kmemleak.c revision 2030117d2761c4c955e1a0683fa96ab62e4b197b
1/*
2 * mm/kmemleak.c
3 *
4 * Copyright (C) 2008 ARM Limited
5 * Written by Catalin Marinas <catalin.marinas@arm.com>
6 *
7 * This program is free software; you can redistribute it and/or modify
8 * it under the terms of the GNU General Public License version 2 as
9 * published by the Free Software Foundation.
10 *
11 * This program is distributed in the hope that it will be useful,
12 * but WITHOUT ANY WARRANTY; without even the implied warranty of
13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
14 * GNU General Public License for more details.
15 *
16 * You should have received a copy of the GNU General Public License
17 * along with this program; if not, write to the Free Software
18 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
19 *
20 *
21 * For more information on the algorithm and kmemleak usage, please see
22 * Documentation/kmemleak.txt.
23 *
24 * Notes on locking
25 * ----------------
26 *
27 * The following locks and mutexes are used by kmemleak:
28 *
29 * - kmemleak_lock (rwlock): protects the object_list modifications and
30 *   accesses to the object_tree_root. The object_list is the main list
31 *   holding the metadata (struct kmemleak_object) for the allocated memory
32 *   blocks. The object_tree_root is a priority search tree used to look-up
33 *   metadata based on a pointer to the corresponding memory block.  The
34 *   kmemleak_object structures are added to the object_list and
35 *   object_tree_root in the create_object() function called from the
36 *   kmemleak_alloc() callback and removed in delete_object() called from the
37 *   kmemleak_free() callback
38 * - kmemleak_object.lock (spinlock): protects a kmemleak_object. Accesses to
39 *   the metadata (e.g. count) are protected by this lock. Note that some
40 *   members of this structure may be protected by other means (atomic or
41 *   kmemleak_lock). This lock is also held when scanning the corresponding
42 *   memory block to avoid the kernel freeing it via the kmemleak_free()
43 *   callback. This is less heavyweight than holding a global lock like
44 *   kmemleak_lock during scanning
45 * - scan_mutex (mutex): ensures that only one thread may scan the memory for
46 *   unreferenced objects at a time. The gray_list contains the objects which
47 *   are already referenced or marked as false positives and need to be
48 *   scanned. This list is only modified during a scanning episode when the
49 *   scan_mutex is held. At the end of a scan, the gray_list is always empty.
50 *   Note that the kmemleak_object.use_count is incremented when an object is
51 *   added to the gray_list and therefore cannot be freed
52 * - kmemleak_mutex (mutex): prevents multiple users of the "kmemleak" debugfs
53 *   file together with modifications to the memory scanning parameters
54 *   including the scan_thread pointer
55 *
56 * The kmemleak_object structures have a use_count incremented or decremented
57 * using the get_object()/put_object() functions. When the use_count becomes
58 * 0, this count can no longer be incremented and put_object() schedules the
59 * kmemleak_object freeing via an RCU callback. All calls to the get_object()
60 * function must be protected by rcu_read_lock() to avoid accessing a freed
61 * structure.
62 */
63
64#include <linux/init.h>
65#include <linux/kernel.h>
66#include <linux/list.h>
67#include <linux/sched.h>
68#include <linux/jiffies.h>
69#include <linux/delay.h>
70#include <linux/module.h>
71#include <linux/kthread.h>
72#include <linux/prio_tree.h>
73#include <linux/gfp.h>
74#include <linux/fs.h>
75#include <linux/debugfs.h>
76#include <linux/seq_file.h>
77#include <linux/cpumask.h>
78#include <linux/spinlock.h>
79#include <linux/mutex.h>
80#include <linux/rcupdate.h>
81#include <linux/stacktrace.h>
82#include <linux/cache.h>
83#include <linux/percpu.h>
84#include <linux/hardirq.h>
85#include <linux/mmzone.h>
86#include <linux/slab.h>
87#include <linux/thread_info.h>
88#include <linux/err.h>
89#include <linux/uaccess.h>
90#include <linux/string.h>
91#include <linux/nodemask.h>
92#include <linux/mm.h>
93
94#include <asm/sections.h>
95#include <asm/processor.h>
96#include <asm/atomic.h>
97
98#include <linux/kmemleak.h>
99
100/*
101 * Kmemleak configuration and common defines.
102 */
103#define MAX_TRACE		16	/* stack trace length */
104#define REPORTS_NR		50	/* maximum number of reported leaks */
105#define MSECS_MIN_AGE		5000	/* minimum object age for reporting */
106#define MSECS_SCAN_YIELD	10	/* CPU yielding period */
107#define SECS_FIRST_SCAN		60	/* delay before the first scan */
108#define SECS_SCAN_WAIT		600	/* subsequent auto scanning delay */
109
110#define BYTES_PER_POINTER	sizeof(void *)
111
112/* GFP bitmask for kmemleak internal allocations */
113#define GFP_KMEMLEAK_MASK	(GFP_KERNEL | GFP_ATOMIC)
114
115/* scanning area inside a memory block */
116struct kmemleak_scan_area {
117	struct hlist_node node;
118	unsigned long offset;
119	size_t length;
120};
121
122/*
123 * Structure holding the metadata for each allocated memory block.
124 * Modifications to such objects should be made while holding the
125 * object->lock. Insertions or deletions from object_list, gray_list or
126 * tree_node are already protected by the corresponding locks or mutex (see
127 * the notes on locking above). These objects are reference-counted
128 * (use_count) and freed using the RCU mechanism.
