kmemleak.c revision 25985edcedea6396277003854657b5f3cb31a628
1/*
2 * mm/kmemleak.c
3 *
4 * Copyright (C) 2008 ARM Limited
5 * Written by Catalin Marinas <catalin.marinas@arm.com>
6 *
7 * This program is free software; you can redistribute it and/or modify
8 * it under the terms of the GNU General Public License version 2 as
9 * published by the Free Software Foundation.
10 *
11 * This program is distributed in the hope that it will be useful,
12 * but WITHOUT ANY WARRANTY; without even the implied warranty of
13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
14 * GNU General Public License for more details.
15 *
16 * You should have received a copy of the GNU General Public License
17 * along with this program; if not, write to the Free Software
18 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
19 *
20 *
21 * For more information on the algorithm and kmemleak usage, please see
22 * Documentation/kmemleak.txt.
23 *
24 * Notes on locking
25 * ----------------
26 *
27 * The following locks and mutexes are used by kmemleak:
28 *
29 * - kmemleak_lock (rwlock): protects the object_list modifications and
30 *   accesses to the object_tree_root. The object_list is the main list
31 *   holding the metadata (struct kmemleak_object) for the allocated memory
32 *   blocks. The object_tree_root is a priority search tree used to look-up
33 *   metadata based on a pointer to the corresponding memory block.  The
34 *   kmemleak_object structures are added to the object_list and
35 *   object_tree_root in the create_object() function called from the
36 *   kmemleak_alloc() callback and removed in delete_object() called from the
37 *   kmemleak_free() callback
38 * - kmemleak_object.lock (spinlock): protects a kmemleak_object. Accesses to
39 *   the metadata (e.g. count) are protected by this lock. Note that some
40 *   members of this structure may be protected by other means (atomic or
41 *   kmemleak_lock). This lock is also held when scanning the corresponding
42 *   memory block to avoid the kernel freeing it via the kmemleak_free()
43 *   callback. This is less heavyweight than holding a global lock like
44 *   kmemleak_lock during scanning
45 * - scan_mutex (mutex): ensures that only one thread may scan the memory for
46 *   unreferenced objects at a time. The gray_list contains the objects which
47 *   are already referenced or marked as false positives and need to be
48 *   scanned. This list is only modified during a scanning episode when the
49 *   scan_mutex is held. At the end of a scan, the gray_list is always empty.
50 *   Note that the kmemleak_object.use_count is incremented when an object is
51 *   added to the gray_list and therefore cannot be freed. This mutex also
52 *   prevents multiple users of the "kmemleak" debugfs file together with
53 *   modifications to the memory scanning parameters including the scan_thread
54 *   pointer
55 *
56 * The kmemleak_object structures have a use_count incremented or decremented
57 * using the get_object()/put_object() functions. When the use_count becomes
58 * 0, this count can no longer be incremented and put_object() schedules the
59 * kmemleak_object freeing via an RCU callback. All calls to the get_object()
60 * function must be protected by rcu_read_lock() to avoid accessing a freed
61 * structure.
62 */
63
64#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
65
66#include <linux/init.h>
67#include <linux/kernel.h>
68#include <linux/list.h>
69#include <linux/sched.h>
70#include <linux/jiffies.h>
71#include <linux/delay.h>
72#include <linux/module.h>
73#include <linux/kthread.h>
74#include <linux/prio_tree.h>
75#include <linux/fs.h>
76#include <linux/debugfs.h>
77#include <linux/seq_file.h>
78#include <linux/cpumask.h>
79#include <linux/spinlock.h>
80#include <linux/mutex.h>
81#include <linux/rcupdate.h>
82#include <linux/stacktrace.h>
83#include <linux/cache.h>
84#include <linux/percpu.h>
85#include <linux/hardirq.h>
86#include <linux/mmzone.h>
87#include <linux/slab.h>
88#include <linux/thread_info.h>
89#include <linux/err.h>
90#include <linux/uaccess.h>
91#include <linux/string.h>
92#include <linux/nodemask.h>
93#include <linux/mm.h>
94#include <linux/workqueue.h>
95#include <linux/crc32.h>
96
97#include <asm/sections.h>
98#include <asm/processor.h>
99#include <asm/atomic.h>
100
101#include <linux/kmemcheck.h>
102#include <linux/kmemleak.h>
103
104/*
105 * Kmemleak configuration and common defines.
106 */
107#define MAX_TRACE		16	/* stack trace length */
108#define MSECS_MIN_AGE		5000	/* minimum object age for reporting */
109#define SECS_FIRST_SCAN		60	/* delay before the first scan */
110#define SECS_SCAN_WAIT		600	/* subsequent auto scanning delay */
111#define MAX_SCAN_SIZE		4096	/* maximum size of a scanned block */
112
113#define BYTES_PER_POINTER	sizeof(void *)
114
115/* GFP bitmask for kmemleak internal allocations */
116#define gfp_kmemleak_mask(gfp)	(((gfp) & (GFP_KERNEL | GFP_ATOMIC)) | \
117				 __GFP_NORETRY | __GFP_NOMEMALLOC | \
118				 __GFP_NOWARN)
119
120/* scanning area inside a memory block */
121struct kmemleak_scan_area {
122	struct hlist_node node;
123	unsigned long start;
124	size_t size;
125};
126
127#define KMEMLEAK_GREY	0
128#define KMEMLEAK_BLACK	-1
129
130/*
131 * Structure holding the metadata for each allocated memory block.
132 * Modifications to such objects should be made while holding the
133 * object->lock. Insertions or deletions from object_list, gray_list or
134 * tree_node are already protected by the corresponding locks or mutex (see
135 * the notes on locking above). These objects are reference-counted
136 * (use_count) and freed using the RCU mechanism.
137 */
138struct kmemleak_object {
139	spinlock_t lock;
140	unsigned long flags;		/* object status flags */
141	struct list_head object_list;
142	struct list_head gray_list;
143	struct prio_tree_node tree_node;
144	struct rcu_head rcu;		/* object_list lockless traversal */
145	/* object usage count; object freed when use_count == 0 */
146	atomic_t use_count;
147	unsigned long pointer;
148	size_t size;
149	/* minimum number of a pointers found before it is considered leak */
150	int min_count;
151	/* the total number of pointers found pointing to this object */
152	int count;
153	/* checksum for detecting modified objects */
154	u32 checksum;
155	/* memory ranges to be scanned inside an object (empty for all) */
156	struct hlist_head area_list;
157	unsigned long trace[MAX_TRACE];
158	unsigned int trace_len;
159	unsigned long jiffies;		/* creation timestamp */
160	pid_t pid;			/* pid of the current task */
161	char comm[TASK_COMM_LEN];	/* executable name */
162};
163
164/* flag representing the memory block allocation status */
165#define OBJECT_ALLOCATED	(1 << 0)
166/* flag set after the first reporting of an unreference object */
167#define OBJECT_REPORTED		(1 << 1)
168/* flag set to not scan the object */
169#define OBJECT_NO_SCAN		(1 << 2)
170
171/* number of bytes to print per line; must be 16 or 32 */
172#define HEX_ROW_SIZE		16
173/* number of bytes to print at a time (1, 2, 4, 8) */
174#define HEX_GROUP_SIZE		1
175/* include ASCII after the hex output */
176#define HEX_ASCII		1
177/* max number of lines to be printed */
178#define HEX_MAX_LINES		2
179
180/* the list of all allocated objects */
181static LIST_HEAD(object_list);
182/* the list of gray-colored objects (see color_gray comment below) */
183static LIST_HEAD(gray_list);
184/* prio search tree for object boundaries */
185static struct prio_tree_root object_tree_root;
186/* rw_lock protecting the access to object_list and prio_tree_root */
187static DEFINE_RWLOCK(kmemleak_lock);
188
189/* allocation caches for kmemleak internal data */
190static struct kmem_cache *object_cache;
191static struct kmem_cache *scan_area_cache;
192
193/* set if tracing memory operations is enabled */
194static atomic_t kmemleak_enabled = ATOMIC_INIT(0);
195/* set in the late_initcall if there were no errors */
196static atomic_t kmemleak_initialized = ATOMIC_INIT(0);
197/* enables or disables early logging of the memory operations */
198static atomic_t kmemleak_early_log = ATOMIC_INIT(1);
199/* set if a fata kmemleak error has occurred */
200static atomic_t kmemleak_error = ATOMIC_INIT(0);
201
202/* minimum and maximum address that may be valid pointers */
203static unsigned long min_addr = ULONG_MAX;
204static unsigned long max_addr;
205
206static struct task_struct *scan_thread;
207/* used to avoid reporting of recently allocated objects */
208static unsigned long jiffies_min_age;
209static unsigned long jiffies_last_scan;
210/* delay between automatic memory scannings */
211static signed long jiffies_scan_wait;
212/* enables or disables the task stacks scanning */
213static int kmemleak_stack_scan = 1;
214/* protects the memory scanning, parameters and debug/kmemleak file access */
215static DEFINE_MUTEX(scan_mutex);
216/* setting kmemleak=on, will set this var, skipping the disable */
217static int kmemleak_skip_disable;
218
219
220/*
221 * Early object allocation/freeing logging. Kmemleak is initialized after the
222 * kernel allocator. However, both the kernel allocator and kmemleak may
223 * allocate memory blocks which need to be tracked. Kmemleak defines an
224 * arbitrary buffer to hold the allocation/freeing information before it is
225 * fully initialized.
