kmemleak.c revision 3c7b4e6b8be4c16f1e6e5c558e33b7ff0db2dfaf
1/*
2 * mm/kmemleak.c
3 *
4 * Copyright (C) 2008 ARM Limited
5 * Written by Catalin Marinas <catalin.marinas@arm.com>
6 *
7 * This program is free software; you can redistribute it and/or modify
8 * it under the terms of the GNU General Public License version 2 as
9 * published by the Free Software Foundation.
10 *
11 * This program is distributed in the hope that it will be useful,
12 * but WITHOUT ANY WARRANTY; without even the implied warranty of
13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
14 * GNU General Public License for more details.
15 *
16 * You should have received a copy of the GNU General Public License
17 * along with this program; if not, write to the Free Software
18 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
19 *
20 *
21 * For more information on the algorithm and kmemleak usage, please see
22 * Documentation/kmemleak.txt.
23 *
24 * Notes on locking
25 * ----------------
26 *
27 * The following locks and mutexes are used by kmemleak:
28 *
29 * - kmemleak_lock (rwlock): protects the object_list modifications and
30 *   accesses to the object_tree_root. The object_list is the main list
31 *   holding the metadata (struct kmemleak_object) for the allocated memory
32 *   blocks. The object_tree_root is a priority search tree used to look-up
33 *   metadata based on a pointer to the corresponding memory block.  The
34 *   kmemleak_object structures are added to the object_list and
35 *   object_tree_root in the create_object() function called from the
36 *   kmemleak_alloc() callback and removed in delete_object() called from the
37 *   kmemleak_free() callback
38 * - kmemleak_object.lock (spinlock): protects a kmemleak_object. Accesses to
39 *   the metadata (e.g. count) are protected by this lock. Note that some
40 *   members of this structure may be protected by other means (atomic or
41 *   kmemleak_lock). This lock is also held when scanning the corresponding
42 *   memory block to avoid the kernel freeing it via the kmemleak_free()
43 *   callback. This is less heavyweight than holding a global lock like
44 *   kmemleak_lock during scanning
45 * - scan_mutex (mutex): ensures that only one thread may scan the memory for
46 *   unreferenced objects at a time. The gray_list contains the objects which
47 *   are already referenced or marked as false positives and need to be
48 *   scanned. This list is only modified during a scanning episode when the
49 *   scan_mutex is held. At the end of a scan, the gray_list is always empty.
50 *   Note that the kmemleak_object.use_count is incremented when an object is
51 *   added to the gray_list and therefore cannot be freed
52 * - kmemleak_mutex (mutex): prevents multiple users of the "kmemleak" debugfs
53 *   file together with modifications to the memory scanning parameters
54 *   including the scan_thread pointer
55 *
56 * The kmemleak_object structures have a use_count incremented or decremented
57 * using the get_object()/put_object() functions. When the use_count becomes
58 * 0, this count can no longer be incremented and put_object() schedules the
59 * kmemleak_object freeing via an RCU callback. All calls to the get_object()
60 * function must be protected by rcu_read_lock() to avoid accessing a freed
61 * structure.
62 */
63
64#include <linux/init.h>
65#include <linux/kernel.h>
66#include <linux/list.h>
67#include <linux/sched.h>
68#include <linux/jiffies.h>
69#include <linux/delay.h>
70#include <linux/module.h>
71#include <linux/kthread.h>
72#include <linux/prio_tree.h>
73#include <linux/gfp.h>
74#include <linux/fs.h>
75#include <linux/debugfs.h>
76#include <linux/seq_file.h>
77#include <linux/cpumask.h>
78#include <linux/spinlock.h>
79#include <linux/mutex.h>
80#include <linux/rcupdate.h>
81#include <linux/stacktrace.h>
82#include <linux/cache.h>
83#include <linux/percpu.h>
84#include <linux/hardirq.h>
85#include <linux/mmzone.h>
86#include <linux/slab.h>
87#include <linux/thread_info.h>
88#include <linux/err.h>
89#include <linux/uaccess.h>
90#include <linux/string.h>
91#include <linux/nodemask.h>
92#include <linux/mm.h>
93
94#include <asm/sections.h>
95#include <asm/processor.h>
96#include <asm/atomic.h>
97
98#include <linux/kmemleak.h>
99
100/*
101 * Kmemleak configuration and common defines.
102 */
103#define MAX_TRACE		16	/* stack trace length */
104#define REPORTS_NR		50	/* maximum number of reported leaks */
105#define MSECS_MIN_AGE		5000	/* minimum object age for reporting */
106#define MSECS_SCAN_YIELD	10	/* CPU yielding period */
107#define SECS_FIRST_SCAN		60	/* delay before the first scan */
108#define SECS_SCAN_WAIT		600	/* subsequent auto scanning delay */
109
110#define BYTES_PER_POINTER	sizeof(void *)
111
112/* scanning area inside a memory block */
113struct kmemleak_scan_area {
114	struct hlist_node node;
115	unsigned long offset;
116	size_t length;
117};
118
119/*
120 * Structure holding the metadata for each allocated memory block.
121 * Modifications to such objects should be made while holding the
122 * object->lock. Insertions or deletions from object_list, gray_list or
123 * tree_node are already protected by the corresponding locks or mutex (see
124 * the notes on locking above). These objects are reference-counted
125 * (use_count) and freed using the RCU mechanism.
