hstate *h = kobj_to_hstate(kobj);
1289	return sprintf(buf, "%lu\n", h->free_huge_pages);
1290}
1291HSTATE_ATTR_RO(free_hugepages);
1292
1293static ssize_t resv_hugepages_show(struct kobject *kobj,
1294					struct kobj_attribute *attr, char *buf)
1295{
1296	struct hstate *h = kobj_to_hstate(kobj);
1297	return sprintf(buf, "%lu\n", h->resv_huge_pages);
1298}
1299HSTATE_ATTR_RO(resv_hugepages);
1300
1301static ssize_t surplus_hugepages_show(struct kobject *kobj,
1302					struct kobj_attribute *attr, char *buf)
1303{
1304	struct hstate *h = kobj_to_hstate(kobj);
1305	return sprintf(buf, "%lu\n", h->surplus_huge_pages);
1306}
1307HSTATE_ATTR_RO(surplus_hugepages);
1308
1309static struct attribute *hstate_attrs[] = {
1310	&nr_hugepages_attr.attr,
1311	&nr_overcommit_hugepages_attr.attr,
1312	&free_hugepages_attr.attr,
1313	&resv_hugepages_attr.attr,
1314	&surplus_hugepages_attr.attr,
1315	NULL,
1316};
1317
1318static struct attribute_group hstate_attr_group = {
1319	.attrs = hstate_attrs,
1320};
1321
1322static int __init hugetlb_sysfs_add_hstate(struct hstate *h)
1323{
1324	int retval;
1325
1326	hstate_kobjs[h - hstates] = kobject_create_and_add(h->name,
1327							hugepages_kobj);
1328	if (!hstate_kobjs[h - hstates])
1329		return -ENOMEM;
1330
1331	retval = sysfs_create_group(hstate_kobjs[h - hstates],
1332							&hstate_attr_group);
1333	if (retval)
1334		kobject_put(hstate_kobjs[h - hstates]);
1335
1336	return retval;
1337}
1338
1339static void __init hugetlb_sysfs_init(void)
1340{
1341	struct hstate *h;
1342	int err;
1343
1344	hugepages_kobj = kobject_create_and_add("hugepages", mm_kobj);
1345	if (!hugepages_kobj)
1346		return;
1347
1348	for_each_hstate(h) {
1349		err = hugetlb_sysfs_add_hstate(h);
1350		if (err)
1351			printk(KERN_ERR "Hugetlb: Unable to add hstate %s",
1352								h->name);
1353	}
1354}
1355
1356static void __exit hugetlb_exit(void)
1357{
1358	struct hstate *h;
1359
1360	for_each_hstate(h) {
1361		kobject_put(hstate_kobjs[h - hstates]);
1362	}
1363
1364	kobject_put(hugepages_kobj);
1365}
1366module_exit(hugetlb_exit);
1367
1368static int __init hugetlb_init(void)
1369{
1370	/* Some platform decide whether they support huge pages at boot
1371	 * time. On these, such as powerpc, HPAGE_SHIFT is set to 0 when
1372	 * there is no such support
1373	 */
1374	if (HPAGE_SHIFT == 0)
1375		return 0;
1376
1377	if (!size_to_hstate(default_hstate_size)) {
1378		default_hstate_size = HPAGE_SIZE;
1379		if (!size_to_hstate(default_hstate_size))
1380			hugetlb_add_hstate(HUGETLB_PAGE_ORDER);
1381	}
1382	default_hstate_idx = size_to_hstate(default_hstate_size) - hstates;
1383	if (default_hstate_max_huge_pages)
1384		default_hstate.max_huge_pages = default_hstate_max_huge_pages;
1385
1386	hugetlb_init_hstates();
1387
1388	gather_bootmem_prealloc();
1389
1390	report_hugepages();
1391
1392	hugetlb_sysfs_init();
1393
1394	return 0;
1395}
1396module_init(hugetlb_init);
1397
1398/* Should be called on processing a hugepagesz=... option */
1399void __init hugetlb_add_hstate(unsigned order)
1400{
1401	struct hstate *h;
1402	unsigned long i;
1403
1404	if (size_to_hstate(PAGE_SIZE << order)) {
1405		printk(KERN_WARNING "hugepagesz= specified twice, ignoring\n");
1406		return;
1407	}
1408	BUG_ON(max_hstate >= HUGE_MAX_HSTATE);
1409	BUG_ON(order == 0);
1410	h = &hstates[max_hstate++];
1411	h->order = order;
1412	h->mask = ~((1ULL << (order + PAGE_SHIFT)) - 1);
1413	h->nr_huge_pages = 0;
1414	h->free_huge_pages = 0;
1415	for (i = 0; i < MAX_NUMNODES; ++i)
1416		INIT_LIST_HEAD(&h->hugepage_freelists[i]);
1417	h->hugetlb_next_nid = first_node(node_online_map);
1418	snprintf(h->name, HSTATE_NAME_LEN, "hugepages-%lukB",
1419					huge_page_size(h)/1024);
1420
1421	parsed_hstate = h;
1422}
1423
1424static int __init hugetlb_nrpages_setup(char *s)
1425{
1426	unsigned long *mhp;
1427	static unsigned long *last_mhp;
1428
1429	/*
1430	 * !max_hstate means we haven't parsed a hugepagesz= parameter yet,
1431	 * so this hugepages= parameter goes to the "default hstate".
