hugetlb.c revision f340ca0f065ecf3e7549687e763370106dacb2c2
1/*
2 * Generic hugetlb support.
3 * (C) William Irwin, April 2004
4 */
5#include <linux/gfp.h>
6#include <linux/list.h>
7#include <linux/init.h>
8#include <linux/module.h>
9#include <linux/mm.h>
10#include <linux/seq_file.h>
11#include <linux/sysctl.h>
12#include <linux/highmem.h>
13#include <linux/mmu_notifier.h>
14#include <linux/nodemask.h>
15#include <linux/pagemap.h>
16#include <linux/mempolicy.h>
17#include <linux/cpuset.h>
18#include <linux/mutex.h>
19#include <linux/bootmem.h>
20#include <linux/sysfs.h>
21
22#include <asm/page.h>
23#include <asm/pgtable.h>
24#include <asm/io.h>
25
26#include <linux/hugetlb.h>
27#include "internal.h"
28
29const unsigned long hugetlb_zero = 0, hugetlb_infinity = ~0UL;
30static gfp_t htlb_alloc_mask = GFP_HIGHUSER;
31unsigned long hugepages_treat_as_movable;
32
33static int max_hstate;
34unsigned int default_hstate_idx;
35struct hstate hstates[HUGE_MAX_HSTATE];
36
37__initdata LIST_HEAD(huge_boot_pages);
38
39/* for command line parsing */
40static struct hstate * __initdata parsed_hstate;
41static unsigned long __initdata default_hstate_max_huge_pages;
42static unsigned long __initdata default_hstate_size;
43
44#define for_each_hstate(h) \
45	for ((h) = hstates; (h) < &hstates[max_hstate]; (h)++)
46
47/*
48 * Protects updates to hugepage_freelists, nr_huge_pages, and free_huge_pages
49 */
50static DEFINE_SPINLOCK(hugetlb_lock);
51
52/*
53 * Region tracking -- allows tracking of reservations and instantiated pages
54 *                    across the pages in a mapping.
55 *
56 * The region data structures are protected by a combination of the mmap_sem
57 * and the hugetlb_instantion_mutex.  To access or modify a region the caller
58 * must either hold the mmap_sem for write, or the mmap_sem for read and
59 * the hugetlb_instantiation mutex:
60 *
61 * 	down_write(&mm->mmap_sem);
62 * or
63 * 	down_read(&mm->mmap_sem);
64 * 	mutex_lock(&hugetlb_instantiation_mutex);
65 */
66struct file_region {
67	struct list_head link;
68	long from;
69	long to;
70};
71
72static long region_add(struct list_head *head, long f, long t)
73{
74	struct file_region *rg, *nrg, *trg;
75
76	/* Locate the region we are either in or before. */
77	list_for_each_entry(rg, head, link)
78		if (f <= rg->to)
79			break;
80
81	/* Round our left edge to the current segment if it encloses us. */
82	if (f > rg->from)
83		f = rg->from;
84
85	/* Check for and consume any regions we now overlap with. */
86	nrg = rg;
87	list_for_each_entry_safe(rg, trg, rg->link.prev, link) {
88		if (&rg->link == head)
89			break;
90		if (rg->from > t)
91			break;
92
93		/* If this area reaches higher then extend our area to
94		 * include it completely.  If this is not the first area
95		 * which we intend to reuse, free it. */
96		if (rg->to > t)
97			t = rg->to;
98		if (rg != nrg) {
99			list_del(&rg->link);
100			kfree(rg);
101		}
102	}
103	nrg->from = f;
104	nrg->to = t;
105	return 0;
106}
107
108static long region_chg(struct list_head *head, long f, long t)
109{
110	struct file_region *rg, *nrg;
111	long chg = 0;
112
113	/* Locate the region we are before or in. */
114	list_for_each_entry(rg, head, link)
115		if (f <= rg->to)
116			break;
117
118	/* If we are below the current region then a new region is required.
119	 * Subtle, allocate a new region at the position but make it zero
120	 * size such that we can guarantee to record the reservation. */
121	if (&rg->link == head || t < rg->from) {
122		nrg = kmalloc(sizeof(*nrg), GFP_KERNEL);
123		if (!nrg)
124			return -ENOMEM;
125		nrg->from = f;
126		nrg->to   = f;
127		INIT_LIST_HEAD(&nrg->link);
128		list_add(&nrg->link, rg->link.prev);
129
130		return t - f;
131	}
132
133	/* Round our left edge to the current segment if it encloses us. */
134	if (f > rg->from)
135		f = rg->from;
136	chg = t - f;
137
138	/* Check for and consume any regions we now overlap with. */
139	list_for_each_entry(rg, rg->link.prev, link) {
140		if (&rg->link == head)
141			break;
142		if (rg->from > t)
143			return chg;
144
145		/* We overlap with this area, if it extends futher than
146		 * us then we must extend ourselves.  Account for its
147		 * existing reservation. */
148		if (rg->to > t) {
149			chg += rg->to - t;
150			t = rg->to;
151		}
152		chg -= rg->to - rg->from;
153	}
154	return chg;
155}
156
157static long region_truncate(struct list_head *head, long end)
158{
159	struct file_region *rg, *trg;
160	long chg = 0;
161
162	/* Locate the region we are either in or before. */
163	list_for_each_entry(rg, head, link)
164		if (end <= rg->to)
165			break;
166	if (&rg->link == head)
167		return 0;
168
169	/* If we are in the middle of a region then adjust it. */
170	if (end > rg->from) {
171		chg = rg->to - end;
172		rg->to = end;
173		rg = list_entry(rg->link.next, typeof(*rg), link);
174	}
175
176	/* Drop any remaining regions. */
177	list_for_each_entry_safe(rg, trg, rg->link.prev, link) {
178		if (&rg->link == head)
179			break;
180		chg += rg->to - rg->from;
181		list_del(&rg->link);
182		kfree(rg);
183	}
184	return chg;
185}
186
187static long region_count(struct list_head *head, long f, long t)
188{
189	struct file_region *rg;
190	long chg = 0;
191
192	/* Locate each segment we overlap with, and count that overlap. */
193	list_for_each_entry(rg, head, link) {
194		int seg_from;
195		int seg_to;
196
197		if (rg->to <= f)
198			continue;
199		if (rg->from >= t)
200			break;
201
202		seg_from = max(rg->from, f);
203		seg_to = min(rg->to, t);
204
205		chg += seg_to - seg_from;
206	}
207
208	return chg;
209}
210
211/*
212 * Convert the address within this vma to the page offset within
213 * the mapping, in pagecache page units; huge pages here.
214 */
215static pgoff_t vma_hugecache_offset(struct hstate *h,
216			struct vm_area_struct *vma, unsigned long address)
217{
218	return ((address - vma->vm_start) >> huge_page_shift(h)) +
219			(vma->vm_pgoff >> huge_page_order(h));
220}
221
222/*
223 * Return the size of the pages allocated when backing a VMA. In the majority
224 * cases this will be same size as used by the page table entries.
225 */
226unsigned long vma_kernel_pagesize(struct vm_area_struct *vma)
227{
228	struct hstate *hstate;
229
230	if (!is_vm_hugetlb_page(vma))
231		return PAGE_SIZE;
232
233	hstate = hstate_vma(vma);
234
235	return 1UL << (hstate->order + PAGE_SHIFT);
236}
237EXPORT_SYMBOL_GPL(vma_kernel_pagesize);
238
239/*
240 * Return the page size being used by the MMU to back a VMA. In the majority
241 * of cases, the page size used by the kernel matches the MMU size. On
242 * architectures where it differs, an architecture-specific version of this
243 * function is required.
244 */
245#ifndef vma_mmu_pagesize
246unsigned long vma_mmu_pagesize(struct vm_area_struct *vma)
247{
248	return vma_kernel_pagesize(vma);
249}
250#endif
251
252/*
253 * Flags for MAP_PRIVATE reservations.  These are stored in the bottom
254 * bits of the reservation map pointer, which are always clear due to
255 * alignment.
256 */
257#define HPAGE_RESV_OWNER    (1UL << 0)
258#define HPAGE_RESV_UNMAPPED (1UL << 1)
259#define HPAGE_RESV_MASK (HPAGE_RESV_OWNER | HPAGE_RESV_UNMAPPED)
260
261/*
262 * These helpers are used to track how many pages are reserved for
263 * faults in a MAP_PRIVATE mapping. Only the process that called mmap()
264 * is guaranteed to have their future faults succeed.
265 *
266 * With the exception of reset_vma_resv_huge_pages() which is called at fork(),
267 * the reserve counters are updated with the hugetlb_lock held. It is safe
268 * to reset the VMA at fork() time as it is not in use yet and there is no
269 * chance of the global counters getting corrupted as a result of the values.
270 *
271 * The private mapping reservation is represented in a subtly different
272 * manner to a shared mapping.  A shared mapping has a region map associated
273 * with the underlying file, this region map represents the backing file
274 * pages which have ever had a reservation assigned which this persists even
275 * after the page is instantiated.  A private mapping has a region map
276 * associated with the original mmap which is attached to all VMAs which
277 * reference it, this region map represents those offsets which have consumed
278 * reservation ie. where pages have been instantiated.
279 */
280static unsigned long get_vma_private_data(struct vm_area_struct *vma)
281{
282	return (unsigned long)vma->vm_private_data;
283}
284
285static void set_vma_private_data(struct vm_area_struct *vma,
286							unsigned long value)
287{
288	vma->vm_private_data = (void *)value;
289}
290
291struct resv_map {
292	struct kref refs;
293	struct list_head regions;
294};
295
296static struct resv_map *resv_map_alloc(void)
297{
298	struct resv_map *resv_map = kmalloc(sizeof(*resv_map), GFP_KERNEL);
299	if (!resv_map)
300		return NULL;
301
302	kref_init(&resv_map->refs);
303	INIT_LIST_HEAD(&resv_map->regions);
304
305	return resv_map;
306}
307
308static void resv_map_release(struct kref *ref)
309{
310	struct resv_map *resv_map = container_of(ref, struct resv_map, refs);
311
312	/* Clear out any active regions before we release the map. */
313	region_truncate(&resv_map->regions, 0);
314	kfree(resv_map);
315}
316
317static struct resv_map *vma_resv_map(struct vm_area_struct *vma)
318{
319	VM_BUG_ON(!is_vm_hugetlb_page(vma));
320	if (!(vma->vm_flags & VM_MAYSHARE))
321		return (struct resv_map *)(get_vma_private_data(vma) &
322							~HPAGE_RESV_MASK);
323	return NULL;
324}
325
326static void set_vma_resv_map(struct vm_area_struct *vma, struct resv_map *map)
327{
328	VM_BUG_ON(!is_vm_hugetlb_page(vma));
329	VM_BUG_ON(vma->vm_flags & VM_MAYSHARE);
330
331	set_vma_private_data(vma, (get_vma_private_data(vma) &
332				HPAGE_RESV_MASK) | (unsigned long)map);
333}
334
335static void set_vma_resv_flags(struct vm_area_struct *vma, unsigned long flags)
336{
337	VM_BUG_ON(!is_vm_hugetlb_page(vma));
338	VM_BUG_ON(vma->vm_flags & VM_MAYSHARE);
339
340	set_vma_private_data(vma, get_vma_private_data(vma) | flags);
341}
342
343static int is_vma_resv_set(struct vm_area_struct *vma, unsigned long flag)
344{
345	VM_BUG_ON(!is_vm_hugetlb_page(vma));
346
347	return (get_vma_private_data(vma) & flag) != 0;
348}
349
350/* Decrement the reserved pages in the hugepage pool by one */
351static void decrement_hugepage_resv_vma(struct hstate *h,
352			struct vm_area_struct *vma)
353{
354	if (vma->vm_flags & VM_NORESERVE)
355		return;
356
357	if (vma->vm_flags & VM_MAYSHARE) {
358		/* Shared mappings always use reserves */
359		h->resv_huge_pages--;
360	} else if (is_vma_resv_set(vma, HPAGE_RESV_OWNER)) {
361		/*
362		 * Only the process that called mmap() has reserves for
363		 * private mappings.