126 */
127struct kmemleak_object {
128	spinlock_t lock;
129	unsigned long flags;		/* object status flags */
130	struct list_head object_list;
131	struct list_head gray_list;
132	struct prio_tree_node tree_node;
133	struct rcu_head rcu;		/* object_list lockless traversal */
134	/* object usage count; object freed when use_count == 0 */
135	atomic_t use_count;
136	unsigned long pointer;
137	size_t size;
138	/* minimum number of a pointers found before it is considered leak */
139	int min_count;
140	/* the total number of pointers found pointing to this object */
141	int count;
142	/* memory ranges to be scanned inside an object (empty for all) */
143	struct hlist_head area_list;
144	unsigned long trace[MAX_TRACE];
145	unsigned int trace_len;
146	unsigned long jiffies;		/* creation timestamp */
147	pid_t pid;			/* pid of the current task */
148	char comm[TASK_COMM_LEN];	/* executable name */
149};
150
151/* flag representing the memory block allocation status */
152#define OBJECT_ALLOCATED	(1 << 0)
153/* flag set after the first reporting of an unreference object */
154#define OBJECT_REPORTED		(1 << 1)
155/* flag set to not scan the object */
156#define OBJECT_NO_SCAN		(1 << 2)
157
158/* the list of all allocated objects */
159static LIST_HEAD(object_list);
160/* the list of gray-colored objects (see color_gray comment below) */
161static LIST_HEAD(gray_list);
162/* prio search tree for object boundaries */
163static struct prio_tree_root object_tree_root;
164/* rw_lock protecting the access to object_list and prio_tree_root */
165static DEFINE_RWLOCK(kmemleak_lock);
166
167/* allocation caches for kmemleak internal data */
168static struct kmem_cache *object_cache;
169static struct kmem_cache *scan_area_cache;
170
171/* set if tracing memory operations is enabled */
172static atomic_t kmemleak_enabled = ATOMIC_INIT(0);
173/* set in the late_initcall if there were no errors */
174static atomic_t kmemleak_initialized = ATOMIC_INIT(0);
175/* enables or disables early logging of the memory operations */
176static atomic_t kmemleak_early_log = ATOMIC_INIT(1);
177/* set if a fata kmemleak error has occurred */
178static atomic_t kmemleak_error = ATOMIC_INIT(0);
179
180/* minimum and maximum address that may be valid pointers */
181static unsigned long min_addr = ULONG_MAX;
182static unsigned long max_addr;
183
184/* used for yielding the CPU to other tasks during scanning */
185static unsigned long next_scan_yield;
186static struct task_struct *scan_thread;
187static unsigned long jiffies_scan_yield;
188static unsigned long jiffies_min_age;
189/* delay between automatic memory scannings */
190static signed long jiffies_scan_wait;
191/* enables or disables the task stacks scanning */
192static int kmemleak_stack_scan;
193/* mutex protecting the memory scanning */
194static DEFINE_MUTEX(scan_mutex);
195/* mutex protecting the access to the /sys/kernel/debug/kmemleak file */
196static DEFINE_MUTEX(kmemleak_mutex);
197
198/* number of leaks reported (for limitation purposes) */
199static int reported_leaks;
200
201/*
202 * Early object allocation/freeing logging. Kkmemleak is initialized after the
203 * kernel allocator. However, both the kernel allocator and kmemleak may
204 * allocate memory blocks which need to be tracked. Kkmemleak defines an
205 * arbitrary buffer to hold the allocation/freeing information before it is
206 * fully initialized.
207 */
208
209/* kmemleak operation type for early logging */
210enum {
211	KMEMLEAK_ALLOC,
212	KMEMLEAK_FREE,
213	KMEMLEAK_NOT_LEAK,
214	KMEMLEAK_IGNORE,
215	KMEMLEAK_SCAN_AREA,
216	KMEMLEAK_NO_SCAN
217};
218
219/*
220 * Structure holding the information passed to kmemleak callbacks during the
221 * early logging.
222 */
223struct early_log {
224	int op_type;			/* kmemleak operation type */
225	const void *ptr;		/* allocated/freed memory block */
226	size_t size;			/* memory block size */
227	int min_count;			/* minimum reference count */
228	unsigned long offset;		/* scan area offset */
229	size_t length;			/* scan area length */
230};
231
232/* early logging buffer and current position */
233static struct early_log early_log[200];
234static int crt_early_log;
235
236static void kmemleak_disable(void);
237
238/*
239 * Print a warning and dump the stack trace.
240 */
241#define kmemleak_warn(x...)	do {	\
242	pr_warning(x);			\
243	dump_stack();			\
244} while (0)
245
246/*
247 * Macro invoked when a serious kmemleak condition occured and cannot be
248 * recovered from. Kkmemleak will be disabled and further allocation/freeing
249 * tracing no longer available.
250 */
251#define kmemleak_panic(x...)	do {	\
252	kmemleak_warn(x);		\
253	kmemleak_disable();		\
254} while (0)
255
256/*
257 * Object colors, encoded with count and min_count:
258 * - white - orphan object, not enough references to it (count < min_count)
259 * - gray  - not orphan, not marked as false positive (min_count == 0) or
260 *		sufficient references to it (count >= min_count)
261 * - black - ignore, it doesn't contain references (e.g. text section)
262 *		(min_count == -1). No function defined for this color.
263 * Newly created objects don't have any color assigned (object->count == -1)
264 * before the next memory scan when they become white.
265 */
266static int color_white(const struct kmemleak_object *object)
267{
268	return object->count != -1 && object->count < object->min_count;
269}
270
271static int color_gray(const struct kmemleak_object *object)
272{
273	return object->min_count != -1 && object->count >= object->min_count;
274}
275
276/*
277 * Objects are considered referenced if their color is gray and they have not
278 * been deleted.
279 */
280static int referenced_object(struct kmemleak_object *object)
281{
282	return (object->flags & OBJECT_ALLOCATED) && color_gray(object);
283}
284
285/*
286 * Objects are considered unreferenced only if their color is white, they have
287 * not be deleted and have a minimum age to avoid false positives caused by
288 * pointers temporarily stored in CPU registers.
289 */
290static int unreferenced_object(struct kmemleak_object *object)
291{
292	return (object->flags & OBJECT_ALLOCATED) && color_white(object) &&
293		time_is_before_eq_jiffies(object->jiffies + jiffies_min_age);
294}
295
296/*
297 * Printing of the (un)referenced objects information, either to the seq file
298 * or to the kernel log. The print_referenced/print_unreferenced functions
299 * must be called with the object->lock held.
300 */
301#define print_helper(seq, x...)	do {	\
302	struct seq_file *s = (seq);	\
303	if (s)				\
304		seq_printf(s, x);	\
305	else				\
306		pr_info(x);		\
307} while (0)
308
309static void print_referenced(struct kmemleak_object *object)
310{
311	pr_info("kmemleak: referenced object 0x%08lx (size %zu)\n",
312		object->pointer, object->size);
313}
314
315static void print_unreferenced(struct seq_file *seq,
316			       struct kmemleak_object *object)
317{
318	int i;
319
320	print_helper(seq, "kmemleak: unreferenced object 0x%08lx (size %zu):\n",
321		     object->pointer, object->size);
322	print_helper(seq, "  comm \"%s\", pid %d, jiffies %lu\n",
323		     object->comm, object->pid, object->jiffies);
324	print_helper(seq, "  backtrace:\n");
325
326	for (i = 0; i < object->trace_len; i++) {
327		void *ptr = (void *)object->trace[i];
328		print_helper(seq, "    [<%p>] %pS\n", ptr, ptr);
329	}
330}
331
332/*
333 * Print the kmemleak_object information. This function is used mainly for
334 * debugging special cases when kmemleak operations. It must be called with
335 * the object->lock held.