1432	 */
1433	if (!max_hstate)
1434		mhp = &default_hstate_max_huge_pages;
1435	else
1436		mhp = &parsed_hstate->max_huge_pages;
1437
1438	if (mhp == last_mhp) {
1439		printk(KERN_WARNING "hugepages= specified twice without "
1440			"interleaving hugepagesz=, ignoring\n");
1441		return 1;
1442	}
1443
1444	if (sscanf(s, "%lu", mhp) <= 0)
1445		*mhp = 0;
1446
1447	/*
1448	 * Global state is always initialized later in hugetlb_init.
1449	 * But we need to allocate >= MAX_ORDER hstates here early to still
1450	 * use the bootmem allocator.
1451	 */
1452	if (max_hstate && parsed_hstate->order >= MAX_ORDER)
1453		hugetlb_hstate_alloc_pages(parsed_hstate);
1454
1455	last_mhp = mhp;
1456
1457	return 1;
1458}
1459__setup("hugepages=", hugetlb_nrpages_setup);
1460
1461static int __init hugetlb_default_setup(char *s)
1462{
1463	default_hstate_size = memparse(s, &s);
1464	return 1;
1465}
1466__setup("default_hugepagesz=", hugetlb_default_setup);
1467
1468static unsigned int cpuset_mems_nr(unsigned int *array)
1469{
1470	int node;
1471	unsigned int nr = 0;
1472
1473	for_each_node_mask(node, cpuset_current_mems_allowed)
1474		nr += array[node];
1475
1476	return nr;
1477}
1478
1479#ifdef CONFIG_SYSCTL
1480int hugetlb_sysctl_handler(struct ctl_table *table, int write,
1481			   struct file *file, void __user *buffer,
1482			   size_t *length, loff_t *ppos)
1483{
1484	struct hstate *h = &default_hstate;
1485	unsigned long tmp;
1486
1487	if (!write)
1488		tmp = h->max_huge_pages;
1489
1490	table->data = &tmp;
1491	table->maxlen = sizeof(unsigned long);
1492	proc_doulongvec_minmax(table, write, file, buffer, length, ppos);
1493
1494	if (write)
1495		h->max_huge_pages = set_max_huge_pages(h, tmp);
1496
1497	return 0;
1498}
1499
1500int hugetlb_treat_movable_handler(struct ctl_table *table, int write,
1501			struct file *file, void __user *buffer,
1502			size_t *length, loff_t *ppos)
1503{
1504	proc_dointvec(table, write, file, buffer, length, ppos);
1505	if (hugepages_treat_as_movable)
1506		htlb_alloc_mask = GFP_HIGHUSER_MOVABLE;
1507	else
1508		htlb_alloc_mask = GFP_HIGHUSER;
1509	return 0;
1510}
1511
1512int hugetlb_overcommit_handler(struct ctl_table *table, int write,
1513			struct file *file, void __user *buffer,
1514			size_t *length, loff_t *ppos)
1515{
1516	struct hstate *h = &default_hstate;
1517	unsigned long tmp;
1518
1519	if (!write)
1520		tmp = h->nr_overcommit_huge_pages;
1521
1522	table->data = &tmp;
1523	table->maxlen = sizeof(unsigned long);
1524	proc_doulongvec_minmax(table, write, file, buffer, length, ppos);
1525
1526	if (write) {
1527		spin_lock(&hugetlb_lock);
1528		h->nr_overcommit_huge_pages = tmp;
1529		spin_unlock(&hugetlb_lock);
1530	}
1531
1532	return 0;
1533}
1534
1535#endif /* CONFIG_SYSCTL */
1536
1537void hugetlb_report_meminfo(struct seq_file *m)
1538{
1539	struct hstate *h = &default_hstate;
1540	seq_printf(m,
1541			"HugePages_Total:   %5lu\n"
1542			"HugePages_Free:    %5lu\n"
1543			"HugePages_Rsvd:    %5lu\n"
1544			"HugePages_Surp:    %5lu\n"
1545			"Hugepagesize:   %8lu kB\n",
1546			h->nr_huge_pages,
1547			h->free_huge_pages,
1548			h->resv_huge_pages,
1549			h->surplus_huge_pages,
1550			1UL << (huge_page_order(h) + PAGE_SHIFT - 10));
1551}
1552
1553int hugetlb_report_node_meminfo(int nid, char *buf)
1554{
1555	struct hstate *h = &default_hstate;
1556	return sprintf(buf,
1557		"Node %d HugePages_Total: %5u\n"
1558		"Node %d HugePages_Free:  %5u\n"
1559		"Node %d HugePages_Surp:  %5u\n",
1560		nid, h->nr_huge_pages_node[nid],
1561		nid, h->free_huge_pages_node[nid],
1562		nid, h->surplus_huge_pages_node[nid]);
1563}
1564
1565/* Return the number pages of memory we physically have, in PAGE_SIZE units. */
1566unsigned long hugetlb_total_pages(void)
1567{
1568	struct hstate *h = &default_hstate;
1569	return h->nr_huge_pages * pages_per_huge_page(h);
1570}
1571
1572static int hugetlb_acct_memory(struct hstate *h, long delta)
1573{
1574	int ret = -ENOMEM;
1575
1576	spin_lock(&hugetlb_lock);
1577	/*
1578	 * When cpuset is configured, it breaks the strict hugetlb page
1579	 * reservation as the accounting is done on a global variable. Such
1580	 * reservation is completely rubbish in the presence of cpuset because
1581	 * the reservation is not checked against page availability for the
1582	 * current cpuset. Application can still potentially OOM'ed by kernel
1583	 * with lack of free htlb page in cpuset that the task is in.
