kmemleak.c revision 0494e08281d08f0a3dc442eb5e5cecc125b53b27
1/*
2 * mm/kmemleak.c
3 *
4 * Copyright (C) 2008 ARM Limited
5 * Written by Catalin Marinas <catalin.marinas@arm.com>
6 *
7 * This program is free software; you can redistribute it and/or modify
8 * it under the terms of the GNU General Public License version 2 as
9 * published by the Free Software Foundation.
10 *
11 * This program is distributed in the hope that it will be useful,
12 * but WITHOUT ANY WARRANTY; without even the implied warranty of
13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
14 * GNU General Public License for more details.
15 *
16 * You should have received a copy of the GNU General Public License
17 * along with this program; if not, write to the Free Software
18 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
19 *
20 *
21 * For more information on the algorithm and kmemleak usage, please see
22 * Documentation/kmemleak.txt.
23 *
24 * Notes on locking
25 * ----------------
26 *
27 * The following locks and mutexes are used by kmemleak:
28 *
29 * - kmemleak_lock (rwlock): protects the object_list modifications and
30 *   accesses to the object_tree_root. The object_list is the main list
31 *   holding the metadata (struct kmemleak_object) for the allocated memory
32 *   blocks. The object_tree_root is a priority search tree used to look-up
33 *   metadata based on a pointer to the corresponding memory block.  The
34 *   kmemleak_object structures are added to the object_list and
35 *   object_tree_root in the create_object() function called from the
36 *   kmemleak_alloc() callback and removed in delete_object() called from the
37 *   kmemleak_free() callback
38 * - kmemleak_object.lock (spinlock): protects a kmemleak_object. Accesses to
39 *   the metadata (e.g. count) are protected by this lock. Note that some
40 *   members of this structure may be protected by other means (atomic or
41 *   kmemleak_lock). This lock is also held when scanning the corresponding
42 *   memory block to avoid the kernel freeing it via the kmemleak_free()
43 *   callback. This is less heavyweight than holding a global lock like
44 *   kmemleak_lock during scanning
45 * - scan_mutex (mutex): ensures that only one thread may scan the memory for
46 *   unreferenced objects at a time. The gray_list contains the objects which
47 *   are already referenced or marked as false positives and need to be
48 *   scanned. This list is only modified during a scanning episode when the
49 *   scan_mutex is held. At the end of a scan, the gray_list is always empty.
50 *   Note that the kmemleak_object.use_count is incremented when an object is
51 *   added to the gray_list and therefore cannot be freed. This mutex also
52 *   prevents multiple users of the "kmemleak" debugfs file together with
53 *   modifications to the memory scanning parameters including the scan_thread
54 *   pointer
55 *
56 * The kmemleak_object structures have a use_count incremented or decremented
57 * using the get_object()/put_object() functions. When the use_count becomes
58 * 0, this count can no longer be incremented and put_object() schedules the
59 * kmemleak_object freeing via an RCU callback. All calls to the get_object()
60 * function must be protected by rcu_read_lock() to avoid accessing a freed
61 * structure.
62 */
63
64#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
65
66#include <linux/init.h>
67#include <linux/kernel.h>
68#include <linux/list.h>
69#include <linux/sched.h>
70#include <linux/jiffies.h>
71#include <linux/delay.h>
72#include <linux/module.h>
73#include <linux/kthread.h>
74#include <linux/prio_tree.h>
75#include <linux/gfp.h>
76#include <linux/fs.h>
77#include <linux/debugfs.h>
78#include <linux/seq_file.h>
79#include <linux/cpumask.h>
80#include <linux/spinlock.h>
81#include <linux/mutex.h>
82#include <linux/rcupdate.h>
83#include <linux/stacktrace.h>
84#include <linux/cache.h>
85#include <linux/percpu.h>
86#include <linux/hardirq.h>
87#include <linux/mmzone.h>
88#include <linux/slab.h>
89#include <linux/thread_info.h>
90#include <linux/err.h>
91#include <linux/uaccess.h>
92#include <linux/string.h>
93#include <linux/nodemask.h>
94#include <linux/mm.h>
95
96#include <asm/sections.h>
97#include <asm/processor.h>
98#include <asm/atomic.h>
99
100#include <linux/kmemleak.h>
101
102/*
103 * Kmemleak configuration and common defines.
104 */
105#define MAX_TRACE		16	/* stack trace length */
106#define MSECS_MIN_AGE		5000	/* minimum object age for reporting */
107#define SECS_FIRST_SCAN		60	/* delay before the first scan */
108#define SECS_SCAN_WAIT		600	/* subsequent auto scanning delay */
109#define GRAY_LIST_PASSES	25	/* maximum number of gray list scans */
110#define MAX_SCAN_SIZE		4096	/* maximum size of a scanned block */
111
112#define BYTES_PER_POINTER	sizeof(void *)
113
114/* GFP bitmask for kmemleak internal allocations */
115#define GFP_KMEMLEAK_MASK	(GFP_KERNEL | GFP_ATOMIC)
116
117/* scanning area inside a memory block */
118struct kmemleak_scan_area {
119	struct hlist_node node;
120	unsigned long offset;
121	size_t length;
122};
123
124/*
125 * Structure holding the metadata for each allocated memory block.
126 * Modifications to such objects should be made while holding the
127 * object->lock. Insertions or deletions from object_list, gray_list or
128 * tree_node are already protected by the corresponding locks or mutex (see
129 * the notes on locking above). These objects are reference-counted
130 * (use_count) and freed using the RCU mechanism.
131 */
132struct kmemleak_object {
133	spinlock_t lock;
134	unsigned long flags;		/* object status flags */
135	struct list_head object_list;
136	struct list_head gray_list;
137	struct prio_tree_node tree_node;
138	struct rcu_head rcu;		/* object_list lockless traversal */
139	/* object usage count; object freed when use_count == 0 */
140	atomic_t use_count;
141	unsigned long pointer;
142	size_t size;
143	/* minimum number of a pointers found before it is considered leak */
144	int min_count;
145	/* the total number of pointers found pointing to this object */
146	int count;
147	/* memory ranges to be scanned inside an object (empty for all) */
148	struct hlist_head area_list;
149	unsigned long trace[MAX_TRACE];
150	unsigned int trace_len;
151	unsigned long jiffies;		/* creation timestamp */
152	pid_t pid;			/* pid of the current task */
153	char comm[TASK_COMM_LEN];	/* executable name */
154};
155
156/* flag representing the memory block allocation status */
157#define OBJECT_ALLOCATED	(1 << 0)
158/* flag set after the first reporting of an unreference object */
159#define OBJECT_REPORTED		(1 << 1)
160/* flag set to not scan the object */
161#define OBJECT_NO_SCAN		(1 << 2)
162/* flag set on newly allocated objects */
163#define OBJECT_NEW		(1 << 3)
164
165/* number of bytes to print per line; must be 16 or 32 */
166#define HEX_ROW_SIZE		16
167/* number of bytes to print at a time (1, 2, 4, 8) */
168#define HEX_GROUP_SIZE		1
169/* include ASCII after the hex output */
170#define HEX_ASCII		1
171/* max number of lines to be printed */
172#define HEX_MAX_LINES		2
173
174/* the list of all allocated objects */
175static LIST_HEAD(object_list);
176/* the list of gray-colored objects (see color_gray comment below) */
177static LIST_HEAD(gray_list);
178/* prio search tree for object boundaries */
179static struct prio_tree_root object_tree_root;
180/* rw_lock protecting the access to object_list and prio_tree_root */
181static DEFINE_RWLOCK(kmemleak_lock);
182
183/* allocation caches for kmemleak internal data */
184static struct kmem_cache *object_cache;
185static struct kmem_cache *scan_area_cache;
186
187/* set if tracing memory operations is enabled */
188static atomic_t kmemleak_enabled = ATOMIC_INIT(0);
189/* set in the late_initcall if there were no errors */
190static atomic_t kmemleak_initialized = ATOMIC_INIT(0);
191/* enables or disables early logging of the memory operations */
192static atomic_t kmemleak_early_log = ATOMIC_INIT(1);
193/* set if a fata kmemleak error has occurred */
194static atomic_t kmemleak_error = ATOMIC_INIT(0);
195
196/* minimum and maximum address that may be valid pointers */
197static unsigned long min_addr = ULONG_MAX;
198static unsigned long max_addr;
199
200static struct task_struct *scan_thread;
201/* used to avoid reporting of recently allocated objects */
202static unsigned long jiffies_min_age;
203static unsigned long jiffies_last_scan;
204/* delay between automatic memory scannings */
205static signed long jiffies_scan_wait;
206/* enables or disables the task stacks scanning */
207static int kmemleak_stack_scan = 1;
208/* protects the memory scanning, parameters and debug/kmemleak file access */
209static DEFINE_MUTEX(scan_mutex);
210
211/*
212 * Early object allocation/freeing logging. Kmemleak is initialized after the
213 * kernel allocator. However, both the kernel allocator and kmemleak may
214 * allocate memory blocks which need to be tracked. Kmemleak defines an
215 * arbitrary buffer to hold the allocation/freeing information before it is
216 * fully initialized.
