hugetlb.c revision f96efd585b8d847181f81bf16721f96ded18d9fe
1/*
2 * Generic hugetlb support.
3 * (C) William Irwin, April 2004
4 */
5#include <linux/gfp.h>
6#include <linux/list.h>
7#include <linux/init.h>
8#include <linux/module.h>
9#include <linux/mm.h>
10#include <linux/sysctl.h>
11#include <linux/highmem.h>
12#include <linux/nodemask.h>
13#include <linux/pagemap.h>
14#include <linux/mempolicy.h>
15#include <linux/cpuset.h>
16#include <linux/mutex.h>
17
18#include <asm/page.h>
19#include <asm/pgtable.h>
20
21#include <linux/hugetlb.h>
22#include "internal.h"
23
24const unsigned long hugetlb_zero = 0, hugetlb_infinity = ~0UL;
25static unsigned long nr_huge_pages, free_huge_pages, resv_huge_pages;
26unsigned long max_huge_pages;
27static struct list_head hugepage_freelists[MAX_NUMNODES];
28static unsigned int nr_huge_pages_node[MAX_NUMNODES];
29static unsigned int free_huge_pages_node[MAX_NUMNODES];
30/*
31 * Protects updates to hugepage_freelists, nr_huge_pages, and free_huge_pages
32 */
33static DEFINE_SPINLOCK(hugetlb_lock);
34
35static void clear_huge_page(struct page *page, unsigned long addr)
36{
37	int i;
38
39	might_sleep();
40	for (i = 0; i < (HPAGE_SIZE/PAGE_SIZE); i++) {
41		cond_resched();
42		clear_user_highpage(page + i, addr);
43	}
44}
45
46static void copy_huge_page(struct page *dst, struct page *src,
47			   unsigned long addr, struct vm_area_struct *vma)
48{
49	int i;
50
51	might_sleep();
52	for (i = 0; i < HPAGE_SIZE/PAGE_SIZE; i++) {
53		cond_resched();
54		copy_user_highpage(dst + i, src + i, addr + i*PAGE_SIZE, vma);
55	}
56}
57
58static void enqueue_huge_page(struct page *page)
59{
60	int nid = page_to_nid(page);
61	list_add(&page->lru, &hugepage_freelists[nid]);
62	free_huge_pages++;
63	free_huge_pages_node[nid]++;
64}
65
66static struct page *dequeue_huge_page(struct vm_area_struct *vma,
67				unsigned long address)
68{
69	int nid;
70	struct page *page = NULL;
71	struct zonelist *zonelist = huge_zonelist(vma, address);
72	struct zone **z;
73
74	for (z = zonelist->zones; *z; z++) {
75		nid = zone_to_nid(*z);
76		if (cpuset_zone_allowed_softwall(*z, GFP_HIGHUSER) &&
77		    !list_empty(&hugepage_freelists[nid]))
78			break;
79	}
80
81	if (*z) {
82		page = list_entry(hugepage_freelists[nid].next,
83				  struct page, lru);
84		list_del(&page->lru);
85		free_huge_pages--;
86		free_huge_pages_node[nid]--;
87	}
88	return page;
89}
90
91static void free_huge_page(struct page *page)
92{
93	BUG_ON(page_count(page));
94
95	INIT_LIST_HEAD(&page->lru);
96
97	spin_lock(&hugetlb_lock);
98	enqueue_huge_page(page);
99	spin_unlock(&hugetlb_lock);
100}
101
102static int alloc_fresh_huge_page(void)
103{
104	static int prev_nid;
105	struct page *page;
106	static DEFINE_SPINLOCK(nid_lock);
107	int nid;
108
109	spin_lock(&nid_lock);
110	nid = next_node(prev_nid, node_online_map);
111	if (nid == MAX_NUMNODES)
112		nid = first_node(node_online_map);
113	prev_nid = nid;
114	spin_unlock(&nid_lock);
115
116	page = alloc_pages_node(nid, GFP_HIGHUSER|__GFP_COMP|__GFP_NOWARN,
117					HUGETLB_PAGE_ORDER);
118	if (page) {
119		set_compound_page_dtor(page, free_huge_page);
120		spin_lock(&hugetlb_lock);
121		nr_huge_pages++;
122		nr_huge_pages_node[page_to_nid(page)]++;
123		spin_unlock(&hugetlb_lock);
124		put_page(page); /* free it into the hugepage allocator */
125		return 1;
126	}
127	return 0;
128}
129
130static struct page *alloc_huge_page(struct vm_area_struct *vma,