129 */
130struct kmemleak_object {
131	spinlock_t lock;
132	unsigned long flags;		/* object status flags */
133	struct list_head object_list;
134	struct list_head gray_list;
135	struct prio_tree_node tree_node;
136	struct rcu_head rcu;		/* object_list lockless traversal */
137	/* object usage count; object freed when use_count == 0 */
138	atomic_t use_count;
139	unsigned long pointer;
140	size_t size;
141	/* minimum number of a pointers found before it is considered leak */
142	int min_count;
143	/* the total number of pointers found pointing to this object */
144	int count;
145	/* memory ranges to be scanned inside an object (empty for all) */
146	struct hlist_head area_list;
147	unsigned long trace[MAX_TRACE];
148	unsigned int trace_len;
149	unsigned long jiffies;		/* creation timestamp */
150	pid_t pid;			/* pid of the current task */
151	char comm[TASK_COMM_LEN];	/* executable name */
152};
153
154/* flag representing the memory block allocation status */
155#define OBJECT_ALLOCATED	(1 << 0)
156/* flag set after the first reporting of an unreference object */
157#define OBJECT_REPORTED		(1 << 1)
158/* flag set to not scan the object */
159#define OBJECT_NO_SCAN		(1 << 2)
160
161/* the list of all allocated objects */
162static LIST_HEAD(object_list);
163/* the list of gray-colored objects (see color_gray comment below) */
164static LIST_HEAD(gray_list);
165/* prio search tree for object boundaries */
166static struct prio_tree_root object_tree_root;
167/* rw_lock protecting the access to object_list and prio_tree_root */
168static DEFINE_RWLOCK(kmemleak_lock);
169
170/* allocation caches for kmemleak internal data */
171static struct kmem_cache *object_cache;
172static struct kmem_cache *scan_area_cache;
173
174/* set if tracing memory operations is enabled */
175static atomic_t kmemleak_enabled = ATOMIC_INIT(0);
176/* set in the late_initcall if there were no errors */
177static atomic_t kmemleak_initialized = ATOMIC_INIT(0);
178/* enables or disables early logging of the memory operations */
179static atomic_t kmemleak_early_log = ATOMIC_INIT(1);
180/* set if a fata kmemleak error has occurred */
181static atomic_t kmemleak_error = ATOMIC_INIT(0);
182
183/* minimum and maximum address that may be valid pointers */
184static unsigned long min_addr = ULONG_MAX;
185static unsigned long max_addr;
186
187/* used for yielding the CPU to other tasks during scanning */
188static unsigned long next_scan_yield;
189static struct task_struct *scan_thread;
190static unsigned long jiffies_scan_yield;
191static unsigned long jiffies_min_age;
192/* delay between automatic memory scannings */
193static signed long jiffies_scan_wait;
194/* enables or disables the task stacks scanning */
195static int kmemleak_stack_scan;
196/* mutex protecting the memory scanning */
197static DEFINE_MUTEX(scan_mutex);
198/* mutex protecting the access to the /sys/kernel/debug/kmemleak file */
199static DEFINE_MUTEX(kmemleak_mutex);
200
201/* number of leaks reported (for limitation purposes) */
202static int reported_leaks;
203
204/*
205 * Early object allocation/freeing logging. Kmemleak is initialized after the
206 * kernel allocator. However, both the kernel allocator and kmemleak may
207 * allocate memory blocks which need to be tracked. Kmemleak defines an
208 * arbitrary buffer to hold the allocation/freeing information before it is
209 * fully initialized.
210 */
211
212/* kmemleak operation type for early logging */
213enum {
214	KMEMLEAK_ALLOC,
215	KMEMLEAK_FREE,
216	KMEMLEAK_NOT_LEAK,
217	KMEMLEAK_IGNORE,
218	KMEMLEAK_SCAN_AREA,
219	KMEMLEAK_NO_SCAN
220};
221
222/*
223 * Structure holding the information passed to kmemleak callbacks during the
224 * early logging.
225 */
226struct early_log {
227	int op_type;			/* kmemleak operation type */
228	const void *ptr;		/* allocated/freed memory block */
229	size_t size;			/* memory block size */
230	int min_count;			/* minimum reference count */
231	unsigned long offset;		/* scan area offset */
232	size_t length;			/* scan area length */
233};
234
235/* early logging buffer and current position */
236static struct early_log early_log[200];
237static int crt_early_log;
238
239static void kmemleak_disable(void);
240
241/*
242 * Print a warning and dump the stack trace.
243 */
244#define kmemleak_warn(x...)	do {	\
245	pr_warning(x);			\
246	dump_stack();			\
247} while (0)
248
249/*
250 * Macro invoked when a serious kmemleak condition occured and cannot be
251 * recovered from. Kmemleak will be disabled and further allocation/freeing
252 * tracing no longer available.
253 */
254#define kmemleak_stop(x...)	do {	\
255	kmemleak_warn(x);		\
256	kmemleak_disable();		\
257} while (0)
258
259/*
260 * Object colors, encoded with count and min_count:
261 * - white - orphan object, not enough references to it (count < min_count)
262 * - gray  - not orphan, not marked as false positive (min_count == 0) or
263 *		sufficient references to it (count >= min_count)
264 * - black - ignore, it doesn't contain references (e.g. text section)
265 *		(min_count == -1). No function defined for this color.
266 * Newly created objects don't have any color assigned (object->count == -1)
267 * before the next memory scan when they become white.
268 */
269static int color_white(const struct kmemleak_object *object)
270{
271	return object->count != -1 && object->count < object->min_count;
272}
273
274static int color_gray(const struct kmemleak_object *object)
275{
276	return object->min_count != -1 && object->count >= object->min_count;
277}
278
279/*
280 * Objects are considered referenced if their color is gray and they have not
281 * been deleted.
282 */
283static int referenced_object(struct kmemleak_object *object)
284{
285	return (object->flags & OBJECT_ALLOCATED) && color_gray(object);
286}
287
288/*
289 * Objects are considered unreferenced only if their color is white, they have
290 * not be deleted and have a minimum age to avoid false positives caused by
291 * pointers temporarily stored in CPU registers.
292 */
293static int unreferenced_object(struct kmemleak_object *object)
294{
295	return (object->flags & OBJECT_ALLOCATED) && color_white(object) &&
296		time_is_before_eq_jiffies(object->jiffies + jiffies_min_age);
297}
298
299/*
300 * Printing of the (un)referenced objects information, either to the seq file
301 * or to the kernel log. The print_referenced/print_unreferenced functions
302 * must be called with the object->lock held.
303 */
304#define print_helper(seq, x...)	do {	\
305	struct seq_file *s = (seq);	\
306	if (s)				\
307		seq_printf(s, x);	\
308	else				\
309		pr_info(x);		\
310} while (0)
311
312static void print_referenced(struct kmemleak_object *object)
313{
314	pr_info("kmemleak: referenced object 0x%08lx (size %zu)\n",
315		object->pointer, object->size);
316}
317
318static void print_unreferenced(struct seq_file *seq,
319			       struct kmemleak_object *object)
320{
321	int i;
322
323	print_helper(seq, "kmemleak: unreferenced object 0x%08lx (size %zu):\n",
324		     object->pointer, object->size);
325	print_helper(seq, "  comm \"%s\", pid %d, jiffies %lu\n",
326		     object->comm, object->pid, object->jiffies);
327	print_helper(seq, "  backtrace:\n");
328
329	for (i = 0; i < object->trace_len; i++) {
330		void *ptr = (void *)object->trace[i];
331		print_helper(seq, "    [<%p>] %pS\n", ptr, ptr);
332	}
333}
334
335/*
336 * Print the kmemleak_object information. This function is used mainly for
337 * debugging special cases when kmemleak operations. It must be called with
338 * the object->lock held.