1584	 * Attempt to enforce strict accounting with cpuset is almost
1585	 * impossible (or too ugly) because cpuset is too fluid that
1586	 * task or memory node can be dynamically moved between cpusets.
1587	 *
1588	 * The change of semantics for shared hugetlb mapping with cpuset is
1589	 * undesirable. However, in order to preserve some of the semantics,
1590	 * we fall back to check against current free page availability as
1591	 * a best attempt and hopefully to minimize the impact of changing
1592	 * semantics that cpuset has.
1593	 */
1594	if (delta > 0) {
1595		if (gather_surplus_pages(h, delta) < 0)
1596			goto out;
1597
1598		if (delta > cpuset_mems_nr(h->free_huge_pages_node)) {
1599			return_unused_surplus_pages(h, delta);
1600			goto out;
1601		}
1602	}
1603
1604	ret = 0;
1605	if (delta < 0)
1606		return_unused_surplus_pages(h, (unsigned long) -delta);
1607
1608out:
1609	spin_unlock(&hugetlb_lock);
1610	return ret;
1611}
1612
1613static void hugetlb_vm_op_open(struct vm_area_struct *vma)
1614{
1615	struct resv_map *reservations = vma_resv_map(vma);
1616
1617	/*
1618	 * This new VMA should share its siblings reservation map if present.
1619	 * The VMA will only ever have a valid reservation map pointer where
1620	 * it is being copied for another still existing VMA.  As that VMA
1621	 * has a reference to the reservation map it cannot dissappear until
1622	 * after this open call completes.  It is therefore safe to take a
1623	 * new reference here without additional locking.
1624	 */
1625	if (reservations)
1626		kref_get(&reservations->refs);
1627}
1628
1629static void hugetlb_vm_op_close(struct vm_area_struct *vma)
1630{
1631	struct hstate *h = hstate_vma(vma);
1632	struct resv_map *reservations = vma_resv_map(vma);
1633	unsigned long reserve;
1634	unsigned long start;
1635	unsigned long end;
1636
1637	if (reservations) {
1638		start = vma_hugecache_offset(h, vma, vma->vm_start);
1639		end = vma_hugecache_offset(h, vma, vma->vm_end);
1640
1641		reserve = (end - start) -
1642			region_count(&reservations->regions, start, end);
1643
1644		kref_put(&reservations->refs, resv_map_release);
1645
1646		if (reserve) {
1647			hugetlb_acct_memory(h, -reserve);
1648			hugetlb_put_quota(vma->vm_file->f_mapping, reserve);
1649		}
1650	}
1651}
1652
1653/*
1654 * We cannot handle pagefaults against hugetlb pages at all.  They cause
1655 * handle_mm_fault() to try to instantiate regular-sized pages in the
1656 * hugegpage VMA.  do_page_fault() is supposed to trap this, so BUG is we get
1657 * this far.