131				    unsigned long addr)
132{
133	struct page *page;
134
135	spin_lock(&hugetlb_lock);
136	if (vma->vm_flags & VM_MAYSHARE)
137		resv_huge_pages--;
138	else if (free_huge_pages <= resv_huge_pages)
139		goto fail;
140
141	page = dequeue_huge_page(vma, addr);
142	if (!page)
143		goto fail;
144
145	spin_unlock(&hugetlb_lock);
146	set_page_refcounted(page);
147	return page;
148
149fail:
150	if (vma->vm_flags & VM_MAYSHARE)
151		resv_huge_pages++;
152	spin_unlock(&hugetlb_lock);
153	return NULL;
154}
155
156static int __init hugetlb_init(void)
157{
158	unsigned long i;
159
160	if (HPAGE_SHIFT == 0)
161		return 0;
162
163	for (i = 0; i < MAX_NUMNODES; ++i)
164		INIT_LIST_HEAD(&hugepage_freelists[i]);
165
166	for (i = 0; i < max_huge_pages; ++i) {
167		if (!alloc_fresh_huge_page())
168			break;
169	}
170	max_huge_pages = free_huge_pages = nr_huge_pages = i;
171	printk("Total HugeTLB memory allocated, %ld\n", free_huge_pages);
172	return 0;
173}
174module_init(hugetlb_init);
175
176static int __init hugetlb_setup(char *s)
177{
178	if (sscanf(s, "%lu", &max_huge_pages) <= 0)
179		max_huge_pages = 0;
180	return 1;
181}
182__setup("hugepages=", hugetlb_setup);
183
184static unsigned int cpuset_mems_nr(unsigned int *array)
185{
186	int node;
187	unsigned int nr = 0;
188
189	for_each_node_mask(node, cpuset_current_mems_allowed)
190		nr += array[node];
191
192	return nr;
193}
194
195#ifdef CONFIG_SYSCTL
196static void update_and_free_page(struct page *page)
197{
198	int i;
199	nr_huge_pages--;
200	nr_huge_pages_node[page_to_nid(page)]--;
201	for (i = 0; i < (HPAGE_SIZE / PAGE_SIZE); i++) {
202		page[i].flags &= ~(1 << PG_locked | 1 << PG_error | 1 << PG_referenced |
203				1 << PG_dirty | 1 << PG_active | 1 << PG_reserved |
204				1 << PG_private | 1<< PG_writeback);
205	}
206	page[1].lru.next = NULL;
207	set_page_refcounted(page);
208	__free_pages(page, HUGETLB_PAGE_ORDER);
209}
210
211#ifdef CONFIG_HIGHMEM
212static void try_to_free_low(unsigned long count)
213{
214	int i;
215
216	for (i = 0; i < MAX_NUMNODES; ++i) {
217		struct page *page, *next;
218		list_for_each_entry_safe(page, next, &hugepage_freelists[i], lru) {
219			if (PageHighMem(page))
220				continue;
221			list_del(&page->lru);
222			update_and_free_page(page);
223			free_huge_pages--;
224			free_huge_pages_node[page_to_nid(page)]--;
225			if (count >= nr_huge_pages)
226				return;
227		}
228	}
229}
230#else
231static inline void try_to_free_low(unsigned long count)
232{
233}
234#endif
235
236static unsigned long set_max_huge_pages(unsigned long count)
237{
238	while (count > nr_huge_pages) {
239		if (!alloc_fresh_huge_page())
240			return nr_huge_pages;
241	}
242	if (count >= nr_huge_pages)
243		return nr_huge_pages;
244
245	spin_lock(&hugetlb_lock);
246	count = max(count, resv_huge_pages);
247	try_to_free_low(count);
248	while (count < nr_huge_pages) {
249		struct page *page = dequeue_huge_page(NULL, 0);
250		if (!page)
251			break;
252		update_and_free_page(page);
253	}
254	spin_unlock(&hugetlb_lock);
255	return nr_huge_pages;
256}
257
258int hugetlb_sysctl_handler(struct ctl_table *table, int write,
259			   struct file *file, void __user *buffer,
260			   size_t *length, loff_t *ppos)
261{
262	proc_doulongvec_minmax(table, write, file, buffer, length, ppos);
263	max_huge_pages = set_max_huge_pages(max_huge_pages);
264	return 0;
265}
266#endif /* CONFIG_SYSCTL */
267