364		 */
365		h->resv_huge_pages--;
366	}
367}
368
369/* Reset counters to 0 and clear all HPAGE_RESV_* flags */
370void reset_vma_resv_huge_pages(struct vm_area_struct *vma)
371{
372	VM_BUG_ON(!is_vm_hugetlb_page(vma));
373	if (!(vma->vm_flags & VM_MAYSHARE))
374		vma->vm_private_data = (void *)0;
375}
376
377/* Returns true if the VMA has associated reserve pages */
378static int vma_has_reserves(struct vm_area_struct *vma)
379{
380	if (vma->vm_flags & VM_MAYSHARE)
381		return 1;
382	if (is_vma_resv_set(vma, HPAGE_RESV_OWNER))
383		return 1;
384	return 0;
385}
386
387static void clear_gigantic_page(struct page *page,
388			unsigned long addr, unsigned long sz)
389{
390	int i;
391	struct page *p = page;
392
393	might_sleep();
394	for (i = 0; i < sz/PAGE_SIZE; i++, p = mem_map_next(p, page, i)) {
395		cond_resched();
396		clear_user_highpage(p, addr + i * PAGE_SIZE);
397	}
398}
399static void clear_huge_page(struct page *page,
400			unsigned long addr, unsigned long sz)
401{
402	int i;
403
404	if (unlikely(sz > MAX_ORDER_NR_PAGES)) {
405		clear_gigantic_page(page, addr, sz);
406		return;
407	}
408
409	might_sleep();
410	for (i = 0; i < sz/PAGE_SIZE; i++) {
411		cond_resched();
412		clear_user_highpage(page + i, addr + i * PAGE_SIZE);
413	}
414}
415
416static void copy_gigantic_page(struct page *dst, struct page *src,
417			   unsigned long addr, struct vm_area_struct *vma)
418{
419	int i;
420	struct hstate *h = hstate_vma(vma);
421	struct page *dst_base = dst;
422	struct page *src_base = src;
423	might_sleep();
424	for (i = 0; i < pages_per_huge_page(h); ) {
425		cond_resched();
426		copy_user_highpage(dst, src, addr + i*PAGE_SIZE, vma);
427
428		i++;
429		dst = mem_map_next(dst, dst_base, i);
430		src = mem_map_next(src, src_base, i);
431	}
432}
433static void copy_huge_page(struct page *dst, struct page *src,
434			   unsigned long addr, struct vm_area_struct *vma)
435{
436	int i;
437	struct hstate *h = hstate_vma(vma);
438
439	if (unlikely(pages_per_huge_page(h) > MAX_ORDER_NR_PAGES)) {
440		copy_gigantic_page(dst, src, addr, vma);
441		return;
442	}
443
444	might_sleep();
445	for (i = 0; i < pages_per_huge_page(h); i++) {
446		cond_resched();
447		copy_user_highpage(dst + i, src + i, addr + i*PAGE_SIZE, vma);
448	}
449}
450
451static void enqueue_huge_page(struct hstate *h, struct page *page)
452{
453	int nid = page_to_nid(page);
454	list_add(&page->lru, &h->hugepage_freelists[nid]);
455	h->free_huge_pages++;
456	h->free_huge_pages_node[nid]++;
457}
458
459static struct page *dequeue_huge_page(struct hstate *h)
460{
461	int nid;
462	struct page *page = NULL;
463
464	for (nid = 0; nid < MAX_NUMNODES; ++nid) {
465		if (!list_empty(&h->hugepage_freelists[nid])) {
466			page = list_entry(h->hugepage_freelists[nid].next,
467					  struct page, lru);
468			list_del(&page->lru);
469			h->free_huge_pages--;
470			h->free_huge_pages_node[nid]--;
471			break;
472		}
473	}
474	return page;
475}
476
477static struct page *dequeue_huge_page_vma(struct hstate *h,
478				struct vm_area_struct *vma,
479				unsigned long address, int avoid_reserve)
480{
481	int nid;
482	struct page *page = NULL;
483	struct mempolicy *mpol;
484	nodemask_t *nodemask;
485	struct zonelist *zonelist = huge_zonelist(vma, address,
486					htlb_alloc_mask, &mpol, &nodemask);
487	struct zone *zone;
488	struct zoneref *z;
489
490	/*
491	 * A child process with MAP_PRIVATE mappings created by their parent
492	 * have no page reserves. This check ensures that reservations are
493	 * not "stolen". The child may still get SIGKILLed
494	 */
495	if (!vma_has_reserves(vma) &&
496			h->free_huge_pages - h->resv_huge_pages == 0)
497		return NULL;
498
499	/* If reserves cannot be used, ensure enough pages are in the pool */
500	if (avoid_reserve && h->free_huge_pages - h->resv_huge_pages == 0)
501		return NULL;
502
503	for_each_zone_zonelist_nodemask(zone, z, zonelist,
504						MAX_NR_ZONES - 1, nodemask) {
505		nid = zone_to_nid(zone);
506		if (cpuset_zone_allowed_softwall(zone, htlb_alloc_mask) &&
507		    !list_empty(&h->hugepage_freelists[nid])) {
508			page = list_entry(h->hugepage_freelists[nid].next,
509					  struct page, lru);
510			list_del(&page->lru);
511			h->free_huge_pages--;
512			h->free_huge_pages_node[nid]--;
513
514			if (!avoid_reserve)
515				decrement_hugepage_resv_vma(h, vma);
516
517			break;
518		}
519	}
520	mpol_cond_put(mpol);
521	return page;
522}
523
524static void update_and_free_page(struct hstate *h, struct page *page)
525{
526	int i;
527
528	VM_BUG_ON(h->order >= MAX_ORDER);
529
530	h->nr_huge_pages--;
531	h->nr_huge_pages_node[page_to_nid(page)]--;
532	for (i = 0; i < pages_per_huge_page(h); i++) {
533		page[i].flags &= ~(1 << PG_locked | 1 << PG_error | 1 << PG_referenced |
534				1 << PG_dirty | 1 << PG_active | 1 << PG_reserved |
535				1 << PG_private | 1<< PG_writeback);
536	}
537	set_compound_page_dtor(page, NULL);
538	set_page_refcounted(page);
539	arch_release_hugepage(page);
540	__free_pages(page, huge_page_order(h));
541}
542
543struct hstate *size_to_hstate(unsigned long size)
544{
545	struct hstate *h;
546
547	for_each_hstate(h) {
548		if (huge_page_size(h) == size)
549			return h;
550	}
551	return NULL;
552}
553
554static void free_huge_page(struct page *page)
555{
556	/*
557	 * Can't pass hstate in here because it is called from the
558	 * compound page destructor.
559	 */
560	struct hstate *h = page_hstate(page);
561	int nid = page_to_nid(page);
562	struct address_space *mapping;
563
564	mapping = (struct address_space *) page_private(page);
565	set_page_private(page, 0);
566	BUG_ON(page_count(page));
567	INIT_LIST_HEAD(&page->lru);
568
569	spin_lock(&hugetlb_lock);
570	if (h->surplus_huge_pages_node[nid] && huge_page_order(h) < MAX_ORDER) {
571		update_and_free_page(h, page);
572		h->surplus_huge_pages--;
573		h->surplus_huge_pages_node[nid]--;
574	} else {
575		enqueue_huge_page(h, page);
576	}
577	spin_unlock(&hugetlb_lock);
578	if (mapping)
579		hugetlb_put_quota(mapping, 1);
580}
581
582static void prep_new_huge_page(struct hstate *h, struct page *page, int nid)
583{
584	set_compound_page_dtor(page, free_huge_page);
585	spin_lock(&hugetlb_lock);
586	h->nr_huge_pages++;
587	h->nr_huge_pages_node[nid]++;
588	spin_unlock(&hugetlb_lock);
589	put_page(page); /* free it into the hugepage allocator */
590}
591
592static void prep_compound_gigantic_page(struct page *page, unsigned long order)
593{
594	int i;
595	int nr_pages = 1 << order;
596	struct page *p = page + 1;
597
598	/* we rely on prep_new_huge_page to set the destructor */
599	set_compound_order(page, order);
600	__SetPageHead(page);
601	for (i = 1; i < nr_pages; i++, p = mem_map_next(p, page, i)) {
602		__SetPageTail(p);
603		p->first_page = page;
604	}
605}
606
607int PageHuge(struct page *page)
608{
609	compound_page_dtor *dtor;
610
611	if (!PageCompound(page))
612		return 0;
613
614	page = compound_head(page);
615	dtor = get_compound_page_dtor(page);
616
617	return dtor == free_huge_page;
618}
619
620static struct page *alloc_fresh_huge_page_node(struct hstate *h, int nid)
621{
622	struct page *page;
623
624	if (h->order >= MAX_ORDER)
625		return NULL;
626
627	page = alloc_pages_exact_node(nid,
628		htlb_alloc_mask|__GFP_COMP|__GFP_THISNODE|
629						__GFP_REPEAT|__GFP_NOWARN,
630		huge_page_order(h));
631	if (page) {
632		if (arch_prepare_hugepage(page)) {
633			__free_pages(page, huge_page_order(h));
634			return NULL;
635		}
636		prep_new_huge_page(h, page, nid);
637	}
638
639	return page;
640}
641
642/*
643 * Use a helper variable to find the next node and then
644 * copy it back to hugetlb_next_nid afterwards:
645 * otherwise there's a window in which a racer might
646 * pass invalid nid MAX_NUMNODES to alloc_pages_exact_node.