217 */
218
219/* kmemleak operation type for early logging */
220enum {
221	KMEMLEAK_ALLOC,
222	KMEMLEAK_FREE,
223	KMEMLEAK_FREE_PART,
224	KMEMLEAK_NOT_LEAK,
225	KMEMLEAK_IGNORE,
226	KMEMLEAK_SCAN_AREA,
227	KMEMLEAK_NO_SCAN
228};
229
230/*
231 * Structure holding the information passed to kmemleak callbacks during the
232 * early logging.
233 */
234struct early_log {
235	int op_type;			/* kmemleak operation type */
236	const void *ptr;		/* allocated/freed memory block */
237	size_t size;			/* memory block size */
238	int min_count;			/* minimum reference count */
239	unsigned long offset;		/* scan area offset */
240	size_t length;			/* scan area length */
241	unsigned long trace[MAX_TRACE];	/* stack trace */
242	unsigned int trace_len;		/* stack trace length */
243};
244
245/* early logging buffer and current position */
246static struct early_log
247	early_log[CONFIG_DEBUG_KMEMLEAK_EARLY_LOG_SIZE] __initdata;
248static int crt_early_log __initdata;
249
250static void kmemleak_disable(void);
251
252/*
253 * Print a warning and dump the stack trace.
254 */
255#define kmemleak_warn(x...)	do {	\
256	pr_warning(x);			\
257	dump_stack();			\
258} while (0)
259
260/*
261 * Macro invoked when a serious kmemleak condition occured and cannot be
262 * recovered from. Kmemleak will be disabled and further allocation/freeing
263 * tracing no longer available.
264 */
265#define kmemleak_stop(x...)	do {	\
266	kmemleak_warn(x);		\
267	kmemleak_disable();		\
268} while (0)
269
270/*
271 * Printing of the objects hex dump to the seq file. The number of lines to be
272 * printed is limited to HEX_MAX_LINES to prevent seq file spamming. The
273 * actual number of printed bytes depends on HEX_ROW_SIZE. It must be called
274 * with the object->lock held.
275 */
276static void hex_dump_object(struct seq_file *seq,
277			    struct kmemleak_object *object)
278{
279	const u8 *ptr = (const u8 *)object->pointer;
280	int i, len, remaining;
281	unsigned char linebuf[HEX_ROW_SIZE * 5];
282
283	/* limit the number of lines to HEX_MAX_LINES */
284	remaining = len =
285		min(object->size, (size_t)(HEX_MAX_LINES * HEX_ROW_SIZE));
286
287	seq_printf(seq, "  hex dump (first %d bytes):\n", len);
288	for (i = 0; i < len; i += HEX_ROW_SIZE) {
289		int linelen = min(remaining, HEX_ROW_SIZE);
290
291		remaining -= HEX_ROW_SIZE;
292		hex_dump_to_buffer(ptr + i, linelen, HEX_ROW_SIZE,
293				   HEX_GROUP_SIZE, linebuf, sizeof(linebuf),
294				   HEX_ASCII);
295		seq_printf(seq, "    %s\n", linebuf);
296	}
297}
298
299/*
300 * Object colors, encoded with count and min_count:
301 * - white - orphan object, not enough references to it (count < min_count)
302 * - gray  - not orphan, not marked as false positive (min_count == 0) or
303 *		sufficient references to it (count >= min_count)
304 * - black - ignore, it doesn't contain references (e.g. text section)
305 *		(min_count == -1). No function defined for this color.
306 * Newly created objects don't have any color assigned (object->count == -1)
307 * before the next memory scan when they become white.
308 */
309static int color_white(const struct kmemleak_object *object)
310{
311	return object->count != -1 && object->count < object->min_count;
312}
313
314static int color_gray(const struct kmemleak_object *object)
315{
316	return object->min_count != -1 && object->count >= object->min_count;
317}
318
319static int color_black(const struct kmemleak_object *object)
320{
321	return object->min_count == -1;
322}
323
324/*
325 * Objects are considered unreferenced only if their color is white, they have
326 * not be deleted and have a minimum age to avoid false positives caused by
327 * pointers temporarily stored in CPU registers.
328 */
329static int unreferenced_object(struct kmemleak_object *object)
330{
331	return (object->flags & OBJECT_ALLOCATED) && color_white(object) &&
332		time_before_eq(object->jiffies + jiffies_min_age,
333			       jiffies_last_scan);
334}
335
336/*
337 * Printing of the unreferenced objects information to the seq file. The
338 * print_unreferenced function must be called with the object->lock held.
339 */
340static void print_unreferenced(struct seq_file *seq,
341			       struct kmemleak_object *object)
342{
343	int i;
344
345	seq_printf(seq, "unreferenced object 0x%08lx (size %zu):\n",
346		   object->pointer, object->size);
347	seq_printf(seq, "  comm \"%s\", pid %d, jiffies %lu\n",
348		   object->comm, object->pid, object->jiffies);
349	hex_dump_object(seq, object);
350	seq_printf(seq, "  backtrace:\n");
351
352	for (i = 0; i < object->trace_len; i++) {
353		void *ptr = (void *)object->trace[i];
354		seq_printf(seq, "    [<%p>] %pS\n", ptr, ptr);
355	}
356}
357
358/*
359 * Print the kmemleak_object information. This function is used mainly for
360 * debugging special cases when kmemleak operations. It must be called with
361 * the object->lock held.