226 */
227
228/* kmemleak operation type for early logging */
229enum {
230	KMEMLEAK_ALLOC,
231	KMEMLEAK_FREE,
232	KMEMLEAK_FREE_PART,
233	KMEMLEAK_NOT_LEAK,
234	KMEMLEAK_IGNORE,
235	KMEMLEAK_SCAN_AREA,
236	KMEMLEAK_NO_SCAN
237};
238
239/*
240 * Structure holding the information passed to kmemleak callbacks during the
241 * early logging.
242 */
243struct early_log {
244	int op_type;			/* kmemleak operation type */
245	const void *ptr;		/* allocated/freed memory block */
246	size_t size;			/* memory block size */
247	int min_count;			/* minimum reference count */
248	unsigned long trace[MAX_TRACE];	/* stack trace */
249	unsigned int trace_len;		/* stack trace length */
250};
251
252/* early logging buffer and current position */
253static struct early_log
254	early_log[CONFIG_DEBUG_KMEMLEAK_EARLY_LOG_SIZE] __initdata;
255static int crt_early_log __initdata;
256
257static void kmemleak_disable(void);
258
259/*
260 * Print a warning and dump the stack trace.
261 */
262#define kmemleak_warn(x...)	do {	\
263	pr_warning(x);			\
264	dump_stack();			\
265} while (0)
266
267/*
268 * Macro invoked when a serious kmemleak condition occurred and cannot be
269 * recovered from. Kmemleak will be disabled and further allocation/freeing
270 * tracing no longer available.
271 */
272#define kmemleak_stop(x...)	do {	\
273	kmemleak_warn(x);		\
274	kmemleak_disable();		\
275} while (0)
276
277/*
278 * Printing of the objects hex dump to the seq file. The number of lines to be
279 * printed is limited to HEX_MAX_LINES to prevent seq file spamming. The
280 * actual number of printed bytes depends on HEX_ROW_SIZE. It must be called
281 * with the object->lock held.
282 */
283static void hex_dump_object(struct seq_file *seq,
284			    struct kmemleak_object *object)
285{
286	const u8 *ptr = (const u8 *)object->pointer;
287	int i, len, remaining;
288	unsigned char linebuf[HEX_ROW_SIZE * 5];
289
290	/* limit the number of lines to HEX_MAX_LINES */
291	remaining = len =
292		min(object->size, (size_t)(HEX_MAX_LINES * HEX_ROW_SIZE));
293
294	seq_printf(seq, "  hex dump (first %d bytes):\n", len);
295	for (i = 0; i < len; i += HEX_ROW_SIZE) {
296		int linelen = min(remaining, HEX_ROW_SIZE);
297
298		remaining -= HEX_ROW_SIZE;
299		hex_dump_to_buffer(ptr + i, linelen, HEX_ROW_SIZE,
300				   HEX_GROUP_SIZE, linebuf, sizeof(linebuf),
301				   HEX_ASCII);
302		seq_printf(seq, "    %s\n", linebuf);
303	}
304}
305
306/*
307 * Object colors, encoded with count and min_count:
308 * - white - orphan object, not enough references to it (count < min_count)
309 * - gray  - not orphan, not marked as false positive (min_count == 0) or
310 *		sufficient references to it (count >= min_count)
311 * - black - ignore, it doesn't contain references (e.g. text section)
312 *		(min_count == -1). No function defined for this color.
313 * Newly created objects don't have any color assigned (object->count == -1)
314 * before the next memory scan when they become white.
315 */
316static bool color_white(const struct kmemleak_object *object)
317{
318	return object->count != KMEMLEAK_BLACK &&
319		object->count < object->min_count;
320}
321
322static bool color_gray(const struct kmemleak_object *object)
323{
324	return object->min_count != KMEMLEAK_BLACK &&
325		object->count >= object->min_count;
326}
327
328/*
329 * Objects are considered unreferenced only if their color is white, they have
330 * not be deleted and have a minimum age to avoid false positives caused by
331 * pointers temporarily stored in CPU registers.
332 */
333static bool unreferenced_object(struct kmemleak_object *object)
334{
335	return (color_white(object) && object->flags & OBJECT_ALLOCATED) &&
336		time_before_eq(object->jiffies + jiffies_min_age,
337			       jiffies_last_scan);
338}
339
340/*
341 * Printing of the unreferenced objects information to the seq file. The
342 * print_unreferenced function must be called with the object->lock held.
343 */
344static void print_unreferenced(struct seq_file *seq,
345			       struct kmemleak_object *object)
346{
347	int i;
348	unsigned int msecs_age = jiffies_to_msecs(jiffies - object->jiffies);
349
350	seq_printf(seq, "unreferenced object 0x%08lx (size %zu):\n",
351		   object->pointer, object->size);
352	seq_printf(seq, "  comm \"%s\", pid %d, jiffies %lu (age %d.%03ds)\n",
353		   object->comm, object->pid, object->jiffies,
354		   msecs_age / 1000, msecs_age % 1000);
355	hex_dump_object(seq, object);
356	seq_printf(seq, "  backtrace:\n");
357
358	for (i = 0; i < object->trace_len; i++) {
359		void *ptr = (void *)object->trace[i];
360		seq_printf(seq, "    [<%p>] %pS\n", ptr, ptr);
361	}
362}
363
364/*
365 * Print the kmemleak_object information. This function is used mainly for
366 * debugging special cases when kmemleak operations. It must be called with
367 * the object->lock held.
368 */
369static void dump_object_info(struct kmemleak_object *object)
370{
371	struct stack_trace trace;
372
373	trace.nr_entries = object->trace_len;
374	trace.entries = object->trace;
375
376	pr_notice("Object 0x%08lx (size %zu):\n",
377		  object->tree_node.start, object->size);
378	pr_notice("  comm \"%s\", pid %d, jiffies %lu\n",
379		  object->comm, object->pid, object->jiffies);
380	pr_notice("  min_count = %d\n", object->min_count);
381	pr_notice("  count = %d\n", object->count);
382	pr_notice("  flags = 0x%lx\n", object->flags);
383	pr_notice("  checksum = %d\n", object->checksum);
384	pr_notice("  backtrace:\n");
385	print_stack_trace(&trace, 4);
386}
387
388/*
389 * Look-up a memory block metadata (kmemleak_object) in the priority search
390 * tree based on a pointer value. If alias is 0, only values pointing to the
391 * beginning of the memory block are allowed. The kmemleak_lock must be held
392 * when calling this function.