647 * But we don't need to use a spin_lock here: it really
648 * doesn't matter if occasionally a racer chooses the
649 * same nid as we do.  Move nid forward in the mask even
650 * if we just successfully allocated a hugepage so that
651 * the next caller gets hugepages on the next node.
652 */
653static int hstate_next_node(struct hstate *h)
654{
655	int next_nid;
656	next_nid = next_node(h->hugetlb_next_nid, node_online_map);
657	if (next_nid == MAX_NUMNODES)
658		next_nid = first_node(node_online_map);
659	h->hugetlb_next_nid = next_nid;
660	return next_nid;
661}
662
663static int alloc_fresh_huge_page(struct hstate *h)
664{
665	struct page *page;
666	int start_nid;
667	int next_nid;
668	int ret = 0;
669
670	start_nid = h->hugetlb_next_nid;
671
672	do {
673		page = alloc_fresh_huge_page_node(h, h->hugetlb_next_nid);
674		if (page)
675			ret = 1;
676		next_nid = hstate_next_node(h);
677	} while (!page && h->hugetlb_next_nid != start_nid);
678
679	if (ret)
680		count_vm_event(HTLB_BUDDY_PGALLOC);
681	else
682		count_vm_event(HTLB_BUDDY_PGALLOC_FAIL);
683
684	return ret;
685}
686
687static struct page *alloc_buddy_huge_page(struct hstate *h,
688			struct vm_area_struct *vma, unsigned long address)
689{
690	struct page *page;
691	unsigned int nid;
692
693	if (h->order >= MAX_ORDER)
694		return NULL;
695
696	/*
697	 * Assume we will successfully allocate the surplus page to
698	 * prevent racing processes from causing the surplus to exceed
699	 * overcommit
700	 *
701	 * This however introduces a different race, where a process B
702	 * tries to grow the static hugepage pool while alloc_pages() is
703	 * called by process A. B will only examine the per-node
704	 * counters in determining if surplus huge pages can be
705	 * converted to normal huge pages in adjust_pool_surplus(). A
706	 * won't be able to increment the per-node counter, until the
707	 * lock is dropped by B, but B doesn't drop hugetlb_lock until
708	 * no more huge pages can be converted from surplus to normal
709	 * state (and doesn't try to convert again). Thus, we have a
710	 * case where a surplus huge page exists, the pool is grown, and
711	 * the surplus huge page still exists after, even though it
712	 * should just have been converted to a normal huge page. This
713	 * does not leak memory, though, as the hugepage will be freed
714	 * once it is out of use. It also does not allow the counters to
715	 * go out of whack in adjust_pool_surplus() as we don't modify
716	 * the node values until we've gotten the hugepage and only the
717	 * per-node value is checked there.
718	 */
719	spin_lock(&hugetlb_lock);
720	if (h->surplus_huge_pages >= h->nr_overcommit_huge_pages) {
721		spin_unlock(&hugetlb_lock);
722		return NULL;
723	} else {
724		h->nr_huge_pages++;
725		h->surplus_huge_pages++;
726	}
727	spin_unlock(&hugetlb_lock);
728
729	page = alloc_pages(htlb_alloc_mask|__GFP_COMP|
730					__GFP_REPEAT|__GFP_NOWARN,
731					huge_page_order(h));
732
733	if (page && arch_prepare_hugepage(page)) {
734		__free_pages(page, huge_page_order(h));
735		return NULL;
736	}
737
738	spin_lock(&hugetlb_lock);
739	if (page) {
740		/*
741		 * This page is now managed by the hugetlb allocator and has
742		 * no users -- drop the buddy allocator's reference.
743		 */
744		put_page_testzero(page);
745		VM_BUG_ON(page_count(page));
746		nid = page_to_nid(page);
747		set_compound_page_dtor(page, free_huge_page);
748		/*
749		 * We incremented the global counters already
750		 */
751		h->nr_huge_pages_node[nid]++;
752		h->surplus_huge_pages_node[nid]++;
753		__count_vm_event(HTLB_BUDDY_PGALLOC);
754	} else {
755		h->nr_huge_pages--;
756		h->surplus_huge_pages--;
757		__count_vm_event(HTLB_BUDDY_PGALLOC_FAIL);
758	}
759	spin_unlock(&hugetlb_lock);
760
761	return page;
762}
763
764/*
765 * Increase the hugetlb pool such that it can accomodate a reservation
766 * of size 'delta'.
767 */
768static int gather_surplus_pages(struct hstate *h, int delta)
769{
770	struct list_head surplus_list;
771	struct page *page, *tmp;
772	int ret, i;
773	int needed, allocated;
774
775	needed = (h->resv_huge_pages + delta) - h->free_huge_pages;
776	if (needed <= 0) {
777		h->resv_huge_pages += delta;
778		return 0;
779	}
780
781	allocated = 0;
782	INIT_LIST_HEAD(&surplus_list);
783
784	ret = -ENOMEM;
785retry:
786	spin_unlock(&hugetlb_lock);
787	for (i = 0; i < needed; i++) {
788		page = alloc_buddy_huge_page(h, NULL, 0);
789		if (!page) {
790			/*
791			 * We were not able to allocate enough pages to
792			 * satisfy the entire reservation so we free what
793			 * we've allocated so far.
794			 */
795			spin_lock(&hugetlb_lock);
796			needed = 0;
797			goto free;
798		}
799
800		list_add(&page->lru, &surplus_list);
801	}
802	allocated += needed;
803
804	/*
805	 * After retaking hugetlb_lock, we need to recalculate 'needed'
806	 * because either resv_huge_pages or free_huge_pages may have changed.
807	 */
808	spin_lock(&hugetlb_lock);
809	needed = (h->resv_huge_pages + delta) -
810			(h->free_huge_pages + allocated);
811	if (needed > 0)
812		goto retry;
813
814	/*
815	 * The surplus_list now contains _at_least_ the number of extra pages
816	 * needed to accomodate the reservation.  Add the appropriate number
817	 * of pages to the hugetlb pool and free the extras back to the buddy
818	 * allocator.  Commit the entire reservation here to prevent another
819	 * process from stealing the pages as they are added to the pool but
820	 * before they are reserved.
821	 */
822	needed += allocated;
823	h->resv_huge_pages += delta;
824	ret = 0;
825free:
826	/* Free the needed pages to the hugetlb pool */
827	list_for_each_entry_safe(page, tmp, &surplus_list, lru) {
828		if ((--needed) < 0)
829			break;
830		list_del(&page->lru);
831		enqueue_huge_page(h, page);
832	}
833
834	/* Free unnecessary surplus pages to the buddy allocator */
835	if (!list_empty(&surplus_list)) {
836		spin_unlock(&hugetlb_lock);
837		list_for_each_entry_safe(page, tmp, &surplus_list, lru) {
838			list_del(&page->lru);
839			/*
840			 * The page has a reference count of zero already, so
841			 * call free_huge_page directly instead of using
842			 * put_page.  This must be done with hugetlb_lock
843			 * unlocked which is safe because free_huge_page takes
844			 * hugetlb_lock before deciding how to free the page.
845			 */
846			free_huge_page(page);
847		}
848		spin_lock(&hugetlb_lock);
849	}
850
851	return ret;
852}
853
854/*
855 * When releasing a hugetlb pool reservation, any surplus pages that were
856 * allocated to satisfy the reservation must be explicitly freed if they were
857 * never used.
858 */
859static void return_unused_surplus_pages(struct hstate *h,
860					unsigned long unused_resv_pages)
861{
862	static int nid = -1;
863	struct page *page;
864	unsigned long nr_pages;
865
866	/*
867	 * We want to release as many surplus pages as possible, spread
868	 * evenly across all nodes. Iterate across all nodes until we
869	 * can no longer free unreserved surplus pages. This occurs when
870	 * the nodes with surplus pages have no free pages.
871	 */
872	unsigned long remaining_iterations = nr_online_nodes;
873
874	/* Uncommit the reservation */
875	h->resv_huge_pages -= unused_resv_pages;
876
877	/* Cannot return gigantic pages currently */
878	if (h->order >= MAX_ORDER)
879		return;
880
881	nr_pages = min(unused_resv_pages, h->surplus_huge_pages);
882
883	while (remaining_iterations-- && nr_pages) {
884		nid = next_node(nid, node_online_map);
885		if (nid == MAX_NUMNODES)
886			nid = first_node(node_online_map);
887
888		if (!h->surplus_huge_pages_node[nid])
889			continue;
890
891		if (!list_empty(&h->hugepage_freelists[nid])) {
892			page = list_entry(h->hugepage_freelists[nid].next,
893					  struct page, lru);
894			list_del(&page->lru);
895			update_and_free_page(h, page);
896			h->free_huge_pages--;
897			h->free_huge_pages_node[nid]--;
898			h->surplus_huge_pages--;
899			h->surplus_huge_pages_node[nid]--;
900			nr_pages--;
901			remaining_iterations = nr_online_nodes;
902		}
903	}
904}
905
906/*
907 * Determine if the huge page at addr within the vma has an associated
908 * reservation.  Where it does not we will need to logically increase
909 * reservation and actually increase quota before an allocation can occur.
910 * Where any new reservation would be required the reservation change is
911 * prepared, but not committed.  Once the page has been quota'd allocated
912 * an instantiated the change should be committed via vma_commit_reservation.
913 * No action is required on failure.