362 */
363static void dump_object_info(struct kmemleak_object *object)
364{
365	struct stack_trace trace;
366
367	trace.nr_entries = object->trace_len;
368	trace.entries = object->trace;
369
370	pr_notice("Object 0x%08lx (size %zu):\n",
371		  object->tree_node.start, object->size);
372	pr_notice("  comm \"%s\", pid %d, jiffies %lu\n",
373		  object->comm, object->pid, object->jiffies);
374	pr_notice("  min_count = %d\n", object->min_count);
375	pr_notice("  count = %d\n", object->count);
376	pr_notice("  flags = 0x%lx\n", object->flags);
377	pr_notice("  backtrace:\n");
378	print_stack_trace(&trace, 4);
379}
380
381/*
382 * Look-up a memory block metadata (kmemleak_object) in the priority search
383 * tree based on a pointer value. If alias is 0, only values pointing to the
384 * beginning of the memory block are allowed. The kmemleak_lock must be held
385 * when calling this function.
386 */
387static struct kmemleak_object *lookup_object(unsigned long ptr, int alias)
388{
389	struct prio_tree_node *node;
390	struct prio_tree_iter iter;
391	struct kmemleak_object *object;
392
393	prio_tree_iter_init(&iter, &object_tree_root, ptr, ptr);
394	node = prio_tree_next(&iter);
395	if (node) {
396		object = prio_tree_entry(node, struct kmemleak_object,
397					 tree_node);
398		if (!alias && object->pointer != ptr) {
399			kmemleak_warn("Found object by alias");
400			object = NULL;
401		}
402	} else
403		object = NULL;
404
405	return object;
406}
407
408/*
409 * Increment the object use_count. Return 1 if successful or 0 otherwise. Note
410 * that once an object's use_count reached 0, the RCU freeing was already
411 * registered and the object should no longer be used. This function must be
412 * called under the protection of rcu_read_lock().
413 */
414static int get_object(struct kmemleak_object *object)
415{
416	return atomic_inc_not_zero(&object->use_count);
417}
418
419/*
420 * RCU callback to free a kmemleak_object.
421 */
422static void free_object_rcu(struct rcu_head *rcu)
423{
424	struct hlist_node *elem, *tmp;
425	struct kmemleak_scan_area *area;
426	struct kmemleak_object *object =
427		container_of(rcu, struct kmemleak_object, rcu);
428
429	/*
430	 * Once use_count is 0 (guaranteed by put_object), there is no other
431	 * code accessing this object, hence no need for locking.
432	 */
433	hlist_for_each_entry_safe(area, elem, tmp, &object->area_list, node) {
434		hlist_del(elem);
435		kmem_cache_free(scan_area_cache, area);
436	}
437	kmem_cache_free(object_cache, object);
438}
439
440/*
441 * Decrement the object use_count. Once the count is 0, free the object using
442 * an RCU callback. Since put_object() may be called via the kmemleak_free() ->
443 * delete_object() path, the delayed RCU freeing ensures that there is no
444 * recursive call to the kernel allocator. Lock-less RCU object_list traversal
445 * is also possible.
446 */
447static void put_object(struct kmemleak_object *object)
448{
449	if (!atomic_dec_and_test(&object->use_count))
450		return;
451
452	/* should only get here after delete_object was called */
453	WARN_ON(object->flags & OBJECT_ALLOCATED);
454
455	call_rcu(&object->rcu, free_object_rcu);
456}
457
458/*
459 * Look up an object in the prio search tree and increase its use_count.
460 */
461static struct kmemleak_object *find_and_get_object(unsigned long ptr, int alias)
462{
463	unsigned long flags;
464	struct kmemleak_object *object = NULL;
465
466	rcu_read_lock();
467	read_lock_irqsave(&kmemleak_lock, flags);
468	if (ptr >= min_addr && ptr < max_addr)
469		object = lookup_object(ptr, alias);
470	read_unlock_irqrestore(&kmemleak_lock, flags);
471
472	/* check whether the object is still available */
473	if (object && !get_object(object))
474		object = NULL;
475	rcu_read_unlock();
476
477	return object;
478}
479
480/*
481 * Save stack trace to the given array of MAX_TRACE size.
482 */
483static int __save_stack_trace(unsigned long *trace)
484{
485	struct stack_trace stack_trace;
486
487	stack_trace.max_entries = MAX_TRACE;
488	stack_trace.nr_entries = 0;
489	stack_trace.entries = trace;
490	stack_trace.skip = 2;
491	save_stack_trace(&stack_trace);
492
493	return stack_trace.nr_entries;
494}
495
496/*
497 * Create the metadata (struct kmemleak_object) corresponding to an allocated
498 * memory block and add it to the object_list and object_tree_root.
499 */
500static struct kmemleak_object *create_object(unsigned long ptr, size_t size,
501					     int min_count, gfp_t gfp)
502{
503	unsigned long flags;
504	struct kmemleak_object *object;
505	struct prio_tree_node *node;
506
507	object = kmem_cache_alloc(object_cache, gfp & GFP_KMEMLEAK_MASK);
508	if (!object) {
509		kmemleak_stop("Cannot allocate a kmemleak_object structure\n");
510		return NULL;
511	}
512
513	INIT_LIST_HEAD(&object->object_list);
514	INIT_LIST_HEAD(&object->gray_list);
515	INIT_HLIST_HEAD(&object->area_list);
516	spin_lock_init(&object->lock);
517	atomic_set(&object->use_count, 1);
518	object->flags = OBJECT_ALLOCATED | OBJECT_NEW;
519	object->pointer = ptr;
520	object->size = size;
521	object->min_count = min_count;
522	object->count = -1;			/* no color initially */
523	object->jiffies = jiffies;
524
525	/* task information */
526	if (in_irq()) {
527		object->pid = 0;
528		strncpy(object->comm, "hardirq", sizeof(object->comm));
529	} else if (in_softirq()) {
530		object->pid = 0;
531		strncpy(object->comm, "softirq", sizeof(object->comm));
532	} else {
533		object->pid = current->pid;
534		/*
535		 * There is a small chance of a race with set_task_comm(),
536		 * however using get_task_comm() here may cause locking
537		 * dependency issues with current->alloc_lock. In the worst
538		 * case, the command line is not correct.
539		 */
540		strncpy(object->comm, current->comm, sizeof(object->comm));
541	}
542
543	/* kernel backtrace */
544	object->trace_len = __save_stack_trace(object->trace);
545
546	INIT_PRIO_TREE_NODE(&object->tree_node);
547	object->tree_node.start = ptr;
548	object->tree_node.last = ptr + size - 1;
549
550	write_lock_irqsave(&kmemleak_lock, flags);
551	min_addr = min(min_addr, ptr);
552	max_addr = max(max_addr, ptr + size);
553	node = prio_tree_insert(&object_tree_root, &object->tree_node);
554	/*
555	 * The code calling the kernel does not yet have the pointer to the
556	 * memory block to be able to free it.  However, we still hold the
557	 * kmemleak_lock here in case parts of the kernel started freeing
558	 * random memory blocks.
559	 */
560	if (node != &object->tree_node) {
561		unsigned long flags;
562
563		kmemleak_stop("Cannot insert 0x%lx into the object search tree "
564			      "(already existing)\n", ptr);
565		object = lookup_object(ptr, 1);
566		spin_lock_irqsave(&object->lock, flags);
567		dump_object_info(object);
568		spin_unlock_irqrestore(&object->lock, flags);
569
570		goto out;
571	}
572	list_add_tail_rcu(&object->object_list, &object_list);
573out:
574	write_unlock_irqrestore(&kmemleak_lock, flags);
575	return object;
576}
577
578/*
579 * Remove the metadata (struct kmemleak_object) for a memory block from the
580 * object_list and object_tree_root and decrement its use_count.
