kmemleak.c revision 4698c1f2bbe44ce852ef1a6716973c1f5401a4c4
1/*
2 * mm/kmemleak.c
3 *
4 * Copyright (C) 2008 ARM Limited
5 * Written by Catalin Marinas <catalin.marinas@arm.com>
6 *
7 * This program is free software; you can redistribute it and/or modify
8 * it under the terms of the GNU General Public License version 2 as
9 * published by the Free Software Foundation.
10 *
11 * This program is distributed in the hope that it will be useful,
12 * but WITHOUT ANY WARRANTY; without even the implied warranty of
13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
14 * GNU General Public License for more details.
15 *
16 * You should have received a copy of the GNU General Public License
17 * along with this program; if not, write to the Free Software
18 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
19 *
20 *
21 * For more information on the algorithm and kmemleak usage, please see
22 * Documentation/kmemleak.txt.
23 *
24 * Notes on locking
25 * ----------------
26 *
27 * The following locks and mutexes are used by kmemleak:
28 *
29 * - kmemleak_lock (rwlock): protects the object_list modifications and
30 *   accesses to the object_tree_root. The object_list is the main list
31 *   holding the metadata (struct kmemleak_object) for the allocated memory
32 *   blocks. The object_tree_root is a priority search tree used to look-up
33 *   metadata based on a pointer to the corresponding memory block.  The
34 *   kmemleak_object structures are added to the object_list and
35 *   object_tree_root in the create_object() function called from the
36 *   kmemleak_alloc() callback and removed in delete_object() called from the
37 *   kmemleak_free() callback
38 * - kmemleak_object.lock (spinlock): protects a kmemleak_object. Accesses to
39 *   the metadata (e.g. count) are protected by this lock. Note that some
40 *   members of this structure may be protected by other means (atomic or
41 *   kmemleak_lock). This lock is also held when scanning the corresponding
42 *   memory block to avoid the kernel freeing it via the kmemleak_free()
43 *   callback. This is less heavyweight than holding a global lock like
44 *   kmemleak_lock during scanning
45 * - scan_mutex (mutex): ensures that only one thread may scan the memory for
46 *   unreferenced objects at a time. The gray_list contains the objects which
47 *   are already referenced or marked as false positives and need to be
48 *   scanned. This list is only modified during a scanning episode when the
49 *   scan_mutex is held. At the end of a scan, the gray_list is always empty.
50 *   Note that the kmemleak_object.use_count is incremented when an object is
51 *   added to the gray_list and therefore cannot be freed. This mutex also
52 *   prevents multiple users of the "kmemleak" debugfs file together with
53 *   modifications to the memory scanning parameters including the scan_thread
54 *   pointer
55 *
56 * The kmemleak_object structures have a use_count incremented or decremented
57 * using the get_object()/put_object() functions. When the use_count becomes
58 * 0, this count can no longer be incremented and put_object() schedules the
59 * kmemleak_object freeing via an RCU callback. All calls to the get_object()
60 * function must be protected by rcu_read_lock() to avoid accessing a freed
61 * structure.
62 */
63
64#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
65
66#include <linux/init.h>
67#include <linux/kernel.h>
68#include <linux/list.h>
69#include <linux/sched.h>
70#include <linux/jiffies.h>
71#include <linux/delay.h>
72#include <linux/module.h>
73#include <linux/kthread.h>
74#include <linux/prio_tree.h>
75#include <linux/gfp.h>
76#include <linux/fs.h>
77#include <linux/debugfs.h>
78#include <linux/seq_file.h>
79#include <linux/cpumask.h>
80#include <linux/spinlock.h>
81#include <linux/mutex.h>
82#include <linux/rcupdate.h>
83#include <linux/stacktrace.h>
84#include <linux/cache.h>
85#include <linux/percpu.h>
86#include <linux/hardirq.h>
87#include <linux/mmzone.h>
88#include <linux/slab.h>
89#include <linux/thread_info.h>
90#include <linux/err.h>
91#include <linux/uaccess.h>
92#include <linux/string.h>
93#include <linux/nodemask.h>
94#include <linux/mm.h>
95
96#include <asm/sections.h>
97#include <asm/processor.h>
98#include <asm/atomic.h>
99
100#include <linux/kmemleak.h>
101
102/*
103 * Kmemleak configuration and common defines.
104 */
105#define MAX_TRACE		16	/* stack trace length */
106#define REPORTS_NR		50	/* maximum number of reported leaks */
107#define MSECS_MIN_AGE		5000	/* minimum object age for reporting */
108#define MSECS_SCAN_YIELD	10	/* CPU yielding period */
109#define SECS_FIRST_SCAN		60	/* delay before the first scan */
110#define SECS_SCAN_WAIT		600	/* subsequent auto scanning delay */
111
112#define BYTES_PER_POINTER	sizeof(void *)
113
114/* GFP bitmask for kmemleak internal allocations */
115#define GFP_KMEMLEAK_MASK	(GFP_KERNEL | GFP_ATOMIC)
116
117/* scanning area inside a memory block */
118struct kmemleak_scan_area {
119	struct hlist_node node;
120	unsigned long offset;
121	size_t length;
122};
123
124/*
125 * Structure holding the metadata for each allocated memory block.
126 * Modifications to such objects should be made while holding the
127 * object->lock. Insertions or deletions from object_list, gray_list or
128 * tree_node are already protected by the corresponding locks or mutex (see
129 * the notes on locking above). These objects are reference-counted
130 * (use_count) and freed using the RCU mechanism.