1658 */
1659static int hugetlb_vm_op_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
1660{
1661	BUG();
1662	return 0;
1663}
1664
1665struct vm_operations_struct hugetlb_vm_ops = {
1666	.fault = hugetlb_vm_op_fault,
1667	.open = hugetlb_vm_op_open,
1668	.close = hugetlb_vm_op_close,
1669};
1670
1671static pte_t make_huge_pte(struct vm_area_struct *vma, struct page *page,
1672				int writable)
1673{
1674	pte_t entry;
1675
1676	if (writable) {
1677		entry =
1678		    pte_mkwrite(pte_mkdirty(mk_pte(page, vma->vm_page_prot)));
1679	} else {
1680		entry = huge_pte_wrprotect(mk_pte(page, vma->vm_page_prot));
1681	}
1682	entry = pte_mkyoung(entry);
1683	entry = pte_mkhuge(entry);
1684
1685	return entry;
1686}
1687
1688static void set_huge_ptep_writable(struct vm_area_struct *vma,
1689				   unsigned long address, pte_t *ptep)
1690{
1691	pte_t entry;
1692
1693	entry = pte_mkwrite(pte_mkdirty(huge_ptep_get(ptep)));
1694	if (huge_ptep_set_access_flags(vma, address, ptep, entry, 1)) {
1695		update_mmu_cache(vma, address, entry);
1696	}
1697}
1698
1699
1700int copy_hugetlb_page_range(struct mm_struct *dst, struct mm_struct *src,
1701			    struct vm_area_struct *vma)
1702{
1703	pte_t *src_pte, *dst_pte, entry;
1704	struct page *ptepage;
1705	unsigned long addr;
1706	int cow;
1707	struct hstate *h = hstate_vma(vma);
1708	unsigned long sz = huge_page_size(h);
1709
1710	cow = (vma->vm_flags & (VM_SHARED | VM_MAYWRITE)) == VM_MAYWRITE;
1711
1712	for (addr = vma->vm_start; addr < vma->vm_end; addr += sz) {
1713		src_pte = huge_pte_offset(src, addr);
1714		if (!src_pte)
1715			continue;
1716		dst_pte = huge_pte_alloc(dst, addr, sz);
1717		if (!dst_pte)
1718			goto nomem;
1719
1720		/* If the pagetables are shared don't copy or take references */
1721		if (dst_pte == src_pte)
1722			continue;
1723
1724		spin_lock(&dst->page_table_lock);
1725		spin_lock_nested(&src->page_table_lock, SINGLE_DEPTH_NESTING);
1726		if (!huge_pte_none(huge_ptep_get(src_pte))) {
1727			if (cow)
1728				huge_ptep_set_wrprotect(src, addr, src_pte);
1729			entry = huge_ptep_get(src_pte);
1730			ptepage = pte_page(entry);
1731			get_page(ptepage);
1732			set_huge_pte_at(dst, addr, dst_pte, entry);
1733		}
1734		spin_unlock(&src->page_table_lock);
1735		spin_unlock(&dst->page_table_lock);
1736	}
1737	return 0;
1738
1739nomem:
1740	return -ENOMEM;
1741}
1742
1743void __unmap_hugepage_range(struct vm_area_struct *vma, unsigned long start,
1744			    unsigned long end, struct page *ref_page)
1745{
1746	struct mm_struct *mm = vma->vm_mm;
1747	unsigned long address;
1748	pte_t *ptep;
1749	pte_t pte;
1750	struct page *page;
1751	struct page *tmp;
1752	struct hstate *h = hstate_vma(vma);
1753	unsigned long sz = huge_page_size(h);
1754
1755	/*
1756	 * A page gathering list, protected by per file i_mmap_lock. The
1757	 * lock is used to avoid list corruption from multiple unmapping
1758	 * of the same page since we are using page->lru.
1759	 */
1760	LIST_HEAD(page_list);
1761
1762	WARN_ON(!is_vm_hugetlb_page(vma));
1763	BUG_ON(start & ~huge_page_mask(h));
1764	BUG_ON(end & ~huge_page_mask(h));
1765
1766	mmu_notifier_invalidate_range_start(mm, start, end);
1767	spin_lock(&mm->page_table_lock);
1768	for (address = start; address < end; address += sz) {
1769		ptep = huge_pte_offset(mm, address);
1770		if (!ptep)
1771			continue;
1772
1773		if (huge_pmd_unshare(mm, &address, ptep))
1774			continue;
1775
1776		/*
1777		 * If a reference page is supplied, it is because a specific
1778		 * page is being unmapped, not a range. Ensure the page we
1779		 * are about to unmap is the actual page of interest.
1780		 */
1781		if (ref_page) {
1782			pte = huge_ptep_get(ptep);
1783			if (huge_pte_none(pte))
1784				continue;
1785			page = pte_page(pte);
1786			if (page != ref_page)
1787				continue;
1788
1789			/*
1790			 * Mark the VMA as having unmapped its page so that
1791			 * future faults in this VMA will fail rather than
1792			 * looking like data was lost
1793			 */
1794			set_vma_resv_flags(vma, HPAGE_RESV_UNMAPPED);
1795		}
1796
1797		pte = huge_ptep_get_and_clear(mm, address, ptep);
1798		if (huge_pte_none(pte))
1799			continue;
1800
1801		page = pte_page(pte);
1802		if (pte_dirty(pte))
1803			set_page_dirty(page);
1804		list_add(&page->lru, &page_list);
1805	}
1806	spin_unlock(&mm->page_table_lock);
1807	flush_tlb_range(vma, start, end);
1808	mmu_notifier_invalidate_range_end(mm, start, end);
1809	list_for_each_entry_safe(page, tmp, &page_list, lru) {
1810		list_del(&page->lru);
1811		put_page(page);
1812	}
1813}
1814
1815void unmap_hugepage_range(struct vm_area_struct *vma, unsigned long start,
1816			  unsigned long end, struct page *ref_page)
1817{
1818	spin_lock(&vma->vm_file->f_mapping->i_mmap_lock);
1819	__unmap_hugepage_range(vma, start, end, ref_page);
1820	spin_unlock(&vma->vm_file->f_mapping->i_mmap_lock);
1821}
1822
1823/*
1824 * This is called when the original mapper is failing to COW a MAP_PRIVATE
1825 * mappping it owns the reserve page for. The intention is to unmap the page
1826 * from other VMAs and let the children be SIGKILLed if they are faulting the
1827 * same region.