336 */
337static void dump_object_info(struct kmemleak_object *object)
338{
339	struct stack_trace trace;
340
341	trace.nr_entries = object->trace_len;
342	trace.entries = object->trace;
343
344	pr_notice("kmemleak: Object 0x%08lx (size %zu):\n",
345		  object->tree_node.start, object->size);
346	pr_notice("  comm \"%s\", pid %d, jiffies %lu\n",
347		  object->comm, object->pid, object->jiffies);
348	pr_notice("  min_count = %d\n", object->min_count);
349	pr_notice("  count = %d\n", object->count);
350	pr_notice("  backtrace:\n");
351	print_stack_trace(&trace, 4);
352}
353
354/*
355 * Look-up a memory block metadata (kmemleak_object) in the priority search
356 * tree based on a pointer value. If alias is 0, only values pointing to the
357 * beginning of the memory block are allowed. The kmemleak_lock must be held
358 * when calling this function.
359 */
360static struct kmemleak_object *lookup_object(unsigned long ptr, int alias)
361{
362	struct prio_tree_node *node;
363	struct prio_tree_iter iter;
364	struct kmemleak_object *object;
365
366	prio_tree_iter_init(&iter, &object_tree_root, ptr, ptr);
367	node = prio_tree_next(&iter);
368	if (node) {
369		object = prio_tree_entry(node, struct kmemleak_object,
370					 tree_node);
371		if (!alias && object->pointer != ptr) {
372			kmemleak_warn("kmemleak: Found object by alias");
373			object = NULL;
374		}
375	} else
376		object = NULL;
377
378	return object;
379}
380
381/*
382 * Increment the object use_count. Return 1 if successful or 0 otherwise. Note
383 * that once an object's use_count reached 0, the RCU freeing was already
384 * registered and the object should no longer be used. This function must be
385 * called under the protection of rcu_read_lock().
386 */
387static int get_object(struct kmemleak_object *object)
388{
389	return atomic_inc_not_zero(&object->use_count);
390}
391
392/*
393 * RCU callback to free a kmemleak_object.
394 */
395static void free_object_rcu(struct rcu_head *rcu)
396{
397	struct hlist_node *elem, *tmp;
398	struct kmemleak_scan_area *area;
399	struct kmemleak_object *object =
400		container_of(rcu, struct kmemleak_object, rcu);
401
402	/*
403	 * Once use_count is 0 (guaranteed by put_object), there is no other
404	 * code accessing this object, hence no need for locking.
405	 */
406	hlist_for_each_entry_safe(area, elem, tmp, &object->area_list, node) {
407		hlist_del(elem);
408		kmem_cache_free(scan_area_cache, area);
409	}
410	kmem_cache_free(object_cache, object);
411}
412
413/*
414 * Decrement the object use_count. Once the count is 0, free the object using
415 * an RCU callback. Since put_object() may be called via the kmemleak_free() ->
416 * delete_object() path, the delayed RCU freeing ensures that there is no
417 * recursive call to the kernel allocator. Lock-less RCU object_list traversal
418 * is also possible.
419 */
420static void put_object(struct kmemleak_object *object)
421{
422	if (!atomic_dec_and_test(&object->use_count))
423		return;
424
425	/* should only get here after delete_object was called */
426	WARN_ON(object->flags & OBJECT_ALLOCATED);
427
428	call_rcu(&object->rcu, free_object_rcu);
429}
430
431/*
432 * Look up an object in the prio search tree and increase its use_count.
433 */
434static struct kmemleak_object *find_and_get_object(unsigned long ptr, int alias)
435{
436	unsigned long flags;
437	struct kmemleak_object *object = NULL;
438
439	rcu_read_lock();
440	read_lock_irqsave(&kmemleak_lock, flags);
441	if (ptr >= min_addr && ptr < max_addr)
442		object = lookup_object(ptr, alias);
443	read_unlock_irqrestore(&kmemleak_lock, flags);
444
445	/* check whether the object is still available */
446	if (object && !get_object(object))
447		object = NULL;
448	rcu_read_unlock();
449
450	return object;
451}
452
453/*
454 * Create the metadata (struct kmemleak_object) corresponding to an allocated
455 * memory block and add it to the object_list and object_tree_root.
456 */
457static void create_object(unsigned long ptr, size_t size, int min_count,
458			  gfp_t gfp)
459{
460	unsigned long flags;
461	struct kmemleak_object *object;
462	struct prio_tree_node *node;
463	struct stack_trace trace;
464
465	object = kmem_cache_alloc(object_cache, gfp & ~GFP_SLAB_BUG_MASK);
466	if (!object) {
467		kmemleak_panic("kmemleak: Cannot allocate a kmemleak_object "
468			       "structure\n");
469		return;
470	}
471
472	INIT_LIST_HEAD(&object->object_list);
473	INIT_LIST_HEAD(&object->gray_list);
474	INIT_HLIST_HEAD(&object->area_list);
475	spin_lock_init(&object->lock);
476	atomic_set(&object->use_count, 1);
477	object->flags = OBJECT_ALLOCATED;
478	object->pointer = ptr;
479	object->size = size;
480	object->min_count = min_count;
481	object->count = -1;			/* no color initially */
482	object->jiffies = jiffies;
483
484	/* task information */
485	if (in_irq()) {
486		object->pid = 0;
487		strncpy(object->comm, "hardirq", sizeof(object->comm));
488	} else if (in_softirq()) {
489		object->pid = 0;
490		strncpy(object->comm, "softirq", sizeof(object->comm));
491	} else {
492		object->pid = current->pid;
493		/*
494		 * There is a small chance of a race with set_task_comm(),
495		 * however using get_task_comm() here may cause locking
496		 * dependency issues with current->alloc_lock. In the worst
497		 * case, the command line is not correct.
498		 */
499		strncpy(object->comm, current->comm, sizeof(object->comm));
500	}
501
502	/* kernel backtrace */
503	trace.max_entries = MAX_TRACE;
504	trace.nr_entries = 0;
505	trace.entries = object->trace;
506	trace.skip = 1;
507	save_stack_trace(&trace);
508	object->trace_len = trace.nr_entries;
509
510	INIT_PRIO_TREE_NODE(&object->tree_node);
511	object->tree_node.start = ptr;
512	object->tree_node.last = ptr + size - 1;
513
514	write_lock_irqsave(&kmemleak_lock, flags);
515	min_addr = min(min_addr, ptr);
516	max_addr = max(max_addr, ptr + size);
517	node = prio_tree_insert(&object_tree_root, &object->tree_node);
518	/*
519	 * The code calling the kernel does not yet have the pointer to the
520	 * memory block to be able to free it.  However, we still hold the
521	 * kmemleak_lock here in case parts of the kernel started freeing
522	 * random memory blocks.