131 */
132struct kmemleak_object {
133	spinlock_t lock;
134	unsigned long flags;		/* object status flags */
135	struct list_head object_list;
136	struct list_head gray_list;
137	struct prio_tree_node tree_node;
138	struct rcu_head rcu;		/* object_list lockless traversal */
139	/* object usage count; object freed when use_count == 0 */
140	atomic_t use_count;
141	unsigned long pointer;
142	size_t size;
143	/* minimum number of a pointers found before it is considered leak */
144	int min_count;
145	/* the total number of pointers found pointing to this object */
146	int count;
147	/* memory ranges to be scanned inside an object (empty for all) */
148	struct hlist_head area_list;
149	unsigned long trace[MAX_TRACE];
150	unsigned int trace_len;
151	unsigned long jiffies;		/* creation timestamp */
152	pid_t pid;			/* pid of the current task */
153	char comm[TASK_COMM_LEN];	/* executable name */
154};
155
156/* flag representing the memory block allocation status */
157#define OBJECT_ALLOCATED	(1 << 0)
158/* flag set after the first reporting of an unreference object */
159#define OBJECT_REPORTED		(1 << 1)
160/* flag set to not scan the object */
161#define OBJECT_NO_SCAN		(1 << 2)
162
163/* the list of all allocated objects */
164static LIST_HEAD(object_list);
165/* the list of gray-colored objects (see color_gray comment below) */
166static LIST_HEAD(gray_list);
167/* prio search tree for object boundaries */
168static struct prio_tree_root object_tree_root;
169/* rw_lock protecting the access to object_list and prio_tree_root */
170static DEFINE_RWLOCK(kmemleak_lock);
171
172/* allocation caches for kmemleak internal data */
173static struct kmem_cache *object_cache;
174static struct kmem_cache *scan_area_cache;
175
176/* set if tracing memory operations is enabled */
177static atomic_t kmemleak_enabled = ATOMIC_INIT(0);
178/* set in the late_initcall if there were no errors */
179static atomic_t kmemleak_initialized = ATOMIC_INIT(0);
180/* enables or disables early logging of the memory operations */
181static atomic_t kmemleak_early_log = ATOMIC_INIT(1);
182/* set if a fata kmemleak error has occurred */
183static atomic_t kmemleak_error = ATOMIC_INIT(0);
184
185/* minimum and maximum address that may be valid pointers */
186static unsigned long min_addr = ULONG_MAX;
187static unsigned long max_addr;
188
189/* used for yielding the CPU to other tasks during scanning */
190static unsigned long next_scan_yield;
191static struct task_struct *scan_thread;
192static unsigned long jiffies_scan_yield;
193static unsigned long jiffies_min_age;
194/* delay between automatic memory scannings */
195static signed long jiffies_scan_wait;
196/* enables or disables the task stacks scanning */
197static int kmemleak_stack_scan = 1;
198/* protects the memory scanning, parameters and debug/kmemleak file access */
199static DEFINE_MUTEX(scan_mutex);
200
201/* number of leaks reported (for limitation purposes) */
202static int reported_leaks;
203
204/*
205 * Early object allocation/freeing logging. Kmemleak is initialized after the
206 * kernel allocator. However, both the kernel allocator and kmemleak may
207 * allocate memory blocks which need to be tracked. Kmemleak defines an
208 * arbitrary buffer to hold the allocation/freeing information before it is
209 * fully initialized.
210 */
211
212/* kmemleak operation type for early logging */
213enum {
214	KMEMLEAK_ALLOC,
215	KMEMLEAK_FREE,
216	KMEMLEAK_NOT_LEAK,
217	KMEMLEAK_IGNORE,
218	KMEMLEAK_SCAN_AREA,
219	KMEMLEAK_NO_SCAN
220};
221
222/*
223 * Structure holding the information passed to kmemleak callbacks during the
224 * early logging.
225 */
226struct early_log {
227	int op_type;			/* kmemleak operation type */
228	const void *ptr;		/* allocated/freed memory block */
229	size_t size;			/* memory block size */
230	int min_count;			/* minimum reference count */
231	unsigned long offset;		/* scan area offset */
232	size_t length;			/* scan area length */
233};
234
235/* early logging buffer and current position */
236static struct early_log early_log[CONFIG_DEBUG_KMEMLEAK_EARLY_LOG_SIZE];
237static int crt_early_log;
238
239static void kmemleak_disable(void);
240
241/*
242 * Print a warning and dump the stack trace.
243 */
244#define kmemleak_warn(x...)	do {	\
245	pr_warning(x);			\
246	dump_stack();			\
247} while (0)
248
249/*
250 * Macro invoked when a serious kmemleak condition occured and cannot be
251 * recovered from. Kmemleak will be disabled and further allocation/freeing
252 * tracing no longer available.
253 */
254#define kmemleak_stop(x...)	do {	\
255	kmemleak_warn(x);		\
256	kmemleak_disable();		\
257} while (0)
258
259/*
260 * Object colors, encoded with count and min_count:
261 * - white - orphan object, not enough references to it (count < min_count)
262 * - gray  - not orphan, not marked as false positive (min_count == 0) or
263 *		sufficient references to it (count >= min_count)
264 * - black - ignore, it doesn't contain references (e.g. text section)
265 *		(min_count == -1). No function defined for this color.
266 * Newly created objects don't have any color assigned (object->count == -1)
267 * before the next memory scan when they become white.
268 */
269static int color_white(const struct kmemleak_object *object)
270{
271	return object->count != -1 && object->count < object->min_count;
272}
273
274static int color_gray(const struct kmemleak_object *object)
275{
276	return object->min_count != -1 && object->count >= object->min_count;
277}
278
279/*
280 * Objects are considered unreferenced only if their color is white, they have
281 * not be deleted and have a minimum age to avoid false positives caused by
282 * pointers temporarily stored in CPU registers.
283 */
284static int unreferenced_object(struct kmemleak_object *object)
285{
286	return (object->flags & OBJECT_ALLOCATED) && color_white(object) &&
287		time_is_before_eq_jiffies(object->jiffies + jiffies_min_age);
288}
289
290/*
291 * Printing of the unreferenced objects information to the seq file. The
292 * print_unreferenced function must be called with the object->lock held.
293 */
294static void print_unreferenced(struct seq_file *seq,
295			       struct kmemleak_object *object)
296{
297	int i;
298
299	seq_printf(seq, "unreferenced object 0x%08lx (size %zu):\n",
300		   object->pointer, object->size);
301	seq_printf(seq, "  comm \"%s\", pid %d, jiffies %lu\n",
302		   object->comm, object->pid, object->jiffies);
303	seq_printf(seq, "  backtrace:\n");
304
305	for (i = 0; i < object->trace_len; i++) {
306		void *ptr = (void *)object->trace[i];
307		seq_printf(seq, "    [<%p>] %pS\n", ptr, ptr);
308	}
309}
310
311/*
312 * Print the kmemleak_object information. This function is used mainly for
313 * debugging special cases when kmemleak operations. It must be called with
314 * the object->lock held.
315 */
316static void dump_object_info(struct kmemleak_object *object)
317{
318	struct stack_trace trace;
319
320	trace.nr_entries = object->trace_len;
321	trace.entries = object->trace;
322
323	pr_notice("Object 0x%08lx (size %zu):\n",
324		  object->tree_node.start, object->size);
325	pr_notice("  comm \"%s\", pid %d, jiffies %lu\n",
326		  object->comm, object->pid, object->jiffies);
327	pr_notice("  min_count = %d\n", object->min_count);
328	pr_notice("  count = %d\n", object->count);
329	pr_notice("  backtrace:\n");
330	print_stack_trace(&trace, 4);
331}
332
333/*
334 * Look-up a memory block metadata (kmemleak_object) in the priority search
335 * tree based on a pointer value. If alias is 0, only values pointing to the
336 * beginning of the memory block are allowed. The kmemleak_lock must be held
337 * when calling this function.