581 */
582static void __delete_object(struct kmemleak_object *object)
583{
584	unsigned long flags;
585
586	write_lock_irqsave(&kmemleak_lock, flags);
587	prio_tree_remove(&object_tree_root, &object->tree_node);
588	list_del_rcu(&object->object_list);
589	write_unlock_irqrestore(&kmemleak_lock, flags);
590
591	WARN_ON(!(object->flags & OBJECT_ALLOCATED));
592	WARN_ON(atomic_read(&object->use_count) < 2);
593
594	/*
595	 * Locking here also ensures that the corresponding memory block
596	 * cannot be freed when it is being scanned.
597	 */
598	spin_lock_irqsave(&object->lock, flags);
599	object->flags &= ~OBJECT_ALLOCATED;
600	spin_unlock_irqrestore(&object->lock, flags);
601	put_object(object);
602}
603
604/*
605 * Look up the metadata (struct kmemleak_object) corresponding to ptr and
606 * delete it.
607 */
608static void delete_object_full(unsigned long ptr)
609{
610	struct kmemleak_object *object;
611
612	object = find_and_get_object(ptr, 0);
613	if (!object) {
614#ifdef DEBUG
615		kmemleak_warn("Freeing unknown object at 0x%08lx\n",
616			      ptr);
617#endif
618		return;
619	}
620	__delete_object(object);
621	put_object(object);
622}
623
624/*
625 * Look up the metadata (struct kmemleak_object) corresponding to ptr and
626 * delete it. If the memory block is partially freed, the function may create
627 * additional metadata for the remaining parts of the block.
628 */
629static void delete_object_part(unsigned long ptr, size_t size)
630{
631	struct kmemleak_object *object;
632	unsigned long start, end;
633
634	object = find_and_get_object(ptr, 1);
635	if (!object) {
636#ifdef DEBUG
637		kmemleak_warn("Partially freeing unknown object at 0x%08lx "
638			      "(size %zu)\n", ptr, size);
639#endif
640		return;
641	}
642	__delete_object(object);
643
644	/*
645	 * Create one or two objects that may result from the memory block
646	 * split. Note that partial freeing is only done by free_bootmem() and
647	 * this happens before kmemleak_init() is called. The path below is
648	 * only executed during early log recording in kmemleak_init(), so
649	 * GFP_KERNEL is enough.
650	 */
651	start = object->pointer;
652	end = object->pointer + object->size;
653	if (ptr > start)
654		create_object(start, ptr - start, object->min_count,
655			      GFP_KERNEL);
656	if (ptr + size < end)
657		create_object(ptr + size, end - ptr - size, object->min_count,
658			      GFP_KERNEL);
659
660	put_object(object);
661}
662/*
663 * Make a object permanently as gray-colored so that it can no longer be
664 * reported as a leak. This is used in general to mark a false positive.
665 */
666static void make_gray_object(unsigned long ptr)
667{
668	unsigned long flags;
669	struct kmemleak_object *object;
670
671	object = find_and_get_object(ptr, 0);
672	if (!object) {
673		kmemleak_warn("Graying unknown object at 0x%08lx\n", ptr);
674		return;
675	}
676
677	spin_lock_irqsave(&object->lock, flags);
678	object->min_count = 0;
679	spin_unlock_irqrestore(&object->lock, flags);
680	put_object(object);
681}
682
683/*
684 * Mark the object as black-colored so that it is ignored from scans and
685 * reporting.
686 */
687static void make_black_object(unsigned long ptr)
688{
689	unsigned long flags;
690	struct kmemleak_object *object;
691
692	object = find_and_get_object(ptr, 0);
693	if (!object) {
694		kmemleak_warn("Blacking unknown object at 0x%08lx\n", ptr);
695		return;
696	}
697
698	spin_lock_irqsave(&object->lock, flags);
699	object->min_count = -1;
700	object->flags |= OBJECT_NO_SCAN;
701	spin_unlock_irqrestore(&object->lock, flags);
702	put_object(object);
703}
704
705/*
706 * Add a scanning area to the object. If at least one such area is added,
707 * kmemleak will only scan these ranges rather than the whole memory block.
708 */
709static void add_scan_area(unsigned long ptr, unsigned long offset,
710			  size_t length, gfp_t gfp)
711{
712	unsigned long flags;
713	struct kmemleak_object *object;
714	struct kmemleak_scan_area *area;
715
716	object = find_and_get_object(ptr, 0);
717	if (!object) {
718		kmemleak_warn("Adding scan area to unknown object at 0x%08lx\n",
719			      ptr);
720		return;
721	}
722
723	area = kmem_cache_alloc(scan_area_cache, gfp & GFP_KMEMLEAK_MASK);
724	if (!area) {
725		kmemleak_warn("Cannot allocate a scan area\n");
726		goto out;
727	}
728
729	spin_lock_irqsave(&object->lock, flags);
730	if (offset + length > object->size) {
731		kmemleak_warn("Scan area larger than object 0x%08lx\n", ptr);
732		dump_object_info(object);
733		kmem_cache_free(scan_area_cache, area);
734		goto out_unlock;
735	}
736
737	INIT_HLIST_NODE(&area->node);
738	area->offset = offset;
739	area->length = length;
740
741	hlist_add_head(&area->node, &object->area_list);
742out_unlock:
743	spin_unlock_irqrestore(&object->lock, flags);
744out:
745	put_object(object);
746}
747
748/*
749 * Set the OBJECT_NO_SCAN flag for the object corresponding to the give
750 * pointer. Such object will not be scanned by kmemleak but references to it
751 * are searched.
752 */
753static void object_no_scan(unsigned long ptr)
754{
755	unsigned long flags;
756	struct kmemleak_object *object;
757
758	object = find_and_get_object(ptr, 0);
759	if (!object) {
760		kmemleak_warn("Not scanning unknown object at 0x%08lx\n", ptr);
761		return;
762	}
763
764	spin_lock_irqsave(&object->lock, flags);
765	object->flags |= OBJECT_NO_SCAN;
766	spin_unlock_irqrestore(&object->lock, flags);
767	put_object(object);
768}
769
770/*
771 * Log an early kmemleak_* call to the early_log buffer. These calls will be
772 * processed later once kmemleak is fully initialized.
773 */
774static void __init log_early(int op_type, const void *ptr, size_t size,
775			     int min_count, unsigned long offset, size_t length)
776{
777	unsigned long flags;
778	struct early_log *log;
779
780	if (crt_early_log >= ARRAY_SIZE(early_log)) {
781		pr_warning("Early log buffer exceeded\n");
782		kmemleak_disable();
783		return;
784	}
785
786	/*
787	 * There is no need for locking since the kernel is still in UP mode
788	 * at this stage. Disabling the IRQs is enough.
789	 */
790	local_irq_save(flags);
791	log = &early_log[crt_early_log];
792	log->op_type = op_type;
793	log->ptr = ptr;
794	log->size = size;
795	log->min_count = min_count;
796	log->offset = offset;
797	log->length = length;
798	if (op_type == KMEMLEAK_ALLOC)
799		log->trace_len = __save_stack_trace(log->trace);
800	crt_early_log++;
801	local_irq_restore(flags);
802}
803
804/*
805 * Log an early allocated block and populate the stack trace.
806 */
807static void early_alloc(struct early_log *log)
808{
809	struct kmemleak_object *object;
810	unsigned long flags;
811	int i;
812
813	if (!atomic_read(&kmemleak_enabled) || !log->ptr || IS_ERR(log->ptr))
814		return;
815
816	/*
817	 * RCU locking needed to ensure object is not freed via put_object().