339 */
340static void dump_object_info(struct kmemleak_object *object)
341{
342	struct stack_trace trace;
343
344	trace.nr_entries = object->trace_len;
345	trace.entries = object->trace;
346
347	pr_notice("kmemleak: Object 0x%08lx (size %zu):\n",
348		  object->tree_node.start, object->size);
349	pr_notice("  comm \"%s\", pid %d, jiffies %lu\n",
350		  object->comm, object->pid, object->jiffies);
351	pr_notice("  min_count = %d\n", object->min_count);
352	pr_notice("  count = %d\n", object->count);
353	pr_notice("  backtrace:\n");
354	print_stack_trace(&trace, 4);
355}
356
357/*
358 * Look-up a memory block metadata (kmemleak_object) in the priority search
359 * tree based on a pointer value. If alias is 0, only values pointing to the
360 * beginning of the memory block are allowed. The kmemleak_lock must be held
361 * when calling this function.
362 */
363static struct kmemleak_object *lookup_object(unsigned long ptr, int alias)
364{
365	struct prio_tree_node *node;
366	struct prio_tree_iter iter;
367	struct kmemleak_object *object;
368
369	prio_tree_iter_init(&iter, &object_tree_root, ptr, ptr);
370	node = prio_tree_next(&iter);
371	if (node) {
372		object = prio_tree_entry(node, struct kmemleak_object,
373					 tree_node);
374		if (!alias && object->pointer != ptr) {
375			kmemleak_warn("kmemleak: Found object by alias");
376			object = NULL;
377		}
378	} else
379		object = NULL;
380
381	return object;
382}
383
384/*
385 * Increment the object use_count. Return 1 if successful or 0 otherwise. Note
386 * that once an object's use_count reached 0, the RCU freeing was already
387 * registered and the object should no longer be used. This function must be
388 * called under the protection of rcu_read_lock().
389 */
390static int get_object(struct kmemleak_object *object)
391{
392	return atomic_inc_not_zero(&object->use_count);
393}
394
395/*
396 * RCU callback to free a kmemleak_object.
397 */
398static void free_object_rcu(struct rcu_head *rcu)
399{
400	struct hlist_node *elem, *tmp;
401	struct kmemleak_scan_area *area;
402	struct kmemleak_object *object =
403		container_of(rcu, struct kmemleak_object, rcu);
404
405	/*
406	 * Once use_count is 0 (guaranteed by put_object), there is no other
407	 * code accessing this object, hence no need for locking.
408	 */
409	hlist_for_each_entry_safe(area, elem, tmp, &object->area_list, node) {
410		hlist_del(elem);
411		kmem_cache_free(scan_area_cache, area);
412	}
413	kmem_cache_free(object_cache, object);
414}
415
416/*
417 * Decrement the object use_count. Once the count is 0, free the object using
418 * an RCU callback. Since put_object() may be called via the kmemleak_free() ->
419 * delete_object() path, the delayed RCU freeing ensures that there is no
420 * recursive call to the kernel allocator. Lock-less RCU object_list traversal
421 * is also possible.
422 */
423static void put_object(struct kmemleak_object *object)
424{
425	if (!atomic_dec_and_test(&object->use_count))
426		return;
427
428	/* should only get here after delete_object was called */
429	WARN_ON(object->flags & OBJECT_ALLOCATED);
430
431	call_rcu(&object->rcu, free_object_rcu);
432}
433
434/*
435 * Look up an object in the prio search tree and increase its use_count.
436 */
437static struct kmemleak_object *find_and_get_object(unsigned long ptr, int alias)
438{
439	unsigned long flags;
440	struct kmemleak_object *object = NULL;
441
442	rcu_read_lock();
443	read_lock_irqsave(&kmemleak_lock, flags);
444	if (ptr >= min_addr && ptr < max_addr)
445		object = lookup_object(ptr, alias);
446	read_unlock_irqrestore(&kmemleak_lock, flags);
447
448	/* check whether the object is still available */
449	if (object && !get_object(object))
450		object = NULL;
451	rcu_read_unlock();
452
453	return object;
454}
455
456/*
457 * Create the metadata (struct kmemleak_object) corresponding to an allocated
458 * memory block and add it to the object_list and object_tree_root.
459 */
460static void create_object(unsigned long ptr, size_t size, int min_count,
461			  gfp_t gfp)
462{
463	unsigned long flags;
464	struct kmemleak_object *object;
465	struct prio_tree_node *node;
466	struct stack_trace trace;
467
468	object = kmem_cache_alloc(object_cache, gfp & GFP_KMEMLEAK_MASK);
469	if (!object) {
470		kmemleak_stop("kmemleak: Cannot allocate a kmemleak_object "
471			      "structure\n");
472		return;
473	}
474
475	INIT_LIST_HEAD(&object->object_list);
476	INIT_LIST_HEAD(&object->gray_list);
477	INIT_HLIST_HEAD(&object->area_list);
478	spin_lock_init(&object->lock);
479	atomic_set(&object->use_count, 1);
480	object->flags = OBJECT_ALLOCATED;
481	object->pointer = ptr;
482	object->size = size;
483	object->min_count = min_count;
484	object->count = -1;			/* no color initially */
485	object->jiffies = jiffies;
486
487	/* task information */
488	if (in_irq()) {
489		object->pid = 0;
490		strncpy(object->comm, "hardirq", sizeof(object->comm));
491	} else if (in_softirq()) {
492		object->pid = 0;
493		strncpy(object->comm, "softirq", sizeof(object->comm));
494	} else {
495		object->pid = current->pid;
496		/*
497		 * There is a small chance of a race with set_task_comm(),
498		 * however using get_task_comm() here may cause locking
499		 * dependency issues with current->alloc_lock. In the worst
500		 * case, the command line is not correct.
501		 */
502		strncpy(object->comm, current->comm, sizeof(object->comm));
503	}
504
505	/* kernel backtrace */
506	trace.max_entries = MAX_TRACE;
507	trace.nr_entries = 0;
508	trace.entries = object->trace;
509	trace.skip = 1;
510	save_stack_trace(&trace);
511	object->trace_len = trace.nr_entries;
512
513	INIT_PRIO_TREE_NODE(&object->tree_node);
514	object->tree_node.start = ptr;
515	object->tree_node.last = ptr + size - 1;
516
517	write_lock_irqsave(&kmemleak_lock, flags);
518	min_addr = min(min_addr, ptr);
519	max_addr = max(max_addr, ptr + size);
520	node = prio_tree_insert(&object_tree_root, &object->tree_node);
521	/*
522	 * The code calling the kernel does not yet have the pointer to the
523	 * memory block to be able to free it.  However, we still hold the
524	 * kmemleak_lock here in case parts of the kernel started freeing
525	 * random memory blocks.