393 */
394static struct kmemleak_object *lookup_object(unsigned long ptr, int alias)
395{
396	struct prio_tree_node *node;
397	struct prio_tree_iter iter;
398	struct kmemleak_object *object;
399
400	prio_tree_iter_init(&iter, &object_tree_root, ptr, ptr);
401	node = prio_tree_next(&iter);
402	if (node) {
403		object = prio_tree_entry(node, struct kmemleak_object,
404					 tree_node);
405		if (!alias && object->pointer != ptr) {
406			pr_warning("Found object by alias at 0x%08lx\n", ptr);
407			dump_stack();
408			dump_object_info(object);
409			object = NULL;
410		}
411	} else
412		object = NULL;
413
414	return object;
415}
416
417/*
418 * Increment the object use_count. Return 1 if successful or 0 otherwise. Note
419 * that once an object's use_count reached 0, the RCU freeing was already
420 * registered and the object should no longer be used. This function must be
421 * called under the protection of rcu_read_lock().
422 */
423static int get_object(struct kmemleak_object *object)
424{
425	return atomic_inc_not_zero(&object->use_count);
426}
427
428/*
429 * RCU callback to free a kmemleak_object.
430 */
431static void free_object_rcu(struct rcu_head *rcu)
432{
433	struct hlist_node *elem, *tmp;
434	struct kmemleak_scan_area *area;
435	struct kmemleak_object *object =
436		container_of(rcu, struct kmemleak_object, rcu);
437
438	/*
439	 * Once use_count is 0 (guaranteed by put_object), there is no other
440	 * code accessing this object, hence no need for locking.
441	 */
442	hlist_for_each_entry_safe(area, elem, tmp, &object->area_list, node) {
443		hlist_del(elem);
444		kmem_cache_free(scan_area_cache, area);
445	}
446	kmem_cache_free(object_cache, object);
447}
448
449/*
450 * Decrement the object use_count. Once the count is 0, free the object using
451 * an RCU callback. Since put_object() may be called via the kmemleak_free() ->
452 * delete_object() path, the delayed RCU freeing ensures that there is no
453 * recursive call to the kernel allocator. Lock-less RCU object_list traversal
454 * is also possible.
455 */
456static void put_object(struct kmemleak_object *object)
457{
458	if (!atomic_dec_and_test(&object->use_count))
459		return;
460
461	/* should only get here after delete_object was called */
462	WARN_ON(object->flags & OBJECT_ALLOCATED);
463
464	call_rcu(&object->rcu, free_object_rcu);
465}
466
467/*
468 * Look up an object in the prio search tree and increase its use_count.
469 */
470static struct kmemleak_object *find_and_get_object(unsigned long ptr, int alias)
471{
472	unsigned long flags;
473	struct kmemleak_object *object = NULL;
474
475	rcu_read_lock();
476	read_lock_irqsave(&kmemleak_lock, flags);
477	if (ptr >= min_addr && ptr < max_addr)
478		object = lookup_object(ptr, alias);
479	read_unlock_irqrestore(&kmemleak_lock, flags);
480
481	/* check whether the object is still available */
482	if (object && !get_object(object))
483		object = NULL;
484	rcu_read_unlock();
485
486	return object;
487}
488
489/*
490 * Save stack trace to the given array of MAX_TRACE size.
491 */
492static int __save_stack_trace(unsigned long *trace)
493{
494	struct stack_trace stack_trace;
495
496	stack_trace.max_entries = MAX_TRACE;
497	stack_trace.nr_entries = 0;
498	stack_trace.entries = trace;
499	stack_trace.skip = 2;
500	save_stack_trace(&stack_trace);
501
502	return stack_trace.nr_entries;
503}
504
505/*
506 * Create the metadata (struct kmemleak_object) corresponding to an allocated
507 * memory block and add it to the object_list and object_tree_root.
508 */
509static struct kmemleak_object *create_object(unsigned long ptr, size_t size,
510					     int min_count, gfp_t gfp)
511{
512	unsigned long flags;
513	struct kmemleak_object *object;
514	struct prio_tree_node *node;
515
516	object = kmem_cache_alloc(object_cache, gfp_kmemleak_mask(gfp));
517	if (!object) {
518		pr_warning("Cannot allocate a kmemleak_object structure\n");
519		kmemleak_disable();
520		return NULL;
521	}
522
523	INIT_LIST_HEAD(&object->object_list);
524	INIT_LIST_HEAD(&object->gray_list);
525	INIT_HLIST_HEAD(&object->area_list);
526	spin_lock_init(&object->lock);
527	atomic_set(&object->use_count, 1);
528	object->flags = OBJECT_ALLOCATED;
529	object->pointer = ptr;
530	object->size = size;
531	object->min_count = min_count;
532	object->count = 0;			/* white color initially */
533	object->jiffies = jiffies;
534	object->checksum = 0;
535
536	/* task information */
537	if (in_irq()) {
538		object->pid = 0;
539		strncpy(object->comm, "hardirq", sizeof(object->comm));
540	} else if (in_softirq()) {
541		object->pid = 0;
542		strncpy(object->comm, "softirq", sizeof(object->comm));
543	} else {
544		object->pid = current->pid;
545		/*
546		 * There is a small chance of a race with set_task_comm(),
547		 * however using get_task_comm() here may cause locking
548		 * dependency issues with current->alloc_lock. In the worst
549		 * case, the command line is not correct.
550		 */
551		strncpy(object->comm, current->comm, sizeof(object->comm));
552	}
553
554	/* kernel backtrace */
555	object->trace_len = __save_stack_trace(object->trace);
556
557	INIT_PRIO_TREE_NODE(&object->tree_node);
558	object->tree_node.start = ptr;
559	object->tree_node.last = ptr + size - 1;
560
561	write_lock_irqsave(&kmemleak_lock, flags);
562
563	min_addr = min(min_addr, ptr);
564	max_addr = max(max_addr, ptr + size);
565	node = prio_tree_insert(&object_tree_root, &object->tree_node);
566	/*
567	 * The code calling the kernel does not yet have the pointer to the
568	 * memory block to be able to free it.  However, we still hold the
569	 * kmemleak_lock here in case parts of the kernel started freeing
570	 * random memory blocks.
571	 */
572	if (node != &object->tree_node) {
573		kmemleak_stop("Cannot insert 0x%lx into the object search tree "
574			      "(already existing)\n", ptr);
575		object = lookup_object(ptr, 1);
576		spin_lock(&object->lock);
577		dump_object_info(object);
578		spin_unlock(&object->lock);
579
580		goto out;
581	}
582	list_add_tail_rcu(&object->object_list, &object_list);
583out:
584	write_unlock_irqrestore(&kmemleak_lock, flags);
585	return object;
586}
587
588/*
589 * Remove the metadata (struct kmemleak_object) for a memory block from the
590 * object_list and object_tree_root and decrement its use_count.
591 */
592static void __delete_object(struct kmemleak_object *object)
593{
594	unsigned long flags;
595
596	write_lock_irqsave(&kmemleak_lock, flags);
597	prio_tree_remove(&object_tree_root, &object->tree_node);
598	list_del_rcu(&object->object_list);
599	write_unlock_irqrestore(&kmemleak_lock, flags);
600
601	WARN_ON(!(object->flags & OBJECT_ALLOCATED));
602	WARN_ON(atomic_read(&object->use_count) < 2);
603
604	/*
605	 * Locking here also ensures that the corresponding memory block
606	 * cannot be freed when it is being scanned.
607	 */
608	spin_lock_irqsave(&object->lock, flags);
609	object->flags &= ~OBJECT_ALLOCATED;
610	spin_unlock_irqrestore(&object->lock, flags);
611	put_object(object);
612}
613
614/*
615 * Look up the metadata (struct kmemleak_object) corresponding to ptr and
616 * delete it.
617 */
618static void delete_object_full(unsigned long ptr)
619{
620	struct kmemleak_object *object;
621
622	object = find_and_get_object(ptr, 0);
623	if (!object) {
624#ifdef DEBUG
625		kmemleak_warn("Freeing unknown object at 0x%08lx\n",
626			      ptr);
627#endif
628		return;
629	}
630	__delete_object(object);
631	put_object(object);
632}
633
634/*
635 * Look up the metadata (struct kmemleak_object) corresponding to ptr and
636 * delete it. If the memory block is partially freed, the function may create
637 * additional metadata for the remaining parts of the block.