818	 */
819	rcu_read_lock();
820	object = create_object((unsigned long)log->ptr, log->size,
821			       log->min_count, GFP_KERNEL);
822	spin_lock_irqsave(&object->lock, flags);
823	for (i = 0; i < log->trace_len; i++)
824		object->trace[i] = log->trace[i];
825	object->trace_len = log->trace_len;
826	spin_unlock_irqrestore(&object->lock, flags);
827	rcu_read_unlock();
828}
829
830/*
831 * Memory allocation function callback. This function is called from the
832 * kernel allocators when a new block is allocated (kmem_cache_alloc, kmalloc,
833 * vmalloc etc.).
834 */
835void __ref kmemleak_alloc(const void *ptr, size_t size, int min_count,
836			  gfp_t gfp)
837{
838	pr_debug("%s(0x%p, %zu, %d)\n", __func__, ptr, size, min_count);
839
840	if (atomic_read(&kmemleak_enabled) && ptr && !IS_ERR(ptr))
841		create_object((unsigned long)ptr, size, min_count, gfp);
842	else if (atomic_read(&kmemleak_early_log))
843		log_early(KMEMLEAK_ALLOC, ptr, size, min_count, 0, 0);
844}
845EXPORT_SYMBOL_GPL(kmemleak_alloc);
846
847/*
848 * Memory freeing function callback. This function is called from the kernel
849 * allocators when a block is freed (kmem_cache_free, kfree, vfree etc.).
850 */
851void __ref kmemleak_free(const void *ptr)
852{
853	pr_debug("%s(0x%p)\n", __func__, ptr);
854
855	if (atomic_read(&kmemleak_enabled) && ptr && !IS_ERR(ptr))
856		delete_object_full((unsigned long)ptr);
857	else if (atomic_read(&kmemleak_early_log))
858		log_early(KMEMLEAK_FREE, ptr, 0, 0, 0, 0);
859}
860EXPORT_SYMBOL_GPL(kmemleak_free);
861
862/*
863 * Partial memory freeing function callback. This function is usually called
864 * from bootmem allocator when (part of) a memory block is freed.
865 */
866void __ref kmemleak_free_part(const void *ptr, size_t size)
867{
868	pr_debug("%s(0x%p)\n", __func__, ptr);
869
870	if (atomic_read(&kmemleak_enabled) && ptr && !IS_ERR(ptr))
871		delete_object_part((unsigned long)ptr, size);
872	else if (atomic_read(&kmemleak_early_log))
873		log_early(KMEMLEAK_FREE_PART, ptr, size, 0, 0, 0);
874}
875EXPORT_SYMBOL_GPL(kmemleak_free_part);
876
877/*
878 * Mark an already allocated memory block as a false positive. This will cause
879 * the block to no longer be reported as leak and always be scanned.
880 */
881void __ref kmemleak_not_leak(const void *ptr)
882{
883	pr_debug("%s(0x%p)\n", __func__, ptr);
884
885	if (atomic_read(&kmemleak_enabled) && ptr && !IS_ERR(ptr))
886		make_gray_object((unsigned long)ptr);
887	else if (atomic_read(&kmemleak_early_log))
888		log_early(KMEMLEAK_NOT_LEAK, ptr, 0, 0, 0, 0);
889}
890EXPORT_SYMBOL(kmemleak_not_leak);
891
892/*
893 * Ignore a memory block. This is usually done when it is known that the
894 * corresponding block is not a leak and does not contain any references to
895 * other allocated memory blocks.
896 */
897void __ref kmemleak_ignore(const void *ptr)
898{
899	pr_debug("%s(0x%p)\n", __func__, ptr);
900
901	if (atomic_read(&kmemleak_enabled) && ptr && !IS_ERR(ptr))
902		make_black_object((unsigned long)ptr);
903	else if (atomic_read(&kmemleak_early_log))
904		log_early(KMEMLEAK_IGNORE, ptr, 0, 0, 0, 0);
905}
906EXPORT_SYMBOL(kmemleak_ignore);
907
908/*
909 * Limit the range to be scanned in an allocated memory block.
910 */
911void __ref kmemleak_scan_area(const void *ptr, unsigned long offset,
912			      size_t length, gfp_t gfp)
913{
914	pr_debug("%s(0x%p)\n", __func__, ptr);
915
916	if (atomic_read(&kmemleak_enabled) && ptr && !IS_ERR(ptr))
917		add_scan_area((unsigned long)ptr, offset, length, gfp);
918	else if (atomic_read(&kmemleak_early_log))
919		log_early(KMEMLEAK_SCAN_AREA, ptr, 0, 0, offset, length);
920}
921EXPORT_SYMBOL(kmemleak_scan_area);
922
923/*
924 * Inform kmemleak not to scan the given memory block.
925 */
926void __ref kmemleak_no_scan(const void *ptr)
927{
928	pr_debug("%s(0x%p)\n", __func__, ptr);
929
930	if (atomic_read(&kmemleak_enabled) && ptr && !IS_ERR(ptr))
931		object_no_scan((unsigned long)ptr);
932	else if (atomic_read(&kmemleak_early_log))
933		log_early(KMEMLEAK_NO_SCAN, ptr, 0, 0, 0, 0);
934}
935EXPORT_SYMBOL(kmemleak_no_scan);
936
937/*
938 * Memory scanning is a long process and it needs to be interruptable. This
939 * function checks whether such interrupt condition occured.
940 */
941static int scan_should_stop(void)
942{
943	if (!atomic_read(&kmemleak_enabled))
944		return 1;
945
946	/*
947	 * This function may be called from either process or kthread context,
948	 * hence the need to check for both stop conditions.
949	 */
950	if (current->mm)
951		return signal_pending(current);
952	else
953		return kthread_should_stop();
954
955	return 0;
956}
957
958/*
959 * Scan a memory block (exclusive range) for valid pointers and add those
960 * found to the gray list.
961 */
962static void scan_block(void *_start, void *_end,
963		       struct kmemleak_object *scanned, int allow_resched)
964{
965	unsigned long *ptr;
966	unsigned long *start = PTR_ALIGN(_start, BYTES_PER_POINTER);
967	unsigned long *end = _end - (BYTES_PER_POINTER - 1);
968
969	for (ptr = start; ptr < end; ptr++) {
970		unsigned long flags;
971		unsigned long pointer = *ptr;
972		struct kmemleak_object *object;
973
974		if (allow_resched)
975			cond_resched();
976		if (scan_should_stop())
977			break;
978
979		object = find_and_get_object(pointer, 1);
980		if (!object)
981			continue;
982		if (object == scanned) {
983			/* self referenced, ignore */
984			put_object(object);
985			continue;
986		}
987
988		/*
989		 * Avoid the lockdep recursive warning on object->lock being
990		 * previously acquired in scan_object(). These locks are
991		 * enclosed by scan_mutex.
992		 */
993		spin_lock_irqsave_nested(&object->lock, flags,
994					 SINGLE_DEPTH_NESTING);
995		if (!color_white(object)) {
996			/* non-orphan, ignored or new */
997			spin_unlock_irqrestore(&object->lock, flags);
998			put_object(object);
999			continue;
1000		}
1001
1002		/*
1003		 * Increase the object's reference count (number of pointers
1004		 * to the memory block). If this count reaches the required
1005		 * minimum, the object's color will become gray and it will be
1006		 * added to the gray_list.
1007		 */
1008		object->count++;
1009		if (color_gray(object))
1010			list_add_tail(&object->gray_list, &gray_list);
1011		else
1012			put_object(object);
1013		spin_unlock_irqrestore(&object->lock, flags);
1014	}
1015}
1016
1017/*
1018 * Scan a memory block corresponding to a kmemleak_object. A condition is
1019 * that object->use_count >= 1.