1828 */
1829static int unmap_ref_private(struct mm_struct *mm, struct vm_area_struct *vma,
1830				struct page *page, unsigned long address)
1831{
1832	struct hstate *h = hstate_vma(vma);
1833	struct vm_area_struct *iter_vma;
1834	struct address_space *mapping;
1835	struct prio_tree_iter iter;
1836	pgoff_t pgoff;
1837
1838	/*
1839	 * vm_pgoff is in PAGE_SIZE units, hence the different calculation
1840	 * from page cache lookup which is in HPAGE_SIZE units.
1841	 */
1842	address = address & huge_page_mask(h);
1843	pgoff = ((address - vma->vm_start) >> PAGE_SHIFT)
1844		+ (vma->vm_pgoff >> PAGE_SHIFT);
1845	mapping = (struct address_space *)page_private(page);
1846
1847	vma_prio_tree_foreach(iter_vma, &iter, &mapping->i_mmap, pgoff, pgoff) {
1848		/* Do not unmap the current VMA */
1849		if (iter_vma == vma)
1850			continue;
1851
1852		/*
1853		 * Unmap the page from other VMAs without their own reserves.
1854		 * They get marked to be SIGKILLed if they fault in these
1855		 * areas. This is because a future no-page fault on this VMA
1856		 * could insert a zeroed page instead of the data existing
1857		 * from the time of fork. This would look like data corruption
1858		 */
1859		if (!is_vma_resv_set(iter_vma, HPAGE_RESV_OWNER))
1860			unmap_hugepage_range(iter_vma,
1861				address, address + huge_page_size(h),
1862				page);
1863	}
1864
1865	return 1;
1866}
1867
1868static int hugetlb_cow(struct mm_struct *mm, struct vm_area_struct *vma,
1869			unsigned long address, pte_t *ptep, pte_t pte,
1870			struct page *pagecache_page)
1871{
1872	struct hstate *h = hstate_vma(vma);
1873	struct page *old_page, *new_page;
1874	int avoidcopy;
1875	int outside_reserve = 0;
1876
1877	old_page = pte_page(pte);
1878
1879retry_avoidcopy:
1880	/* If no-one else is actually using this page, avoid the copy
1881	 * and just make the page writable */
1882	avoidcopy = (page_count(old_page) == 1);
1883	if (avoidcopy) {
1884		set_huge_ptep_writable(vma, address, ptep);
1885		return 0;
1886	}
1887
1888	/*
1889	 * If the process that created a MAP_PRIVATE mapping is about to
1890	 * perform a COW due to a shared page count, attempt to satisfy
1891	 * the allocation without using the existing reserves. The pagecache
1892	 * page is used to determine if the reserve at this address was
1893	 * consumed or not. If reserves were used, a partial faulted mapping
1894	 * at the time of fork() could consume its reserves on COW instead
1895	 * of the full address range.
1896	 */
1897	if (!(vma->vm_flags & VM_SHARED) &&
1898			is_vma_resv_set(vma, HPAGE_RESV_OWNER) &&
1899			old_page != pagecache_page)
1900		outside_reserve = 1;
1901
1902	page_cache_get(old_page);
1903	new_page = alloc_huge_page(vma, address, outside_reserve);
1904
1905	if (IS_ERR(new_page)) {
1906		page_cache_release(old_page);
1907
1908		/*
1909		 * If a process owning a MAP_PRIVATE mapping fails to COW,
1910		 * it is due to references held by a child and an insufficient
1911		 * huge page pool. To guarantee the original mappers
1912		 * reliability, unmap the page from child processes. The child
1913		 * may get SIGKILLed if it later faults.