268int hugetlb_report_meminfo(char *buf)
269{
270	return sprintf(buf,
271			"HugePages_Total: %5lu\n"
272			"HugePages_Free:  %5lu\n"
273			"HugePages_Rsvd:  %5lu\n"
274			"Hugepagesize:    %5lu kB\n",
275			nr_huge_pages,
276			free_huge_pages,
277			resv_huge_pages,
278			HPAGE_SIZE/1024);
279}
280
281int hugetlb_report_node_meminfo(int nid, char *buf)
282{
283	return sprintf(buf,
284		"Node %d HugePages_Total: %5u\n"
285		"Node %d HugePages_Free:  %5u\n",
286		nid, nr_huge_pages_node[nid],
287		nid, free_huge_pages_node[nid]);
288}
289
290/* Return the number pages of memory we physically have, in PAGE_SIZE units. */
291unsigned long hugetlb_total_pages(void)
292{
293	return nr_huge_pages * (HPAGE_SIZE / PAGE_SIZE);
294}
295
296/*
297 * We cannot handle pagefaults against hugetlb pages at all.  They cause
298 * handle_mm_fault() to try to instantiate regular-sized pages in the
299 * hugegpage VMA.  do_page_fault() is supposed to trap this, so BUG is we get
300 * this far.
301 */
302static struct page *hugetlb_nopage(struct vm_area_struct *vma,
303				unsigned long address, int *unused)
304{
305	BUG();
306	return NULL;
307}
308
309struct vm_operations_struct hugetlb_vm_ops = {
310	.nopage = hugetlb_nopage,
311};
312
313static pte_t make_huge_pte(struct vm_area_struct *vma, struct page *page,
314				int writable)
315{
316	pte_t entry;
317
318	if (writable) {
319		entry =
320		    pte_mkwrite(pte_mkdirty(mk_pte(page, vma->vm_page_prot)));
321	} else {
322		entry = pte_wrprotect(mk_pte(page, vma->vm_page_prot));
323	}
324	entry = pte_mkyoung(entry);
325	entry = pte_mkhuge(entry);
326
327	return entry;
328}
329
330static void set_huge_ptep_writable(struct vm_area_struct *vma,
331				   unsigned long address, pte_t *ptep)
332{
333	pte_t entry;
334
335	entry = pte_mkwrite(pte_mkdirty(*ptep));
336	if (ptep_set_access_flags(vma, address, ptep, entry, 1)) {
337		update_mmu_cache(vma, address, entry);
338		lazy_mmu_prot_update(entry);
339	}
340}
341
342
343int copy_hugetlb_page_range(struct mm_struct *dst, struct mm_struct *src,
344			    struct vm_area_struct *vma)
345{
346	pte_t *src_pte, *dst_pte, entry;
347	struct page *ptepage;
348	unsigned long addr;
349	int cow;
350
351	cow = (vma->vm_flags & (VM_SHARED | VM_MAYWRITE)) == VM_MAYWRITE;
352
353	for (addr = vma->vm_start; addr < vma->vm_end; addr += HPAGE_SIZE) {
354		src_pte = huge_pte_offset(src, addr);
355		if (!src_pte)
356			continue;
357		dst_pte = huge_pte_alloc(dst, addr);
358		if (!dst_pte)
359			goto nomem;
360		spin_lock(&dst->page_table_lock);
361		spin_lock(&src->page_table_lock);
362		if (!pte_none(*src_pte)) {
363			if (cow)
364				ptep_set_wrprotect(src, addr, src_pte);
365			entry = *src_pte;
366			ptepage = pte_page(entry);
367			get_page(ptepage);
368			set_huge_pte_at(dst, addr, dst_pte, entry);
369		}
370		spin_unlock(&src->page_table_lock);
371		spin_unlock(&dst->page_table_lock);
372	}
373	return 0;
374
375nomem:
376	return -ENOMEM;
377}
378
379void __unmap_hugepage_range(struct vm_area_struct *vma, unsigned long start,
380			    unsigned long end)
381{
382	struct mm_struct *mm = vma->vm_mm;
383	unsigned long address;
384	pte_t *ptep;
385	pte_t pte;
386	struct page *page;
387	struct page *tmp;
388	/*
389	 * A page gathering list, protected by per file i_mmap_lock. The
390	 * lock is used to avoid list corruption from multiple unmapping
391	 * of the same page since we are using page->lru.