638 */
639static void delete_object_part(unsigned long ptr, size_t size)
640{
641	struct kmemleak_object *object;
642	unsigned long start, end;
643
644	object = find_and_get_object(ptr, 1);
645	if (!object) {
646#ifdef DEBUG
647		kmemleak_warn("Partially freeing unknown object at 0x%08lx "
648			      "(size %zu)\n", ptr, size);
649#endif
650		return;
651	}
652	__delete_object(object);
653
654	/*
655	 * Create one or two objects that may result from the memory block
656	 * split. Note that partial freeing is only done by free_bootmem() and
657	 * this happens before kmemleak_init() is called. The path below is
658	 * only executed during early log recording in kmemleak_init(), so
659	 * GFP_KERNEL is enough.
660	 */
661	start = object->pointer;
662	end = object->pointer + object->size;
663	if (ptr > start)
664		create_object(start, ptr - start, object->min_count,
665			      GFP_KERNEL);
666	if (ptr + size < end)
667		create_object(ptr + size, end - ptr - size, object->min_count,
668			      GFP_KERNEL);
669
670	put_object(object);
671}
672
673static void __paint_it(struct kmemleak_object *object, int color)
674{
675	object->min_count = color;
676	if (color == KMEMLEAK_BLACK)
677		object->flags |= OBJECT_NO_SCAN;
678}
679
680static void paint_it(struct kmemleak_object *object, int color)
681{
682	unsigned long flags;
683
684	spin_lock_irqsave(&object->lock, flags);
685	__paint_it(object, color);
686	spin_unlock_irqrestore(&object->lock, flags);
687}
688
689static void paint_ptr(unsigned long ptr, int color)
690{
691	struct kmemleak_object *object;
692
693	object = find_and_get_object(ptr, 0);
694	if (!object) {
695		kmemleak_warn("Trying to color unknown object "
696			      "at 0x%08lx as %s\n", ptr,
697			      (color == KMEMLEAK_GREY) ? "Grey" :
698			      (color == KMEMLEAK_BLACK) ? "Black" : "Unknown");
699		return;
700	}
701	paint_it(object, color);
702	put_object(object);
703}
704
705/*
706 * Mark an object permanently as gray-colored so that it can no longer be
707 * reported as a leak. This is used in general to mark a false positive.
708 */
709static void make_gray_object(unsigned long ptr)
710{
711	paint_ptr(ptr, KMEMLEAK_GREY);
712}
713
714/*
715 * Mark the object as black-colored so that it is ignored from scans and
716 * reporting.
717 */
718static void make_black_object(unsigned long ptr)
719{
720	paint_ptr(ptr, KMEMLEAK_BLACK);
721}
722
723/*
724 * Add a scanning area to the object. If at least one such area is added,
725 * kmemleak will only scan these ranges rather than the whole memory block.
726 */
727static void add_scan_area(unsigned long ptr, size_t size, gfp_t gfp)
728{
729	unsigned long flags;
730	struct kmemleak_object *object;
731	struct kmemleak_scan_area *area;
732
733	object = find_and_get_object(ptr, 1);
734	if (!object) {
735		kmemleak_warn("Adding scan area to unknown object at 0x%08lx\n",
736			      ptr);
737		return;
738	}
739
740	area = kmem_cache_alloc(scan_area_cache, gfp_kmemleak_mask(gfp));
741	if (!area) {
742		pr_warning("Cannot allocate a scan area\n");
743		goto out;
744	}
745
746	spin_lock_irqsave(&object->lock, flags);
747	if (ptr + size > object->pointer + object->size) {
748		kmemleak_warn("Scan area larger than object 0x%08lx\n", ptr);
749		dump_object_info(object);
750		kmem_cache_free(scan_area_cache, area);
751		goto out_unlock;
752	}
753
754	INIT_HLIST_NODE(&area->node);
755	area->start = ptr;
756	area->size = size;
757
758	hlist_add_head(&area->node, &object->area_list);
759out_unlock:
760	spin_unlock_irqrestore(&object->lock, flags);
761out:
762	put_object(object);
763}
764
765/*
766 * Set the OBJECT_NO_SCAN flag for the object corresponding to the give
767 * pointer. Such object will not be scanned by kmemleak but references to it
768 * are searched.
769 */
770static void object_no_scan(unsigned long ptr)
771{
772	unsigned long flags;
773	struct kmemleak_object *object;
774
775	object = find_and_get_object(ptr, 0);
776	if (!object) {
777		kmemleak_warn("Not scanning unknown object at 0x%08lx\n", ptr);
778		return;
779	}
780
781	spin_lock_irqsave(&object->lock, flags);
782	object->flags |= OBJECT_NO_SCAN;
783	spin_unlock_irqrestore(&object->lock, flags);
784	put_object(object);
785}
786
787/*
788 * Log an early kmemleak_* call to the early_log buffer. These calls will be
789 * processed later once kmemleak is fully initialized.
790 */
791static void __init log_early(int op_type, const void *ptr, size_t size,
792			     int min_count)
793{
794	unsigned long flags;
795	struct early_log *log;
796
797	if (crt_early_log >= ARRAY_SIZE(early_log)) {
798		pr_warning("Early log buffer exceeded, "
799			   "please increase DEBUG_KMEMLEAK_EARLY_LOG_SIZE\n");
800		kmemleak_disable();
801		return;
802	}
803
804	/*
805	 * There is no need for locking since the kernel is still in UP mode
806	 * at this stage. Disabling the IRQs is enough.
807	 */
808	local_irq_save(flags);
809	log = &early_log[crt_early_log];
810	log->op_type = op_type;
811	log->ptr = ptr;
812	log->size = size;
813	log->min_count = min_count;
814	if (op_type == KMEMLEAK_ALLOC)
815		log->trace_len = __save_stack_trace(log->trace);
816	crt_early_log++;
817	local_irq_restore(flags);
818}
819
820/*
821 * Log an early allocated block and populate the stack trace.
822 */
823static void early_alloc(struct early_log *log)
824{
825	struct kmemleak_object *object;
826	unsigned long flags;
827	int i;
828
829	if (!atomic_read(&kmemleak_enabled) || !log->ptr || IS_ERR(log->ptr))
830		return;
831
832	/*
833	 * RCU locking needed to ensure object is not freed via put_object().
834	 */
835	rcu_read_lock();
836	object = create_object((unsigned long)log->ptr, log->size,
837			       log->min_count, GFP_ATOMIC);
838	if (!object)
839		goto out;
840	spin_lock_irqsave(&object->lock, flags);
841	for (i = 0; i < log->trace_len; i++)
842		object->trace[i] = log->trace[i];
843	object->trace_len = log->trace_len;
844	spin_unlock_irqrestore(&object->lock, flags);
845out:
846	rcu_read_unlock();
847}
848
849/**
850 * kmemleak_alloc - register a newly allocated object
851 * @ptr:	pointer to beginning of the object
852 * @size:	size of the object
853 * @min_count:	minimum number of references to this object. If during memory
854 *		scanning a number of references less than @min_count is found,
855 *		the object is reported as a memory leak. If @min_count is 0,
856 *		the object is never reported as a leak. If @min_count is -1,
857 *		the object is ignored (not scanned and not reported as a leak)
858 * @gfp:	kmalloc() flags used for kmemleak internal memory allocations
859 *
860 * This function is called from the kernel allocators when a new object
861 * (memory block) is allocated (kmem_cache_alloc, kmalloc, vmalloc etc.).