523	 */
524	if (node != &object->tree_node) {
525		unsigned long flags;
526
527		kmemleak_panic("kmemleak: Cannot insert 0x%lx into the object "
528			       "search tree (already existing)\n", ptr);
529		object = lookup_object(ptr, 1);
530		spin_lock_irqsave(&object->lock, flags);
531		dump_object_info(object);
532		spin_unlock_irqrestore(&object->lock, flags);
533
534		goto out;
535	}
536	list_add_tail_rcu(&object->object_list, &object_list);
537out:
538	write_unlock_irqrestore(&kmemleak_lock, flags);
539}
540
541/*
542 * Remove the metadata (struct kmemleak_object) for a memory block from the
543 * object_list and object_tree_root and decrement its use_count.
544 */
545static void delete_object(unsigned long ptr)
546{
547	unsigned long flags;
548	struct kmemleak_object *object;
549
550	write_lock_irqsave(&kmemleak_lock, flags);
551	object = lookup_object(ptr, 0);
552	if (!object) {
553		kmemleak_warn("kmemleak: Freeing unknown object at 0x%08lx\n",
554			      ptr);
555		write_unlock_irqrestore(&kmemleak_lock, flags);
556		return;
557	}
558	prio_tree_remove(&object_tree_root, &object->tree_node);
559	list_del_rcu(&object->object_list);
560	write_unlock_irqrestore(&kmemleak_lock, flags);
561
562	WARN_ON(!(object->flags & OBJECT_ALLOCATED));
563	WARN_ON(atomic_read(&object->use_count) < 1);
564
565	/*
566	 * Locking here also ensures that the corresponding memory block
567	 * cannot be freed when it is being scanned.
568	 */
569	spin_lock_irqsave(&object->lock, flags);
570	if (object->flags & OBJECT_REPORTED)
571		print_referenced(object);
572	object->flags &= ~OBJECT_ALLOCATED;
573	spin_unlock_irqrestore(&object->lock, flags);
574	put_object(object);
575}
576
577/*
578 * Make a object permanently as gray-colored so that it can no longer be
579 * reported as a leak. This is used in general to mark a false positive.
580 */
581static void make_gray_object(unsigned long ptr)
582{
583	unsigned long flags;
584	struct kmemleak_object *object;
585
586	object = find_and_get_object(ptr, 0);
587	if (!object) {
588		kmemleak_warn("kmemleak: Graying unknown object at 0x%08lx\n",
589			      ptr);
590		return;
591	}
592
593	spin_lock_irqsave(&object->lock, flags);
594	object->min_count = 0;
595	spin_unlock_irqrestore(&object->lock, flags);
596	put_object(object);
597}
598
599/*
600 * Mark the object as black-colored so that it is ignored from scans and
601 * reporting.
602 */
603static void make_black_object(unsigned long ptr)
604{
605	unsigned long flags;
606	struct kmemleak_object *object;
607
608	object = find_and_get_object(ptr, 0);
609	if (!object) {
610		kmemleak_warn("kmemleak: Blacking unknown object at 0x%08lx\n",
611			      ptr);
612		return;
613	}
614
615	spin_lock_irqsave(&object->lock, flags);
616	object->min_count = -1;
617	spin_unlock_irqrestore(&object->lock, flags);
618	put_object(object);
619}
620
621/*
622 * Add a scanning area to the object. If at least one such area is added,
623 * kmemleak will only scan these ranges rather than the whole memory block.
624 */
625static void add_scan_area(unsigned long ptr, unsigned long offset,
626			  size_t length, gfp_t gfp)
627{
628	unsigned long flags;
629	struct kmemleak_object *object;
630	struct kmemleak_scan_area *area;
631
632	object = find_and_get_object(ptr, 0);
633	if (!object) {
634		kmemleak_warn("kmemleak: Adding scan area to unknown "
635			      "object at 0x%08lx\n", ptr);
636		return;
637	}
638
639	area = kmem_cache_alloc(scan_area_cache, gfp & ~GFP_SLAB_BUG_MASK);
640	if (!area) {
641		kmemleak_warn("kmemleak: Cannot allocate a scan area\n");
642		goto out;
643	}
644
645	spin_lock_irqsave(&object->lock, flags);
646	if (offset + length > object->size) {
647		kmemleak_warn("kmemleak: Scan area larger than object "
648			      "0x%08lx\n", ptr);
649		dump_object_info(object);
650		kmem_cache_free(scan_area_cache, area);
651		goto out_unlock;
652	}
653
654	INIT_HLIST_NODE(&area->node);
655	area->offset = offset;
656	area->length = length;
657
658	hlist_add_head(&area->node, &object->area_list);
659out_unlock:
660	spin_unlock_irqrestore(&object->lock, flags);
661out:
662	put_object(object);
663}
664
665/*
666 * Set the OBJECT_NO_SCAN flag for the object corresponding to the give
667 * pointer. Such object will not be scanned by kmemleak but references to it
668 * are searched.
669 */
670static void object_no_scan(unsigned long ptr)
671{
672	unsigned long flags;
673	struct kmemleak_object *object;
674
675	object = find_and_get_object(ptr, 0);
676	if (!object) {
677		kmemleak_warn("kmemleak: Not scanning unknown object at "
678			      "0x%08lx\n", ptr);
679		return;
680	}
681
682	spin_lock_irqsave(&object->lock, flags);
683	object->flags |= OBJECT_NO_SCAN;
684	spin_unlock_irqrestore(&object->lock, flags);
685	put_object(object);
686}
687
688/*
689 * Log an early kmemleak_* call to the early_log buffer. These calls will be
690 * processed later once kmemleak is fully initialized.
691 */
692static void log_early(int op_type, const void *ptr, size_t size,
693		      int min_count, unsigned long offset, size_t length)
694{
695	unsigned long flags;
696	struct early_log *log;
697
698	if (crt_early_log >= ARRAY_SIZE(early_log)) {
699		kmemleak_panic("kmemleak: Early log buffer exceeded\n");
700		return;
701	}
702
703	/*
704	 * There is no need for locking since the kernel is still in UP mode
705	 * at this stage. Disabling the IRQs is enough.
706	 */
707	local_irq_save(flags);
708	log = &early_log[crt_early_log];
709	log->op_type = op_type;
710	log->ptr = ptr;
711	log->size = size;
712	log->min_count = min_count;
713	log->offset = offset;
714	log->length = length;
715	crt_early_log++;
716	local_irq_restore(flags);
717}
718
719/*
720 * Memory allocation function callback. This function is called from the
721 * kernel allocators when a new block is allocated (kmem_cache_alloc, kmalloc,
722 * vmalloc etc.).
723 */
724void kmemleak_alloc(const void *ptr, size_t size, int min_count, gfp_t gfp)
725{
726	pr_debug("%s(0x%p, %zu, %d)\n", __func__, ptr, size, min_count);
727
728	if (atomic_read(&kmemleak_enabled) && ptr && !IS_ERR(ptr))
729		create_object((unsigned long)ptr, size, min_count, gfp);
730	else if (atomic_read(&kmemleak_early_log))
731		log_early(KMEMLEAK_ALLOC, ptr, size, min_count, 0, 0);
732}
733EXPORT_SYMBOL_GPL(kmemleak_alloc);
734
735/*
736 * Memory freeing function callback. This function is called from the kernel
737 * allocators when a block is freed (kmem_cache_free, kfree, vfree etc.).