526	 */
527	if (node != &object->tree_node) {
528		unsigned long flags;
529
530		kmemleak_stop("kmemleak: Cannot insert 0x%lx into the object "
531			      "search tree (already existing)\n", ptr);
532		object = lookup_object(ptr, 1);
533		spin_lock_irqsave(&object->lock, flags);
534		dump_object_info(object);
535		spin_unlock_irqrestore(&object->lock, flags);
536
537		goto out;
538	}
539	list_add_tail_rcu(&object->object_list, &object_list);
540out:
541	write_unlock_irqrestore(&kmemleak_lock, flags);
542}
543
544/*
545 * Remove the metadata (struct kmemleak_object) for a memory block from the
546 * object_list and object_tree_root and decrement its use_count.
547 */
548static void delete_object(unsigned long ptr)
549{
550	unsigned long flags;
551	struct kmemleak_object *object;
552
553	write_lock_irqsave(&kmemleak_lock, flags);
554	object = lookup_object(ptr, 0);
555	if (!object) {
556		kmemleak_warn("kmemleak: Freeing unknown object at 0x%08lx\n",
557			      ptr);
558		write_unlock_irqrestore(&kmemleak_lock, flags);
559		return;
560	}
561	prio_tree_remove(&object_tree_root, &object->tree_node);
562	list_del_rcu(&object->object_list);
563	write_unlock_irqrestore(&kmemleak_lock, flags);
564
565	WARN_ON(!(object->flags & OBJECT_ALLOCATED));
566	WARN_ON(atomic_read(&object->use_count) < 1);
567
568	/*
569	 * Locking here also ensures that the corresponding memory block
570	 * cannot be freed when it is being scanned.
571	 */
572	spin_lock_irqsave(&object->lock, flags);
573	if (object->flags & OBJECT_REPORTED)
574		print_referenced(object);
575	object->flags &= ~OBJECT_ALLOCATED;
576	spin_unlock_irqrestore(&object->lock, flags);
577	put_object(object);
578}
579
580/*
581 * Make a object permanently as gray-colored so that it can no longer be
582 * reported as a leak. This is used in general to mark a false positive.
583 */
584static void make_gray_object(unsigned long ptr)
585{
586	unsigned long flags;
587	struct kmemleak_object *object;
588
589	object = find_and_get_object(ptr, 0);
590	if (!object) {
591		kmemleak_warn("kmemleak: Graying unknown object at 0x%08lx\n",
592			      ptr);
593		return;
594	}
595
596	spin_lock_irqsave(&object->lock, flags);
597	object->min_count = 0;
598	spin_unlock_irqrestore(&object->lock, flags);
599	put_object(object);
600}
601
602/*
603 * Mark the object as black-colored so that it is ignored from scans and
604 * reporting.
605 */
606static void make_black_object(unsigned long ptr)
607{
608	unsigned long flags;
609	struct kmemleak_object *object;
610
611	object = find_and_get_object(ptr, 0);
612	if (!object) {
613		kmemleak_warn("kmemleak: Blacking unknown object at 0x%08lx\n",
614			      ptr);
615		return;
616	}
617
618	spin_lock_irqsave(&object->lock, flags);
619	object->min_count = -1;
620	spin_unlock_irqrestore(&object->lock, flags);
621	put_object(object);
622}
623
624/*
625 * Add a scanning area to the object. If at least one such area is added,
626 * kmemleak will only scan these ranges rather than the whole memory block.
627 */
628static void add_scan_area(unsigned long ptr, unsigned long offset,
629			  size_t length, gfp_t gfp)
630{
631	unsigned long flags;
632	struct kmemleak_object *object;
633	struct kmemleak_scan_area *area;
634
635	object = find_and_get_object(ptr, 0);
636	if (!object) {
637		kmemleak_warn("kmemleak: Adding scan area to unknown "
638			      "object at 0x%08lx\n", ptr);
639		return;
640	}
641
642	area = kmem_cache_alloc(scan_area_cache, gfp & GFP_KMEMLEAK_MASK);
643	if (!area) {
644		kmemleak_warn("kmemleak: Cannot allocate a scan area\n");
645		goto out;
646	}
647
648	spin_lock_irqsave(&object->lock, flags);
649	if (offset + length > object->size) {
650		kmemleak_warn("kmemleak: Scan area larger than object "
651			      "0x%08lx\n", ptr);
652		dump_object_info(object);
653		kmem_cache_free(scan_area_cache, area);
654		goto out_unlock;
655	}
656
657	INIT_HLIST_NODE(&area->node);
658	area->offset = offset;
659	area->length = length;
660
661	hlist_add_head(&area->node, &object->area_list);
662out_unlock:
663	spin_unlock_irqrestore(&object->lock, flags);
664out:
665	put_object(object);
666}
667
668/*
669 * Set the OBJECT_NO_SCAN flag for the object corresponding to the give
670 * pointer. Such object will not be scanned by kmemleak but references to it
671 * are searched.
672 */
673static void object_no_scan(unsigned long ptr)
674{
675	unsigned long flags;
676	struct kmemleak_object *object;
677
678	object = find_and_get_object(ptr, 0);
679	if (!object) {
680		kmemleak_warn("kmemleak: Not scanning unknown object at "
681			      "0x%08lx\n", ptr);
682		return;
683	}
684
685	spin_lock_irqsave(&object->lock, flags);
686	object->flags |= OBJECT_NO_SCAN;
687	spin_unlock_irqrestore(&object->lock, flags);
688	put_object(object);
689}
690
691/*
692 * Log an early kmemleak_* call to the early_log buffer. These calls will be
693 * processed later once kmemleak is fully initialized.
694 */
695static void log_early(int op_type, const void *ptr, size_t size,
696		      int min_count, unsigned long offset, size_t length)
697{
698	unsigned long flags;
699	struct early_log *log;
700
701	if (crt_early_log >= ARRAY_SIZE(early_log)) {
702		kmemleak_stop("kmemleak: Early log buffer exceeded\n");
703		return;
704	}
705
706	/*
707	 * There is no need for locking since the kernel is still in UP mode
708	 * at this stage. Disabling the IRQs is enough.
709	 */
710	local_irq_save(flags);
711	log = &early_log[crt_early_log];
712	log->op_type = op_type;
713	log->ptr = ptr;
714	log->size = size;
715	log->min_count = min_count;
716	log->offset = offset;
717	log->length = length;
718	crt_early_log++;
719	local_irq_restore(flags);
720}
721
722/*
723 * Memory allocation function callback. This function is called from the
724 * kernel allocators when a new block is allocated (kmem_cache_alloc, kmalloc,
725 * vmalloc etc.).