338 */
339static struct kmemleak_object *lookup_object(unsigned long ptr, int alias)
340{
341	struct prio_tree_node *node;
342	struct prio_tree_iter iter;
343	struct kmemleak_object *object;
344
345	prio_tree_iter_init(&iter, &object_tree_root, ptr, ptr);
346	node = prio_tree_next(&iter);
347	if (node) {
348		object = prio_tree_entry(node, struct kmemleak_object,
349					 tree_node);
350		if (!alias && object->pointer != ptr) {
351			kmemleak_warn("Found object by alias");
352			object = NULL;
353		}
354	} else
355		object = NULL;
356
357	return object;
358}
359
360/*
361 * Increment the object use_count. Return 1 if successful or 0 otherwise. Note
362 * that once an object's use_count reached 0, the RCU freeing was already
363 * registered and the object should no longer be used. This function must be
364 * called under the protection of rcu_read_lock().
365 */
366static int get_object(struct kmemleak_object *object)
367{
368	return atomic_inc_not_zero(&object->use_count);
369}
370
371/*
372 * RCU callback to free a kmemleak_object.
373 */
374static void free_object_rcu(struct rcu_head *rcu)
375{
376	struct hlist_node *elem, *tmp;
377	struct kmemleak_scan_area *area;
378	struct kmemleak_object *object =
379		container_of(rcu, struct kmemleak_object, rcu);
380
381	/*
382	 * Once use_count is 0 (guaranteed by put_object), there is no other
383	 * code accessing this object, hence no need for locking.
384	 */
385	hlist_for_each_entry_safe(area, elem, tmp, &object->area_list, node) {
386		hlist_del(elem);
387		kmem_cache_free(scan_area_cache, area);
388	}
389	kmem_cache_free(object_cache, object);
390}
391
392/*
393 * Decrement the object use_count. Once the count is 0, free the object using
394 * an RCU callback. Since put_object() may be called via the kmemleak_free() ->
395 * delete_object() path, the delayed RCU freeing ensures that there is no
396 * recursive call to the kernel allocator. Lock-less RCU object_list traversal
397 * is also possible.
398 */
399static void put_object(struct kmemleak_object *object)
400{
401	if (!atomic_dec_and_test(&object->use_count))
402		return;
403
404	/* should only get here after delete_object was called */
405	WARN_ON(object->flags & OBJECT_ALLOCATED);
406
407	call_rcu(&object->rcu, free_object_rcu);
408}
409
410/*
411 * Look up an object in the prio search tree and increase its use_count.
412 */
413static struct kmemleak_object *find_and_get_object(unsigned long ptr, int alias)
414{
415	unsigned long flags;
416	struct kmemleak_object *object = NULL;
417
418	rcu_read_lock();
419	read_lock_irqsave(&kmemleak_lock, flags);
420	if (ptr >= min_addr && ptr < max_addr)
421		object = lookup_object(ptr, alias);
422	read_unlock_irqrestore(&kmemleak_lock, flags);
423
424	/* check whether the object is still available */
425	if (object && !get_object(object))
426		object = NULL;
427	rcu_read_unlock();
428
429	return object;
430}
431
432/*
433 * Create the metadata (struct kmemleak_object) corresponding to an allocated
434 * memory block and add it to the object_list and object_tree_root.
435 */
436static void create_object(unsigned long ptr, size_t size, int min_count,
437			  gfp_t gfp)
438{
439	unsigned long flags;
440	struct kmemleak_object *object;
441	struct prio_tree_node *node;
442	struct stack_trace trace;
443
444	object = kmem_cache_alloc(object_cache, gfp & GFP_KMEMLEAK_MASK);
445	if (!object) {
446		kmemleak_stop("Cannot allocate a kmemleak_object structure\n");
447		return;
448	}
449
450	INIT_LIST_HEAD(&object->object_list);
451	INIT_LIST_HEAD(&object->gray_list);
452	INIT_HLIST_HEAD(&object->area_list);
453	spin_lock_init(&object->lock);
454	atomic_set(&object->use_count, 1);
455	object->flags = OBJECT_ALLOCATED;
456	object->pointer = ptr;
457	object->size = size;
458	object->min_count = min_count;
459	object->count = -1;			/* no color initially */
460	object->jiffies = jiffies;
461
462	/* task information */
463	if (in_irq()) {
464		object->pid = 0;
465		strncpy(object->comm, "hardirq", sizeof(object->comm));
466	} else if (in_softirq()) {
467		object->pid = 0;
468		strncpy(object->comm, "softirq", sizeof(object->comm));
469	} else {
470		object->pid = current->pid;
471		/*
472		 * There is a small chance of a race with set_task_comm(),
473		 * however using get_task_comm() here may cause locking
474		 * dependency issues with current->alloc_lock. In the worst
475		 * case, the command line is not correct.
476		 */
477		strncpy(object->comm, current->comm, sizeof(object->comm));
478	}
479
480	/* kernel backtrace */
481	trace.max_entries = MAX_TRACE;
482	trace.nr_entries = 0;
483	trace.entries = object->trace;
484	trace.skip = 1;
485	save_stack_trace(&trace);
486	object->trace_len = trace.nr_entries;
487
488	INIT_PRIO_TREE_NODE(&object->tree_node);
489	object->tree_node.start = ptr;
490	object->tree_node.last = ptr + size - 1;
491
492	write_lock_irqsave(&kmemleak_lock, flags);
493	min_addr = min(min_addr, ptr);
494	max_addr = max(max_addr, ptr + size);
495	node = prio_tree_insert(&object_tree_root, &object->tree_node);
496	/*
497	 * The code calling the kernel does not yet have the pointer to the
498	 * memory block to be able to free it.  However, we still hold the
499	 * kmemleak_lock here in case parts of the kernel started freeing
500	 * random memory blocks.
501	 */
502	if (node != &object->tree_node) {
503		unsigned long flags;
504
505		kmemleak_stop("Cannot insert 0x%lx into the object search tree "
506			      "(already existing)\n", ptr);
507		object = lookup_object(ptr, 1);
508		spin_lock_irqsave(&object->lock, flags);
509		dump_object_info(object);
510		spin_unlock_irqrestore(&object->lock, flags);
511
512		goto out;
513	}
514	list_add_tail_rcu(&object->object_list, &object_list);
515out:
516	write_unlock_irqrestore(&kmemleak_lock, flags);
517}
518
519/*
520 * Remove the metadata (struct kmemleak_object) for a memory block from the
521 * object_list and object_tree_root and decrement its use_count.