1914		 */
1915		if (outside_reserve) {
1916			BUG_ON(huge_pte_none(pte));
1917			if (unmap_ref_private(mm, vma, old_page, address)) {
1918				BUG_ON(page_count(old_page) != 1);
1919				BUG_ON(huge_pte_none(pte));
1920				goto retry_avoidcopy;
1921			}
1922			WARN_ON_ONCE(1);
1923		}
1924
1925		return -PTR_ERR(new_page);
1926	}
1927
1928	spin_unlock(&mm->page_table_lock);
1929	copy_huge_page(new_page, old_page, address, vma);
1930	__SetPageUptodate(new_page);
1931	spin_lock(&mm->page_table_lock);
1932
1933	ptep = huge_pte_offset(mm, address & huge_page_mask(h));
1934	if (likely(pte_same(huge_ptep_get(ptep), pte))) {
1935		/* Break COW */
1936		huge_ptep_clear_flush(vma, address, ptep);
1937		set_huge_pte_at(mm, address, ptep,
1938				make_huge_pte(vma, new_page, 1));
1939		/* Make the old page be freed below */
1940		new_page = old_page;
1941	}
1942	page_cache_release(new_page);
1943	page_cache_release(old_page);
1944	return 0;
1945}
1946
1947/* Return the pagecache page at a given address within a VMA */
1948static struct page *hugetlbfs_pagecache_page(struct hstate *h,
1949			struct vm_area_struct *vma, unsigned long address)
1950{
1951	struct address_space *mapping;
1952	pgoff_t idx;
1953
1954	mapping = vma->vm_file->f_mapping;
1955	idx = vma_hugecache_offset(h, vma, address);
1956
1957	return find_lock_page(mapping, idx);
1958}
1959
1960static int hugetlb_no_page(struct mm_struct *mm, struct vm_area_struct *vma,
1961			unsigned long address, pte_t *ptep, int write_access)
1962{
1963	struct hstate *h = hstate_vma(vma);
1964	int ret = VM_FAULT_SIGBUS;
1965	pgoff_t idx;
1966	unsigned long size;
1967	struct page *page;
1968	struct address_space *mapping;
1969	pte_t new_pte;
1970
1971	/*
1972	 * Currently, we are forced to kill the process in the event the
1973	 * original mapper has unmapped pages from the child due to a failed
1974	 * COW. Warn that such a situation has occured as it may not be obvious
1975	 */
1976	if (is_vma_resv_set(vma, HPAGE_RESV_UNMAPPED)) {
1977		printk(KERN_WARNING
1978			"PID %d killed due to inadequate hugepage pool\n",
1979			current->pid);
1980		return ret;
1981	}
1982
1983	mapping = vma->vm_file->f_mapping;
1984	idx = vma_hugecache_offset(h, vma, address);
1985
1986	/*
1987	 * Use page lock to guard against racing truncation
1988	 * before we get page_table_lock.
1989	 */
1990retry:
1991	page = find_lock_page(mapping, idx);
1992	if (!page) {
1993		size = i_size_read(mapping->host) >> huge_page_shift(h);
1994		if (idx >= size)
1995			goto out;
1996		page = alloc_huge_page(vma, address, 0);
1997		if (IS_ERR(page)) {
1998			ret = -PTR_ERR(page);
1999			goto out;
2000		}
2001		clear_huge_page(page, address, huge_page_size(h));
2002		__SetPageUptodate(page);
2003
2004		if (vma->vm_flags & VM_SHARED) {
2005			int err;
2006			struct inode *inode = mapping->host;
2007
2008			err = add_to_page_cache(page, mapping, idx, GFP_KERNEL);
2009			if (err) {
2010				put_page(page);
2011				if (err == -EEXIST)
2012					goto retry;
2013				goto out;
2014			}
2015
2016			spin_lock(&inode->i_lock);
2017			inode->i_blocks += blocks_per_huge_page(h);
2018			spin_unlock(&inode->i_lock);
2019		} else
2020			lock_page(page);
2021	}
2022
2023	/*
2024	 * If we are going to COW a private mapping later, we examine the
2025	 * pending reservations for this page now. This will ensure that
2026	 * any allocations necessary to record that reservation occur outside
2027	 * the spinlock.
2028	 */
2029	if (write_access && !(vma->vm_flags & VM_SHARED))
2030		if (vma_needs_reservation(h, vma, address) < 0) {
2031			ret = VM_FAULT_OOM;
2032			goto backout_unlocked;
2033		}
2034
2035	spin_lock(&mm->page_table_lock);
2036	size = i_size_read(mapping->host) >> huge_page_shift(h);
2037	if (idx >= size)
2038		goto backout;
2039
2040	ret = 0;
2041	if (!huge_pte_none(huge_ptep_get(ptep)))
2042		goto backout;
2043
2044	new_pte = make_huge_pte(vma, page, ((vma->vm_flags & VM_WRITE)
2045				&& (vma->vm_flags & VM_SHARED)));
2046	set_huge_pte_at(mm, address, ptep, new_pte);
2047
2048	if (write_access && !(vma->vm_flags & VM_SHARED)) {
2049		/* Optimization, do the COW without a second fault */
2050		ret = hugetlb_cow(mm, vma, address, ptep, new_pte, page);
2051	}
2052
2053	spin_unlock(&mm->page_table_lock);
2054	unlock_page(page);
2055out:
2056	return ret;
2057
2058backout:
2059	spin_unlock(&mm->page_table_lock);
2060backout_unlocked:
2061	unlock_page(page);
2062	put_page(page);
2063	goto out;
2064}
2065
2066int hugetlb_fault(struct mm_struct *mm, struct vm_area_struct *vma,
2067			unsigned long address, int write_access)
2068{
2069	pte_t *ptep;
2070	pte_t entry;
2071	int ret;
2072	struct page *pagecache_page = NULL;
2073	static DEFINE_MUTEX(hugetlb_instantiation_mutex);
2074	struct hstate *h = hstate_vma(vma);
2075
2076	ptep = huge_pte_alloc(mm, address, huge_page_size(h));
2077	if (!ptep)
2078		return VM_FAULT_OOM;
2079
2080	/*
2081	 * Serialize hugepage allocation and instantiation, so that we don't
2082	 * get spurious allocation failures if two CPUs race to instantiate
2083	 * the same page in the page cache.