726 */
727void kmemleak_alloc(const void *ptr, size_t size, int min_count, gfp_t gfp)
728{
729	pr_debug("%s(0x%p, %zu, %d)\n", __func__, ptr, size, min_count);
730
731	if (atomic_read(&kmemleak_enabled) && ptr && !IS_ERR(ptr))
732		create_object((unsigned long)ptr, size, min_count, gfp);
733	else if (atomic_read(&kmemleak_early_log))
734		log_early(KMEMLEAK_ALLOC, ptr, size, min_count, 0, 0);
735}
736EXPORT_SYMBOL_GPL(kmemleak_alloc);
737
738/*
739 * Memory freeing function callback. This function is called from the kernel
740 * allocators when a block is freed (kmem_cache_free, kfree, vfree etc.).
741 */
742void kmemleak_free(const void *ptr)
743{
744	pr_debug("%s(0x%p)\n", __func__, ptr);
745
746	if (atomic_read(&kmemleak_enabled) && ptr && !IS_ERR(ptr))
747		delete_object((unsigned long)ptr);
748	else if (atomic_read(&kmemleak_early_log))
749		log_early(KMEMLEAK_FREE, ptr, 0, 0, 0, 0);
750}
751EXPORT_SYMBOL_GPL(kmemleak_free);
752
753/*
754 * Mark an already allocated memory block as a false positive. This will cause
755 * the block to no longer be reported as leak and always be scanned.
756 */
757void kmemleak_not_leak(const void *ptr)
758{
759	pr_debug("%s(0x%p)\n", __func__, ptr);
760
761	if (atomic_read(&kmemleak_enabled) && ptr && !IS_ERR(ptr))
762		make_gray_object((unsigned long)ptr);
763	else if (atomic_read(&kmemleak_early_log))
764		log_early(KMEMLEAK_NOT_LEAK, ptr, 0, 0, 0, 0);
765}
766EXPORT_SYMBOL(kmemleak_not_leak);
767
768/*
769 * Ignore a memory block. This is usually done when it is known that the
770 * corresponding block is not a leak and does not contain any references to
771 * other allocated memory blocks.
772 */
773void kmemleak_ignore(const void *ptr)
774{
775	pr_debug("%s(0x%p)\n", __func__, ptr);
776
777	if (atomic_read(&kmemleak_enabled) && ptr && !IS_ERR(ptr))
778		make_black_object((unsigned long)ptr);
779	else if (atomic_read(&kmemleak_early_log))
780		log_early(KMEMLEAK_IGNORE, ptr, 0, 0, 0, 0);
781}
782EXPORT_SYMBOL(kmemleak_ignore);
783
784/*
785 * Limit the range to be scanned in an allocated memory block.
786 */
787void kmemleak_scan_area(const void *ptr, unsigned long offset, size_t length,
788			gfp_t gfp)
789{
790	pr_debug("%s(0x%p)\n", __func__, ptr);
791
792	if (atomic_read(&kmemleak_enabled) && ptr && !IS_ERR(ptr))
793		add_scan_area((unsigned long)ptr, offset, length, gfp);
794	else if (atomic_read(&kmemleak_early_log))
795		log_early(KMEMLEAK_SCAN_AREA, ptr, 0, 0, offset, length);
796}
797EXPORT_SYMBOL(kmemleak_scan_area);
798
799/*
800 * Inform kmemleak not to scan the given memory block.
801 */
802void kmemleak_no_scan(const void *ptr)
803{
804	pr_debug("%s(0x%p)\n", __func__, ptr);
805
806	if (atomic_read(&kmemleak_enabled) && ptr && !IS_ERR(ptr))
807		object_no_scan((unsigned long)ptr);
808	else if (atomic_read(&kmemleak_early_log))
809		log_early(KMEMLEAK_NO_SCAN, ptr, 0, 0, 0, 0);
810}
811EXPORT_SYMBOL(kmemleak_no_scan);
812
813/*
814 * Yield the CPU so that other tasks get a chance to run.  The yielding is
815 * rate-limited to avoid excessive number of calls to the schedule() function
816 * during memory scanning.
817 */
818static void scan_yield(void)
819{
820	might_sleep();
821
822	if (time_is_before_eq_jiffies(next_scan_yield)) {
823		schedule();
824		next_scan_yield = jiffies + jiffies_scan_yield;
825	}
826}
827
828/*
829 * Memory scanning is a long process and it needs to be interruptable. This
830 * function checks whether such interrupt condition occured.
831 */
832static int scan_should_stop(void)
833{
834	if (!atomic_read(&kmemleak_enabled))
835		return 1;
836
837	/*
838	 * This function may be called from either process or kthread context,
839	 * hence the need to check for both stop conditions.
840	 */
841	if (current->mm)
842		return signal_pending(current);
843	else
844		return kthread_should_stop();
845
846	return 0;
847}
848
849/*
850 * Scan a memory block (exclusive range) for valid pointers and add those
851 * found to the gray list.
852 */
853static void scan_block(void *_start, void *_end,
854		       struct kmemleak_object *scanned)
855{
856	unsigned long *ptr;
857	unsigned long *start = PTR_ALIGN(_start, BYTES_PER_POINTER);
858	unsigned long *end = _end - (BYTES_PER_POINTER - 1);
859
860	for (ptr = start; ptr < end; ptr++) {
861		unsigned long flags;
862		unsigned long pointer = *ptr;
863		struct kmemleak_object *object;
864
865		if (scan_should_stop())
866			break;
867
868		/*
869		 * When scanning a memory block with a corresponding
870		 * kmemleak_object, the CPU yielding is handled in the calling
871		 * code since it holds the object->lock to avoid the block
872		 * freeing.
873		 */
874		if (!scanned)
875			scan_yield();
876
877		object = find_and_get_object(pointer, 1);
878		if (!object)
879			continue;
880		if (object == scanned) {
881			/* self referenced, ignore */
882			put_object(object);
883			continue;
884		}
885
886		/*
887		 * Avoid the lockdep recursive warning on object->lock being
888		 * previously acquired in scan_object(). These locks are
889		 * enclosed by scan_mutex.
890		 */
891		spin_lock_irqsave_nested(&object->lock, flags,
892					 SINGLE_DEPTH_NESTING);
893		if (!color_white(object)) {
894			/* non-orphan, ignored or new */
895			spin_unlock_irqrestore(&object->lock, flags);
896			put_object(object);
897			continue;
898		}
899
900		/*
901		 * Increase the object's reference count (number of pointers
902		 * to the memory block). If this count reaches the required
903		 * minimum, the object's color will become gray and it will be
904		 * added to the gray_list.
905		 */
906		object->count++;
907		if (color_gray(object))
908			list_add_tail(&object->gray_list, &gray_list);
909		else
910			put_object(object);
911		spin_unlock_irqrestore(&object->lock, flags);
912	}
913}
914
915/*
916 * Scan a memory block corresponding to a kmemleak_object. A condition is
917 * that object->use_count >= 1.