392	 */
393	LIST_HEAD(page_list);
394
395	WARN_ON(!is_vm_hugetlb_page(vma));
396	BUG_ON(start & ~HPAGE_MASK);
397	BUG_ON(end & ~HPAGE_MASK);
398
399	spin_lock(&mm->page_table_lock);
400	for (address = start; address < end; address += HPAGE_SIZE) {
401		ptep = huge_pte_offset(mm, address);
402		if (!ptep)
403			continue;
404
405		if (huge_pmd_unshare(mm, &address, ptep))
406			continue;
407
408		pte = huge_ptep_get_and_clear(mm, address, ptep);
409		if (pte_none(pte))
410			continue;
411
412		page = pte_page(pte);
413		if (pte_dirty(pte))
414			set_page_dirty(page);
415		list_add(&page->lru, &page_list);
416	}
417	spin_unlock(&mm->page_table_lock);
418	flush_tlb_range(vma, start, end);
419	list_for_each_entry_safe(page, tmp, &page_list, lru) {
420		list_del(&page->lru);
421		put_page(page);
422	}
423}
424
425void unmap_hugepage_range(struct vm_area_struct *vma, unsigned long start,
426			  unsigned long end)
427{
428	/*
429	 * It is undesirable to test vma->vm_file as it should be non-null
430	 * for valid hugetlb area. However, vm_file will be NULL in the error
431	 * cleanup path of do_mmap_pgoff. When hugetlbfs ->mmap method fails,
432	 * do_mmap_pgoff() nullifies vma->vm_file before calling this function
433	 * to clean up. Since no pte has actually been setup, it is safe to
434	 * do nothing in this case.
435	 */
436	if (vma->vm_file) {
437		spin_lock(&vma->vm_file->f_mapping->i_mmap_lock);
438		__unmap_hugepage_range(vma, start, end);
439		spin_unlock(&vma->vm_file->f_mapping->i_mmap_lock);
440	}
441}
442
443static int hugetlb_cow(struct mm_struct *mm, struct vm_area_struct *vma,
444			unsigned long address, pte_t *ptep, pte_t pte)
445{
446	struct page *old_page, *new_page;
447	int avoidcopy;
448
449	old_page = pte_page(pte);
450
451	/* If no-one else is actually using this page, avoid the copy
452	 * and just make the page writable */
453	avoidcopy = (page_count(old_page) == 1);
454	if (avoidcopy) {
455		set_huge_ptep_writable(vma, address, ptep);
456		return VM_FAULT_MINOR;
457	}
458
459	page_cache_get(old_page);
460	new_page = alloc_huge_page(vma, address);
461
462	if (!new_page) {
463		page_cache_release(old_page);
464		return VM_FAULT_OOM;
465	}
466
467	spin_unlock(&mm->page_table_lock);
468	copy_huge_page(new_page, old_page, address, vma);
469	spin_lock(&mm->page_table_lock);
470
471	ptep = huge_pte_offset(mm, address & HPAGE_MASK);
472	if (likely(pte_same(*ptep, pte))) {
473		/* Break COW */
474		set_huge_pte_at(mm, address, ptep,
475				make_huge_pte(vma, new_page, 1));
476		/* Make the old page be freed below */
477		new_page = old_page;
478	}
479	page_cache_release(new_page);
480	page_cache_release(old_page);
481	return VM_FAULT_MINOR;
482}
483
484int hugetlb_no_page(struct mm_struct *mm, struct vm_area_struct *vma,
485			unsigned long address, pte_t *ptep, int write_access)
486{
487	int ret = VM_FAULT_SIGBUS;
488	unsigned long idx;
489	unsigned long size;
490	struct page *page;
491	struct address_space *mapping;
492	pte_t new_pte;
493
494	mapping = vma->vm_file->f_mapping;
495	idx = ((address - vma->vm_start) >> HPAGE_SHIFT)
496		+ (vma->vm_pgoff >> (HPAGE_SHIFT - PAGE_SHIFT));
497
498	/*
499	 * Use page lock to guard against racing truncation
500	 * before we get page_table_lock.