862 */
863void __ref kmemleak_alloc(const void *ptr, size_t size, int min_count,
864			  gfp_t gfp)
865{
866	pr_debug("%s(0x%p, %zu, %d)\n", __func__, ptr, size, min_count);
867
868	if (atomic_read(&kmemleak_enabled) && ptr && !IS_ERR(ptr))
869		create_object((unsigned long)ptr, size, min_count, gfp);
870	else if (atomic_read(&kmemleak_early_log))
871		log_early(KMEMLEAK_ALLOC, ptr, size, min_count);
872}
873EXPORT_SYMBOL_GPL(kmemleak_alloc);
874
875/**
876 * kmemleak_free - unregister a previously registered object
877 * @ptr:	pointer to beginning of the object
878 *
879 * This function is called from the kernel allocators when an object (memory
880 * block) is freed (kmem_cache_free, kfree, vfree etc.).
881 */
882void __ref kmemleak_free(const void *ptr)
883{
884	pr_debug("%s(0x%p)\n", __func__, ptr);
885
886	if (atomic_read(&kmemleak_enabled) && ptr && !IS_ERR(ptr))
887		delete_object_full((unsigned long)ptr);
888	else if (atomic_read(&kmemleak_early_log))
889		log_early(KMEMLEAK_FREE, ptr, 0, 0);
890}
891EXPORT_SYMBOL_GPL(kmemleak_free);
892
893/**
894 * kmemleak_free_part - partially unregister a previously registered object
895 * @ptr:	pointer to the beginning or inside the object. This also
896 *		represents the start of the range to be freed
897 * @size:	size to be unregistered
898 *
899 * This function is called when only a part of a memory block is freed
900 * (usually from the bootmem allocator).
901 */
902void __ref kmemleak_free_part(const void *ptr, size_t size)
903{
904	pr_debug("%s(0x%p)\n", __func__, ptr);
905
906	if (atomic_read(&kmemleak_enabled) && ptr && !IS_ERR(ptr))
907		delete_object_part((unsigned long)ptr, size);
908	else if (atomic_read(&kmemleak_early_log))
909		log_early(KMEMLEAK_FREE_PART, ptr, size, 0);
910}
911EXPORT_SYMBOL_GPL(kmemleak_free_part);
912
913/**
914 * kmemleak_not_leak - mark an allocated object as false positive
915 * @ptr:	pointer to beginning of the object
916 *
917 * Calling this function on an object will cause the memory block to no longer
918 * be reported as leak and always be scanned.
919 */
920void __ref kmemleak_not_leak(const void *ptr)
921{
922	pr_debug("%s(0x%p)\n", __func__, ptr);
923
924	if (atomic_read(&kmemleak_enabled) && ptr && !IS_ERR(ptr))
925		make_gray_object((unsigned long)ptr);
926	else if (atomic_read(&kmemleak_early_log))
927		log_early(KMEMLEAK_NOT_LEAK, ptr, 0, 0);
928}
929EXPORT_SYMBOL(kmemleak_not_leak);
930
931/**
932 * kmemleak_ignore - ignore an allocated object
933 * @ptr:	pointer to beginning of the object
934 *
935 * Calling this function on an object will cause the memory block to be
936 * ignored (not scanned and not reported as a leak). This is usually done when
937 * it is known that the corresponding block is not a leak and does not contain
938 * any references to other allocated memory blocks.
939 */
940void __ref kmemleak_ignore(const void *ptr)
941{
942	pr_debug("%s(0x%p)\n", __func__, ptr);
943
944	if (atomic_read(&kmemleak_enabled) && ptr && !IS_ERR(ptr))
945		make_black_object((unsigned long)ptr);
946	else if (atomic_read(&kmemleak_early_log))
947		log_early(KMEMLEAK_IGNORE, ptr, 0, 0);
948}
949EXPORT_SYMBOL(kmemleak_ignore);
950
951/**
952 * kmemleak_scan_area - limit the range to be scanned in an allocated object
953 * @ptr:	pointer to beginning or inside the object. This also
954 *		represents the start of the scan area
955 * @size:	size of the scan area
956 * @gfp:	kmalloc() flags used for kmemleak internal memory allocations
957 *
958 * This function is used when it is known that only certain parts of an object
959 * contain references to other objects. Kmemleak will only scan these areas
960 * reducing the number false negatives.
961 */
962void __ref kmemleak_scan_area(const void *ptr, size_t size, gfp_t gfp)
963{
964	pr_debug("%s(0x%p)\n", __func__, ptr);
965
966	if (atomic_read(&kmemleak_enabled) && ptr && !IS_ERR(ptr))
967		add_scan_area((unsigned long)ptr, size, gfp);
968	else if (atomic_read(&kmemleak_early_log))
969		log_early(KMEMLEAK_SCAN_AREA, ptr, size, 0);
970}
971EXPORT_SYMBOL(kmemleak_scan_area);
972
973/**
974 * kmemleak_no_scan - do not scan an allocated object
975 * @ptr:	pointer to beginning of the object
976 *
977 * This function notifies kmemleak not to scan the given memory block. Useful
978 * in situations where it is known that the given object does not contain any
979 * references to other objects. Kmemleak will not scan such objects reducing
980 * the number of false negatives.
981 */
982void __ref kmemleak_no_scan(const void *ptr)
983{
984	pr_debug("%s(0x%p)\n", __func__, ptr);
985
986	if (atomic_read(&kmemleak_enabled) && ptr && !IS_ERR(ptr))
987		object_no_scan((unsigned long)ptr);
988	else if (atomic_read(&kmemleak_early_log))
989		log_early(KMEMLEAK_NO_SCAN, ptr, 0, 0);
990}
991EXPORT_SYMBOL(kmemleak_no_scan);
992
993/*
994 * Update an object's checksum and return true if it was modified.
995 */
996static bool update_checksum(struct kmemleak_object *object)
997{
998	u32 old_csum = object->checksum;
999
1000	if (!kmemcheck_is_obj_initialized(object->pointer, object->size))
1001		return false;
1002
1003	object->checksum = crc32(0, (void *)object->pointer, object->size);
1004	return object->checksum != old_csum;
1005}
1006
1007/*
1008 * Memory scanning is a long process and it needs to be interruptable. This
1009 * function checks whether such interrupt condition occurred.
1010 */
1011static int scan_should_stop(void)
1012{
1013	if (!atomic_read(&kmemleak_enabled))
1014		return 1;
1015
1016	/*
1017	 * This function may be called from either process or kthread context,
1018	 * hence the need to check for both stop conditions.
1019	 */
1020	if (current->mm)
1021		return signal_pending(current);
1022	else
1023		return kthread_should_stop();
1024
1025	return 0;
1026}
1027
1028/*
1029 * Scan a memory block (exclusive range) for valid pointers and add those
1030 * found to the gray list.
1031 */
1032static void scan_block(void *_start, void *_end,
1033		       struct kmemleak_object *scanned, int allow_resched)
1034{
1035	unsigned long *ptr;
1036	unsigned long *start = PTR_ALIGN(_start, BYTES_PER_POINTER);
1037	unsigned long *end = _end - (BYTES_PER_POINTER - 1);
1038
1039	for (ptr = start; ptr < end; ptr++) {
1040		struct kmemleak_object *object;
1041		unsigned long flags;
1042		unsigned long pointer;
1043
1044		if (allow_resched)
1045			cond_resched();
1046		if (scan_should_stop())
1047			break;
1048
1049		/* don't scan uninitialized memory */
1050		if (!kmemcheck_is_obj_initialized((unsigned long)ptr,
1051						  BYTES_PER_POINTER))
1052			continue;
1053
1054		pointer = *ptr;
1055
1056		object = find_and_get_object(pointer, 1);
1057		if (!object)
1058			continue;
1059		if (object == scanned) {
1060			/* self referenced, ignore */
1061			put_object(object);
1062			continue;
1063		}
1064
1065		/*
1066		 * Avoid the lockdep recursive warning on object->lock being
1067		 * previously acquired in scan_object(). These locks are
1068		 * enclosed by scan_mutex.