914 */
915static long vma_needs_reservation(struct hstate *h,
916			struct vm_area_struct *vma, unsigned long addr)
917{
918	struct address_space *mapping = vma->vm_file->f_mapping;
919	struct inode *inode = mapping->host;
920
921	if (vma->vm_flags & VM_MAYSHARE) {
922		pgoff_t idx = vma_hugecache_offset(h, vma, addr);
923		return region_chg(&inode->i_mapping->private_list,
924							idx, idx + 1);
925
926	} else if (!is_vma_resv_set(vma, HPAGE_RESV_OWNER)) {
927		return 1;
928
929	} else  {
930		long err;
931		pgoff_t idx = vma_hugecache_offset(h, vma, addr);
932		struct resv_map *reservations = vma_resv_map(vma);
933
934		err = region_chg(&reservations->regions, idx, idx + 1);
935		if (err < 0)
936			return err;
937		return 0;
938	}
939}
940static void vma_commit_reservation(struct hstate *h,
941			struct vm_area_struct *vma, unsigned long addr)
942{
943	struct address_space *mapping = vma->vm_file->f_mapping;
944	struct inode *inode = mapping->host;
945
946	if (vma->vm_flags & VM_MAYSHARE) {
947		pgoff_t idx = vma_hugecache_offset(h, vma, addr);
948		region_add(&inode->i_mapping->private_list, idx, idx + 1);
949
950	} else if (is_vma_resv_set(vma, HPAGE_RESV_OWNER)) {
951		pgoff_t idx = vma_hugecache_offset(h, vma, addr);
952		struct resv_map *reservations = vma_resv_map(vma);
953
954		/* Mark this page used in the map. */
955		region_add(&reservations->regions, idx, idx + 1);
956	}
957}
958
959static struct page *alloc_huge_page(struct vm_area_struct *vma,
960				    unsigned long addr, int avoid_reserve)
961{
962	struct hstate *h = hstate_vma(vma);
963	struct page *page;
964	struct address_space *mapping = vma->vm_file->f_mapping;
965	struct inode *inode = mapping->host;
966	long chg;
967
968	/*
969	 * Processes that did not create the mapping will have no reserves and
970	 * will not have accounted against quota. Check that the quota can be
971	 * made before satisfying the allocation
972	 * MAP_NORESERVE mappings may also need pages and quota allocated
973	 * if no reserve mapping overlaps.
974	 */
975	chg = vma_needs_reservation(h, vma, addr);
976	if (chg < 0)
977		return ERR_PTR(chg);
978	if (chg)
979		if (hugetlb_get_quota(inode->i_mapping, chg))
980			return ERR_PTR(-ENOSPC);
981
982	spin_lock(&hugetlb_lock);
983	page = dequeue_huge_page_vma(h, vma, addr, avoid_reserve);
984	spin_unlock(&hugetlb_lock);
985
986	if (!page) {
987		page = alloc_buddy_huge_page(h, vma, addr);
988		if (!page) {
989			hugetlb_put_quota(inode->i_mapping, chg);
990			return ERR_PTR(-VM_FAULT_OOM);
991		}
992	}
993
994	set_page_refcounted(page);
995	set_page_private(page, (unsigned long) mapping);
996
997	vma_commit_reservation(h, vma, addr);
998
999	return page;
1000}
1001
1002int __weak alloc_bootmem_huge_page(struct hstate *h)
1003{
1004	struct huge_bootmem_page *m;
1005	int nr_nodes = nodes_weight(node_online_map);
1006
1007	while (nr_nodes) {
1008		void *addr;
1009
1010		addr = __alloc_bootmem_node_nopanic(
1011				NODE_DATA(h->hugetlb_next_nid),
1012				huge_page_size(h), huge_page_size(h), 0);
1013
1014		if (addr) {
1015			/*
1016			 * Use the beginning of the huge page to store the
1017			 * huge_bootmem_page struct (until gather_bootmem
1018			 * puts them into the mem_map).
1019			 */
1020			m = addr;
1021			goto found;
1022		}
1023		hstate_next_node(h);
1024		nr_nodes--;
1025	}
1026	return 0;
1027
1028found:
1029	BUG_ON((unsigned long)virt_to_phys(m) & (huge_page_size(h) - 1));
1030	/* Put them into a private list first because mem_map is not up yet */
1031	list_add(&m->list, &huge_boot_pages);
1032	m->hstate = h;
1033	return 1;
1034}
1035
1036static void prep_compound_huge_page(struct page *page, int order)
1037{
1038	if (unlikely(order > (MAX_ORDER - 1)))
1039		prep_compound_gigantic_page(page, order);
1040	else
1041		prep_compound_page(page, order);
1042}
1043
1044/* Put bootmem huge pages into the standard lists after mem_map is up */
1045static void __init gather_bootmem_prealloc(void)
1046{
1047	struct huge_bootmem_page *m;
1048
1049	list_for_each_entry(m, &huge_boot_pages, list) {
1050		struct page *page = virt_to_page(m);
1051		struct hstate *h = m->hstate;
1052		__ClearPageReserved(page);
1053		WARN_ON(page_count(page) != 1);
1054		prep_compound_huge_page(page, h->order);
1055		prep_new_huge_page(h, page, page_to_nid(page));
1056	}
1057}
1058
1059static void __init hugetlb_hstate_alloc_pages(struct hstate *h)
1060{
1061	unsigned long i;
1062
1063	for (i = 0; i < h->max_huge_pages; ++i) {
1064		if (h->order >= MAX_ORDER) {
1065			if (!alloc_bootmem_huge_page(h))
1066				break;
1067		} else if (!alloc_fresh_huge_page(h))
1068			break;
1069	}
1070	h->max_huge_pages = i;
1071}
1072
1073static void __init hugetlb_init_hstates(void)
1074{
1075	struct hstate *h;
1076
1077	for_each_hstate(h) {
1078		/* oversize hugepages were init'ed in early boot */
1079		if (h->order < MAX_ORDER)
1080			hugetlb_hstate_alloc_pages(h);
1081	}
1082}
1083
1084static char * __init memfmt(char *buf, unsigned long n)
1085{
1086	if (n >= (1UL << 30))
1087		sprintf(buf, "%lu GB", n >> 30);
1088	else if (n >= (1UL << 20))
1089		sprintf(buf, "%lu MB", n >> 20);
1090	else
1091		sprintf(buf, "%lu KB", n >> 10);
1092	return buf;
1093}
1094
1095static void __init report_hugepages(void)
1096{
1097	struct hstate *h;
1098
1099	for_each_hstate(h) {
1100		char buf[32];
1101		printk(KERN_INFO "HugeTLB registered %s page size, "
1102				 "pre-allocated %ld pages\n",
1103			memfmt(buf, huge_page_size(h)),
1104			h->free_huge_pages);
1105	}
1106}
1107
1108#ifdef CONFIG_HIGHMEM
1109static void try_to_free_low(struct hstate *h, unsigned long count)
1110{
1111	int i;
1112
1113	if (h->order >= MAX_ORDER)
1114		return;
1115
1116	for (i = 0; i < MAX_NUMNODES; ++i) {
1117		struct page *page, *next;
1118		struct list_head *freel = &h->hugepage_freelists[i];
1119		list_for_each_entry_safe(page, next, freel, lru) {
1120			if (count >= h->nr_huge_pages)
1121				return;
1122			if (PageHighMem(page))
1123				continue;
1124			list_del(&page->lru);
1125			update_and_free_page(h, page);
1126			h->free_huge_pages--;
1127			h->free_huge_pages_node[page_to_nid(page)]--;
1128		}
1129	}
1130}
1131#else
1132static inline void try_to_free_low(struct hstate *h, unsigned long count)
1133{
1134}
1135#endif
1136
1137/*
1138 * Increment or decrement surplus_huge_pages.  Keep node-specific counters
1139 * balanced by operating on them in a round-robin fashion.
1140 * Returns 1 if an adjustment was made.
1141 */
1142static int adjust_pool_surplus(struct hstate *h, int delta)
1143{
1144	static int prev_nid;
1145	int nid = prev_nid;
1146	int ret = 0;
1147
1148	VM_BUG_ON(delta != -1 && delta != 1);
1149	do {
1150		nid = next_node(nid, node_online_map);
1151		if (nid == MAX_NUMNODES)
1152			nid = first_node(node_online_map);
1153
1154		/* To shrink on this node, there must be a surplus page */
1155		if (delta < 0 && !h->surplus_huge_pages_node[nid])
1156			continue;
1157		/* Surplus cannot exceed the total number of pages */
1158		if (delta > 0 && h->surplus_huge_pages_node[nid] >=
1159						h->nr_huge_pages_node[nid])
1160			continue;
1161
1162		h->surplus_huge_pages += delta;
1163		h->surplus_huge_pages_node[nid] += delta;
1164		ret = 1;
1165		break;
1166	} while (nid != prev_nid);
1167
1168	prev_nid = nid;
1169	return ret;
1170}
1171
1172#define persistent_huge_pages(h) (h->nr_huge_pages - h->surplus_huge_pages)
1173static unsigned long set_max_huge_pages(struct hstate *h, unsigned long count)
1174{
1175	unsigned long min_count, ret;
1176
1177	if (h->order >= MAX_ORDER)
1178		return h->max_huge_pages;
1179
1180	/*
1181	 * Increase the pool size
1182	 * First take pages out of surplus state.  Then make up the
1183	 * remaining difference by allocating fresh huge pages.
1184	 *
1185	 * We might race with alloc_buddy_huge_page() here and be unable
1186	 * to convert a surplus huge page to a normal huge page. That is
1187	 * not critical, though, it just means the overall size of the
1188	 * pool might be one hugepage larger than it needs to be, but
1189	 * within all the constraints specified by the sysctls.
1190	 */
1191	spin_lock(&hugetlb_lock);
1192	while (h->surplus_huge_pages && count > persistent_huge_pages(h)) {
1193		if (!adjust_pool_surplus(h, -1))
1194			break;
1195	}
1196
1197	while (count > persistent_huge_pages(h)) {
1198		/*
1199		 * If this allocation races such that we no longer need the
1200		 * page, free_huge_page will handle it by freeing the page
1201		 * and reducing the surplus.
1202		 */
1203		spin_unlock(&hugetlb_lock);
1204		ret = alloc_fresh_huge_page(h);
1205		spin_lock(&hugetlb_lock);
1206		if (!ret)
1207			goto out;
1208
1209	}
1210
1211	/*
1212	 * Decrease the pool size
1213	 * First return free pages to the buddy allocator (being careful
1214	 * to keep enough around to satisfy reservations).  Then place
1215	 * pages into surplus state as needed so the pool will shrink
1216	 * to the desired size as pages become free.
1217	 *
1218	 * By placing pages into the surplus state independent of the
1219	 * overcommit value, we are allowing the surplus pool size to
1220	 * exceed overcommit. There are few sane options here. Since
1221	 * alloc_buddy_huge_page() is checking the global counter,
1222	 * though, we'll note that we're not allowed to exceed surplus
1223	 * and won't grow the pool anywhere else. Not until one of the
1224	 * sysctls are changed, or the surplus pages go out of use.