522 */
523static void delete_object(unsigned long ptr)
524{
525	unsigned long flags;
526	struct kmemleak_object *object;
527
528	write_lock_irqsave(&kmemleak_lock, flags);
529	object = lookup_object(ptr, 0);
530	if (!object) {
531		kmemleak_warn("Freeing unknown object at 0x%08lx\n",
532			      ptr);
533		write_unlock_irqrestore(&kmemleak_lock, flags);
534		return;
535	}
536	prio_tree_remove(&object_tree_root, &object->tree_node);
537	list_del_rcu(&object->object_list);
538	write_unlock_irqrestore(&kmemleak_lock, flags);
539
540	WARN_ON(!(object->flags & OBJECT_ALLOCATED));
541	WARN_ON(atomic_read(&object->use_count) < 1);
542
543	/*
544	 * Locking here also ensures that the corresponding memory block
545	 * cannot be freed when it is being scanned.
546	 */
547	spin_lock_irqsave(&object->lock, flags);
548	object->flags &= ~OBJECT_ALLOCATED;
549	spin_unlock_irqrestore(&object->lock, flags);
550	put_object(object);
551}
552
553/*
554 * Make a object permanently as gray-colored so that it can no longer be
555 * reported as a leak. This is used in general to mark a false positive.
556 */
557static void make_gray_object(unsigned long ptr)
558{
559	unsigned long flags;
560	struct kmemleak_object *object;
561
562	object = find_and_get_object(ptr, 0);
563	if (!object) {
564		kmemleak_warn("Graying unknown object at 0x%08lx\n", ptr);
565		return;
566	}
567
568	spin_lock_irqsave(&object->lock, flags);
569	object->min_count = 0;
570	spin_unlock_irqrestore(&object->lock, flags);
571	put_object(object);
572}
573
574/*
575 * Mark the object as black-colored so that it is ignored from scans and
576 * reporting.
577 */
578static void make_black_object(unsigned long ptr)
579{
580	unsigned long flags;
581	struct kmemleak_object *object;
582
583	object = find_and_get_object(ptr, 0);
584	if (!object) {
585		kmemleak_warn("Blacking unknown object at 0x%08lx\n", ptr);
586		return;
587	}
588
589	spin_lock_irqsave(&object->lock, flags);
590	object->min_count = -1;
591	spin_unlock_irqrestore(&object->lock, flags);
592	put_object(object);
593}
594
595/*
596 * Add a scanning area to the object. If at least one such area is added,
597 * kmemleak will only scan these ranges rather than the whole memory block.
598 */
599static void add_scan_area(unsigned long ptr, unsigned long offset,
600			  size_t length, gfp_t gfp)
601{
602	unsigned long flags;
603	struct kmemleak_object *object;
604	struct kmemleak_scan_area *area;
605
606	object = find_and_get_object(ptr, 0);
607	if (!object) {
608		kmemleak_warn("Adding scan area to unknown object at 0x%08lx\n",
609			      ptr);
610		return;
611	}
612
613	area = kmem_cache_alloc(scan_area_cache, gfp & GFP_KMEMLEAK_MASK);
614	if (!area) {
615		kmemleak_warn("Cannot allocate a scan area\n");
616		goto out;
617	}
618
619	spin_lock_irqsave(&object->lock, flags);
620	if (offset + length > object->size) {
621		kmemleak_warn("Scan area larger than object 0x%08lx\n", ptr);
622		dump_object_info(object);
623		kmem_cache_free(scan_area_cache, area);
624		goto out_unlock;
625	}
626
627	INIT_HLIST_NODE(&area->node);
628	area->offset = offset;
629	area->length = length;
630
631	hlist_add_head(&area->node, &object->area_list);
632out_unlock:
633	spin_unlock_irqrestore(&object->lock, flags);
634out:
635	put_object(object);
636}
637
638/*
639 * Set the OBJECT_NO_SCAN flag for the object corresponding to the give
640 * pointer. Such object will not be scanned by kmemleak but references to it
641 * are searched.
642 */
643static void object_no_scan(unsigned long ptr)
644{
645	unsigned long flags;
646	struct kmemleak_object *object;
647
648	object = find_and_get_object(ptr, 0);
649	if (!object) {
650		kmemleak_warn("Not scanning unknown object at 0x%08lx\n", ptr);
651		return;
652	}
653
654	spin_lock_irqsave(&object->lock, flags);
655	object->flags |= OBJECT_NO_SCAN;
656	spin_unlock_irqrestore(&object->lock, flags);
657	put_object(object);
658}
659
660/*
661 * Log an early kmemleak_* call to the early_log buffer. These calls will be
662 * processed later once kmemleak is fully initialized.
663 */
664static void log_early(int op_type, const void *ptr, size_t size,
665		      int min_count, unsigned long offset, size_t length)
666{
667	unsigned long flags;
668	struct early_log *log;
669
670	if (crt_early_log >= ARRAY_SIZE(early_log)) {
671		pr_warning("Early log buffer exceeded\n");
672		kmemleak_disable();
673		return;
674	}
675
676	/*
677	 * There is no need for locking since the kernel is still in UP mode
678	 * at this stage. Disabling the IRQs is enough.
679	 */
680	local_irq_save(flags);
681	log = &early_log[crt_early_log];
682	log->op_type = op_type;
683	log->ptr = ptr;
684	log->size = size;
685	log->min_count = min_count;
686	log->offset = offset;
687	log->length = length;
688	crt_early_log++;
689	local_irq_restore(flags);
690}
691
692/*
693 * Memory allocation function callback. This function is called from the
694 * kernel allocators when a new block is allocated (kmem_cache_alloc, kmalloc,
695 * vmalloc etc.).
696 */
697void kmemleak_alloc(const void *ptr, size_t size, int min_count, gfp_t gfp)
698{
699	pr_debug("%s(0x%p, %zu, %d)\n", __func__, ptr, size, min_count);
700
701	if (atomic_read(&kmemleak_enabled) && ptr && !IS_ERR(ptr))
702		create_object((unsigned long)ptr, size, min_count, gfp);
703	else if (atomic_read(&kmemleak_early_log))
704		log_early(KMEMLEAK_ALLOC, ptr, size, min_count, 0, 0);
705}
706EXPORT_SYMBOL_GPL(kmemleak_alloc);
707
708/*
709 * Memory freeing function callback. This function is called from the kernel
710 * allocators when a block is freed (kmem_cache_free, kfree, vfree etc.).