2084	 */
2085	mutex_lock(&hugetlb_instantiation_mutex);
2086	entry = huge_ptep_get(ptep);
2087	if (huge_pte_none(entry)) {
2088		ret = hugetlb_no_page(mm, vma, address, ptep, write_access);
2089		goto out_mutex;
2090	}
2091
2092	ret = 0;
2093
2094	/*
2095	 * If we are going to COW the mapping later, we examine the pending
2096	 * reservations for this page now. This will ensure that any
2097	 * allocations necessary to record that reservation occur outside the
2098	 * spinlock. For private mappings, we also lookup the pagecache
2099	 * page now as it is used to determine if a reservation has been
2100	 * consumed.
2101	 */
2102	if (write_access && !pte_write(entry)) {
2103		if (vma_needs_reservation(h, vma, address) < 0) {
2104			ret = VM_FAULT_OOM;
2105			goto out_mutex;
2106		}
2107
2108		if (!(vma->vm_flags & VM_SHARED))
2109			pagecache_page = hugetlbfs_pagecache_page(h,
2110								vma, address);
2111	}
2112
2113	spin_lock(&mm->page_table_lock);
2114	/* Check for a racing update before calling hugetlb_cow */
2115	if (unlikely(!pte_same(entry, huge_ptep_get(ptep))))
2116		goto out_page_table_lock;
2117
2118
2119	if (write_access) {
2120		if (!pte_write(entry)) {
2121			ret = hugetlb_cow(mm, vma, address, ptep, entry,
2122							pagecache_page);
2123			goto out_page_table_lock;
2124		}
2125		entry = pte_mkdirty(entry);
2126	}
2127	entry = pte_mkyoung(entry);
2128	if (huge_ptep_set_access_flags(vma, address, ptep, entry, write_access))
2129		update_mmu_cache(vma, address, entry);
2130
2131out_page_table_lock:
2132	spin_unlock(&mm->page_table_lock);
2133
2134	if (pagecache_page) {
2135		unlock_page(pagecache_page);
2136		put_page(pagecache_page);
2137	}
2138
2139out_mutex:
2140	mutex_unlock(&hugetlb_instantiation_mutex);
2141
2142	return ret;
2143}
2144
2145/* Can be overriden by architectures */
2146__attribute__((weak)) struct page *
2147follow_huge_pud(struct mm_struct *mm, unsigned long address,
2148	       pud_t *pud, int write)
2149{
2150	BUG();
2151	return NULL;
2152}
2153
2154static int huge_zeropage_ok(pte_t *ptep, int write, int shared)
2155{
2156	if (!ptep || write || shared)
2157		return 0;
2158	else
2159		return huge_pte_none(huge_ptep_get(ptep));
2160}
2161
2162int follow_hugetlb_page(struct mm_struct *mm, struct vm_area_struct *vma,
2163			struct page **pages, struct vm_area_struct **vmas,
2164			unsigned long *position, int *length, int i,
2165			int write)
2166{
2167	unsigned long pfn_offset;
2168	unsigned long vaddr = *position;
2169	int remainder = *length;
2170	struct hstate *h = hstate_vma(vma);
2171	int zeropage_ok = 0;
2172	int shared = vma->vm_flags & VM_SHARED;
2173
2174	spin_lock(&mm->page_table_lock);
2175	while (vaddr < vma->vm_end && remainder) {
2176		pte_t *pte;
2177		struct page *page;
2178
2179		/*
2180		 * Some archs (sparc64, sh*) have multiple pte_ts to
2181		 * each hugepage.  We have to make * sure we get the
2182		 * first, for the page indexing below to work.