1225	 */
1226	min_count = h->resv_huge_pages + h->nr_huge_pages - h->free_huge_pages;
1227	min_count = max(count, min_count);
1228	try_to_free_low(h, min_count);
1229	while (min_count < persistent_huge_pages(h)) {
1230		struct page *page = dequeue_huge_page(h);
1231		if (!page)
1232			break;
1233		update_and_free_page(h, page);
1234	}
1235	while (count < persistent_huge_pages(h)) {
1236		if (!adjust_pool_surplus(h, 1))
1237			break;
1238	}
1239out:
1240	ret = persistent_huge_pages(h);
1241	spin_unlock(&hugetlb_lock);
1242	return ret;
1243}
1244
1245#define HSTATE_ATTR_RO(_name) \
1246	static struct kobj_attribute _name##_attr = __ATTR_RO(_name)
1247
1248#define HSTATE_ATTR(_name) \
1249	static struct kobj_attribute _name##_attr = \
1250		__ATTR(_name, 0644, _name##_show, _name##_store)
1251
1252static struct kobject *hugepages_kobj;
1253static struct kobject *hstate_kobjs[HUGE_MAX_HSTATE];
1254
1255static struct hstate *kobj_to_hstate(struct kobject *kobj)
1256{
1257	int i;
1258	for (i = 0; i < HUGE_MAX_HSTATE; i++)
1259		if (hstate_kobjs[i] == kobj)
1260			return &hstates[i];
1261	BUG();
1262	return NULL;
1263}
1264
1265static ssize_t nr_hugepages_show(struct kobject *kobj,
1266					struct kobj_attribute *attr, char *buf)
1267{
1268	struct hstate *h = kobj_to_hstate(kobj);
1269	return sprintf(buf, "%lu\n", h->nr_huge_pages);
1270}
1271static ssize_t nr_hugepages_store(struct kobject *kobj,
1272		struct kobj_attribute *attr, const char *buf, size_t count)
1273{
1274	int err;
1275	unsigned long input;
1276	struct hstate *h = kobj_to_hstate(kobj);
1277
1278	err = strict_strtoul(buf, 10, &input);
1279	if (err)
1280		return 0;
1281
1282	h->max_huge_pages = set_max_huge_pages(h, input);
1283
1284	return count;
1285}
1286HSTATE_ATTR(nr_hugepages);
1287
1288static ssize_t nr_overcommit_hugepages_show(struct kobject *kobj,
1289					struct kobj_attribute *attr, char *buf)
1290{
1291	struct hstate *h = kobj_to_hstate(kobj);
1292	return sprintf(buf, "%lu\n", h->nr_overcommit_huge_pages);
1293}
1294static ssize_t nr_overcommit_hugepages_store(struct kobject *kobj,
1295		struct kobj_attribute *attr, const char *buf, size_t count)
1296{
1297	int err;
1298	unsigned long input;
1299	struct hstate *h = kobj_to_hstate(kobj);
1300
1301	err = strict_strtoul(buf, 10, &input);
1302	if (err)
1303		return 0;
1304
1305	spin_lock(&hugetlb_lock);
1306	h->nr_overcommit_huge_pages = input;
1307	spin_unlock(&hugetlb_lock);
1308
1309	return count;
1310}
1311HSTATE_ATTR(nr_overcommit_hugepages);
1312
1313static ssize_t free_hugepages_show(struct kobject *kobj,
1314					struct kobj_attribute *attr, char *buf)
1315{
1316	struct hstate *h = kobj_to_hstate(kobj);
1317	return sprintf(buf, "%lu\n", h->free_huge_pages);
1318}
1319HSTATE_ATTR_RO(free_hugepages);
1320
1321static ssize_t resv_hugepages_show(struct kobject *kobj,
1322					struct kobj_attribute *attr, char *buf)
1323{
1324	struct hstate *h = kobj_to_hstate(kobj);
1325	return sprintf(buf, "%lu\n", h->resv_huge_pages);
1326}
1327HSTATE_ATTR_RO(resv_hugepages);
1328
1329static ssize_t surplus_hugepages_show(struct kobject *kobj,
1330					struct kobj_attribute *attr, char *buf)
1331{
1332	struct hstate *h = kobj_to_hstate(kobj);
1333	return sprintf(buf, "%lu\n", h->surplus_huge_pages);
1334}
1335HSTATE_ATTR_RO(surplus_hugepages);
1336
1337static struct attribute *hstate_attrs[] = {
1338	&nr_hugepages_attr.attr,
1339	&nr_overcommit_hugepages_attr.attr,
1340	&free_hugepages_attr.attr,
1341	&resv_hugepages_attr.attr,
1342	&surplus_hugepages_attr.attr,
1343	NULL,
1344};
1345
1346static struct attribute_group hstate_attr_group = {
1347	.attrs = hstate_attrs,
1348};
1349
1350static int __init hugetlb_sysfs_add_hstate(struct hstate *h)
1351{
1352	int retval;
1353
1354	hstate_kobjs[h - hstates] = kobject_create_and_add(h->name,
1355							hugepages_kobj);
1356	if (!hstate_kobjs[h - hstates])
1357		return -ENOMEM;
1358
1359	retval = sysfs_create_group(hstate_kobjs[h - hstates],
1360							&hstate_attr_group);
1361	if (retval)
1362		kobject_put(hstate_kobjs[h - hstates]);
1363
1364	return retval;
1365}
1366
1367static void __init hugetlb_sysfs_init(void)
1368{
1369	struct hstate *h;
1370	int err;
1371
1372	hugepages_kobj = kobject_create_and_add("hugepages", mm_kobj);
1373	if (!hugepages_kobj)
1374		return;
1375
1376	for_each_hstate(h) {
1377		err = hugetlb_sysfs_add_hstate(h);
1378		if (err)
1379			printk(KERN_ERR "Hugetlb: Unable to add hstate %s",
1380								h->name);
1381	}
1382}
1383
1384static void __exit hugetlb_exit(void)
1385{
1386	struct hstate *h;
1387
1388	for_each_hstate(h) {
1389		kobject_put(hstate_kobjs[h - hstates]);
1390	}
1391
1392	kobject_put(hugepages_kobj);
1393}
1394module_exit(hugetlb_exit);
1395
1396static int __init hugetlb_init(void)
1397{
1398	/* Some platform decide whether they support huge pages at boot
1399	 * time. On these, such as powerpc, HPAGE_SHIFT is set to 0 when
1400	 * there is no such support
1401	 */
1402	if (HPAGE_SHIFT == 0)
1403		return 0;
1404
1405	if (!size_to_hstate(default_hstate_size)) {
1406		default_hstate_size = HPAGE_SIZE;
1407		if (!size_to_hstate(default_hstate_size))
1408			hugetlb_add_hstate(HUGETLB_PAGE_ORDER);
1409	}
1410	default_hstate_idx = size_to_hstate(default_hstate_size) - hstates;
1411	if (default_hstate_max_huge_pages)
1412		default_hstate.max_huge_pages = default_hstate_max_huge_pages;
1413
1414	hugetlb_init_hstates();
1415
1416	gather_bootmem_prealloc();
1417
1418	report_hugepages();
1419
1420	hugetlb_sysfs_init();
1421
1422	return 0;
1423}
1424module_init(hugetlb_init);
1425
1426/* Should be called on processing a hugepagesz=... option */
1427void __init hugetlb_add_hstate(unsigned order)
1428{
1429	struct hstate *h;
1430	unsigned long i;
1431
1432	if (size_to_hstate(PAGE_SIZE << order)) {
1433		printk(KERN_WARNING "hugepagesz= specified twice, ignoring\n");
1434		return;
1435	}
1436	BUG_ON(max_hstate >= HUGE_MAX_HSTATE);
1437	BUG_ON(order == 0);
1438	h = &hstates[max_hstate++];
1439	h->order = order;
1440	h->mask = ~((1ULL << (order + PAGE_SHIFT)) - 1);
1441	h->nr_huge_pages = 0;
1442	h->free_huge_pages = 0;
1443	for (i = 0; i < MAX_NUMNODES; ++i)
1444		INIT_LIST_HEAD(&h->hugepage_freelists[i]);
1445	h->hugetlb_next_nid = first_node(node_online_map);
1446	snprintf(h->name, HSTATE_NAME_LEN, "hugepages-%lukB",
1447					huge_page_size(h)/1024);
1448
1449	parsed_hstate = h;
1450}
1451
1452static int __init hugetlb_nrpages_setup(char *s)
1453{
1454	unsigned long *mhp;
1455	static unsigned long *last_mhp;
1456
1457	/*
1458	 * !max_hstate means we haven't parsed a hugepagesz= parameter yet,
1459	 * so this hugepages= parameter goes to the "default hstate".
1460	 */
1461	if (!max_hstate)
1462		mhp = &default_hstate_max_huge_pages;
1463	else
1464		mhp = &parsed_hstate->max_huge_pages;
1465
1466	if (mhp == last_mhp) {
1467		printk(KERN_WARNING "hugepages= specified twice without "
1468			"interleaving hugepagesz=, ignoring\n");
1469		return 1;
1470	}
1471
1472	if (sscanf(s, "%lu", mhp) <= 0)
1473		*mhp = 0;
1474
1475	/*
1476	 * Global state is always initialized later in hugetlb_init.
1477	 * But we need to allocate >= MAX_ORDER hstates here early to still
1478	 * use the bootmem allocator.