738 */
739void kmemleak_free(const void *ptr)
740{
741	pr_debug("%s(0x%p)\n", __func__, ptr);
742
743	if (atomic_read(&kmemleak_enabled) && ptr && !IS_ERR(ptr))
744		delete_object((unsigned long)ptr);
745	else if (atomic_read(&kmemleak_early_log))
746		log_early(KMEMLEAK_FREE, ptr, 0, 0, 0, 0);
747}
748EXPORT_SYMBOL_GPL(kmemleak_free);
749
750/*
751 * Mark an already allocated memory block as a false positive. This will cause
752 * the block to no longer be reported as leak and always be scanned.
753 */
754void kmemleak_not_leak(const void *ptr)
755{
756	pr_debug("%s(0x%p)\n", __func__, ptr);
757
758	if (atomic_read(&kmemleak_enabled) && ptr && !IS_ERR(ptr))
759		make_gray_object((unsigned long)ptr);
760	else if (atomic_read(&kmemleak_early_log))
761		log_early(KMEMLEAK_NOT_LEAK, ptr, 0, 0, 0, 0);
762}
763EXPORT_SYMBOL(kmemleak_not_leak);
764
765/*
766 * Ignore a memory block. This is usually done when it is known that the
767 * corresponding block is not a leak and does not contain any references to
768 * other allocated memory blocks.
769 */
770void kmemleak_ignore(const void *ptr)
771{
772	pr_debug("%s(0x%p)\n", __func__, ptr);
773
774	if (atomic_read(&kmemleak_enabled) && ptr && !IS_ERR(ptr))
775		make_black_object((unsigned long)ptr);
776	else if (atomic_read(&kmemleak_early_log))
777		log_early(KMEMLEAK_IGNORE, ptr, 0, 0, 0, 0);
778}
779EXPORT_SYMBOL(kmemleak_ignore);
780
781/*
782 * Limit the range to be scanned in an allocated memory block.
783 */
784void kmemleak_scan_area(const void *ptr, unsigned long offset, size_t length,
785			gfp_t gfp)
786{
787	pr_debug("%s(0x%p)\n", __func__, ptr);
788
789	if (atomic_read(&kmemleak_enabled) && ptr && !IS_ERR(ptr))
790		add_scan_area((unsigned long)ptr, offset, length, gfp);
791	else if (atomic_read(&kmemleak_early_log))
792		log_early(KMEMLEAK_SCAN_AREA, ptr, 0, 0, offset, length);
793}
794EXPORT_SYMBOL(kmemleak_scan_area);
795
796/*
797 * Inform kmemleak not to scan the given memory block.
798 */
799void kmemleak_no_scan(const void *ptr)
800{
801	pr_debug("%s(0x%p)\n", __func__, ptr);
802
803	if (atomic_read(&kmemleak_enabled) && ptr && !IS_ERR(ptr))
804		object_no_scan((unsigned long)ptr);
805	else if (atomic_read(&kmemleak_early_log))
806		log_early(KMEMLEAK_NO_SCAN, ptr, 0, 0, 0, 0);
807}
808EXPORT_SYMBOL(kmemleak_no_scan);
809
810/*
811 * Yield the CPU so that other tasks get a chance to run.  The yielding is
812 * rate-limited to avoid excessive number of calls to the schedule() function
813 * during memory scanning.
814 */
815static void scan_yield(void)
816{
817	might_sleep();
818
819	if (time_is_before_eq_jiffies(next_scan_yield)) {
820		schedule();
821		next_scan_yield = jiffies + jiffies_scan_yield;
822	}
823}
824
825/*
826 * Memory scanning is a long process and it needs to be interruptable. This
827 * function checks whether such interrupt condition occured.
828 */
829static int scan_should_stop(void)
830{
831	if (!atomic_read(&kmemleak_enabled))
832		return 1;
833
834	/*
835	 * This function may be called from either process or kthread context,
836	 * hence the need to check for both stop conditions.
837	 */
838	if (current->mm)
839		return signal_pending(current);
840	else
841		return kthread_should_stop();
842
843	return 0;
844}
845
846/*
847 * Scan a memory block (exclusive range) for valid pointers and add those
848 * found to the gray list.
849 */
850static void scan_block(void *_start, void *_end,
851		       struct kmemleak_object *scanned)
852{
853	unsigned long *ptr;
854	unsigned long *start = PTR_ALIGN(_start, BYTES_PER_POINTER);
855	unsigned long *end = _end - (BYTES_PER_POINTER - 1);
856
857	for (ptr = start; ptr < end; ptr++) {
858		unsigned long flags;
859		unsigned long pointer = *ptr;
860		struct kmemleak_object *object;
861
862		if (scan_should_stop())
863			break;
864
865		/*
866		 * When scanning a memory block with a corresponding
867		 * kmemleak_object, the CPU yielding is handled in the calling
868		 * code since it holds the object->lock to avoid the block
869		 * freeing.
870		 */
871		if (!scanned)
872			scan_yield();
873
874		object = find_and_get_object(pointer, 1);
875		if (!object)
876			continue;
877		if (object == scanned) {
878			/* self referenced, ignore */
879			put_object(object);
880			continue;
881		}
882
883		/*
884		 * Avoid the lockdep recursive warning on object->lock being
885		 * previously acquired in scan_object(). These locks are
886		 * enclosed by scan_mutex.
887		 */
888		spin_lock_irqsave_nested(&object->lock, flags,
889					 SINGLE_DEPTH_NESTING);
890		if (!color_white(object)) {
891			/* non-orphan, ignored or new */
892			spin_unlock_irqrestore(&object->lock, flags);
893			put_object(object);
894			continue;
895		}
896
897		/*
898		 * Increase the object's reference count (number of pointers
899		 * to the memory block). If this count reaches the required
900		 * minimum, the object's color will become gray and it will be
901		 * added to the gray_list.
902		 */
903		object->count++;
904		if (color_gray(object))
905			list_add_tail(&object->gray_list, &gray_list);
906		else
907			put_object(object);
908		spin_unlock_irqrestore(&object->lock, flags);
909	}
910}
911
912/*
913 * Scan a memory block corresponding to a kmemleak_object. A condition is
914 * that object->use_count >= 1.