918 */
919static void scan_object(struct kmemleak_object *object)
920{
921	struct kmemleak_scan_area *area;
922	struct hlist_node *elem;
923	unsigned long flags;
924
925	/*
926	 * Once the object->lock is aquired, the corresponding memory block
927	 * cannot be freed (the same lock is aquired in delete_object).
928	 */
929	spin_lock_irqsave(&object->lock, flags);
930	if (object->flags & OBJECT_NO_SCAN)
931		goto out;
932	if (!(object->flags & OBJECT_ALLOCATED))
933		/* already freed object */
934		goto out;
935	if (hlist_empty(&object->area_list))
936		scan_block((void *)object->pointer,
937			   (void *)(object->pointer + object->size), object);
938	else
939		hlist_for_each_entry(area, elem, &object->area_list, node)
940			scan_block((void *)(object->pointer + area->offset),
941				   (void *)(object->pointer + area->offset
942					    + area->length), object);
943out:
944	spin_unlock_irqrestore(&object->lock, flags);
945}
946
947/*
948 * Scan data sections and all the referenced memory blocks allocated via the
949 * kernel's standard allocators. This function must be called with the
950 * scan_mutex held.
951 */
952static void kmemleak_scan(void)
953{
954	unsigned long flags;
955	struct kmemleak_object *object, *tmp;
956	struct task_struct *task;
957	int i;
958
959	/* prepare the kmemleak_object's */
960	rcu_read_lock();
961	list_for_each_entry_rcu(object, &object_list, object_list) {
962		spin_lock_irqsave(&object->lock, flags);
963#ifdef DEBUG
964		/*
965		 * With a few exceptions there should be a maximum of
966		 * 1 reference to any object at this point.
967		 */
968		if (atomic_read(&object->use_count) > 1) {
969			pr_debug("kmemleak: object->use_count = %d\n",
970				 atomic_read(&object->use_count));
971			dump_object_info(object);
972		}
973#endif
974		/* reset the reference count (whiten the object) */
975		object->count = 0;
976		if (color_gray(object) && get_object(object))
977			list_add_tail(&object->gray_list, &gray_list);
978
979		spin_unlock_irqrestore(&object->lock, flags);
980	}
981	rcu_read_unlock();
982
983	/* data/bss scanning */
984	scan_block(_sdata, _edata, NULL);
985	scan_block(__bss_start, __bss_stop, NULL);
986
987#ifdef CONFIG_SMP
988	/* per-cpu sections scanning */
989	for_each_possible_cpu(i)
990		scan_block(__per_cpu_start + per_cpu_offset(i),
991			   __per_cpu_end + per_cpu_offset(i), NULL);
992#endif
993
994	/*
995	 * Struct page scanning for each node. The code below is not yet safe
996	 * with MEMORY_HOTPLUG.
997	 */
998	for_each_online_node(i) {
999		pg_data_t *pgdat = NODE_DATA(i);
1000		unsigned long start_pfn = pgdat->node_start_pfn;
1001		unsigned long end_pfn = start_pfn + pgdat->node_spanned_pages;
1002		unsigned long pfn;
1003
1004		for (pfn = start_pfn; pfn < end_pfn; pfn++) {
1005			struct page *page;
1006
1007			if (!pfn_valid(pfn))
1008				continue;
1009			page = pfn_to_page(pfn);
1010			/* only scan if page is in use */
1011			if (page_count(page) == 0)
1012				continue;
1013			scan_block(page, page + 1, NULL);
1014		}
1015	}
1016
1017	/*
1018	 * Scanning the task stacks may introduce false negatives and it is
1019	 * not enabled by default.
1020	 */
1021	if (kmemleak_stack_scan) {
1022		read_lock(&tasklist_lock);
1023		for_each_process(task)
1024			scan_block(task_stack_page(task),
1025				   task_stack_page(task) + THREAD_SIZE, NULL);
1026		read_unlock(&tasklist_lock);
1027	}
1028
1029	/*
1030	 * Scan the objects already referenced from the sections scanned
1031	 * above. More objects will be referenced and, if there are no memory
1032	 * leaks, all the objects will be scanned. The list traversal is safe
1033	 * for both tail additions and removals from inside the loop. The
1034	 * kmemleak objects cannot be freed from outside the loop because their
1035	 * use_count was increased.
1036	 */
1037	object = list_entry(gray_list.next, typeof(*object), gray_list);
1038	while (&object->gray_list != &gray_list) {
1039		scan_yield();
1040
1041		/* may add new objects to the list */
1042		if (!scan_should_stop())
1043			scan_object(object);
1044
1045		tmp = list_entry(object->gray_list.next, typeof(*object),
1046				 gray_list);
1047
1048		/* remove the object from the list and release it */
1049		list_del(&object->gray_list);
1050		put_object(object);
1051
1052		object = tmp;
1053	}
1054	WARN_ON(!list_empty(&gray_list));
1055}
1056
1057/*
1058 * Thread function performing automatic memory scanning. Unreferenced objects
1059 * at the end of a memory scan are reported but only the first time.
1060 */
1061static int kmemleak_scan_thread(void *arg)
1062{
1063	static int first_run = 1;
1064
1065	pr_info("kmemleak: Automatic memory scanning thread started\n");
1066
1067	/*
1068	 * Wait before the first scan to allow the system to fully initialize.
1069	 */
1070	if (first_run) {
1071		first_run = 0;
1072		ssleep(SECS_FIRST_SCAN);
1073	}
1074
1075	while (!kthread_should_stop()) {
1076		struct kmemleak_object *object;
1077		signed long timeout = jiffies_scan_wait;
1078
1079		mutex_lock(&scan_mutex);
1080
1081		kmemleak_scan();
1082		reported_leaks = 0;
1083
1084		rcu_read_lock();
1085		list_for_each_entry_rcu(object, &object_list, object_list) {
1086			unsigned long flags;
1087
1088			if (reported_leaks >= REPORTS_NR)
1089				break;
1090			spin_lock_irqsave(&object->lock, flags);
1091			if (!(object->flags & OBJECT_REPORTED) &&
1092			    unreferenced_object(object)) {
1093				print_unreferenced(NULL, object);
1094				object->flags |= OBJECT_REPORTED;
1095				reported_leaks++;
1096			} else if ((object->flags & OBJECT_REPORTED) &&
1097				   referenced_object(object)) {
1098				print_referenced(object);
1099				object->flags &= ~OBJECT_REPORTED;
1100			}
1101			spin_unlock_irqrestore(&object->lock, flags);
1102		}
1103		rcu_read_unlock();
1104
1105		mutex_unlock(&scan_mutex);
1106		/* wait before the next scan */
1107		while (timeout && !kthread_should_stop())
1108			timeout = schedule_timeout_interruptible(timeout);
1109	}
1110
1111	pr_info("kmemleak: Automatic memory scanning thread ended\n");
1112
1113	return 0;
1114}
1115
1116/*
1117 * Start the automatic memory scanning thread. This function must be called
1118 * with the kmemleak_mutex held.