1479	 */
1480	if (max_hstate && parsed_hstate->order >= MAX_ORDER)
1481		hugetlb_hstate_alloc_pages(parsed_hstate);
1482
1483	last_mhp = mhp;
1484
1485	return 1;
1486}
1487__setup("hugepages=", hugetlb_nrpages_setup);
1488
1489static int __init hugetlb_default_setup(char *s)
1490{
1491	default_hstate_size = memparse(s, &s);
1492	return 1;
1493}
1494__setup("default_hugepagesz=", hugetlb_default_setup);
1495
1496static unsigned int cpuset_mems_nr(unsigned int *array)
1497{
1498	int node;
1499	unsigned int nr = 0;
1500
1501	for_each_node_mask(node, cpuset_current_mems_allowed)
1502		nr += array[node];
1503
1504	return nr;
1505}
1506
1507#ifdef CONFIG_SYSCTL
1508int hugetlb_sysctl_handler(struct ctl_table *table, int write,
1509			   struct file *file, void __user *buffer,
1510			   size_t *length, loff_t *ppos)
1511{
1512	struct hstate *h = &default_hstate;
1513	unsigned long tmp;
1514
1515	if (!write)
1516		tmp = h->max_huge_pages;
1517
1518	table->data = &tmp;
1519	table->maxlen = sizeof(unsigned long);
1520	proc_doulongvec_minmax(table, write, file, buffer, length, ppos);
1521
1522	if (write)
1523		h->max_huge_pages = set_max_huge_pages(h, tmp);
1524
1525	return 0;
1526}
1527
1528int hugetlb_treat_movable_handler(struct ctl_table *table, int write,
1529			struct file *file, void __user *buffer,
1530			size_t *length, loff_t *ppos)
1531{
1532	proc_dointvec(table, write, file, buffer, length, ppos);
1533	if (hugepages_treat_as_movable)
1534		htlb_alloc_mask = GFP_HIGHUSER_MOVABLE;
1535	else
1536		htlb_alloc_mask = GFP_HIGHUSER;
1537	return 0;
1538}
1539
1540int hugetlb_overcommit_handler(struct ctl_table *table, int write,
1541			struct file *file, void __user *buffer,
1542			size_t *length, loff_t *ppos)
1543{
1544	struct hstate *h = &default_hstate;
1545	unsigned long tmp;
1546
1547	if (!write)
1548		tmp = h->nr_overcommit_huge_pages;
1549
1550	table->data = &tmp;
1551	table->maxlen = sizeof(unsigned long);
1552	proc_doulongvec_minmax(table, write, file, buffer, length, ppos);
1553
1554	if (write) {
1555		spin_lock(&hugetlb_lock);
1556		h->nr_overcommit_huge_pages = tmp;
1557		spin_unlock(&hugetlb_lock);
1558	}
1559
1560	return 0;
1561}
1562
1563#endif /* CONFIG_SYSCTL */
1564
1565void hugetlb_report_meminfo(struct seq_file *m)
1566{
1567	struct hstate *h = &default_hstate;
1568	seq_printf(m,
1569			"HugePages_Total:   %5lu\n"
1570			"HugePages_Free:    %5lu\n"
1571			"HugePages_Rsvd:    %5lu\n"
1572			"HugePages_Surp:    %5lu\n"
1573			"Hugepagesize:   %8lu kB\n",
1574			h->nr_huge_pages,
1575			h->free_huge_pages,
1576			h->resv_huge_pages,
1577			h->surplus_huge_pages,
1578			1UL << (huge_page_order(h) + PAGE_SHIFT - 10));
1579}
1580
1581int hugetlb_report_node_meminfo(int nid, char *buf)
1582{
1583	struct hstate *h = &default_hstate;
1584	return sprintf(buf,
1585		"Node %d HugePages_Total: %5u\n"
1586		"Node %d HugePages_Free:  %5u\n"
1587		"Node %d HugePages_Surp:  %5u\n",
1588		nid, h->nr_huge_pages_node[nid],
1589		nid, h->free_huge_pages_node[nid],
1590		nid, h->surplus_huge_pages_node[nid]);
1591}
1592
1593/* Return the number pages of memory we physically have, in PAGE_SIZE units. */
1594unsigned long hugetlb_total_pages(void)
1595{
1596	struct hstate *h = &default_hstate;
1597	return h->nr_huge_pages * pages_per_huge_page(h);
1598}
1599
1600static int hugetlb_acct_memory(struct hstate *h, long delta)
1601{
1602	int ret = -ENOMEM;
1603
1604	spin_lock(&hugetlb_lock);
1605	/*
1606	 * When cpuset is configured, it breaks the strict hugetlb page
1607	 * reservation as the accounting is done on a global variable. Such
1608	 * reservation is completely rubbish in the presence of cpuset because
1609	 * the reservation is not checked against page availability for the
1610	 * current cpuset. Application can still potentially OOM'ed by kernel
1611	 * with lack of free htlb page in cpuset that the task is in.
1612	 * Attempt to enforce strict accounting with cpuset is almost
1613	 * impossible (or too ugly) because cpuset is too fluid that
1614	 * task or memory node can be dynamically moved between cpusets.
1615	 *
1616	 * The change of semantics for shared hugetlb mapping with cpuset is
1617	 * undesirable. However, in order to preserve some of the semantics,
1618	 * we fall back to check against current free page availability as
1619	 * a best attempt and hopefully to minimize the impact of changing
1620	 * semantics that cpuset has.
1621	 */
1622	if (delta > 0) {
1623		if (gather_surplus_pages(h, delta) < 0)
1624			goto out;
1625
1626		if (delta > cpuset_mems_nr(h->free_huge_pages_node)) {
1627			return_unused_surplus_pages(h, delta);
1628			goto out;
1629		}
1630	}
1631
1632	ret = 0;
1633	if (delta < 0)
1634		return_unused_surplus_pages(h, (unsigned long) -delta);
1635
1636out:
1637	spin_unlock(&hugetlb_lock);
1638	return ret;
1639}
1640
1641static void hugetlb_vm_op_open(struct vm_area_struct *vma)
1642{
1643	struct resv_map *reservations = vma_resv_map(vma);
1644
1645	/*
1646	 * This new VMA should share its siblings reservation map if present.
1647	 * The VMA will only ever have a valid reservation map pointer where
1648	 * it is being copied for another still existing VMA.  As that VMA
1649	 * has a reference to the reservation map it cannot dissappear until
1650	 * after this open call completes.  It is therefore safe to take a
1651	 * new reference here without additional locking.
1652	 */
1653	if (reservations)
1654		kref_get(&reservations->refs);
1655}
1656
1657static void hugetlb_vm_op_close(struct vm_area_struct *vma)
1658{
1659	struct hstate *h = hstate_vma(vma);
1660	struct resv_map *reservations = vma_resv_map(vma);
1661	unsigned long reserve;
1662	unsigned long start;
1663	unsigned long end;
1664
1665	if (reservations) {
1666		start = vma_hugecache_offset(h, vma, vma->vm_start);
1667		end = vma_hugecache_offset(h, vma, vma->vm_end);
1668
1669		reserve = (end - start) -
1670			region_count(&reservations->regions, start, end);
1671
1672		kref_put(&reservations->refs, resv_map_release);
1673
1674		if (reserve) {
1675			hugetlb_acct_memory(h, -reserve);
1676			hugetlb_put_quota(vma->vm_file->f_mapping, reserve);
1677		}
1678	}
1679}
1680
1681/*
1682 * We cannot handle pagefaults against hugetlb pages at all.  They cause
1683 * handle_mm_fault() to try to instantiate regular-sized pages in the
1684 * hugegpage VMA.  do_page_fault() is supposed to trap this, so BUG is we get
1685 * this far.
1686 */
1687static int hugetlb_vm_op_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
1688{
1689	BUG();
1690	return 0;
1691}
1692
1693struct vm_operations_struct hugetlb_vm_ops = {
1694	.fault = hugetlb_vm_op_fault,
1695	.open = hugetlb_vm_op_open,
1696	.close = hugetlb_vm_op_close,
1697};
1698
1699static pte_t make_huge_pte(struct vm_area_struct *vma, struct page *page,
1700				int writable)
1701{
1702	pte_t entry;
1703
1704	if (writable) {
1705		entry =
1706		    pte_mkwrite(pte_mkdirty(mk_pte(page, vma->vm_page_prot)));
1707	} else {
1708		entry = huge_pte_wrprotect(mk_pte(page, vma->vm_page_prot));
1709	}
1710	entry = pte_mkyoung(entry);
1711	entry = pte_mkhuge(entry);
1712
1713	return entry;
1714}
1715
1716static void set_huge_ptep_writable(struct vm_area_struct *vma,
1717				   unsigned long address, pte_t *ptep)
1718{
1719	pte_t entry;
1720
1721	entry = pte_mkwrite(pte_mkdirty(huge_ptep_get(ptep)));
1722	if (huge_ptep_set_access_flags(vma, address, ptep, entry, 1)) {
1723		update_mmu_cache(vma, address, entry);
1724	}
1725}
1726
1727
1728int copy_hugetlb_page_range(struct mm_struct *dst, struct mm_struct *src,
1729			    struct vm_area_struct *vma)
1730{
1731	pte_t *src_pte, *dst_pte, entry;
1732	struct page *ptepage;
1733	unsigned long addr;
1734	int cow;
1735	struct hstate *h = hstate_vma(vma);
1736	unsigned long sz = huge_page_size(h);
1737
1738	cow = (vma->vm_flags & (VM_SHARED | VM_MAYWRITE)) == VM_MAYWRITE;
1739
1740	for (addr = vma->vm_start; addr < vma->vm_end; addr += sz) {
1741		src_pte = huge_pte_offset(src, addr);
1742		if (!src_pte)
1743			continue;
1744		dst_pte = huge_pte_alloc(dst, addr, sz);
1745		if (!dst_pte)
1746			goto nomem;
1747
1748		/* If the pagetables are shared don't copy or take references */
1749		if (dst_pte == src_pte)
1750			continue;
1751
1752		spin_lock(&dst->page_table_lock);
1753		spin_lock_nested(&src->page_table_lock, SINGLE_DEPTH_NESTING);
1754		if (!huge_pte_none(huge_ptep_get(src_pte))) {
1755			if (cow)
1756				huge_ptep_set_wrprotect(src, addr, src_pte);
1757			entry = huge_ptep_get(src_pte);
1758			ptepage = pte_page(entry);
1759			get_page(ptepage);
1760			set_huge_pte_at(dst, addr, dst_pte, entry);
1761		}
1762		spin_unlock(&src->page_table_lock);
1763		spin_unlock(&dst->page_table_lock);
1764	}
1765	return 0;
1766
1767nomem:
1768	return -ENOMEM;
1769}
1770
1771void __unmap_hugepage_range(struct vm_area_struct *vma, unsigned long start,
1772			    unsigned long end, struct page *ref_page)
1773{
1774	struct mm_struct *mm = vma->vm_mm;
1775	unsigned long address;
1776	pte_t *ptep;
1777	pte_t pte;
1778	struct page *page;
1779	struct page *tmp;
1780	struct hstate *h = hstate_vma(vma);
1781	unsigned long sz = huge_page_size(h);
1782
1783	/*
1784	 * A page gathering list, protected by per file i_mmap_lock. The
1785	 * lock is used to avoid list corruption from multiple unmapping
1786	 * of the same page since we are using page->lru.
1787	 */
1788	LIST_HEAD(page_list);
1789
1790	WARN_ON(!is_vm_hugetlb_page(vma));
1791	BUG_ON(start & ~huge_page_mask(h));
1792	BUG_ON(end & ~huge_page_mask(h));
1793
1794	mmu_notifier_invalidate_range_start(mm, start, end);
1795	spin_lock(&mm->page_table_lock);
1796	for (address = start; address < end; address += sz) {
1797		ptep = huge_pte_offset(mm, address);
1798		if (!ptep)
1799			continue;
1800
1801		if (huge_pmd_unshare(mm, &address, ptep))
1802			continue;
1803
1804		/*
1805		 * If a reference page is supplied, it is because a specific
1806		 * page is being unmapped, not a range. Ensure the page we
1807		 * are about to unmap is the actual page of interest.