711 */
712void kmemleak_free(const void *ptr)
713{
714	pr_debug("%s(0x%p)\n", __func__, ptr);
715
716	if (atomic_read(&kmemleak_enabled) && ptr && !IS_ERR(ptr))
717		delete_object((unsigned long)ptr);
718	else if (atomic_read(&kmemleak_early_log))
719		log_early(KMEMLEAK_FREE, ptr, 0, 0, 0, 0);
720}
721EXPORT_SYMBOL_GPL(kmemleak_free);
722
723/*
724 * Mark an already allocated memory block as a false positive. This will cause
725 * the block to no longer be reported as leak and always be scanned.
726 */
727void kmemleak_not_leak(const void *ptr)
728{
729	pr_debug("%s(0x%p)\n", __func__, ptr);
730
731	if (atomic_read(&kmemleak_enabled) && ptr && !IS_ERR(ptr))
732		make_gray_object((unsigned long)ptr);
733	else if (atomic_read(&kmemleak_early_log))
734		log_early(KMEMLEAK_NOT_LEAK, ptr, 0, 0, 0, 0);
735}
736EXPORT_SYMBOL(kmemleak_not_leak);
737
738/*
739 * Ignore a memory block. This is usually done when it is known that the
740 * corresponding block is not a leak and does not contain any references to
741 * other allocated memory blocks.
742 */
743void kmemleak_ignore(const void *ptr)
744{
745	pr_debug("%s(0x%p)\n", __func__, ptr);
746
747	if (atomic_read(&kmemleak_enabled) && ptr && !IS_ERR(ptr))
748		make_black_object((unsigned long)ptr);
749	else if (atomic_read(&kmemleak_early_log))
750		log_early(KMEMLEAK_IGNORE, ptr, 0, 0, 0, 0);
751}
752EXPORT_SYMBOL(kmemleak_ignore);
753
754/*
755 * Limit the range to be scanned in an allocated memory block.
756 */
757void kmemleak_scan_area(const void *ptr, unsigned long offset, size_t length,
758			gfp_t gfp)
759{
760	pr_debug("%s(0x%p)\n", __func__, ptr);
761
762	if (atomic_read(&kmemleak_enabled) && ptr && !IS_ERR(ptr))
763		add_scan_area((unsigned long)ptr, offset, length, gfp);
764	else if (atomic_read(&kmemleak_early_log))
765		log_early(KMEMLEAK_SCAN_AREA, ptr, 0, 0, offset, length);
766}
767EXPORT_SYMBOL(kmemleak_scan_area);
768
769/*
770 * Inform kmemleak not to scan the given memory block.
771 */
772void kmemleak_no_scan(const void *ptr)
773{
774	pr_debug("%s(0x%p)\n", __func__, ptr);
775
776	if (atomic_read(&kmemleak_enabled) && ptr && !IS_ERR(ptr))
777		object_no_scan((unsigned long)ptr);
778	else if (atomic_read(&kmemleak_early_log))
779		log_early(KMEMLEAK_NO_SCAN, ptr, 0, 0, 0, 0);
780}
781EXPORT_SYMBOL(kmemleak_no_scan);
782
783/*
784 * Yield the CPU so that other tasks get a chance to run.  The yielding is
785 * rate-limited to avoid excessive number of calls to the schedule() function
786 * during memory scanning.
787 */
788static void scan_yield(void)
789{
790	might_sleep();
791
792	if (time_is_before_eq_jiffies(next_scan_yield)) {
793		schedule();
794		next_scan_yield = jiffies + jiffies_scan_yield;
795	}
796}
797
798/*
799 * Memory scanning is a long process and it needs to be interruptable. This
800 * function checks whether such interrupt condition occured.
801 */
802static int scan_should_stop(void)
803{
804	if (!atomic_read(&kmemleak_enabled))
805		return 1;
806
807	/*
808	 * This function may be called from either process or kthread context,
809	 * hence the need to check for both stop conditions.
810	 */
811	if (current->mm)
812		return signal_pending(current);
813	else
814		return kthread_should_stop();
815
816	return 0;
817}
818
819/*
820 * Scan a memory block (exclusive range) for valid pointers and add those
821 * found to the gray list.
822 */
823static void scan_block(void *_start, void *_end,
824		       struct kmemleak_object *scanned)
825{
826	unsigned long *ptr;
827	unsigned long *start = PTR_ALIGN(_start, BYTES_PER_POINTER);
828	unsigned long *end = _end - (BYTES_PER_POINTER - 1);
829
830	for (ptr = start; ptr < end; ptr++) {
831		unsigned long flags;
832		unsigned long pointer = *ptr;
833		struct kmemleak_object *object;
834
835		if (scan_should_stop())
836			break;
837
838		/*
839		 * When scanning a memory block with a corresponding
840		 * kmemleak_object, the CPU yielding is handled in the calling
841		 * code since it holds the object->lock to avoid the block
842		 * freeing.
843		 */
844		if (!scanned)
845			scan_yield();
846
847		object = find_and_get_object(pointer, 1);
848		if (!object)
849			continue;
850		if (object == scanned) {
851			/* self referenced, ignore */
852			put_object(object);
853			continue;
854		}
855
856		/*
857		 * Avoid the lockdep recursive warning on object->lock being
858		 * previously acquired in scan_object(). These locks are
859		 * enclosed by scan_mutex.
860		 */
861		spin_lock_irqsave_nested(&object->lock, flags,
862					 SINGLE_DEPTH_NESTING);
863		if (!color_white(object)) {
864			/* non-orphan, ignored or new */
865			spin_unlock_irqrestore(&object->lock, flags);
866			put_object(object);
867			continue;
868		}
869
870		/*
871		 * Increase the object's reference count (number of pointers
872		 * to the memory block). If this count reaches the required
873		 * minimum, the object's color will become gray and it will be
874		 * added to the gray_list.
875		 */
876		object->count++;
877		if (color_gray(object))
878			list_add_tail(&object->gray_list, &gray_list);
879		else
880			put_object(object);
881		spin_unlock_irqrestore(&object->lock, flags);
882	}
883}
884
885/*
886 * Scan a memory block corresponding to a kmemleak_object. A condition is
887 * that object->use_count >= 1.