501	 */
502retry:
503	page = find_lock_page(mapping, idx);
504	if (!page) {
505		size = i_size_read(mapping->host) >> HPAGE_SHIFT;
506		if (idx >= size)
507			goto out;
508		if (hugetlb_get_quota(mapping))
509			goto out;
510		page = alloc_huge_page(vma, address);
511		if (!page) {
512			hugetlb_put_quota(mapping);
513			ret = VM_FAULT_OOM;
514			goto out;
515		}
516		clear_huge_page(page, address);
517
518		if (vma->vm_flags & VM_SHARED) {
519			int err;
520
521			err = add_to_page_cache(page, mapping, idx, GFP_KERNEL);
522			if (err) {
523				put_page(page);
524				hugetlb_put_quota(mapping);
525				if (err == -EEXIST)
526					goto retry;
527				goto out;
528			}
529		} else
530			lock_page(page);
531	}
532
533	spin_lock(&mm->page_table_lock);
534	size = i_size_read(mapping->host) >> HPAGE_SHIFT;
535	if (idx >= size)
536		goto backout;
537
538	ret = VM_FAULT_MINOR;
539	if (!pte_none(*ptep))
540		goto backout;
541
542	new_pte = make_huge_pte(vma, page, ((vma->vm_flags & VM_WRITE)
543				&& (vma->vm_flags & VM_SHARED)));
544	set_huge_pte_at(mm, address, ptep, new_pte);
545
546	if (write_access && !(vma->vm_flags & VM_SHARED)) {
547		/* Optimization, do the COW without a second fault */
548		ret = hugetlb_cow(mm, vma, address, ptep, new_pte);
549	}
550
551	spin_unlock(&mm->page_table_lock);
552	unlock_page(page);
553out:
554	return ret;
555
556backout:
557	spin_unlock(&mm->page_table_lock);
558	hugetlb_put_quota(mapping);
559	unlock_page(page);
560	put_page(page);
561	goto out;
562}
563
564int hugetlb_fault(struct mm_struct *mm, struct vm_area_struct *vma,
565			unsigned long address, int write_access)
566{
567	pte_t *ptep;
568	pte_t entry;
569	int ret;
570	static DEFINE_MUTEX(hugetlb_instantiation_mutex);
571
572	ptep = huge_pte_alloc(mm, address);
573	if (!ptep)
574		return VM_FAULT_OOM;
575
576	/*
577	 * Serialize hugepage allocation and instantiation, so that we don't
578	 * get spurious allocation failures if two CPUs race to instantiate
579	 * the same page in the page cache.
580	 */
581	mutex_lock(&hugetlb_instantiation_mutex);
582	entry = *ptep;
583	if (pte_none(entry)) {
584		ret = hugetlb_no_page(mm, vma, address, ptep, write_access);
585		mutex_unlock(&hugetlb_instantiation_mutex);
586		return ret;
587	}
588
589	ret = VM_FAULT_MINOR;
590
591	spin_lock(&mm->page_table_lock);
592	/* Check for a racing update before calling hugetlb_cow */
593	if (likely(pte_same(entry, *ptep)))
594		if (write_access && !pte_write(entry))
595			ret = hugetlb_cow(mm, vma, address, ptep, entry);
596	spin_unlock(&mm->page_table_lock);
597	mutex_unlock(&hugetlb_instantiation_mutex);
598
599	return ret;
600}
601
602int follow_hugetlb_page(struct mm_struct *mm, struct vm_area_struct *vma,
603			struct page **pages, struct vm_area_struct **vmas,
604			unsigned long *position, int *length, int i)
605{
606	unsigned long pfn_offset;
607	unsigned long vaddr = *position;
608	int remainder = *length;
609
610	spin_lock(&mm->page_table_lock);
611	while (vaddr < vma->vm_end && remainder) {
612		pte_t *pte;
613		struct page *page;
614
615		/*
616		 * Some archs (sparc64, sh*) have multiple pte_ts to
617		 * each hugepage.  We have to make * sure we get the
618		 * first, for the page indexing below to work.