1069		 */
1070		spin_lock_irqsave_nested(&object->lock, flags,
1071					 SINGLE_DEPTH_NESTING);
1072		if (!color_white(object)) {
1073			/* non-orphan, ignored or new */
1074			spin_unlock_irqrestore(&object->lock, flags);
1075			put_object(object);
1076			continue;
1077		}
1078
1079		/*
1080		 * Increase the object's reference count (number of pointers
1081		 * to the memory block). If this count reaches the required
1082		 * minimum, the object's color will become gray and it will be
1083		 * added to the gray_list.
1084		 */
1085		object->count++;
1086		if (color_gray(object)) {
1087			list_add_tail(&object->gray_list, &gray_list);
1088			spin_unlock_irqrestore(&object->lock, flags);
1089			continue;
1090		}
1091
1092		spin_unlock_irqrestore(&object->lock, flags);
1093		put_object(object);
1094	}
1095}
1096
1097/*
1098 * Scan a memory block corresponding to a kmemleak_object. A condition is
1099 * that object->use_count >= 1.
1100 */
1101static void scan_object(struct kmemleak_object *object)
1102{
1103	struct kmemleak_scan_area *area;
1104	struct hlist_node *elem;
1105	unsigned long flags;
1106
1107	/*
1108	 * Once the object->lock is acquired, the corresponding memory block
1109	 * cannot be freed (the same lock is acquired in delete_object).
1110	 */
1111	spin_lock_irqsave(&object->lock, flags);
1112	if (object->flags & OBJECT_NO_SCAN)
1113		goto out;
1114	if (!(object->flags & OBJECT_ALLOCATED))
1115		/* already freed object */
1116		goto out;
1117	if (hlist_empty(&object->area_list)) {
1118		void *start = (void *)object->pointer;
1119		void *end = (void *)(object->pointer + object->size);
1120
1121		while (start < end && (object->flags & OBJECT_ALLOCATED) &&
1122		       !(object->flags & OBJECT_NO_SCAN)) {
1123			scan_block(start, min(start + MAX_SCAN_SIZE, end),
1124				   object, 0);
1125			start += MAX_SCAN_SIZE;
1126
1127			spin_unlock_irqrestore(&object->lock, flags);
1128			cond_resched();
1129			spin_lock_irqsave(&object->lock, flags);
1130		}
1131	} else
1132		hlist_for_each_entry(area, elem, &object->area_list, node)
1133			scan_block((void *)area->start,
1134				   (void *)(area->start + area->size),
1135				   object, 0);
1136out:
1137	spin_unlock_irqrestore(&object->lock, flags);
1138}
1139
1140/*
1141 * Scan the objects already referenced (gray objects). More objects will be
1142 * referenced and, if there are no memory leaks, all the objects are scanned.
1143 */
1144static void scan_gray_list(void)
1145{
1146	struct kmemleak_object *object, *tmp;
1147
1148	/*
1149	 * The list traversal is safe for both tail additions and removals
1150	 * from inside the loop. The kmemleak objects cannot be freed from
1151	 * outside the loop because their use_count was incremented.
1152	 */
1153	object = list_entry(gray_list.next, typeof(*object), gray_list);
1154	while (&object->gray_list != &gray_list) {
1155		cond_resched();
1156
1157		/* may add new objects to the list */
1158		if (!scan_should_stop())
1159			scan_object(object);
1160
1161		tmp = list_entry(object->gray_list.next, typeof(*object),
1162				 gray_list);
1163
1164		/* remove the object from the list and release it */
1165		list_del(&object->gray_list);
1166		put_object(object);
1167
1168		object = tmp;
1169	}
1170	WARN_ON(!list_empty(&gray_list));
1171}
1172
1173/*
1174 * Scan data sections and all the referenced memory blocks allocated via the
1175 * kernel's standard allocators. This function must be called with the
1176 * scan_mutex held.
1177 */
1178static void kmemleak_scan(void)
1179{
1180	unsigned long flags;
1181	struct kmemleak_object *object;
1182	int i;
1183	int new_leaks = 0;
1184
1185	jiffies_last_scan = jiffies;
1186
1187	/* prepare the kmemleak_object's */
1188	rcu_read_lock();
1189	list_for_each_entry_rcu(object, &object_list, object_list) {
1190		spin_lock_irqsave(&object->lock, flags);
1191#ifdef DEBUG
1192		/*
1193		 * With a few exceptions there should be a maximum of
1194		 * 1 reference to any object at this point.
1195		 */
1196		if (atomic_read(&object->use_count) > 1) {
1197			pr_debug("object->use_count = %d\n",
1198				 atomic_read(&object->use_count));
1199			dump_object_info(object);
1200		}
1201#endif
1202		/* reset the reference count (whiten the object) */
1203		object->count = 0;
1204		if (color_gray(object) && get_object(object))
1205			list_add_tail(&object->gray_list, &gray_list);
1206
1207		spin_unlock_irqrestore(&object->lock, flags);
1208	}
1209	rcu_read_unlock();
1210
1211	/* data/bss scanning */
1212	scan_block(_sdata, _edata, NULL, 1);
1213	scan_block(__bss_start, __bss_stop, NULL, 1);
1214
1215#ifdef CONFIG_SMP
1216	/* per-cpu sections scanning */
1217	for_each_possible_cpu(i)
1218		scan_block(__per_cpu_start + per_cpu_offset(i),
1219			   __per_cpu_end + per_cpu_offset(i), NULL, 1);
1220#endif
1221
1222	/*
1223	 * Struct page scanning for each node. The code below is not yet safe
1224	 * with MEMORY_HOTPLUG.
1225	 */
1226	for_each_online_node(i) {
1227		pg_data_t *pgdat = NODE_DATA(i);
1228		unsigned long start_pfn = pgdat->node_start_pfn;
1229		unsigned long end_pfn = start_pfn + pgdat->node_spanned_pages;
1230		unsigned long pfn;
1231
1232		for (pfn = start_pfn; pfn < end_pfn; pfn++) {
1233			struct page *page;
1234
1235			if (!pfn_valid(pfn))
1236				continue;
1237			page = pfn_to_page(pfn);
1238			/* only scan if page is in use */
1239			if (page_count(page) == 0)
1240				continue;
1241			scan_block(page, page + 1, NULL, 1);
1242		}
1243	}
1244
1245	/*
1246	 * Scanning the task stacks (may introduce false negatives).
1247	 */
1248	if (kmemleak_stack_scan) {
1249		struct task_struct *p, *g;
1250
1251		read_lock(&tasklist_lock);
1252		do_each_thread(g, p) {
1253			scan_block(task_stack_page(p), task_stack_page(p) +
1254				   THREAD_SIZE, NULL, 0);
1255		} while_each_thread(g, p);
1256		read_unlock(&tasklist_lock);
1257	}
1258
1259	/*
1260	 * Scan the objects already referenced from the sections scanned
1261	 * above.
1262	 */
1263	scan_gray_list();
1264
1265	/*
1266	 * Check for new or unreferenced objects modified since the previous
1267	 * scan and color them gray until the next scan.
1268	 */
1269	rcu_read_lock();
1270	list_for_each_entry_rcu(object, &object_list, object_list) {
1271		spin_lock_irqsave(&object->lock, flags);
1272		if (color_white(object) && (object->flags & OBJECT_ALLOCATED)
1273		    && update_checksum(object) && get_object(object)) {
1274			/* color it gray temporarily */
1275			object->count = object->min_count;
1276			list_add_tail(&object->gray_list, &gray_list);
1277		}
1278		spin_unlock_irqrestore(&object->lock, flags);
1279	}
1280	rcu_read_unlock();
1281
1282	/*
1283	 * Re-scan the gray list for modified unreferenced objects.
1284	 */
1285	scan_gray_list();
1286
1287	/*
1288	 * If scanning was stopped do not report any new unreferenced objects.
1289	 */
1290	if (scan_should_stop())
1291		return;
1292
1293	/*
1294	 * Scanning result reporting.