915 */
916static void scan_object(struct kmemleak_object *object)
917{
918	struct kmemleak_scan_area *area;
919	struct hlist_node *elem;
920	unsigned long flags;
921
922	/*
923	 * Once the object->lock is aquired, the corresponding memory block
924	 * cannot be freed (the same lock is aquired in delete_object).
925	 */
926	spin_lock_irqsave(&object->lock, flags);
927	if (object->flags & OBJECT_NO_SCAN)
928		goto out;
929	if (!(object->flags & OBJECT_ALLOCATED))
930		/* already freed object */
931		goto out;
932	if (hlist_empty(&object->area_list))
933		scan_block((void *)object->pointer,
934			   (void *)(object->pointer + object->size), object);
935	else
936		hlist_for_each_entry(area, elem, &object->area_list, node)
937			scan_block((void *)(object->pointer + area->offset),
938				   (void *)(object->pointer + area->offset
939					    + area->length), object);
940out:
941	spin_unlock_irqrestore(&object->lock, flags);
942}
943
944/*
945 * Scan data sections and all the referenced memory blocks allocated via the
946 * kernel's standard allocators. This function must be called with the
947 * scan_mutex held.
948 */
949static void kmemleak_scan(void)
950{
951	unsigned long flags;
952	struct kmemleak_object *object, *tmp;
953	struct task_struct *task;
954	int i;
955
956	/* prepare the kmemleak_object's */
957	rcu_read_lock();
958	list_for_each_entry_rcu(object, &object_list, object_list) {
959		spin_lock_irqsave(&object->lock, flags);
960#ifdef DEBUG
961		/*
962		 * With a few exceptions there should be a maximum of
963		 * 1 reference to any object at this point.
964		 */
965		if (atomic_read(&object->use_count) > 1) {
966			pr_debug("kmemleak: object->use_count = %d\n",
967				 atomic_read(&object->use_count));
968			dump_object_info(object);
969		}
970#endif
971		/* reset the reference count (whiten the object) */
972		object->count = 0;
973		if (color_gray(object) && get_object(object))
974			list_add_tail(&object->gray_list, &gray_list);
975
976		spin_unlock_irqrestore(&object->lock, flags);
977	}
978	rcu_read_unlock();
979
980	/* data/bss scanning */
981	scan_block(_sdata, _edata, NULL);
982	scan_block(__bss_start, __bss_stop, NULL);
983
984#ifdef CONFIG_SMP
985	/* per-cpu sections scanning */
986	for_each_possible_cpu(i)
987		scan_block(__per_cpu_start + per_cpu_offset(i),
988			   __per_cpu_end + per_cpu_offset(i), NULL);
989#endif
990
991	/*
992	 * Struct page scanning for each node. The code below is not yet safe
993	 * with MEMORY_HOTPLUG.
994	 */
995	for_each_online_node(i) {
996		pg_data_t *pgdat = NODE_DATA(i);
997		unsigned long start_pfn = pgdat->node_start_pfn;
998		unsigned long end_pfn = start_pfn + pgdat->node_spanned_pages;
999		unsigned long pfn;
1000
1001		for (pfn = start_pfn; pfn < end_pfn; pfn++) {
1002			struct page *page;
1003
1004			if (!pfn_valid(pfn))
1005				continue;
1006			page = pfn_to_page(pfn);
1007			/* only scan if page is in use */
1008			if (page_count(page) == 0)
1009				continue;
1010			scan_block(page, page + 1, NULL);
1011		}
1012	}
1013
1014	/*
1015	 * Scanning the task stacks may introduce false negatives and it is
1016	 * not enabled by default.
1017	 */
1018	if (kmemleak_stack_scan) {
1019		read_lock(&tasklist_lock);
1020		for_each_process(task)
1021			scan_block(task_stack_page(task),
1022				   task_stack_page(task) + THREAD_SIZE, NULL);
1023		read_unlock(&tasklist_lock);
1024	}
1025
1026	/*
1027	 * Scan the objects already referenced from the sections scanned
1028	 * above. More objects will be referenced and, if there are no memory
1029	 * leaks, all the objects will be scanned. The list traversal is safe
1030	 * for both tail additions and removals from inside the loop. The
1031	 * kmemleak objects cannot be freed from outside the loop because their
1032	 * use_count was increased.
1033	 */
1034	object = list_entry(gray_list.next, typeof(*object), gray_list);
1035	while (&object->gray_list != &gray_list) {
1036		scan_yield();
1037
1038		/* may add new objects to the list */
1039		if (!scan_should_stop())
1040			scan_object(object);
1041
1042		tmp = list_entry(object->gray_list.next, typeof(*object),
1043				 gray_list);
1044
1045		/* remove the object from the list and release it */
1046		list_del(&object->gray_list);
1047		put_object(object);
1048
1049		object = tmp;
1050	}
1051	WARN_ON(!list_empty(&gray_list));
1052}
1053
1054/*
1055 * Thread function performing automatic memory scanning. Unreferenced objects
1056 * at the end of a memory scan are reported but only the first time.
1057 */
1058static int kmemleak_scan_thread(void *arg)
1059{
1060	static int first_run = 1;
1061
1062	pr_info("kmemleak: Automatic memory scanning thread started\n");
1063
1064	/*
1065	 * Wait before the first scan to allow the system to fully initialize.
1066	 */
1067	if (first_run) {
1068		first_run = 0;
1069		ssleep(SECS_FIRST_SCAN);
1070	}
1071
1072	while (!kthread_should_stop()) {
1073		struct kmemleak_object *object;
1074		signed long timeout = jiffies_scan_wait;
1075
1076		mutex_lock(&scan_mutex);
1077
1078		kmemleak_scan();
1079		reported_leaks = 0;
1080
1081		rcu_read_lock();
1082		list_for_each_entry_rcu(object, &object_list, object_list) {
1083			unsigned long flags;
1084
1085			if (reported_leaks >= REPORTS_NR)
1086				break;
1087			spin_lock_irqsave(&object->lock, flags);
1088			if (!(object->flags & OBJECT_REPORTED) &&
1089			    unreferenced_object(object)) {
1090				print_unreferenced(NULL, object);
1091				object->flags |= OBJECT_REPORTED;
1092				reported_leaks++;
1093			} else if ((object->flags & OBJECT_REPORTED) &&
1094				   referenced_object(object)) {
1095				print_referenced(object);
1096				object->flags &= ~OBJECT_REPORTED;
1097			}
1098			spin_unlock_irqrestore(&object->lock, flags);
1099		}
1100		rcu_read_unlock();
1101
1102		mutex_unlock(&scan_mutex);
1103		/* wait before the next scan */
1104		while (timeout && !kthread_should_stop())
1105			timeout = schedule_timeout_interruptible(timeout);
1106	}
1107
1108	pr_info("kmemleak: Automatic memory scanning thread ended\n");
1109
1110	return 0;
1111}
1112
1113/*
1114 * Start the automatic memory scanning thread. This function must be called
1115 * with the kmemleak_mutex held.