888 */
889static void scan_object(struct kmemleak_object *object)
890{
891	struct kmemleak_scan_area *area;
892	struct hlist_node *elem;
893	unsigned long flags;
894
895	/*
896	 * Once the object->lock is aquired, the corresponding memory block
897	 * cannot be freed (the same lock is aquired in delete_object).
898	 */
899	spin_lock_irqsave(&object->lock, flags);
900	if (object->flags & OBJECT_NO_SCAN)
901		goto out;
902	if (!(object->flags & OBJECT_ALLOCATED))
903		/* already freed object */
904		goto out;
905	if (hlist_empty(&object->area_list))
906		scan_block((void *)object->pointer,
907			   (void *)(object->pointer + object->size), object);
908	else
909		hlist_for_each_entry(area, elem, &object->area_list, node)
910			scan_block((void *)(object->pointer + area->offset),
911				   (void *)(object->pointer + area->offset
912					    + area->length), object);
913out:
914	spin_unlock_irqrestore(&object->lock, flags);
915}
916
917/*
918 * Scan data sections and all the referenced memory blocks allocated via the
919 * kernel's standard allocators. This function must be called with the
920 * scan_mutex held.
921 */
922static void kmemleak_scan(void)
923{
924	unsigned long flags;
925	struct kmemleak_object *object, *tmp;
926	struct task_struct *task;
927	int i;
928	int new_leaks = 0;
929
930	/* prepare the kmemleak_object's */
931	rcu_read_lock();
932	list_for_each_entry_rcu(object, &object_list, object_list) {
933		spin_lock_irqsave(&object->lock, flags);
934#ifdef DEBUG
935		/*
936		 * With a few exceptions there should be a maximum of
937		 * 1 reference to any object at this point.
938		 */
939		if (atomic_read(&object->use_count) > 1) {
940			pr_debug("object->use_count = %d\n",
941				 atomic_read(&object->use_count));
942			dump_object_info(object);
943		}
944#endif
945		/* reset the reference count (whiten the object) */
946		object->count = 0;
947		if (color_gray(object) && get_object(object))
948			list_add_tail(&object->gray_list, &gray_list);
949
950		spin_unlock_irqrestore(&object->lock, flags);
951	}
952	rcu_read_unlock();
953
954	/* data/bss scanning */
955	scan_block(_sdata, _edata, NULL);
956	scan_block(__bss_start, __bss_stop, NULL);
957
958#ifdef CONFIG_SMP
959	/* per-cpu sections scanning */
960	for_each_possible_cpu(i)
961		scan_block(__per_cpu_start + per_cpu_offset(i),
962			   __per_cpu_end + per_cpu_offset(i), NULL);
963#endif
964
965	/*
966	 * Struct page scanning for each node. The code below is not yet safe
967	 * with MEMORY_HOTPLUG.
968	 */
969	for_each_online_node(i) {
970		pg_data_t *pgdat = NODE_DATA(i);
971		unsigned long start_pfn = pgdat->node_start_pfn;
972		unsigned long end_pfn = start_pfn + pgdat->node_spanned_pages;
973		unsigned long pfn;
974
975		for (pfn = start_pfn; pfn < end_pfn; pfn++) {
976			struct page *page;
977
978			if (!pfn_valid(pfn))
979				continue;
980			page = pfn_to_page(pfn);
981			/* only scan if page is in use */
982			if (page_count(page) == 0)
983				continue;
984			scan_block(page, page + 1, NULL);
985		}
986	}
987
988	/*
989	 * Scanning the task stacks may introduce false negatives and it is
990	 * not enabled by default.
991	 */
992	if (kmemleak_stack_scan) {
993		read_lock(&tasklist_lock);
994		for_each_process(task)
995			scan_block(task_stack_page(task),
996				   task_stack_page(task) + THREAD_SIZE, NULL);
997		read_unlock(&tasklist_lock);
998	}
999
1000	/*
1001	 * Scan the objects already referenced from the sections scanned
1002	 * above. More objects will be referenced and, if there are no memory
1003	 * leaks, all the objects will be scanned. The list traversal is safe
1004	 * for both tail additions and removals from inside the loop. The
1005	 * kmemleak objects cannot be freed from outside the loop because their
1006	 * use_count was increased.
1007	 */
1008	object = list_entry(gray_list.next, typeof(*object), gray_list);
1009	while (&object->gray_list != &gray_list) {
1010		scan_yield();
1011
1012		/* may add new objects to the list */
1013		if (!scan_should_stop())
1014			scan_object(object);
1015
1016		tmp = list_entry(object->gray_list.next, typeof(*object),
1017				 gray_list);
1018
1019		/* remove the object from the list and release it */
1020		list_del(&object->gray_list);
1021		put_object(object);
1022
1023		object = tmp;
1024	}
1025	WARN_ON(!list_empty(&gray_list));
1026
1027	/*
1028	 * Scanning result reporting.
1029	 */
1030	rcu_read_lock();
1031	list_for_each_entry_rcu(object, &object_list, object_list) {
1032		spin_lock_irqsave(&object->lock, flags);
1033		if (unreferenced_object(object) &&
1034		    !(object->flags & OBJECT_REPORTED)) {
1035			object->flags |= OBJECT_REPORTED;
1036			new_leaks++;
1037		}
1038		spin_unlock_irqrestore(&object->lock, flags);
1039	}
1040	rcu_read_unlock();
1041
1042	if (new_leaks)
1043		pr_info("%d new suspected memory leaks (see "
1044			"/sys/kernel/debug/kmemleak)\n", new_leaks);
1045
1046}
1047
1048/*
1049 * Thread function performing automatic memory scanning. Unreferenced objects
1050 * at the end of a memory scan are reported but only the first time.
1051 */
1052static int kmemleak_scan_thread(void *arg)
1053{
1054	static int first_run = 1;
1055
1056	pr_info("Automatic memory scanning thread started\n");
1057
1058	/*
1059	 * Wait before the first scan to allow the system to fully initialize.
1060	 */
1061	if (first_run) {
1062		first_run = 0;
1063		ssleep(SECS_FIRST_SCAN);
1064	}
1065
1066	while (!kthread_should_stop()) {
1067		signed long timeout = jiffies_scan_wait;
1068
1069		mutex_lock(&scan_mutex);
1070		kmemleak_scan();
1071		mutex_unlock(&scan_mutex);
1072
1073		/* wait before the next scan */
1074		while (timeout && !kthread_should_stop())
1075			timeout = schedule_timeout_interruptible(timeout);
1076	}
1077
1078	pr_info("Automatic memory scanning thread ended\n");
1079
1080	return 0;
1081}
1082
1083/*
1084 * Start the automatic memory scanning thread. This function must be called
1085 * with the scan_mutex held.