1295	 */
1296	rcu_read_lock();
1297	list_for_each_entry_rcu(object, &object_list, object_list) {
1298		spin_lock_irqsave(&object->lock, flags);
1299		if (unreferenced_object(object) &&
1300		    !(object->flags & OBJECT_REPORTED)) {
1301			object->flags |= OBJECT_REPORTED;
1302			new_leaks++;
1303		}
1304		spin_unlock_irqrestore(&object->lock, flags);
1305	}
1306	rcu_read_unlock();
1307
1308	if (new_leaks)
1309		pr_info("%d new suspected memory leaks (see "
1310			"/sys/kernel/debug/kmemleak)\n", new_leaks);
1311
1312}
1313
1314/*
1315 * Thread function performing automatic memory scanning. Unreferenced objects
1316 * at the end of a memory scan are reported but only the first time.
1317 */
1318static int kmemleak_scan_thread(void *arg)
1319{
1320	static int first_run = 1;
1321
1322	pr_info("Automatic memory scanning thread started\n");
1323	set_user_nice(current, 10);
1324
1325	/*
1326	 * Wait before the first scan to allow the system to fully initialize.
1327	 */
1328	if (first_run) {
1329		first_run = 0;
1330		ssleep(SECS_FIRST_SCAN);
1331	}
1332
1333	while (!kthread_should_stop()) {
1334		signed long timeout = jiffies_scan_wait;
1335
1336		mutex_lock(&scan_mutex);
1337		kmemleak_scan();
1338		mutex_unlock(&scan_mutex);
1339
1340		/* wait before the next scan */
1341		while (timeout && !kthread_should_stop())
1342			timeout = schedule_timeout_interruptible(timeout);
1343	}
1344
1345	pr_info("Automatic memory scanning thread ended\n");
1346
1347	return 0;
1348}
1349
1350/*
1351 * Start the automatic memory scanning thread. This function must be called
1352 * with the scan_mutex held.
1353 */
1354static void start_scan_thread(void)
1355{
1356	if (scan_thread)
1357		return;
1358	scan_thread = kthread_run(kmemleak_scan_thread, NULL, "kmemleak");
1359	if (IS_ERR(scan_thread)) {
1360		pr_warning("Failed to create the scan thread\n");
1361		scan_thread = NULL;
1362	}
1363}
1364
1365/*
1366 * Stop the automatic memory scanning thread. This function must be called
1367 * with the scan_mutex held.
1368 */
1369static void stop_scan_thread(void)
1370{
1371	if (scan_thread) {
1372		kthread_stop(scan_thread);
1373		scan_thread = NULL;
1374	}
1375}
1376
1377/*
1378 * Iterate over the object_list and return the first valid object at or after
1379 * the required position with its use_count incremented. The function triggers
1380 * a memory scanning when the pos argument points to the first position.
1381 */
1382static void *kmemleak_seq_start(struct seq_file *seq, loff_t *pos)
1383{
1384	struct kmemleak_object *object;
1385	loff_t n = *pos;
1386	int err;
1387
1388	err = mutex_lock_interruptible(&scan_mutex);
1389	if (err < 0)
1390		return ERR_PTR(err);
1391
1392	rcu_read_lock();
1393	list_for_each_entry_rcu(object, &object_list, object_list) {
1394		if (n-- > 0)
1395			continue;
1396		if (get_object(object))
1397			goto out;
1398	}
1399	object = NULL;
1400out:
1401	return object;
1402}
1403
1404/*
1405 * Return the next object in the object_list. The function decrements the
1406 * use_count of the previous object and increases that of the next one.
1407 */
1408static void *kmemleak_seq_next(struct seq_file *seq, void *v, loff_t *pos)
1409{
1410	struct kmemleak_object *prev_obj = v;
1411	struct kmemleak_object *next_obj = NULL;
1412	struct list_head *n = &prev_obj->object_list;
1413
1414	++(*pos);
1415
1416	list_for_each_continue_rcu(n, &object_list) {
1417		next_obj = list_entry(n, struct kmemleak_object, object_list);
1418		if (get_object(next_obj))
1419			break;
1420	}
1421
1422	put_object(prev_obj);
1423	return next_obj;
1424}
1425
1426/*
1427 * Decrement the use_count of the last object required, if any.
1428 */
1429static void kmemleak_seq_stop(struct seq_file *seq, void *v)
1430{
1431	if (!IS_ERR(v)) {
1432		/*
1433		 * kmemleak_seq_start may return ERR_PTR if the scan_mutex
1434		 * waiting was interrupted, so only release it if !IS_ERR.
1435		 */
1436		rcu_read_unlock();
1437		mutex_unlock(&scan_mutex);
1438		if (v)
1439			put_object(v);
1440	}
1441}
1442
1443/*
1444 * Print the information for an unreferenced object to the seq file.
1445 */
1446static int kmemleak_seq_show(struct seq_file *seq, void *v)
1447{
1448	struct kmemleak_object *object = v;
1449	unsigned long flags;
1450
1451	spin_lock_irqsave(&object->lock, flags);
1452	if ((object->flags & OBJECT_REPORTED) && unreferenced_object(object))
1453		print_unreferenced(seq, object);
1454	spin_unlock_irqrestore(&object->lock, flags);
1455	return 0;
1456}
1457
1458static const struct seq_operations kmemleak_seq_ops = {
1459	.start = kmemleak_seq_start,
1460	.next  = kmemleak_seq_next,
1461	.stop  = kmemleak_seq_stop,
1462	.show  = kmemleak_seq_show,
1463};
1464
1465static int kmemleak_open(struct inode *inode, struct file *file)
1466{
1467	if (!atomic_read(&kmemleak_enabled))
1468		return -EBUSY;
1469
1470	return seq_open(file, &kmemleak_seq_ops);
1471}
1472
1473static int kmemleak_release(struct inode *inode, struct file *file)
1474{
1475	return seq_release(inode, file);
1476}
1477
1478static int dump_str_object_info(const char *str)
1479{
1480	unsigned long flags;
1481	struct kmemleak_object *object;
1482	unsigned long addr;
1483
1484	addr= simple_strtoul(str, NULL, 0);
1485	object = find_and_get_object(addr, 0);
1486	if (!object) {
1487		pr_info("Unknown object at 0x%08lx\n", addr);
1488		return -EINVAL;
1489	}
1490
1491	spin_lock_irqsave(&object->lock, flags);
1492	dump_object_info(object);
1493	spin_unlock_irqrestore(&object->lock, flags);
1494
1495	put_object(object);
1496	return 0;
1497}
1498
1499/*
1500 * We use grey instead of black to ensure we can do future scans on the same
1501 * objects. If we did not do future scans these black objects could
1502 * potentially contain references to newly allocated objects in the future and
1503 * we'd end up with false positives.