1116 */
1117void start_scan_thread(void)
1118{
1119	if (scan_thread)
1120		return;
1121	scan_thread = kthread_run(kmemleak_scan_thread, NULL, "kmemleak");
1122	if (IS_ERR(scan_thread)) {
1123		pr_warning("kmemleak: Failed to create the scan thread\n");
1124		scan_thread = NULL;
1125	}
1126}
1127
1128/*
1129 * Stop the automatic memory scanning thread. This function must be called
1130 * with the kmemleak_mutex held.
1131 */
1132void stop_scan_thread(void)
1133{
1134	if (scan_thread) {
1135		kthread_stop(scan_thread);
1136		scan_thread = NULL;
1137	}
1138}
1139
1140/*
1141 * Iterate over the object_list and return the first valid object at or after
1142 * the required position with its use_count incremented. The function triggers
1143 * a memory scanning when the pos argument points to the first position.
1144 */
1145static void *kmemleak_seq_start(struct seq_file *seq, loff_t *pos)
1146{
1147	struct kmemleak_object *object;
1148	loff_t n = *pos;
1149
1150	if (!n) {
1151		kmemleak_scan();
1152		reported_leaks = 0;
1153	}
1154	if (reported_leaks >= REPORTS_NR)
1155		return NULL;
1156
1157	rcu_read_lock();
1158	list_for_each_entry_rcu(object, &object_list, object_list) {
1159		if (n-- > 0)
1160			continue;
1161		if (get_object(object))
1162			goto out;
1163	}
1164	object = NULL;
1165out:
1166	rcu_read_unlock();
1167	return object;
1168}
1169
1170/*
1171 * Return the next object in the object_list. The function decrements the
1172 * use_count of the previous object and increases that of the next one.
1173 */
1174static void *kmemleak_seq_next(struct seq_file *seq, void *v, loff_t *pos)
1175{
1176	struct kmemleak_object *prev_obj = v;
1177	struct kmemleak_object *next_obj = NULL;
1178	struct list_head *n = &prev_obj->object_list;
1179
1180	++(*pos);
1181	if (reported_leaks >= REPORTS_NR)
1182		goto out;
1183
1184	rcu_read_lock();
1185	list_for_each_continue_rcu(n, &object_list) {
1186		next_obj = list_entry(n, struct kmemleak_object, object_list);
1187		if (get_object(next_obj))
1188			break;
1189	}
1190	rcu_read_unlock();
1191out:
1192	put_object(prev_obj);
1193	return next_obj;
1194}
1195
1196/*
1197 * Decrement the use_count of the last object required, if any.
1198 */
1199static void kmemleak_seq_stop(struct seq_file *seq, void *v)
1200{
1201	if (v)
1202		put_object(v);
1203}
1204
1205/*
1206 * Print the information for an unreferenced object to the seq file.
1207 */
1208static int kmemleak_seq_show(struct seq_file *seq, void *v)
1209{
1210	struct kmemleak_object *object = v;
1211	unsigned long flags;
1212
1213	spin_lock_irqsave(&object->lock, flags);
1214	if (!unreferenced_object(object))
1215		goto out;
1216	print_unreferenced(seq, object);
1217	reported_leaks++;
1218out:
1219	spin_unlock_irqrestore(&object->lock, flags);
1220	return 0;
1221}
1222
1223static const struct seq_operations kmemleak_seq_ops = {
1224	.start = kmemleak_seq_start,
1225	.next  = kmemleak_seq_next,
1226	.stop  = kmemleak_seq_stop,
1227	.show  = kmemleak_seq_show,
1228};
1229
1230static int kmemleak_open(struct inode *inode, struct file *file)
1231{
1232	int ret = 0;
1233
1234	if (!atomic_read(&kmemleak_enabled))
1235		return -EBUSY;
1236
1237	ret = mutex_lock_interruptible(&kmemleak_mutex);
1238	if (ret < 0)
1239		goto out;
1240	if (file->f_mode & FMODE_READ) {
1241		ret = mutex_lock_interruptible(&scan_mutex);
1242		if (ret < 0)
1243			goto kmemleak_unlock;
1244		ret = seq_open(file, &kmemleak_seq_ops);
1245		if (ret < 0)
1246			goto scan_unlock;
1247	}
1248	return ret;
1249
1250scan_unlock:
1251	mutex_unlock(&scan_mutex);
1252kmemleak_unlock:
1253	mutex_unlock(&kmemleak_mutex);
1254out:
1255	return ret;
1256}
1257
1258static int kmemleak_release(struct inode *inode, struct file *file)
1259{
1260	int ret = 0;
1261
1262	if (file->f_mode & FMODE_READ) {
1263		seq_release(inode, file);
1264		mutex_unlock(&scan_mutex);
1265	}
1266	mutex_unlock(&kmemleak_mutex);
1267
1268	return ret;
1269}
1270
1271/*
1272 * File write operation to configure kmemleak at run-time. The following
1273 * commands can be written to the /sys/kernel/debug/kmemleak file:
1274 *   off	- disable kmemleak (irreversible)
1275 *   stack=on	- enable the task stacks scanning
1276 *   stack=off	- disable the tasks stacks scanning
1277 *   scan=on	- start the automatic memory scanning thread
1278 *   scan=off	- stop the automatic memory scanning thread
1279 *   scan=...	- set the automatic memory scanning period in seconds (0 to
1280 *		  disable it)
1281 */
1282static ssize_t kmemleak_write(struct file *file, const char __user *user_buf,
1283			      size_t size, loff_t *ppos)
1284{
1285	char buf[64];
1286	int buf_size;
1287
1288	if (!atomic_read(&kmemleak_enabled))
1289		return -EBUSY;
1290
1291	buf_size = min(size, (sizeof(buf) - 1));
1292	if (strncpy_from_user(buf, user_buf, buf_size) < 0)
1293		return -EFAULT;
1294	buf[buf_size] = 0;
1295
1296	if (strncmp(buf, "off", 3) == 0)
1297		kmemleak_disable();
1298	else if (strncmp(buf, "stack=on", 8) == 0)
1299		kmemleak_stack_scan = 1;
1300	else if (strncmp(buf, "stack=off", 9) == 0)
1301		kmemleak_stack_scan = 0;
1302	else if (strncmp(buf, "scan=on", 7) == 0)
1303		start_scan_thread();
1304	else if (strncmp(buf, "scan=off", 8) == 0)
1305		stop_scan_thread();
1306	else if (strncmp(buf, "scan=", 5) == 0) {
1307		unsigned long secs;
1308		int err;
1309
1310		err = strict_strtoul(buf + 5, 0, &secs);
1311		if (err < 0)
1312			return err;
1313		stop_scan_thread();
1314		if (secs) {
1315			jiffies_scan_wait = msecs_to_jiffies(secs * 1000);
1316			start_scan_thread();
1317		}
1318	} else
1319		return -EINVAL;
1320
1321	/* ignore the rest of the buffer, only one command at a time */
1322	*ppos += size;
1323	return size;
1324}
1325
1326static const struct file_operations kmemleak_fops = {
1327	.owner		= THIS_MODULE,
1328	.open		= kmemleak_open,
1329	.read		= seq_read,
1330	.write		= kmemleak_write,
1331	.llseek		= seq_lseek,
1332	.release	= kmemleak_release,
1333};
1334
1335/*
1336 * Perform the freeing of the kmemleak internal objects after waiting for any
1337 * current memory scan to complete.