619		 */
620		pte = huge_pte_offset(mm, vaddr & HPAGE_MASK);
621
622		if (!pte || pte_none(*pte)) {
623			int ret;
624
625			spin_unlock(&mm->page_table_lock);
626			ret = hugetlb_fault(mm, vma, vaddr, 0);
627			spin_lock(&mm->page_table_lock);
628			if (ret == VM_FAULT_MINOR)
629				continue;
630
631			remainder = 0;
632			if (!i)
633				i = -EFAULT;
634			break;
635		}
636
637		pfn_offset = (vaddr & ~HPAGE_MASK) >> PAGE_SHIFT;
638		page = pte_page(*pte);
639same_page:
640		if (pages) {
641			get_page(page);
642			pages[i] = page + pfn_offset;
643		}
644
645		if (vmas)
646			vmas[i] = vma;
647
648		vaddr += PAGE_SIZE;
649		++pfn_offset;
650		--remainder;
651		++i;
652		if (vaddr < vma->vm_end && remainder &&
653				pfn_offset < HPAGE_SIZE/PAGE_SIZE) {
654			/*
655			 * We use pfn_offset to avoid touching the pageframes
656			 * of this compound page.
657			 */
658			goto same_page;
659		}
660	}
661	spin_unlock(&mm->page_table_lock);
662	*length = remainder;
663	*position = vaddr;
664
665	return i;
666}
667
668void hugetlb_change_protection(struct vm_area_struct *vma,
669		unsigned long address, unsigned long end, pgprot_t newprot)
670{
671	struct mm_struct *mm = vma->vm_mm;
672	unsigned long start = address;
673	pte_t *ptep;
674	pte_t pte;
675
676	BUG_ON(address >= end);
677	flush_cache_range(vma, address, end);
678
679	spin_lock(&vma->vm_file->f_mapping->i_mmap_lock);
680	spin_lock(&mm->page_table_lock);
681	for (; address < end; address += HPAGE_SIZE) {
682		ptep = huge_pte_offset(mm, address);
683		if (!ptep)
684			continue;
685		if (huge_pmd_unshare(mm, &address, ptep))
686			continue;
687		if (!pte_none(*ptep)) {
688			pte = huge_ptep_get_and_clear(mm, address, ptep);
689			pte = pte_mkhuge(pte_modify(pte, newprot));
690			set_huge_pte_at(mm, address, ptep, pte);
691			lazy_mmu_prot_update(pte);
692		}
693	}
694	spin_unlock(&mm->page_table_lock);
695	spin_unlock(&vma->vm_file->f_mapping->i_mmap_lock);
696
697	flush_tlb_range(vma, start, end);
698}
699
700struct file_region {
701	struct list_head link;
702	long from;
703	long to;
704};
705
706static long region_add(struct list_head *head, long f, long t)
707{
708	struct file_region *rg, *nrg, *trg;
709
710	/* Locate the region we are either in or before. */
711	list_for_each_entry(rg, head, link)
712		if (f <= rg->to)
713			break;
714
715	/* Round our left edge to the current segment if it encloses us. */
716	if (f > rg->from)
717		f = rg->from;
718
719	/* Check for and consume any regions we now overlap with. */
720	nrg = rg;
721	list_for_each_entry_safe(rg, trg, rg->link.prev, link) {
722		if (&rg->link == head)
723			break;
724		if (rg->from > t)
725			break;
726
727		/* If this area reaches higher then extend our area to
728		 * include it completely.  If this is not the first area
729		 * which we intend to reuse, free it. */
730		if (rg->to > t)
731			t = rg->to;
732		if (rg != nrg) {
733			list_del(&rg->link);
734			kfree(rg);
735		}
736	}
737	nrg->from = f;
738	nrg->to = t;
739	return 0;
740}
741
742static long region_chg(struct list_head *head, long f, long t)
743{
744	struct file_region *rg, *nrg;
745	long chg = 0;
746
747	/* Locate the region we are before or in. */
748	list_for_each_entry(rg, head, link)
749		if (f <= rg->to)
750			break;
751
752	/* If we are below the current region then a new region is required.