1504 */
1505static void kmemleak_clear(void)
1506{
1507	struct kmemleak_object *object;
1508	unsigned long flags;
1509
1510	rcu_read_lock();
1511	list_for_each_entry_rcu(object, &object_list, object_list) {
1512		spin_lock_irqsave(&object->lock, flags);
1513		if ((object->flags & OBJECT_REPORTED) &&
1514		    unreferenced_object(object))
1515			__paint_it(object, KMEMLEAK_GREY);
1516		spin_unlock_irqrestore(&object->lock, flags);
1517	}
1518	rcu_read_unlock();
1519}
1520
1521/*
1522 * File write operation to configure kmemleak at run-time. The following
1523 * commands can be written to the /sys/kernel/debug/kmemleak file:
1524 *   off	- disable kmemleak (irreversible)
1525 *   stack=on	- enable the task stacks scanning
1526 *   stack=off	- disable the tasks stacks scanning
1527 *   scan=on	- start the automatic memory scanning thread
1528 *   scan=off	- stop the automatic memory scanning thread
1529 *   scan=...	- set the automatic memory scanning period in seconds (0 to
1530 *		  disable it)
1531 *   scan	- trigger a memory scan
1532 *   clear	- mark all current reported unreferenced kmemleak objects as
1533 *		  grey to ignore printing them
1534 *   dump=...	- dump information about the object found at the given address
1535 */
1536static ssize_t kmemleak_write(struct file *file, const char __user *user_buf,
1537			      size_t size, loff_t *ppos)
1538{
1539	char buf[64];
1540	int buf_size;
1541	int ret;
1542
1543	buf_size = min(size, (sizeof(buf) - 1));
1544	if (strncpy_from_user(buf, user_buf, buf_size) < 0)
1545		return -EFAULT;
1546	buf[buf_size] = 0;
1547
1548	ret = mutex_lock_interruptible(&scan_mutex);
1549	if (ret < 0)
1550		return ret;
1551
1552	if (strncmp(buf, "off", 3) == 0)
1553		kmemleak_disable();
1554	else if (strncmp(buf, "stack=on", 8) == 0)
1555		kmemleak_stack_scan = 1;
1556	else if (strncmp(buf, "stack=off", 9) == 0)
1557		kmemleak_stack_scan = 0;
1558	else if (strncmp(buf, "scan=on", 7) == 0)
1559		start_scan_thread();
1560	else if (strncmp(buf, "scan=off", 8) == 0)
1561		stop_scan_thread();
1562	else if (strncmp(buf, "scan=", 5) == 0) {
1563		unsigned long secs;
1564
1565		ret = strict_strtoul(buf + 5, 0, &secs);
1566		if (ret < 0)
1567			goto out;
1568		stop_scan_thread();
1569		if (secs) {
1570			jiffies_scan_wait = msecs_to_jiffies(secs * 1000);
1571			start_scan_thread();
1572		}
1573	} else if (strncmp(buf, "scan", 4) == 0)
1574		kmemleak_scan();
1575	else if (strncmp(buf, "clear", 5) == 0)
1576		kmemleak_clear();
1577	else if (strncmp(buf, "dump=", 5) == 0)
1578		ret = dump_str_object_info(buf + 5);
1579	else
1580		ret = -EINVAL;
1581
1582out:
1583	mutex_unlock(&scan_mutex);
1584	if (ret < 0)
1585		return ret;
1586
1587	/* ignore the rest of the buffer, only one command at a time */
1588	*ppos += size;
1589	return size;
1590}
1591
1592static const struct file_operations kmemleak_fops = {
1593	.owner		= THIS_MODULE,
1594	.open		= kmemleak_open,
1595	.read		= seq_read,
1596	.write		= kmemleak_write,
1597	.llseek		= seq_lseek,
1598	.release	= kmemleak_release,
1599};
1600
1601/*
1602 * Perform the freeing of the kmemleak internal objects after waiting for any
1603 * current memory scan to complete.
1604 */
1605static void kmemleak_do_cleanup(struct work_struct *work)
1606{
1607	struct kmemleak_object *object;
1608
1609	mutex_lock(&scan_mutex);
1610	stop_scan_thread();
1611
1612	rcu_read_lock();
1613	list_for_each_entry_rcu(object, &object_list, object_list)
1614		delete_object_full(object->pointer);
1615	rcu_read_unlock();
1616	mutex_unlock(&scan_mutex);
1617}
1618
1619static DECLARE_WORK(cleanup_work, kmemleak_do_cleanup);
1620
1621/*
1622 * Disable kmemleak. No memory allocation/freeing will be traced once this
1623 * function is called. Disabling kmemleak is an irreversible operation.
1624 */
1625static void kmemleak_disable(void)
1626{
1627	/* atomically check whether it was already invoked */
1628	if (atomic_cmpxchg(&kmemleak_error, 0, 1))
1629		return;
1630
1631	/* stop any memory operation tracing */
1632	atomic_set(&kmemleak_early_log, 0);
1633	atomic_set(&kmemleak_enabled, 0);
1634
1635	/* check whether it is too early for a kernel thread */
1636	if (atomic_read(&kmemleak_initialized))
1637		schedule_work(&cleanup_work);
1638
1639	pr_info("Kernel memory leak detector disabled\n");
1640}
1641
1642/*
1643 * Allow boot-time kmemleak disabling (enabled by default).
1644 */
1645static int kmemleak_boot_config(char *str)
1646{
1647	if (!str)
1648		return -EINVAL;
1649	if (strcmp(str, "off") == 0)
1650		kmemleak_disable();
1651	else if (strcmp(str, "on") == 0)
1652		kmemleak_skip_disable = 1;
1653	else
1654		return -EINVAL;
1655	return 0;
1656}
1657early_param("kmemleak", kmemleak_boot_config);
1658
1659/*
1660 * Kmemleak initialization.
1661 */
1662void __init kmemleak_init(void)
1663{
1664	int i;
1665	unsigned long flags;
1666
1667#ifdef CONFIG_DEBUG_KMEMLEAK_DEFAULT_OFF
1668	if (!kmemleak_skip_disable) {
1669		kmemleak_disable();
1670		return;
1671	}
1672#endif
1673
1674	jiffies_min_age = msecs_to_jiffies(MSECS_MIN_AGE);
1675	jiffies_scan_wait = msecs_to_jiffies(SECS_SCAN_WAIT * 1000);
1676
1677	object_cache = KMEM_CACHE(kmemleak_object, SLAB_NOLEAKTRACE);
1678	scan_area_cache = KMEM_CACHE(kmemleak_scan_area, SLAB_NOLEAKTRACE);
1679	INIT_PRIO_TREE_ROOT(&object_tree_root);
1680
1681	/* the kernel is still in UP mode, so disabling the IRQs is enough */
1682	local_irq_save(flags);
1683	if (!atomic_read(&kmemleak_error)) {
1684		atomic_set(&kmemleak_enabled, 1);
1685		atomic_set(&kmemleak_early_log, 0);
1686	}
1687	local_irq_restore(flags);
1688
1689	/*
1690	 * This is the point where tracking allocations is safe. Automatic
1691	 * scanning is started during the late initcall. Add the early logged
1692	 * callbacks to the kmemleak infrastructure.
1693	 */
1694	for (i = 0; i < crt_early_log; i++) {
1695		struct early_log *log = &early_log[i];
1696
1697		switch (log->op_type) {
1698		case KMEMLEAK_ALLOC:
1699			early_alloc(log);
1700			break;
1701		case KMEMLEAK_FREE:
1702			kmemleak_free(log->ptr);
1703			break;
1704		case KMEMLEAK_FREE_PART:
1705			kmemleak_free_part(log->ptr, log->size);
1706			break;
1707		case KMEMLEAK_NOT_LEAK:
1708			kmemleak_not_leak(log->ptr);
1709			break;
1710		case KMEMLEAK_IGNORE:
1711			kmemleak_ignore(log->ptr);
1712			break;
1713		case KMEMLEAK_SCAN_AREA:
1714			kmemleak_scan_area(log->ptr, log->size, GFP_KERNEL);
1715			break;
1716		case KMEMLEAK_NO_SCAN:
1717			kmemleak_no_scan(log->ptr);
1718			break;
1719		default:
1720			WARN_ON(1);
1721		}
1722	}
1723}
1724
1725/*
1726 * Late initialization function.
1727 */
1728static int __init kmemleak_late_init(void)
1729{
1730	struct dentry *dentry;
1731
1732	atomic_set(&kmemleak_initialized, 1);
1733
1734	if (atomic_read(&kmemleak_error)) {
1735		/*
1736		 * Some error occurred and kmemleak was disabled. There is a
1737		 * small chance that kmemleak_disable() was called immediately
1738		 * after setting kmemleak_initialized and we may end up with
1739		 * two clean-up threads but serialized by scan_mutex.
1740		 */
1741		schedule_work(&cleanup_work);
1742		return -ENOMEM;
1743	}
1744
1745	dentry = debugfs_create_file("kmemleak", S_IRUGO, NULL, NULL,
1746				     &kmemleak_fops);
1747	if (!dentry)
1748		pr_warning("Failed to create the debugfs kmemleak file\n");
1749	mutex_lock(&scan_mutex);
1750	start_scan_thread();
1751	mutex_unlock(&scan_mutex);
1752
1753	pr_info("Kernel memory leak detector initialized\n");
1754
1755	return 0;
1756}
1757late_initcall(kmemleak_late_init);
1758