2183		 */
2184		pte = huge_pte_offset(mm, vaddr & huge_page_mask(h));
2185		if (huge_zeropage_ok(pte, write, shared))
2186			zeropage_ok = 1;
2187
2188		if (!pte ||
2189		    (huge_pte_none(huge_ptep_get(pte)) && !zeropage_ok) ||
2190		    (write && !pte_write(huge_ptep_get(pte)))) {
2191			int ret;
2192
2193			spin_unlock(&mm->page_table_lock);
2194			ret = hugetlb_fault(mm, vma, vaddr, write);
2195			spin_lock(&mm->page_table_lock);
2196			if (!(ret & VM_FAULT_ERROR))
2197				continue;
2198
2199			remainder = 0;
2200			if (!i)
2201				i = -EFAULT;
2202			break;
2203		}
2204
2205		pfn_offset = (vaddr & ~huge_page_mask(h)) >> PAGE_SHIFT;
2206		page = pte_page(huge_ptep_get(pte));
2207same_page:
2208		if (pages) {
2209			if (zeropage_ok)
2210				pages[i] = ZERO_PAGE(0);
2211			else
2212				pages[i] = mem_map_offset(page, pfn_offset);
2213			get_page(pages[i]);
2214		}
2215
2216		if (vmas)
2217			vmas[i] = vma;
2218
2219		vaddr += PAGE_SIZE;
2220		++pfn_offset;
2221		--remainder;
2222		++i;
2223		if (vaddr < vma->vm_end && remainder &&
2224				pfn_offset < pages_per_huge_page(h)) {
2225			/*
2226			 * We use pfn_offset to avoid touching the pageframes
2227			 * of this compound page.
2228			 */
2229			goto same_page;
2230		}
2231	}
2232	spin_unlock(&mm->page_table_lock);
2233	*length = remainder;
2234	*position = vaddr;
2235
2236	return i;
2237}
2238
2239void hugetlb_change_protection(struct vm_area_struct *vma,
2240		unsigned long address, unsigned long end, pgprot_t newprot)
2241{
2242	struct mm_struct *mm = vma->vm_mm;
2243	unsigned long start = address;
2244	pte_t *ptep;
2245	pte_t pte;
2246	struct hstate *h = hstate_vma(vma);
2247
2248	BUG_ON(address >= end);
2249	flush_cache_range(vma, address, end);
2250
2251	spin_lock(&vma->vm_file->f_mapping->i_mmap_lock);
2252	spin_lock(&mm->page_table_lock);
2253	for (; address < end; address += huge_page_size(h)) {
2254		ptep = huge_pte_offset(mm, address);
2255		if (!ptep)
2256			continue;
2257		if (huge_pmd_unshare(mm, &address, ptep))
2258			continue;
2259		if (!huge_pte_none(huge_ptep_get(ptep))) {
2260			pte = huge_ptep_get_and_clear(mm, address, ptep);
2261			pte = pte_mkhuge(pte_modify(pte, newprot));
2262			set_huge_pte_at(mm, address, ptep, pte);
2263		}
2264	}
2265	spin_unlock(&mm->page_table_lock);
2266	spin_unlock(&vma->vm_file->f_mapping->i_mmap_lock);
2267
2268	flush_tlb_range(vma, start, end);
2269}
2270
2271int hugetlb_reserve_pages(struct inode *inode,
2272					long from, long to,
2273					struct vm_area_struct *vma)
2274{
2275	long ret, chg;
2276	struct hstate *h = hstate_inode(inode);
2277
2278	if (vma && vma->vm_flags & VM_NORESERVE)
2279		return 0;
2280
2281	/*
2282	 * Shared mappings base their reservation on the number of pages that
2283	 * are already allocated on behalf of the file. Private mappings need
2284	 * to reserve the full area even if read-only as mprotect() may be
2285	 * called to make the mapping read-write. Assume !vma is a shm mapping
2286	 */
2287	if (!vma || vma->vm_flags & VM_SHARED)
2288		chg = region_chg(&inode->i_mapping->private_list, from, to);
2289	else {
2290		struct resv_map *resv_map = resv_map_alloc();
2291		if (!resv_map)
2292			return -ENOMEM;
2293
2294		chg = to - from;
2295
2296		set_vma_resv_map(vma, resv_map);
2297		set_vma_resv_flags(vma, HPAGE_RESV_OWNER);
2298	}
2299
2300	if (chg < 0)
2301		return chg;
2302
2303	if (hugetlb_get_quota(inode->i_mapping, chg))
2304		return -ENOSPC;
2305	ret = hugetlb_acct_memory(h, chg);
2306	if (ret < 0) {
2307		hugetlb_put_quota(inode->i_mapping, chg);
2308		return ret;
2309	}
2310	if (!vma || vma->vm_flags & VM_SHARED)
2311		region_add(&inode->i_mapping->private_list, from, to);
2312	return 0;
2313}
2314
2315void hugetlb_unreserve_pages(struct inode *inode, long offset, long freed)
2316{
2317	struct hstate *h = hstate_inode(inode);
2318	long chg = region_truncate(&inode->i_mapping->private_list, offset);
2319
2320	spin_lock(&inode->i_lock);
2321	inode->i_blocks -= blocks_per_huge_page(h);
2322	spin_unlock(&inode->i_lock);
2323
2324	hugetlb_put_quota(inode->i_mapping, (chg - freed));
2325	hugetlb_acct_memory(h, -(chg - freed));
2326}
2327