1020 */
1021static void scan_object(struct kmemleak_object *object)
1022{
1023	struct kmemleak_scan_area *area;
1024	struct hlist_node *elem;
1025	unsigned long flags;
1026
1027	/*
1028	 * Once the object->lock is aquired, the corresponding memory block
1029	 * cannot be freed (the same lock is aquired in delete_object).
1030	 */
1031	spin_lock_irqsave(&object->lock, flags);
1032	if (object->flags & OBJECT_NO_SCAN)
1033		goto out;
1034	if (!(object->flags & OBJECT_ALLOCATED))
1035		/* already freed object */
1036		goto out;
1037	if (hlist_empty(&object->area_list)) {
1038		void *start = (void *)object->pointer;
1039		void *end = (void *)(object->pointer + object->size);
1040
1041		while (start < end && (object->flags & OBJECT_ALLOCATED) &&
1042		       !(object->flags & OBJECT_NO_SCAN)) {
1043			scan_block(start, min(start + MAX_SCAN_SIZE, end),
1044				   object, 0);
1045			start += MAX_SCAN_SIZE;
1046
1047			spin_unlock_irqrestore(&object->lock, flags);
1048			cond_resched();
1049			spin_lock_irqsave(&object->lock, flags);
1050		}
1051	} else
1052		hlist_for_each_entry(area, elem, &object->area_list, node)
1053			scan_block((void *)(object->pointer + area->offset),
1054				   (void *)(object->pointer + area->offset
1055					    + area->length), object, 0);
1056out:
1057	spin_unlock_irqrestore(&object->lock, flags);
1058}
1059
1060/*
1061 * Scan data sections and all the referenced memory blocks allocated via the
1062 * kernel's standard allocators. This function must be called with the
1063 * scan_mutex held.
1064 */
1065static void kmemleak_scan(void)
1066{
1067	unsigned long flags;
1068	struct kmemleak_object *object, *tmp;
1069	struct task_struct *task;
1070	int i;
1071	int new_leaks = 0;
1072	int gray_list_pass = 0;
1073
1074	jiffies_last_scan = jiffies;
1075
1076	/* prepare the kmemleak_object's */
1077	rcu_read_lock();
1078	list_for_each_entry_rcu(object, &object_list, object_list) {
1079		spin_lock_irqsave(&object->lock, flags);
1080#ifdef DEBUG
1081		/*
1082		 * With a few exceptions there should be a maximum of
1083		 * 1 reference to any object at this point.
1084		 */
1085		if (atomic_read(&object->use_count) > 1) {
1086			pr_debug("object->use_count = %d\n",
1087				 atomic_read(&object->use_count));
1088			dump_object_info(object);
1089		}
1090#endif
1091		/* reset the reference count (whiten the object) */
1092		object->count = 0;
1093		object->flags &= ~OBJECT_NEW;
1094		if (color_gray(object) && get_object(object))
1095			list_add_tail(&object->gray_list, &gray_list);
1096
1097		spin_unlock_irqrestore(&object->lock, flags);
1098	}
1099	rcu_read_unlock();
1100
1101	/* data/bss scanning */
1102	scan_block(_sdata, _edata, NULL, 1);
1103	scan_block(__bss_start, __bss_stop, NULL, 1);
1104
1105#ifdef CONFIG_SMP
1106	/* per-cpu sections scanning */
1107	for_each_possible_cpu(i)
1108		scan_block(__per_cpu_start + per_cpu_offset(i),
1109			   __per_cpu_end + per_cpu_offset(i), NULL, 1);
1110#endif
1111
1112	/*
1113	 * Struct page scanning for each node. The code below is not yet safe
1114	 * with MEMORY_HOTPLUG.
1115	 */
1116	for_each_online_node(i) {
1117		pg_data_t *pgdat = NODE_DATA(i);
1118		unsigned long start_pfn = pgdat->node_start_pfn;
1119		unsigned long end_pfn = start_pfn + pgdat->node_spanned_pages;
1120		unsigned long pfn;
1121
1122		for (pfn = start_pfn; pfn < end_pfn; pfn++) {
1123			struct page *page;
1124
1125			if (!pfn_valid(pfn))
1126				continue;
1127			page = pfn_to_page(pfn);
1128			/* only scan if page is in use */
1129			if (page_count(page) == 0)
1130				continue;
1131			scan_block(page, page + 1, NULL, 1);
1132		}
1133	}
1134
1135	/*
1136	 * Scanning the task stacks may introduce false negatives and it is
1137	 * not enabled by default.
1138	 */
1139	if (kmemleak_stack_scan) {
1140		read_lock(&tasklist_lock);
1141		for_each_process(task)
1142			scan_block(task_stack_page(task),
1143				   task_stack_page(task) + THREAD_SIZE,
1144				   NULL, 0);
1145		read_unlock(&tasklist_lock);
1146	}
1147
1148	/*
1149	 * Scan the objects already referenced from the sections scanned
1150	 * above. More objects will be referenced and, if there are no memory
1151	 * leaks, all the objects will be scanned. The list traversal is safe
1152	 * for both tail additions and removals from inside the loop. The
1153	 * kmemleak objects cannot be freed from outside the loop because their
1154	 * use_count was increased.
1155	 */
1156repeat:
1157	object = list_entry(gray_list.next, typeof(*object), gray_list);
1158	while (&object->gray_list != &gray_list) {
1159		cond_resched();
1160
1161		/* may add new objects to the list */
1162		if (!scan_should_stop())
1163			scan_object(object);
1164
1165		tmp = list_entry(object->gray_list.next, typeof(*object),
1166				 gray_list);
1167
1168		/* remove the object from the list and release it */
1169		list_del(&object->gray_list);
1170		put_object(object);
1171
1172		object = tmp;
1173	}
1174
1175	if (scan_should_stop() || ++gray_list_pass >= GRAY_LIST_PASSES)
1176		goto scan_end;
1177
1178	/*
1179	 * Check for new objects allocated during this scanning and add them
1180	 * to the gray list.
1181	 */
1182	rcu_read_lock();
1183	list_for_each_entry_rcu(object, &object_list, object_list) {
1184		spin_lock_irqsave(&object->lock, flags);
1185		if ((object->flags & OBJECT_NEW) && !color_black(object) &&
1186		    get_object(object)) {
1187			object->flags &= ~OBJECT_NEW;
1188			list_add_tail(&object->gray_list, &gray_list);
1189		}
1190		spin_unlock_irqrestore(&object->lock, flags);
1191	}
1192	rcu_read_unlock();
1193
1194	if (!list_empty(&gray_list))
1195		goto repeat;
1196
1197scan_end:
1198	WARN_ON(!list_empty(&gray_list));
1199
1200	/*
1201	 * If scanning was stopped or new objects were being allocated at a
1202	 * higher rate than gray list scanning, do not report any new
1203	 * unreferenced objects.
1204	 */
1205	if (scan_should_stop() || gray_list_pass >= GRAY_LIST_PASSES)
1206		return;
1207
1208	/*
1209	 * Scanning result reporting.