1086 */
1087void start_scan_thread(void)
1088{
1089	if (scan_thread)
1090		return;
1091	scan_thread = kthread_run(kmemleak_scan_thread, NULL, "kmemleak");
1092	if (IS_ERR(scan_thread)) {
1093		pr_warning("Failed to create the scan thread\n");
1094		scan_thread = NULL;
1095	}
1096}
1097
1098/*
1099 * Stop the automatic memory scanning thread. This function must be called
1100 * with the scan_mutex held.
1101 */
1102void stop_scan_thread(void)
1103{
1104	if (scan_thread) {
1105		kthread_stop(scan_thread);
1106		scan_thread = NULL;
1107	}
1108}
1109
1110/*
1111 * Iterate over the object_list and return the first valid object at or after
1112 * the required position with its use_count incremented. The function triggers
1113 * a memory scanning when the pos argument points to the first position.
1114 */
1115static void *kmemleak_seq_start(struct seq_file *seq, loff_t *pos)
1116{
1117	struct kmemleak_object *object;
1118	loff_t n = *pos;
1119
1120	if (!n)
1121		reported_leaks = 0;
1122	if (reported_leaks >= REPORTS_NR)
1123		return NULL;
1124
1125	rcu_read_lock();
1126	list_for_each_entry_rcu(object, &object_list, object_list) {
1127		if (n-- > 0)
1128			continue;
1129		if (get_object(object))
1130			goto out;
1131	}
1132	object = NULL;
1133out:
1134	rcu_read_unlock();
1135	return object;
1136}
1137
1138/*
1139 * Return the next object in the object_list. The function decrements the
1140 * use_count of the previous object and increases that of the next one.
1141 */
1142static void *kmemleak_seq_next(struct seq_file *seq, void *v, loff_t *pos)
1143{
1144	struct kmemleak_object *prev_obj = v;
1145	struct kmemleak_object *next_obj = NULL;
1146	struct list_head *n = &prev_obj->object_list;
1147
1148	++(*pos);
1149	if (reported_leaks >= REPORTS_NR)
1150		goto out;
1151
1152	rcu_read_lock();
1153	list_for_each_continue_rcu(n, &object_list) {
1154		next_obj = list_entry(n, struct kmemleak_object, object_list);
1155		if (get_object(next_obj))
1156			break;
1157	}
1158	rcu_read_unlock();
1159out:
1160	put_object(prev_obj);
1161	return next_obj;
1162}
1163
1164/*
1165 * Decrement the use_count of the last object required, if any.
1166 */
1167static void kmemleak_seq_stop(struct seq_file *seq, void *v)
1168{
1169	if (v)
1170		put_object(v);
1171}
1172
1173/*
1174 * Print the information for an unreferenced object to the seq file.
1175 */
1176static int kmemleak_seq_show(struct seq_file *seq, void *v)
1177{
1178	struct kmemleak_object *object = v;
1179	unsigned long flags;
1180
1181	spin_lock_irqsave(&object->lock, flags);
1182	if (!unreferenced_object(object))
1183		goto out;
1184	print_unreferenced(seq, object);
1185	reported_leaks++;
1186out:
1187	spin_unlock_irqrestore(&object->lock, flags);
1188	return 0;
1189}
1190
1191static const struct seq_operations kmemleak_seq_ops = {
1192	.start = kmemleak_seq_start,
1193	.next  = kmemleak_seq_next,
1194	.stop  = kmemleak_seq_stop,
1195	.show  = kmemleak_seq_show,
1196};
1197
1198static int kmemleak_open(struct inode *inode, struct file *file)
1199{
1200	int ret = 0;
1201
1202	if (!atomic_read(&kmemleak_enabled))
1203		return -EBUSY;
1204
1205	ret = mutex_lock_interruptible(&scan_mutex);
1206	if (ret < 0)
1207		goto out;
1208	if (file->f_mode & FMODE_READ) {
1209		ret = seq_open(file, &kmemleak_seq_ops);
1210		if (ret < 0)
1211			goto scan_unlock;
1212	}
1213	return ret;
1214
1215scan_unlock:
1216	mutex_unlock(&scan_mutex);
1217out:
1218	return ret;
1219}
1220
1221static int kmemleak_release(struct inode *inode, struct file *file)
1222{
1223	int ret = 0;
1224
1225	if (file->f_mode & FMODE_READ)
1226		seq_release(inode, file);
1227	mutex_unlock(&scan_mutex);
1228
1229	return ret;
1230}
1231
1232/*
1233 * File write operation to configure kmemleak at run-time. The following
1234 * commands can be written to the /sys/kernel/debug/kmemleak file:
1235 *   off	- disable kmemleak (irreversible)
1236 *   stack=on	- enable the task stacks scanning
1237 *   stack=off	- disable the tasks stacks scanning
1238 *   scan=on	- start the automatic memory scanning thread
1239 *   scan=off	- stop the automatic memory scanning thread
1240 *   scan=...	- set the automatic memory scanning period in seconds (0 to
1241 *		  disable it)
1242 *   scan	- trigger a memory scan
1243 */
1244static ssize_t kmemleak_write(struct file *file, const char __user *user_buf,
1245			      size_t size, loff_t *ppos)
1246{
1247	char buf[64];
1248	int buf_size;
1249
1250	if (!atomic_read(&kmemleak_enabled))
1251		return -EBUSY;
1252
1253	buf_size = min(size, (sizeof(buf) - 1));
1254	if (strncpy_from_user(buf, user_buf, buf_size) < 0)
1255		return -EFAULT;
1256	buf[buf_size] = 0;
1257
1258	if (strncmp(buf, "off", 3) == 0)
1259		kmemleak_disable();
1260	else if (strncmp(buf, "stack=on", 8) == 0)
1261		kmemleak_stack_scan = 1;
1262	else if (strncmp(buf, "stack=off", 9) == 0)
1263		kmemleak_stack_scan = 0;
1264	else if (strncmp(buf, "scan=on", 7) == 0)
1265		start_scan_thread();
1266	else if (strncmp(buf, "scan=off", 8) == 0)
1267		stop_scan_thread();
1268	else if (strncmp(buf, "scan=", 5) == 0) {
1269		unsigned long secs;
1270		int err;
1271
1272		err = strict_strtoul(buf + 5, 0, &secs);
1273		if (err < 0)
1274			return err;
1275		stop_scan_thread();
1276		if (secs) {
1277			jiffies_scan_wait = msecs_to_jiffies(secs * 1000);
1278			start_scan_thread();
1279		}
1280	} else if (strncmp(buf, "scan", 4) == 0)
1281		kmemleak_scan();
1282	else
1283		return -EINVAL;
1284
1285	/* ignore the rest of the buffer, only one command at a time */
1286	*ppos += size;
1287	return size;
1288}
1289
1290static const struct file_operations kmemleak_fops = {
1291	.owner		= THIS_MODULE,
1292	.open		= kmemleak_open,
1293	.read		= seq_read,
1294	.write		= kmemleak_write,
1295	.llseek		= seq_lseek,
1296	.release	= kmemleak_release,
1297};
1298
1299/*
1300 * Perform the freeing of the kmemleak internal objects after waiting for any
1301 * current memory scan to complete.