1119 */
1120void start_scan_thread(void)
1121{
1122	if (scan_thread)
1123		return;
1124	scan_thread = kthread_run(kmemleak_scan_thread, NULL, "kmemleak");
1125	if (IS_ERR(scan_thread)) {
1126		pr_warning("kmemleak: Failed to create the scan thread\n");
1127		scan_thread = NULL;
1128	}
1129}
1130
1131/*
1132 * Stop the automatic memory scanning thread. This function must be called
1133 * with the kmemleak_mutex held.
1134 */
1135void stop_scan_thread(void)
1136{
1137	if (scan_thread) {
1138		kthread_stop(scan_thread);
1139		scan_thread = NULL;
1140	}
1141}
1142
1143/*
1144 * Iterate over the object_list and return the first valid object at or after
1145 * the required position with its use_count incremented. The function triggers
1146 * a memory scanning when the pos argument points to the first position.
1147 */
1148static void *kmemleak_seq_start(struct seq_file *seq, loff_t *pos)
1149{
1150	struct kmemleak_object *object;
1151	loff_t n = *pos;
1152
1153	if (!n) {
1154		kmemleak_scan();
1155		reported_leaks = 0;
1156	}
1157	if (reported_leaks >= REPORTS_NR)
1158		return NULL;
1159
1160	rcu_read_lock();
1161	list_for_each_entry_rcu(object, &object_list, object_list) {
1162		if (n-- > 0)
1163			continue;
1164		if (get_object(object))
1165			goto out;
1166	}
1167	object = NULL;
1168out:
1169	rcu_read_unlock();
1170	return object;
1171}
1172
1173/*
1174 * Return the next object in the object_list. The function decrements the
1175 * use_count of the previous object and increases that of the next one.
1176 */
1177static void *kmemleak_seq_next(struct seq_file *seq, void *v, loff_t *pos)
1178{
1179	struct kmemleak_object *prev_obj = v;
1180	struct kmemleak_object *next_obj = NULL;
1181	struct list_head *n = &prev_obj->object_list;
1182
1183	++(*pos);
1184	if (reported_leaks >= REPORTS_NR)
1185		goto out;
1186
1187	rcu_read_lock();
1188	list_for_each_continue_rcu(n, &object_list) {
1189		next_obj = list_entry(n, struct kmemleak_object, object_list);
1190		if (get_object(next_obj))
1191			break;
1192	}
1193	rcu_read_unlock();
1194out:
1195	put_object(prev_obj);
1196	return next_obj;
1197}
1198
1199/*
1200 * Decrement the use_count of the last object required, if any.
1201 */
1202static void kmemleak_seq_stop(struct seq_file *seq, void *v)
1203{
1204	if (v)
1205		put_object(v);
1206}
1207
1208/*
1209 * Print the information for an unreferenced object to the seq file.
1210 */
1211static int kmemleak_seq_show(struct seq_file *seq, void *v)
1212{
1213	struct kmemleak_object *object = v;
1214	unsigned long flags;
1215
1216	spin_lock_irqsave(&object->lock, flags);
1217	if (!unreferenced_object(object))
1218		goto out;
1219	print_unreferenced(seq, object);
1220	reported_leaks++;
1221out:
1222	spin_unlock_irqrestore(&object->lock, flags);
1223	return 0;
1224}
1225
1226static const struct seq_operations kmemleak_seq_ops = {
1227	.start = kmemleak_seq_start,
1228	.next  = kmemleak_seq_next,
1229	.stop  = kmemleak_seq_stop,
1230	.show  = kmemleak_seq_show,
1231};
1232
1233static int kmemleak_open(struct inode *inode, struct file *file)
1234{
1235	int ret = 0;
1236
1237	if (!atomic_read(&kmemleak_enabled))
1238		return -EBUSY;
1239
1240	ret = mutex_lock_interruptible(&kmemleak_mutex);
1241	if (ret < 0)
1242		goto out;
1243	if (file->f_mode & FMODE_READ) {
1244		ret = mutex_lock_interruptible(&scan_mutex);
1245		if (ret < 0)
1246			goto kmemleak_unlock;
1247		ret = seq_open(file, &kmemleak_seq_ops);
1248		if (ret < 0)
1249			goto scan_unlock;
1250	}
1251	return ret;
1252
1253scan_unlock:
1254	mutex_unlock(&scan_mutex);
1255kmemleak_unlock:
1256	mutex_unlock(&kmemleak_mutex);
1257out:
1258	return ret;
1259}
1260
1261static int kmemleak_release(struct inode *inode, struct file *file)
1262{
1263	int ret = 0;
1264
1265	if (file->f_mode & FMODE_READ) {
1266		seq_release(inode, file);
1267		mutex_unlock(&scan_mutex);
1268	}
1269	mutex_unlock(&kmemleak_mutex);
1270
1271	return ret;
1272}
1273
1274/*
1275 * File write operation to configure kmemleak at run-time. The following
1276 * commands can be written to the /sys/kernel/debug/kmemleak file:
1277 *   off	- disable kmemleak (irreversible)
1278 *   stack=on	- enable the task stacks scanning
1279 *   stack=off	- disable the tasks stacks scanning
1280 *   scan=on	- start the automatic memory scanning thread
1281 *   scan=off	- stop the automatic memory scanning thread
1282 *   scan=...	- set the automatic memory scanning period in seconds (0 to
1283 *		  disable it)
1284 */
1285static ssize_t kmemleak_write(struct file *file, const char __user *user_buf,
1286			      size_t size, loff_t *ppos)
1287{
1288	char buf[64];
1289	int buf_size;
1290
1291	if (!atomic_read(&kmemleak_enabled))
1292		return -EBUSY;
1293
1294	buf_size = min(size, (sizeof(buf) - 1));
1295	if (strncpy_from_user(buf, user_buf, buf_size) < 0)
1296		return -EFAULT;
1297	buf[buf_size] = 0;
1298
1299	if (strncmp(buf, "off", 3) == 0)
1300		kmemleak_disable();
1301	else if (strncmp(buf, "stack=on", 8) == 0)
1302		kmemleak_stack_scan = 1;
1303	else if (strncmp(buf, "stack=off", 9) == 0)
1304		kmemleak_stack_scan = 0;
1305	else if (strncmp(buf, "scan=on", 7) == 0)
1306		start_scan_thread();
1307	else if (strncmp(buf, "scan=off", 8) == 0)
1308		stop_scan_thread();
1309	else if (strncmp(buf, "scan=", 5) == 0) {
1310		unsigned long secs;
1311		int err;
1312
1313		err = strict_strtoul(buf + 5, 0, &secs);
1314		if (err < 0)
1315			return err;
1316		stop_scan_thread();
1317		if (secs) {
1318			jiffies_scan_wait = msecs_to_jiffies(secs * 1000);
1319			start_scan_thread();
1320		}
1321	} else
1322		return -EINVAL;
1323
1324	/* ignore the rest of the buffer, only one command at a time */
1325	*ppos += size;
1326	return size;
1327}
1328
1329static const struct file_operations kmemleak_fops = {
1330	.owner		= THIS_MODULE,
1331	.open		= kmemleak_open,
1332	.read		= seq_read,
1333	.write		= kmemleak_write,
1334	.llseek		= seq_lseek,
1335	.release	= kmemleak_release,
1336};
1337
1338/*
1339 * Perform the freeing of the kmemleak internal objects after waiting for any
1340 * current memory scan to complete.