1808		 */
1809		if (ref_page) {
1810			pte = huge_ptep_get(ptep);
1811			if (huge_pte_none(pte))
1812				continue;
1813			page = pte_page(pte);
1814			if (page != ref_page)
1815				continue;
1816
1817			/*
1818			 * Mark the VMA as having unmapped its page so that
1819			 * future faults in this VMA will fail rather than
1820			 * looking like data was lost
1821			 */
1822			set_vma_resv_flags(vma, HPAGE_RESV_UNMAPPED);
1823		}
1824
1825		pte = huge_ptep_get_and_clear(mm, address, ptep);
1826		if (huge_pte_none(pte))
1827			continue;
1828
1829		page = pte_page(pte);
1830		if (pte_dirty(pte))
1831			set_page_dirty(page);
1832		list_add(&page->lru, &page_list);
1833	}
1834	spin_unlock(&mm->page_table_lock);
1835	flush_tlb_range(vma, start, end);
1836	mmu_notifier_invalidate_range_end(mm, start, end);
1837	list_for_each_entry_safe(page, tmp, &page_list, lru) {
1838		list_del(&page->lru);
1839		put_page(page);
1840	}
1841}
1842
1843void unmap_hugepage_range(struct vm_area_struct *vma, unsigned long start,
1844			  unsigned long end, struct page *ref_page)
1845{
1846	spin_lock(&vma->vm_file->f_mapping->i_mmap_lock);
1847	__unmap_hugepage_range(vma, start, end, ref_page);
1848	spin_unlock(&vma->vm_file->f_mapping->i_mmap_lock);
1849}
1850
1851/*
1852 * This is called when the original mapper is failing to COW a MAP_PRIVATE
1853 * mappping it owns the reserve page for. The intention is to unmap the page
1854 * from other VMAs and let the children be SIGKILLed if they are faulting the
1855 * same region.
1856 */
1857static int unmap_ref_private(struct mm_struct *mm, struct vm_area_struct *vma,
1858				struct page *page, unsigned long address)
1859{
1860	struct hstate *h = hstate_vma(vma);
1861	struct vm_area_struct *iter_vma;
1862	struct address_space *mapping;
1863	struct prio_tree_iter iter;
1864	pgoff_t pgoff;
1865
1866	/*
1867	 * vm_pgoff is in PAGE_SIZE units, hence the different calculation
1868	 * from page cache lookup which is in HPAGE_SIZE units.
1869	 */
1870	address = address & huge_page_mask(h);
1871	pgoff = ((address - vma->vm_start) >> PAGE_SHIFT)
1872		+ (vma->vm_pgoff >> PAGE_SHIFT);
1873	mapping = (struct address_space *)page_private(page);
1874
1875	vma_prio_tree_foreach(iter_vma, &iter, &mapping->i_mmap, pgoff, pgoff) {
1876		/* Do not unmap the current VMA */
1877		if (iter_vma == vma)
1878			continue;
1879
1880		/*
1881		 * Unmap the page from other VMAs without their own reserves.
1882		 * They get marked to be SIGKILLed if they fault in these
1883		 * areas. This is because a future no-page fault on this VMA
1884		 * could insert a zeroed page instead of the data existing
1885		 * from the time of fork. This would look like data corruption
1886		 */
1887		if (!is_vma_resv_set(iter_vma, HPAGE_RESV_OWNER))
1888			unmap_hugepage_range(iter_vma,
1889				address, address + huge_page_size(h),
1890				page);
1891	}
1892
1893	return 1;
1894}
1895
1896static int hugetlb_cow(struct mm_struct *mm, struct vm_area_struct *vma,
1897			unsigned long address, pte_t *ptep, pte_t pte,
1898			struct page *pagecache_page)
1899{
1900	struct hstate *h = hstate_vma(vma);
1901	struct page *old_page, *new_page;
1902	int avoidcopy;
1903	int outside_reserve = 0;
1904
1905	old_page = pte_page(pte);
1906
1907retry_avoidcopy:
1908	/* If no-one else is actually using this page, avoid the copy
1909	 * and just make the page writable */
1910	avoidcopy = (page_count(old_page) == 1);
1911	if (avoidcopy) {
1912		set_huge_ptep_writable(vma, address, ptep);
1913		return 0;
1914	}
1915
1916	/*
1917	 * If the process that created a MAP_PRIVATE mapping is about to
1918	 * perform a COW due to a shared page count, attempt to satisfy
1919	 * the allocation without using the existing reserves. The pagecache
1920	 * page is used to determine if the reserve at this address was
1921	 * consumed or not. If reserves were used, a partial faulted mapping
1922	 * at the time of fork() could consume its reserves on COW instead
1923	 * of the full address range.
1924	 */
1925	if (!(vma->vm_flags & VM_MAYSHARE) &&
1926			is_vma_resv_set(vma, HPAGE_RESV_OWNER) &&
1927			old_page != pagecache_page)
1928		outside_reserve = 1;
1929
1930	page_cache_get(old_page);
1931	new_page = alloc_huge_page(vma, address, outside_reserve);
1932
1933	if (IS_ERR(new_page)) {
1934		page_cache_release(old_page);
1935
1936		/*
1937		 * If a process owning a MAP_PRIVATE mapping fails to COW,
1938		 * it is due to references held by a child and an insufficient
1939		 * huge page pool. To guarantee the original mappers
1940		 * reliability, unmap the page from child processes. The child
1941		 * may get SIGKILLed if it later faults.
1942		 */
1943		if (outside_reserve) {
1944			BUG_ON(huge_pte_none(pte));
1945			if (unmap_ref_private(mm, vma, old_page, address)) {
1946				BUG_ON(page_count(old_page) != 1);
1947				BUG_ON(huge_pte_none(pte));
1948				goto retry_avoidcopy;
1949			}
1950			WARN_ON_ONCE(1);
1951		}
1952
1953		return -PTR_ERR(new_page);
1954	}
1955
1956	spin_unlock(&mm->page_table_lock);
1957	copy_huge_page(new_page, old_page, address, vma);
1958	__SetPageUptodate(new_page);
1959	spin_lock(&mm->page_table_lock);
1960
1961	ptep = huge_pte_offset(mm, address & huge_page_mask(h));
1962	if (likely(pte_same(huge_ptep_get(ptep), pte))) {
1963		/* Break COW */
1964		huge_ptep_clear_flush(vma, address, ptep);
1965		set_huge_pte_at(mm, address, ptep,
1966				make_huge_pte(vma, new_page, 1));
1967		/* Make the old page be freed below */
1968		new_page = old_page;
1969	}
1970	page_cache_release(new_page);
1971	page_cache_release(old_page);
1972	return 0;
1973}
1974
1975/* Return the pagecache page at a given address within a VMA */
1976static struct page *hugetlbfs_pagecache_page(struct hstate *h,
1977			struct vm_area_struct *vma, unsigned long address)
1978{
1979	struct address_space *mapping;
1980	pgoff_t idx;
1981
1982	mapping = vma->vm_file->f_mapping;
1983	idx = vma_hugecache_offset(h, vma, address);
1984
1985	return find_lock_page(mapping, idx);
1986}
1987
1988static int hugetlb_no_page(struct mm_struct *mm, struct vm_area_struct *vma,
1989			unsigned long address, pte_t *ptep, unsigned int flags)
1990{
1991	struct hstate *h = hstate_vma(vma);
1992	int ret = VM_FAULT_SIGBUS;
1993	pgoff_t idx;
1994	unsigned long size;
1995	struct page *page;
1996	struct address_space *mapping;
1997	pte_t new_pte;
1998
1999	/*
2000	 * Currently, we are forced to kill the process in the event the
2001	 * original mapper has unmapped pages from the child due to a failed
2002	 * COW. Warn that such a situation has occured as it may not be obvious
2003	 */
2004	if (is_vma_resv_set(vma, HPAGE_RESV_UNMAPPED)) {
2005		printk(KERN_WARNING
2006			"PID %d killed due to inadequate hugepage pool\n",
2007			current->pid);
2008		return ret;
2009	}
2010
2011	mapping = vma->vm_file->f_mapping;
2012	idx = vma_hugecache_offset(h, vma, address);
2013
2014	/*
2015	 * Use page lock to guard against racing truncation
2016	 * before we get page_table_lock.
2017	 */
2018retry:
2019	page = find_lock_page(mapping, idx);
2020	if (!page) {
2021		size = i_size_read(mapping->host) >> huge_page_shift(h);
2022		if (idx >= size)
2023			goto out;
2024		page = alloc_huge_page(vma, address, 0);
2025		if (IS_ERR(page)) {
2026			ret = -PTR_ERR(page);
2027			goto out;
2028		}
2029		clear_huge_page(page, address, huge_page_size(h));
2030		__SetPageUptodate(page);
2031
2032		if (vma->vm_flags & VM_MAYSHARE) {
2033			int err;
2034			struct inode *inode = mapping->host;
2035
2036			err = add_to_page_cache(page, mapping, idx, GFP_KERNEL);
2037			if (err) {
2038				put_page(page);
2039				if (err == -EEXIST)
2040					goto retry;
2041				goto out;
2042			}
2043
2044			spin_lock(&inode->i_lock);
2045			inode->i_blocks += blocks_per_huge_page(h);
2046			spin_unlock(&inode->i_lock);
2047		} else
2048			lock_page(page);
2049	}
2050
2051	/*
2052	 * If we are going to COW a private mapping later, we examine the
2053	 * pending reservations for this page now. This will ensure that
2054	 * any allocations necessary to record that reservation occur outside
2055	 * the spinlock.
2056	 */
2057	if ((flags & FAULT_FLAG_WRITE) && !(vma->vm_flags & VM_SHARED))
2058		if (vma_needs_reservation(h, vma, address) < 0) {
2059			ret = VM_FAULT_OOM;
2060			goto backout_unlocked;
2061		}
2062
2063	spin_lock(&mm->page_table_lock);
2064	size = i_size_read(mapping->host) >> huge_page_shift(h);
2065	if (idx >= size)
2066		goto backout;
2067
2068	ret = 0;
2069	if (!huge_pte_none(huge_ptep_get(ptep)))
2070		goto backout;
2071
2072	new_pte = make_huge_pte(vma, page, ((vma->vm_flags & VM_WRITE)
2073				&& (vma->vm_flags & VM_SHARED)));
2074	set_huge_pte_at(mm, address, ptep, new_pte);
2075
2076	if ((flags & FAULT_FLAG_WRITE) && !(vma->vm_flags & VM_SHARED)) {
2077		/* Optimization, do the COW without a second fault */
2078		ret = hugetlb_cow(mm, vma, address, ptep, new_pte, page);
2079	}
2080
2081	spin_unlock(&mm->page_table_lock);
2082	unlock_page(page);
2083out:
2084	return ret;
2085
2086backout:
2087	spin_unlock(&mm->page_table_lock);
2088backout_unlocked:
2089	unlock_page(page);
2090	put_page(page);
2091	goto out;
2092}
2093
2094int hugetlb_fault(struct mm_struct *mm, struct vm_area_struct *vma,
2095			unsigned long address, unsigned int flags)
2096{
2097	pte_t *ptep;
2098	pte_t entry;
2099	int ret;
2100	struct page *pagecache_page = NULL;
2101	static DEFINE_MUTEX(hugetlb_instantiation_mutex);
2102	struct hstate *h = hstate_vma(vma);
2103
2104	ptep = huge_pte_alloc(mm, address, huge_page_size(h));
2105	if (!ptep)
2106		return VM_FAULT_OOM;
2107
2108	/*
2109	 * Serialize hugepage allocation and instantiation, so that we don't
2110	 * get spurious allocation failures if two CPUs race to instantiate
2111	 * the same page in the page cache.