1302 */
1303static int kmemleak_cleanup_thread(void *arg)
1304{
1305	struct kmemleak_object *object;
1306
1307	mutex_lock(&scan_mutex);
1308	stop_scan_thread();
1309
1310	rcu_read_lock();
1311	list_for_each_entry_rcu(object, &object_list, object_list)
1312		delete_object(object->pointer);
1313	rcu_read_unlock();
1314	mutex_unlock(&scan_mutex);
1315
1316	return 0;
1317}
1318
1319/*
1320 * Start the clean-up thread.
1321 */
1322static void kmemleak_cleanup(void)
1323{
1324	struct task_struct *cleanup_thread;
1325
1326	cleanup_thread = kthread_run(kmemleak_cleanup_thread, NULL,
1327				     "kmemleak-clean");
1328	if (IS_ERR(cleanup_thread))
1329		pr_warning("Failed to create the clean-up thread\n");
1330}
1331
1332/*
1333 * Disable kmemleak. No memory allocation/freeing will be traced once this
1334 * function is called. Disabling kmemleak is an irreversible operation.
1335 */
1336static void kmemleak_disable(void)
1337{
1338	/* atomically check whether it was already invoked */
1339	if (atomic_cmpxchg(&kmemleak_error, 0, 1))
1340		return;
1341
1342	/* stop any memory operation tracing */
1343	atomic_set(&kmemleak_early_log, 0);
1344	atomic_set(&kmemleak_enabled, 0);
1345
1346	/* check whether it is too early for a kernel thread */
1347	if (atomic_read(&kmemleak_initialized))
1348		kmemleak_cleanup();
1349
1350	pr_info("Kernel memory leak detector disabled\n");
1351}
1352
1353/*
1354 * Allow boot-time kmemleak disabling (enabled by default).
1355 */
1356static int kmemleak_boot_config(char *str)
1357{
1358	if (!str)
1359		return -EINVAL;
1360	if (strcmp(str, "off") == 0)
1361		kmemleak_disable();
1362	else if (strcmp(str, "on") != 0)
1363		return -EINVAL;
1364	return 0;
1365}
1366early_param("kmemleak", kmemleak_boot_config);
1367
1368/*
1369 * Kmemleak initialization.
1370 */
1371void __init kmemleak_init(void)
1372{
1373	int i;
1374	unsigned long flags;
1375
1376	jiffies_scan_yield = msecs_to_jiffies(MSECS_SCAN_YIELD);
1377	jiffies_min_age = msecs_to_jiffies(MSECS_MIN_AGE);
1378	jiffies_scan_wait = msecs_to_jiffies(SECS_SCAN_WAIT * 1000);
1379
1380	object_cache = KMEM_CACHE(kmemleak_object, SLAB_NOLEAKTRACE);
1381	scan_area_cache = KMEM_CACHE(kmemleak_scan_area, SLAB_NOLEAKTRACE);
1382	INIT_PRIO_TREE_ROOT(&object_tree_root);
1383
1384	/* the kernel is still in UP mode, so disabling the IRQs is enough */
1385	local_irq_save(flags);
1386	if (!atomic_read(&kmemleak_error)) {
1387		atomic_set(&kmemleak_enabled, 1);
1388		atomic_set(&kmemleak_early_log, 0);
1389	}
1390	local_irq_restore(flags);
1391
1392	/*
1393	 * This is the point where tracking allocations is safe. Automatic
1394	 * scanning is started during the late initcall. Add the early logged
1395	 * callbacks to the kmemleak infrastructure.
1396	 */
1397	for (i = 0; i < crt_early_log; i++) {
1398		struct early_log *log = &early_log[i];
1399
1400		switch (log->op_type) {
1401		case KMEMLEAK_ALLOC:
1402			kmemleak_alloc(log->ptr, log->size, log->min_count,
1403				       GFP_KERNEL);
1404			break;
1405		case KMEMLEAK_FREE:
1406			kmemleak_free(log->ptr);
1407			break;
1408		case KMEMLEAK_NOT_LEAK:
1409			kmemleak_not_leak(log->ptr);
1410			break;
1411		case KMEMLEAK_IGNORE:
1412			kmemleak_ignore(log->ptr);
1413			break;
1414		case KMEMLEAK_SCAN_AREA:
1415			kmemleak_scan_area(log->ptr, log->offset, log->length,
1416					   GFP_KERNEL);
1417			break;
1418		case KMEMLEAK_NO_SCAN:
1419			kmemleak_no_scan(log->ptr);
1420			break;
1421		default:
1422			WARN_ON(1);
1423		}
1424	}
1425}
1426
1427/*
1428 * Late initialization function.
1429 */
1430static int __init kmemleak_late_init(void)
1431{
1432	struct dentry *dentry;
1433
1434	atomic_set(&kmemleak_initialized, 1);
1435
1436	if (atomic_read(&kmemleak_error)) {
1437		/*
1438		 * Some error occured and kmemleak was disabled. There is a
1439		 * small chance that kmemleak_disable() was called immediately
1440		 * after setting kmemleak_initialized and we may end up with
1441		 * two clean-up threads but serialized by scan_mutex.
1442		 */
1443		kmemleak_cleanup();
1444		return -ENOMEM;
1445	}
1446
1447	dentry = debugfs_create_file("kmemleak", S_IRUGO, NULL, NULL,
1448				     &kmemleak_fops);
1449	if (!dentry)
1450		pr_warning("Failed to create the debugfs kmemleak file\n");
1451	mutex_lock(&scan_mutex);
1452	start_scan_thread();
1453	mutex_unlock(&scan_mutex);
1454
1455	pr_info("Kernel memory leak detector initialized\n");
1456
1457	return 0;
1458}
1459late_initcall(kmemleak_late_init);
1460