1341 */
1342static int kmemleak_cleanup_thread(void *arg)
1343{
1344	struct kmemleak_object *object;
1345
1346	mutex_lock(&kmemleak_mutex);
1347	stop_scan_thread();
1348	mutex_unlock(&kmemleak_mutex);
1349
1350	mutex_lock(&scan_mutex);
1351	rcu_read_lock();
1352	list_for_each_entry_rcu(object, &object_list, object_list)
1353		delete_object(object->pointer);
1354	rcu_read_unlock();
1355	mutex_unlock(&scan_mutex);
1356
1357	return 0;
1358}
1359
1360/*
1361 * Start the clean-up thread.
1362 */
1363static void kmemleak_cleanup(void)
1364{
1365	struct task_struct *cleanup_thread;
1366
1367	cleanup_thread = kthread_run(kmemleak_cleanup_thread, NULL,
1368				     "kmemleak-clean");
1369	if (IS_ERR(cleanup_thread))
1370		pr_warning("kmemleak: Failed to create the clean-up thread\n");
1371}
1372
1373/*
1374 * Disable kmemleak. No memory allocation/freeing will be traced once this
1375 * function is called. Disabling kmemleak is an irreversible operation.
1376 */
1377static void kmemleak_disable(void)
1378{
1379	/* atomically check whether it was already invoked */
1380	if (atomic_cmpxchg(&kmemleak_error, 0, 1))
1381		return;
1382
1383	/* stop any memory operation tracing */
1384	atomic_set(&kmemleak_early_log, 0);
1385	atomic_set(&kmemleak_enabled, 0);
1386
1387	/* check whether it is too early for a kernel thread */
1388	if (atomic_read(&kmemleak_initialized))
1389		kmemleak_cleanup();
1390
1391	pr_info("Kernel memory leak detector disabled\n");
1392}
1393
1394/*
1395 * Allow boot-time kmemleak disabling (enabled by default).
1396 */
1397static int kmemleak_boot_config(char *str)
1398{
1399	if (!str)
1400		return -EINVAL;
1401	if (strcmp(str, "off") == 0)
1402		kmemleak_disable();
1403	else if (strcmp(str, "on") != 0)
1404		return -EINVAL;
1405	return 0;
1406}
1407early_param("kmemleak", kmemleak_boot_config);
1408
1409/*
1410 * Kmemleak initialization.
1411 */
1412void __init kmemleak_init(void)
1413{
1414	int i;
1415	unsigned long flags;
1416
1417	jiffies_scan_yield = msecs_to_jiffies(MSECS_SCAN_YIELD);
1418	jiffies_min_age = msecs_to_jiffies(MSECS_MIN_AGE);
1419	jiffies_scan_wait = msecs_to_jiffies(SECS_SCAN_WAIT * 1000);
1420
1421	object_cache = KMEM_CACHE(kmemleak_object, SLAB_NOLEAKTRACE);
1422	scan_area_cache = KMEM_CACHE(kmemleak_scan_area, SLAB_NOLEAKTRACE);
1423	INIT_PRIO_TREE_ROOT(&object_tree_root);
1424
1425	/* the kernel is still in UP mode, so disabling the IRQs is enough */
1426	local_irq_save(flags);
1427	if (!atomic_read(&kmemleak_error)) {
1428		atomic_set(&kmemleak_enabled, 1);
1429		atomic_set(&kmemleak_early_log, 0);
1430	}
1431	local_irq_restore(flags);
1432
1433	/*
1434	 * This is the point where tracking allocations is safe. Automatic
1435	 * scanning is started during the late initcall. Add the early logged
1436	 * callbacks to the kmemleak infrastructure.
1437	 */
1438	for (i = 0; i < crt_early_log; i++) {
1439		struct early_log *log = &early_log[i];
1440
1441		switch (log->op_type) {
1442		case KMEMLEAK_ALLOC:
1443			kmemleak_alloc(log->ptr, log->size, log->min_count,
1444				       GFP_KERNEL);
1445			break;
1446		case KMEMLEAK_FREE:
1447			kmemleak_free(log->ptr);
1448			break;
1449		case KMEMLEAK_NOT_LEAK:
1450			kmemleak_not_leak(log->ptr);
1451			break;
1452		case KMEMLEAK_IGNORE:
1453			kmemleak_ignore(log->ptr);
1454			break;
1455		case KMEMLEAK_SCAN_AREA:
1456			kmemleak_scan_area(log->ptr, log->offset, log->length,
1457					   GFP_KERNEL);
1458			break;
1459		case KMEMLEAK_NO_SCAN:
1460			kmemleak_no_scan(log->ptr);
1461			break;
1462		default:
1463			WARN_ON(1);
1464		}
1465	}
1466}
1467
1468/*
1469 * Late initialization function.
1470 */
1471static int __init kmemleak_late_init(void)
1472{
1473	struct dentry *dentry;
1474
1475	atomic_set(&kmemleak_initialized, 1);
1476
1477	if (atomic_read(&kmemleak_error)) {
1478		/*
1479		 * Some error occured and kmemleak was disabled. There is a
1480		 * small chance that kmemleak_disable() was called immediately
1481		 * after setting kmemleak_initialized and we may end up with
1482		 * two clean-up threads but serialized by scan_mutex.
1483		 */
1484		kmemleak_cleanup();
1485		return -ENOMEM;
1486	}
1487
1488	dentry = debugfs_create_file("kmemleak", S_IRUGO, NULL, NULL,
1489				     &kmemleak_fops);
1490	if (!dentry)
1491		pr_warning("kmemleak: Failed to create the debugfs kmemleak "
1492			   "file\n");
1493	mutex_lock(&kmemleak_mutex);
1494	start_scan_thread();
1495	mutex_unlock(&kmemleak_mutex);
1496
1497	pr_info("Kernel memory leak detector initialized\n");
1498
1499	return 0;
1500}
1501late_initcall(kmemleak_late_init);
1502