1338 */
1339static int kmemleak_cleanup_thread(void *arg)
1340{
1341	struct kmemleak_object *object;
1342
1343	mutex_lock(&kmemleak_mutex);
1344	stop_scan_thread();
1345	mutex_unlock(&kmemleak_mutex);
1346
1347	mutex_lock(&scan_mutex);
1348	rcu_read_lock();
1349	list_for_each_entry_rcu(object, &object_list, object_list)
1350		delete_object(object->pointer);
1351	rcu_read_unlock();
1352	mutex_unlock(&scan_mutex);
1353
1354	return 0;
1355}
1356
1357/*
1358 * Start the clean-up thread.
1359 */
1360static void kmemleak_cleanup(void)
1361{
1362	struct task_struct *cleanup_thread;
1363
1364	cleanup_thread = kthread_run(kmemleak_cleanup_thread, NULL,
1365				     "kmemleak-clean");
1366	if (IS_ERR(cleanup_thread))
1367		pr_warning("kmemleak: Failed to create the clean-up thread\n");
1368}
1369
1370/*
1371 * Disable kmemleak. No memory allocation/freeing will be traced once this
1372 * function is called. Disabling kmemleak is an irreversible operation.
1373 */
1374static void kmemleak_disable(void)
1375{
1376	/* atomically check whether it was already invoked */
1377	if (atomic_cmpxchg(&kmemleak_error, 0, 1))
1378		return;
1379
1380	/* stop any memory operation tracing */
1381	atomic_set(&kmemleak_early_log, 0);
1382	atomic_set(&kmemleak_enabled, 0);
1383
1384	/* check whether it is too early for a kernel thread */
1385	if (atomic_read(&kmemleak_initialized))
1386		kmemleak_cleanup();
1387
1388	pr_info("Kernel memory leak detector disabled\n");
1389}
1390
1391/*
1392 * Allow boot-time kmemleak disabling (enabled by default).
1393 */
1394static int kmemleak_boot_config(char *str)
1395{
1396	if (!str)
1397		return -EINVAL;
1398	if (strcmp(str, "off") == 0)
1399		kmemleak_disable();
1400	else if (strcmp(str, "on") != 0)
1401		return -EINVAL;
1402	return 0;
1403}
1404early_param("kmemleak", kmemleak_boot_config);
1405
1406/*
1407 * Kkmemleak initialization.
1408 */
1409void __init kmemleak_init(void)
1410{
1411	int i;
1412	unsigned long flags;
1413
1414	jiffies_scan_yield = msecs_to_jiffies(MSECS_SCAN_YIELD);
1415	jiffies_min_age = msecs_to_jiffies(MSECS_MIN_AGE);
1416	jiffies_scan_wait = msecs_to_jiffies(SECS_SCAN_WAIT * 1000);
1417
1418	object_cache = KMEM_CACHE(kmemleak_object, SLAB_NOLEAKTRACE);
1419	scan_area_cache = KMEM_CACHE(kmemleak_scan_area, SLAB_NOLEAKTRACE);
1420	INIT_PRIO_TREE_ROOT(&object_tree_root);
1421
1422	/* the kernel is still in UP mode, so disabling the IRQs is enough */
1423	local_irq_save(flags);
1424	if (!atomic_read(&kmemleak_error)) {
1425		atomic_set(&kmemleak_enabled, 1);
1426		atomic_set(&kmemleak_early_log, 0);
1427	}
1428	local_irq_restore(flags);
1429
1430	/*
1431	 * This is the point where tracking allocations is safe. Automatic
1432	 * scanning is started during the late initcall. Add the early logged
1433	 * callbacks to the kmemleak infrastructure.
1434	 */
1435	for (i = 0; i < crt_early_log; i++) {
1436		struct early_log *log = &early_log[i];
1437
1438		switch (log->op_type) {
1439		case KMEMLEAK_ALLOC:
1440			kmemleak_alloc(log->ptr, log->size, log->min_count,
1441				       GFP_KERNEL);
1442			break;
1443		case KMEMLEAK_FREE:
1444			kmemleak_free(log->ptr);
1445			break;
1446		case KMEMLEAK_NOT_LEAK:
1447			kmemleak_not_leak(log->ptr);
1448			break;
1449		case KMEMLEAK_IGNORE:
1450			kmemleak_ignore(log->ptr);
1451			break;
1452		case KMEMLEAK_SCAN_AREA:
1453			kmemleak_scan_area(log->ptr, log->offset, log->length,
1454					   GFP_KERNEL);
1455			break;
1456		case KMEMLEAK_NO_SCAN:
1457			kmemleak_no_scan(log->ptr);
1458			break;
1459		default:
1460			WARN_ON(1);
1461		}
1462	}
1463}
1464
1465/*
1466 * Late initialization function.
1467 */
1468static int __init kmemleak_late_init(void)
1469{
1470	struct dentry *dentry;
1471
1472	atomic_set(&kmemleak_initialized, 1);
1473
1474	if (atomic_read(&kmemleak_error)) {
1475		/*
1476		 * Some error occured and kmemleak was disabled. There is a
1477		 * small chance that kmemleak_disable() was called immediately
1478		 * after setting kmemleak_initialized and we may end up with
1479		 * two clean-up threads but serialized by scan_mutex.
1480		 */
1481		kmemleak_cleanup();
1482		return -ENOMEM;
1483	}
1484
1485	dentry = debugfs_create_file("kmemleak", S_IRUGO, NULL, NULL,
1486				     &kmemleak_fops);
1487	if (!dentry)
1488		pr_warning("kmemleak: Failed to create the debugfs kmemleak "
1489			   "file\n");
1490	mutex_lock(&kmemleak_mutex);
1491	start_scan_thread();
1492	mutex_unlock(&kmemleak_mutex);
1493
1494	pr_info("Kernel memory leak detector initialized\n");
1495
1496	return 0;
1497}
1498late_initcall(kmemleak_late_init);
1499