753	 * Subtle, allocate a new region at the position but make it zero
754	 * size such that we can guarentee to record the reservation. */
755	if (&rg->link == head || t < rg->from) {
756		nrg = kmalloc(sizeof(*nrg), GFP_KERNEL);
757		if (nrg == 0)
758			return -ENOMEM;
759		nrg->from = f;
760		nrg->to   = f;
761		INIT_LIST_HEAD(&nrg->link);
762		list_add(&nrg->link, rg->link.prev);
763
764		return t - f;
765	}
766
767	/* Round our left edge to the current segment if it encloses us. */
768	if (f > rg->from)
769		f = rg->from;
770	chg = t - f;
771
772	/* Check for and consume any regions we now overlap with. */
773	list_for_each_entry(rg, rg->link.prev, link) {
774		if (&rg->link == head)
775			break;
776		if (rg->from > t)
777			return chg;
778
779		/* We overlap with this area, if it extends futher than
780		 * us then we must extend ourselves.  Account for its
781		 * existing reservation. */
782		if (rg->to > t) {
783			chg += rg->to - t;
784			t = rg->to;
785		}
786		chg -= rg->to - rg->from;
787	}
788	return chg;
789}
790
791static long region_truncate(struct list_head *head, long end)
792{
793	struct file_region *rg, *trg;
794	long chg = 0;
795
796	/* Locate the region we are either in or before. */
797	list_for_each_entry(rg, head, link)
798		if (end <= rg->to)
799			break;
800	if (&rg->link == head)
801		return 0;
802
803	/* If we are in the middle of a region then adjust it. */
804	if (end > rg->from) {
805		chg = rg->to - end;
806		rg->to = end;
807		rg = list_entry(rg->link.next, typeof(*rg), link);
808	}
809
810	/* Drop any remaining regions. */
811	list_for_each_entry_safe(rg, trg, rg->link.prev, link) {
812		if (&rg->link == head)
813			break;
814		chg += rg->to - rg->from;
815		list_del(&rg->link);
816		kfree(rg);
817	}
818	return chg;
819}
820
821static int hugetlb_acct_memory(long delta)
822{
823	int ret = -ENOMEM;
824
825	spin_lock(&hugetlb_lock);
826	if ((delta + resv_huge_pages) <= free_huge_pages) {
827		resv_huge_pages += delta;
828		ret = 0;
829	}
830	spin_unlock(&hugetlb_lock);
831	return ret;
832}
833
834int hugetlb_reserve_pages(struct inode *inode, long from, long to)
835{
836	long ret, chg;
837
838	chg = region_chg(&inode->i_mapping->private_list, from, to);
839	if (chg < 0)
840		return chg;
841	/*
842	 * When cpuset is configured, it breaks the strict hugetlb page
843	 * reservation as the accounting is done on a global variable. Such
844	 * reservation is completely rubbish in the presence of cpuset because
845	 * the reservation is not checked against page availability for the
846	 * current cpuset. Application can still potentially OOM'ed by kernel
847	 * with lack of free htlb page in cpuset that the task is in.
848	 * Attempt to enforce strict accounting with cpuset is almost
849	 * impossible (or too ugly) because cpuset is too fluid that
850	 * task or memory node can be dynamically moved between cpusets.
851	 *
852	 * The change of semantics for shared hugetlb mapping with cpuset is
853	 * undesirable. However, in order to preserve some of the semantics,
854	 * we fall back to check against current free page availability as
855	 * a best attempt and hopefully to minimize the impact of changing
856	 * semantics that cpuset has.
857	 */
858	if (chg > cpuset_mems_nr(free_huge_pages_node))
859		return -ENOMEM;
860
861	ret = hugetlb_acct_memory(chg);
862	if (ret < 0)
863		return ret;
864	region_add(&inode->i_mapping->private_list, from, to);
865	return 0;
866}
867
868void hugetlb_unreserve_pages(struct inode *inode, long offset, long freed)
869{
870	long chg = region_truncate(&inode->i_mapping->private_list, offset);
871	hugetlb_acct_memory(freed - chg);
872}
873