2112	 */
2113	mutex_lock(&hugetlb_instantiation_mutex);
2114	entry = huge_ptep_get(ptep);
2115	if (huge_pte_none(entry)) {
2116		ret = hugetlb_no_page(mm, vma, address, ptep, flags);
2117		goto out_mutex;
2118	}
2119
2120	ret = 0;
2121
2122	/*
2123	 * If we are going to COW the mapping later, we examine the pending
2124	 * reservations for this page now. This will ensure that any
2125	 * allocations necessary to record that reservation occur outside the
2126	 * spinlock. For private mappings, we also lookup the pagecache
2127	 * page now as it is used to determine if a reservation has been
2128	 * consumed.
2129	 */
2130	if ((flags & FAULT_FLAG_WRITE) && !pte_write(entry)) {
2131		if (vma_needs_reservation(h, vma, address) < 0) {
2132			ret = VM_FAULT_OOM;
2133			goto out_mutex;
2134		}
2135
2136		if (!(vma->vm_flags & VM_MAYSHARE))
2137			pagecache_page = hugetlbfs_pagecache_page(h,
2138								vma, address);
2139	}
2140
2141	spin_lock(&mm->page_table_lock);
2142	/* Check for a racing update before calling hugetlb_cow */
2143	if (unlikely(!pte_same(entry, huge_ptep_get(ptep))))
2144		goto out_page_table_lock;
2145
2146
2147	if (flags & FAULT_FLAG_WRITE) {
2148		if (!pte_write(entry)) {
2149			ret = hugetlb_cow(mm, vma, address, ptep, entry,
2150							pagecache_page);
2151			goto out_page_table_lock;
2152		}
2153		entry = pte_mkdirty(entry);
2154	}
2155	entry = pte_mkyoung(entry);
2156	if (huge_ptep_set_access_flags(vma, address, ptep, entry,
2157						flags & FAULT_FLAG_WRITE))
2158		update_mmu_cache(vma, address, entry);
2159
2160out_page_table_lock:
2161	spin_unlock(&mm->page_table_lock);
2162
2163	if (pagecache_page) {
2164		unlock_page(pagecache_page);
2165		put_page(pagecache_page);
2166	}
2167
2168out_mutex:
2169	mutex_unlock(&hugetlb_instantiation_mutex);
2170
2171	return ret;
2172}
2173
2174/* Can be overriden by architectures */
2175__attribute__((weak)) struct page *
2176follow_huge_pud(struct mm_struct *mm, unsigned long address,
2177	       pud_t *pud, int write)
2178{
2179	BUG();
2180	return NULL;
2181}
2182
2183static int huge_zeropage_ok(pte_t *ptep, int write, int shared)
2184{
2185	if (!ptep || write || shared)
2186		return 0;
2187	else
2188		return huge_pte_none(huge_ptep_get(ptep));
2189}
2190
2191int follow_hugetlb_page(struct mm_struct *mm, struct vm_area_struct *vma,
2192			struct page **pages, struct vm_area_struct **vmas,
2193			unsigned long *position, int *length, int i,
2194			int write)
2195{
2196	unsigned long pfn_offset;
2197	unsigned long vaddr = *position;
2198	int remainder = *length;
2199	struct hstate *h = hstate_vma(vma);
2200	int zeropage_ok = 0;
2201	int shared = vma->vm_flags & VM_SHARED;
2202
2203	spin_lock(&mm->page_table_lock);
2204	while (vaddr < vma->vm_end && remainder) {
2205		pte_t *pte;
2206		struct page *page;
2207
2208		/*
2209		 * Some archs (sparc64, sh*) have multiple pte_ts to
2210		 * each hugepage.  We have to make * sure we get the
2211		 * first, for the page indexing below to work.
2212		 */
2213		pte = huge_pte_offset(mm, vaddr & huge_page_mask(h));
2214		if (huge_zeropage_ok(pte, write, shared))
2215			zeropage_ok = 1;
2216
2217		if (!pte ||
2218		    (huge_pte_none(huge_ptep_get(pte)) && !zeropage_ok) ||
2219		    (write && !pte_write(huge_ptep_get(pte)))) {
2220			int ret;
2221
2222			spin_unlock(&mm->page_table_lock);
2223			ret = hugetlb_fault(mm, vma, vaddr, write);
2224			spin_lock(&mm->page_table_lock);
2225			if (!(ret & VM_FAULT_ERROR))
2226				continue;
2227
2228			remainder = 0;
2229			if (!i)
2230				i = -EFAULT;
2231			break;
2232		}
2233
2234		pfn_offset = (vaddr & ~huge_page_mask(h)) >> PAGE_SHIFT;
2235		page = pte_page(huge_ptep_get(pte));
2236same_page:
2237		if (pages) {
2238			if (zeropage_ok)
2239				pages[i] = ZERO_PAGE(0);
2240			else
2241				pages[i] = mem_map_offset(page, pfn_offset);
2242			get_page(pages[i]);
2243		}
2244
2245		if (vmas)
2246			vmas[i] = vma;
2247
2248		vaddr += PAGE_SIZE;
2249		++pfn_offset;
2250		--remainder;
2251		++i;
2252		if (vaddr < vma->vm_end && remainder &&
2253				pfn_offset < pages_per_huge_page(h)) {
2254			/*
2255			 * We use pfn_offset to avoid touching the pageframes
2256			 * of this compound page.
2257			 */
2258			goto same_page;
2259		}
2260	}
2261	spin_unlock(&mm->page_table_lock);
2262	*length = remainder;
2263	*position = vaddr;
2264
2265	return i;
2266}
2267
2268void hugetlb_change_protection(struct vm_area_struct *vma,
2269		unsigned long address, unsigned long end, pgprot_t newprot)
2270{
2271	struct mm_struct *mm = vma->vm_mm;
2272	unsigned long start = address;
2273	pte_t *ptep;
2274	pte_t pte;
2275	struct hstate *h = hstate_vma(vma);
2276
2277	BUG_ON(address >= end);
2278	flush_cache_range(vma, address, end);
2279
2280	spin_lock(&vma->vm_file->f_mapping->i_mmap_lock);
2281	spin_lock(&mm->page_table_lock);
2282	for (; address < end; address += huge_page_size(h)) {
2283		ptep = huge_pte_offset(mm, address);
2284		if (!ptep)
2285			continue;
2286		if (huge_pmd_unshare(mm, &address, ptep))
2287			continue;
2288		if (!huge_pte_none(huge_ptep_get(ptep))) {
2289			pte = huge_ptep_get_and_clear(mm, address, ptep);
2290			pte = pte_mkhuge(pte_modify(pte, newprot));
2291			set_huge_pte_at(mm, address, ptep, pte);
2292		}
2293	}
2294	spin_unlock(&mm->page_table_lock);
2295	spin_unlock(&vma->vm_file->f_mapping->i_mmap_lock);
2296
2297	flush_tlb_range(vma, start, end);
2298}
2299
2300int hugetlb_reserve_pages(struct inode *inode,
2301					long from, long to,
2302					struct vm_area_struct *vma,
2303					int acctflag)
2304{
2305	long ret, chg;
2306	struct hstate *h = hstate_inode(inode);
2307
2308	/*
2309	 * Only apply hugepage reservation if asked. At fault time, an
2310	 * attempt will be made for VM_NORESERVE to allocate a page
2311	 * and filesystem quota without using reserves
2312	 */
2313	if (acctflag & VM_NORESERVE)
2314		return 0;
2315
2316	/*
2317	 * Shared mappings base their reservation on the number of pages that
2318	 * are already allocated on behalf of the file. Private mappings need
2319	 * to reserve the full area even if read-only as mprotect() may be
2320	 * called to make the mapping read-write. Assume !vma is a shm mapping
2321	 */
2322	if (!vma || vma->vm_flags & VM_MAYSHARE)
2323		chg = region_chg(&inode->i_mapping->private_list, from, to);
2324	else {
2325		struct resv_map *resv_map = resv_map_alloc();
2326		if (!resv_map)
2327			return -ENOMEM;
2328
2329		chg = to - from;
2330
2331		set_vma_resv_map(vma, resv_map);
2332		set_vma_resv_flags(vma, HPAGE_RESV_OWNER);
2333	}
2334
2335	if (chg < 0)
2336		return chg;
2337
2338	/* There must be enough filesystem quota for the mapping */
2339	if (hugetlb_get_quota(inode->i_mapping, chg))
2340		return -ENOSPC;
2341
2342	/*
2343	 * Check enough hugepages are available for the reservation.
2344	 * Hand back the quota if there are not
2345	 */
2346	ret = hugetlb_acct_memory(h, chg);
2347	if (ret < 0) {
2348		hugetlb_put_quota(inode->i_mapping, chg);
2349		return ret;
2350	}
2351
2352	/*
2353	 * Account for the reservations made. Shared mappings record regions
2354	 * that have reservations as they are shared by multiple VMAs.
2355	 * When the last VMA disappears, the region map says how much
2356	 * the reservation was and the page cache tells how much of
2357	 * the reservation was consumed. Private mappings are per-VMA and
2358	 * only the consumed reservations are tracked. When the VMA
2359	 * disappears, the original reservation is the VMA size and the
2360	 * consumed reservations are stored in the map. Hence, nothing
2361	 * else has to be done for private mappings here
2362	 */
2363	if (!vma || vma->vm_flags & VM_MAYSHARE)
2364		region_add(&inode->i_mapping->private_list, from, to);
2365	return 0;
2366}
2367
2368void hugetlb_unreserve_pages(struct inode *inode, long offset, long freed)
2369{
2370	struct hstate *h = hstate_inode(inode);
2371	long chg = region_truncate(&inode->i_mapping->private_list, offset);
2372
2373	spin_lock(&inode->i_lock);
2374	inode->i_blocks -= (blocks_per_huge_page(h) * freed);
2375	spin_unlock(&inode->i_lock);
2376
2377	hugetlb_put_quota(inode->i_mapping, (chg - freed));
2378	hugetlb_acct_memory(h, -(chg - freed));
2379}
2380