1210	 */
1211	rcu_read_lock();
1212	list_for_each_entry_rcu(object, &object_list, object_list) {
1213		spin_lock_irqsave(&object->lock, flags);
1214		if (unreferenced_object(object) &&
1215		    !(object->flags & OBJECT_REPORTED)) {
1216			object->flags |= OBJECT_REPORTED;
1217			new_leaks++;
1218		}
1219		spin_unlock_irqrestore(&object->lock, flags);
1220	}
1221	rcu_read_unlock();
1222
1223	if (new_leaks)
1224		pr_info("%d new suspected memory leaks (see "
1225			"/sys/kernel/debug/kmemleak)\n", new_leaks);
1226
1227}
1228
1229/*
1230 * Thread function performing automatic memory scanning. Unreferenced objects
1231 * at the end of a memory scan are reported but only the first time.
1232 */
1233static int kmemleak_scan_thread(void *arg)
1234{
1235	static int first_run = 1;
1236
1237	pr_info("Automatic memory scanning thread started\n");
1238	set_user_nice(current, 10);
1239
1240	/*
1241	 * Wait before the first scan to allow the system to fully initialize.
1242	 */
1243	if (first_run) {
1244		first_run = 0;
1245		ssleep(SECS_FIRST_SCAN);
1246	}
1247
1248	while (!kthread_should_stop()) {
1249		signed long timeout = jiffies_scan_wait;
1250
1251		mutex_lock(&scan_mutex);
1252		kmemleak_scan();
1253		mutex_unlock(&scan_mutex);
1254
1255		/* wait before the next scan */
1256		while (timeout && !kthread_should_stop())
1257			timeout = schedule_timeout_interruptible(timeout);
1258	}
1259
1260	pr_info("Automatic memory scanning thread ended\n");
1261
1262	return 0;
1263}
1264
1265/*
1266 * Start the automatic memory scanning thread. This function must be called
1267 * with the scan_mutex held.
1268 */
1269void start_scan_thread(void)
1270{
1271	if (scan_thread)
1272		return;
1273	scan_thread = kthread_run(kmemleak_scan_thread, NULL, "kmemleak");
1274	if (IS_ERR(scan_thread)) {
1275		pr_warning("Failed to create the scan thread\n");
1276		scan_thread = NULL;
1277	}
1278}
1279
1280/*
1281 * Stop the automatic memory scanning thread. This function must be called
1282 * with the scan_mutex held.
1283 */
1284void stop_scan_thread(void)
1285{
1286	if (scan_thread) {
1287		kthread_stop(scan_thread);
1288		scan_thread = NULL;
1289	}
1290}
1291
1292/*
1293 * Iterate over the object_list and return the first valid object at or after
1294 * the required position with its use_count incremented. The function triggers
1295 * a memory scanning when the pos argument points to the first position.
1296 */
1297static void *kmemleak_seq_start(struct seq_file *seq, loff_t *pos)
1298{
1299	struct kmemleak_object *object;
1300	loff_t n = *pos;
1301	int err;
1302
1303	err = mutex_lock_interruptible(&scan_mutex);
1304	if (err < 0)
1305		return ERR_PTR(err);
1306
1307	rcu_read_lock();
1308	list_for_each_entry_rcu(object, &object_list, object_list) {
1309		if (n-- > 0)
1310			continue;
1311		if (get_object(object))
1312			goto out;
1313	}
1314	object = NULL;
1315out:
1316	return object;
1317}
1318
1319/*
1320 * Return the next object in the object_list. The function decrements the
1321 * use_count of the previous object and increases that of the next one.
1322 */
1323static void *kmemleak_seq_next(struct seq_file *seq, void *v, loff_t *pos)
1324{
1325	struct kmemleak_object *prev_obj = v;
1326	struct kmemleak_object *next_obj = NULL;
1327	struct list_head *n = &prev_obj->object_list;
1328
1329	++(*pos);
1330
1331	list_for_each_continue_rcu(n, &object_list) {
1332		next_obj = list_entry(n, struct kmemleak_object, object_list);
1333		if (get_object(next_obj))
1334			break;
1335	}
1336
1337	put_object(prev_obj);
1338	return next_obj;
1339}
1340
1341/*
1342 * Decrement the use_count of the last object required, if any.
1343 */
1344static void kmemleak_seq_stop(struct seq_file *seq, void *v)
1345{
1346	if (!IS_ERR(v)) {
1347		/*
1348		 * kmemleak_seq_start may return ERR_PTR if the scan_mutex
1349		 * waiting was interrupted, so only release it if !IS_ERR.
1350		 */
1351		rcu_read_unlock();
1352		mutex_unlock(&scan_mutex);
1353		if (v)
1354			put_object(v);
1355	}
1356}
1357
1358/*
1359 * Print the information for an unreferenced object to the seq file.
1360 */
1361static int kmemleak_seq_show(struct seq_file *seq, void *v)
1362{
1363	struct kmemleak_object *object = v;
1364	unsigned long flags;
1365
1366	spin_lock_irqsave(&object->lock, flags);
1367	if ((object->flags & OBJECT_REPORTED) && unreferenced_object(object))
1368		print_unreferenced(seq, object);
1369	spin_unlock_irqrestore(&object->lock, flags);
1370	return 0;
1371}
1372
1373static const struct seq_operations kmemleak_seq_ops = {
1374	.start = kmemleak_seq_start,
1375	.next  = kmemleak_seq_next,
1376	.stop  = kmemleak_seq_stop,
1377	.show  = kmemleak_seq_show,
1378};
1379
1380static int kmemleak_open(struct inode *inode, struct file *file)
1381{
1382	if (!atomic_read(&kmemleak_enabled))
1383		return -EBUSY;
1384
1385	return seq_open(file, &kmemleak_seq_ops);
1386}
1387
1388static int kmemleak_release(struct inode *inode, struct file *file)
1389{
1390	return seq_release(inode, file);
1391}
1392
1393static int dump_str_object_info(const char *str)
1394{
1395	unsigned long flags;
1396	struct kmemleak_object *object;
1397	unsigned long addr;
1398
1399	addr= simple_strtoul(str, NULL, 0);
1400	object = find_and_get_object(addr, 0);
1401	if (!object) {
1402		pr_info("Unknown object at 0x%08lx\n", addr);
1403		return -EINVAL;
1404	}
1405
1406	spin_lock_irqsave(&object->lock, flags);
1407	dump_object_info(object);
1408	spin_unlock_irqrestore(&object->lock, flags);
1409
1410	put_object(object);
1411	return 0;
1412}
1413
1414/*
1415 * File write operation to configure kmemleak at run-time. The following
1416 * commands can be written to the /sys/kernel/debug/kmemleak file:
1417 *   off	- disable kmemleak (irreversible)
1418 *   stack=on	- enable the task stacks scanning
1419 *   stack=off	- disable the tasks stacks scanning
1420 *   scan=on	- start the automatic memory scanning thread
1421 *   scan=off	- stop the automatic memory scanning thread
1422 *   scan=...	- set the automatic memory scanning period in seconds (0 to
1423 *		  disable it)
1424 *   scan	- trigger a memory scan
1425 *   dump=...	- dump information about the object found at the given address
1426 */
1427static ssize_t kmemleak_write(struct file *file, const char __user *user_buf,
1428			      size_t size, loff_t *ppos)
1429{
1430	char buf[64];
1431	int buf_size;
1432	int ret;
1433
1434	buf_size = min(size, (sizeof(buf) - 1));
1435	if (strncpy_from_user(buf, user_buf, buf_size) < 0)
1436		return -EFAULT;
1437	buf[buf_size] = 0;
1438
1439	ret = mutex_lock_interruptible(&scan_mutex);
1440	if (ret < 0)
1441		return ret;
1442
1443	if (strncmp(buf, "off", 3) == 0)
1444		kmemleak_disable();
1445	else if (strncmp(buf, "stack=on", 8) == 0)
1446		kmemleak_stack_scan = 1;
1447	else if (strncmp(buf, "stack=off", 9) == 0)
1448		kmemleak_stack_scan = 0;
1449	else if (strncmp(buf, "scan=on", 7) == 0)
1450		start_scan_thread();
1451	else if (strncmp(buf, "scan=off", 8) == 0)
1452		stop_scan_thread();
1453	else if (strncmp(buf, "scan=", 5) == 0) {
1454		unsigned long secs;
1455
1456		ret = strict_strtoul(buf + 5, 0, &secs);
1457		if (ret < 0)
1458			goto out;
1459		stop_scan_thread();
1460		if (secs) {
1461			jiffies_scan_wait = msecs_to_jiffies(secs * 1000);
1462			start_scan_thread();
1463		}
1464	} else if (strncmp(buf, "scan", 4) == 0)
1465		kmemleak_scan();
1466	else if (strncmp(buf, "dump=", 5) == 0)
1467		ret = dump_str_object_info(buf + 5);
1468	else
1469		ret = -EINVAL;
1470
1471out:
1472	mutex_unlock(&scan_mutex);
1473	if (ret < 0)
1474		return ret;
1475
1476	/* ignore the rest of the buffer, only one command at a time */
1477	*ppos += size;
1478	return size;
1479}
1480
1481static const struct file_operations kmemleak_fops = {
1482	.owner		= THIS_MODULE,
1483	.open		= kmemleak_open,
1484	.read		= seq_read,
1485	.write		= kmemleak_write,
1486	.llseek		= seq_lseek,
1487	.release	= kmemleak_release,
1488};
1489
1490/*
1491 * Perform the freeing of the kmemleak internal objects after waiting for any
1492 * current memory scan to complete.
1493 */
1494static int kmemleak_cleanup_thread(void *arg)
1495{
1496	struct kmemleak_object *object;
1497
1498	mutex_lock(&scan_mutex);
1499	stop_scan_thread();
1500
1501	rcu_read_lock();
1502	list_for_each_entry_rcu(object, &object_list, object_list)
1503		delete_object_full(object->pointer);
1504	rcu_read_unlock();
1505	mutex_unlock(&scan_mutex);
1506
1507	return 0;
1508}
1509
1510/*
1511 * Start the clean-up thread.
1512 */
1513static void kmemleak_cleanup(void)
1514{
1515	struct task_struct *cleanup_thread;
1516
1517	cleanup_thread = kthread_run(kmemleak_cleanup_thread, NULL,
1518				     "kmemleak-clean");
1519	if (IS_ERR(cleanup_thread))
1520		pr_warning("Failed to create the clean-up thread\n");
1521}
1522
1523/*
1524 * Disable kmemleak. No memory allocation/freeing will be traced once this
1525 * function is called. Disabling kmemleak is an irreversible operation.
1526 */
1527static void kmemleak_disable(void)
1528{
1529	/* atomically check whether it was already invoked */
1530	if (atomic_cmpxchg(&kmemleak_error, 0, 1))
1531		return;
1532
1533	/* stop any memory operation tracing */
1534	atomic_set(&kmemleak_early_log, 0);
1535	atomic_set(&kmemleak_enabled, 0);
1536
1537	/* check whether it is too early for a kernel thread */
1538	if (atomic_read(&kmemleak_initialized))
1539		kmemleak_cleanup();
1540
1541	pr_info("Kernel memory leak detector disabled\n");
1542}
1543
1544/*
1545 * Allow boot-time kmemleak disabling (enabled by default).
1546 */
1547static int kmemleak_boot_config(char *str)
1548{
1549	if (!str)
1550		return -EINVAL;
1551	if (strcmp(str, "off") == 0)
1552		kmemleak_disable();
1553	else if (strcmp(str, "on") != 0)
1554		return -EINVAL;
1555	return 0;
1556}
1557early_param("kmemleak", kmemleak_boot_config);
1558
1559/*
1560 * Kmemleak initialization.
1561 */
1562void __init kmemleak_init(void)
1563{
1564	int i;
1565	unsigned long flags;
1566
1567	jiffies_min_age = msecs_to_jiffies(MSECS_MIN_AGE);
1568	jiffies_scan_wait = msecs_to_jiffies(SECS_SCAN_WAIT * 1000);
1569
1570	object_cache = KMEM_CACHE(kmemleak_object, SLAB_NOLEAKTRACE);
1571	scan_area_cache = KMEM_CACHE(kmemleak_scan_area, SLAB_NOLEAKTRACE);
1572	INIT_PRIO_TREE_ROOT(&object_tree_root);
1573
1574	/* the kernel is still in UP mode, so disabling the IRQs is enough */
1575	local_irq_save(flags);
1576	if (!atomic_read(&kmemleak_error)) {
1577		atomic_set(&kmemleak_enabled, 1);
1578		atomic_set(&kmemleak_early_log, 0);
1579	}
1580	local_irq_restore(flags);
1581
1582	/*
1583	 * This is the point where tracking allocations is safe. Automatic
1584	 * scanning is started during the late initcall. Add the early logged
1585	 * callbacks to the kmemleak infrastructure.
1586	 */
1587	for (i = 0; i < crt_early_log; i++) {
1588		struct early_log *log = &early_log[i];
1589
1590		switch (log->op_type) {
1591		case KMEMLEAK_ALLOC:
1592			early_alloc(log);
1593			break;
1594		case KMEMLEAK_FREE:
1595			kmemleak_free(log->ptr);
1596			break;
1597		case KMEMLEAK_FREE_PART:
1598			kmemleak_free_part(log->ptr, log->size);
1599			break;
1600		case KMEMLEAK_NOT_LEAK:
1601			kmemleak_not_leak(log->ptr);
1602			break;
1603		case KMEMLEAK_IGNORE:
1604			kmemleak_ignore(log->ptr);
1605			break;
1606		case KMEMLEAK_SCAN_AREA:
1607			kmemleak_scan_area(log->ptr, log->offset, log->length,
1608					   GFP_KERNEL);
1609			break;
1610		case KMEMLEAK_NO_SCAN:
1611			kmemleak_no_scan(log->ptr);
1612			break;
1613		default:
1614			WARN_ON(1);
1615		}
1616	}
1617}
1618
1619/*
1620 * Late initialization function.
1621 */
1622static int __init kmemleak_late_init(void)
1623{
1624	struct dentry *dentry;
1625
1626	atomic_set(&kmemleak_initialized, 1);
1627
1628	if (atomic_read(&kmemleak_error)) {
1629		/*
1630		 * Some error occured and kmemleak was disabled. There is a
1631		 * small chance that kmemleak_disable() was called immediately
1632		 * after setting kmemleak_initialized and we may end up with
1633		 * two clean-up threads but serialized by scan_mutex.
1634		 */
1635		kmemleak_cleanup();
1636		return -ENOMEM;
1637	}
1638
1639	dentry = debugfs_create_file("kmemleak", S_IRUGO, NULL, NULL,
1640				     &kmemleak_fops);
1641	if (!dentry)
1642		pr_warning("Failed to create the debugfs kmemleak file\n");
1643	mutex_lock(&scan_mutex);
1644	start_scan_thread();
1645	mutex_unlock(&scan_mutex);
1646
1647	pr_info("Kernel memory leak detector initialized\n");
1648
1649	return 0;
1650}
1651late_initcall(kmemleak_late_init);
1652