kmemleak.c revision bab4a34afc301fdb81b6ea0e3098d96fc356e03a
1/*
2 * mm/kmemleak.c
3 *
4 * Copyright (C) 2008 ARM Limited
5 * Written by Catalin Marinas <catalin.marinas@arm.com>
6 *
7 * This program is free software; you can redistribute it and/or modify
8 * it under the terms of the GNU General Public License version 2 as
9 * published by the Free Software Foundation.
10 *
11 * This program is distributed in the hope that it will be useful,
12 * but WITHOUT ANY WARRANTY; without even the implied warranty of
13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
14 * GNU General Public License for more details.
15 *
16 * You should have received a copy of the GNU General Public License
17 * along with this program; if not, write to the Free Software
18 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
19 *
20 *
21 * For more information on the algorithm and kmemleak usage, please see
22 * Documentation/kmemleak.txt.
23 *
24 * Notes on locking
25 * ----------------
26 *
27 * The following locks and mutexes are used by kmemleak:
28 *
29 * - kmemleak_lock (rwlock): protects the object_list modifications and
30 *   accesses to the object_tree_root. The object_list is the main list
31 *   holding the metadata (struct kmemleak_object) for the allocated memory
32 *   blocks. The object_tree_root is a priority search tree used to look-up
33 *   metadata based on a pointer to the corresponding memory block.  The
34 *   kmemleak_object structures are added to the object_list and
35 *   object_tree_root in the create_object() function called from the
36 *   kmemleak_alloc() callback and removed in delete_object() called from the
37 *   kmemleak_free() callback
38 * - kmemleak_object.lock (spinlock): protects a kmemleak_object. Accesses to
39 *   the metadata (e.g. count) are protected by this lock. Note that some
40 *   members of this structure may be protected by other means (atomic or
41 *   kmemleak_lock). This lock is also held when scanning the corresponding
42 *   memory block to avoid the kernel freeing it via the kmemleak_free()
43 *   callback. This is less heavyweight than holding a global lock like
44 *   kmemleak_lock during scanning
45 * - scan_mutex (mutex): ensures that only one thread may scan the memory for
46 *   unreferenced objects at a time. The gray_list contains the objects which
47 *   are already referenced or marked as false positives and need to be
48 *   scanned. This list is only modified during a scanning episode when the
49 *   scan_mutex is held. At the end of a scan, the gray_list is always empty.
50 *   Note that the kmemleak_object.use_count is incremented when an object is
51 *   added to the gray_list and therefore cannot be freed
52 * - kmemleak_mutex (mutex): prevents multiple users of the "kmemleak" debugfs
53 *   file together with modifications to the memory scanning parameters
54 *   including the scan_thread pointer
55 *
56 * The kmemleak_object structures have a use_count incremented or decremented
57 * using the get_object()/put_object() functions. When the use_count becomes
58 * 0, this count can no longer be incremented and put_object() schedules the
59 * kmemleak_object freeing via an RCU callback. All calls to the get_object()
60 * function must be protected by rcu_read_lock() to avoid accessing a freed
61 * structure.
62 */
63
64#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
65
66#include <linux/init.h>
67#include <linux/kernel.h>
68#include <linux/list.h>
69#include <linux/sched.h>
70#include <linux/jiffies.h>
71#include <linux/delay.h>
72#include <linux/module.h>
73#include <linux/kthread.h>
74#include <linux/prio_tree.h>
75#include <linux/gfp.h>
76#include <linux/fs.h>
77#include <linux/debugfs.h>
78#include <linux/seq_file.h>
79#include <linux/cpumask.h>
80#include <linux/spinlock.h>
81#include <linux/mutex.h>
82#include <linux/rcupdate.h>
83#include <linux/stacktrace.h>
84#include <linux/cache.h>
85#include <linux/percpu.h>
86#include <linux/hardirq.h>
87#include <linux/mmzone.h>
88#include <linux/slab.h>
89#include <linux/thread_info.h>
90#include <linux/err.h>
91#include <linux/uaccess.h>
92#include <linux/string.h>
93#include <linux/nodemask.h>
94#include <linux/mm.h>
95
96#include <asm/sections.h>
97#include <asm/processor.h>
98#include <asm/atomic.h>
99
100#include <linux/kmemleak.h>
101
102/*
103 * Kmemleak configuration and common defines.
104 */
105#define MAX_TRACE		16	/* stack trace length */
106#define REPORTS_NR		50	/* maximum number of reported leaks */
107#define MSECS_MIN_AGE		5000	/* minimum object age for reporting */
108#define MSECS_SCAN_YIELD	10	/* CPU yielding period */
109#define SECS_FIRST_SCAN		60	/* delay before the first scan */
110#define SECS_SCAN_WAIT		600	/* subsequent auto scanning delay */
111
112#define BYTES_PER_POINTER	sizeof(void *)
113
114/* GFP bitmask for kmemleak internal allocations */
115#define GFP_KMEMLEAK_MASK	(GFP_KERNEL | GFP_ATOMIC)
116
117/* scanning area inside a memory block */
118struct kmemleak_scan_area {
119	struct hlist_node node;
120	unsigned long offset;
121	size_t length;
122};
123
124/*
125 * Structure holding the metadata for each allocated memory block.
126 * Modifications to such objects should be made while holding the
127 * object->lock. Insertions or deletions from object_list, gray_list or
128 * tree_node are already protected by the corresponding locks or mutex (see
129 * the notes on locking above). These objects are reference-counted
130 * (use_count) and freed using the RCU mechanism.
131 */
132struct kmemleak_object {
133	spinlock_t lock;
134	unsigned long flags;		/* object status flags */
135	struct list_head object_list;
136	struct list_head gray_list;
137	struct prio_tree_node tree_node;
138	struct rcu_head rcu;		/* object_list lockless traversal */
139	/* object usage count; object freed when use_count == 0 */
140	atomic_t use_count;
141	unsigned long pointer;
142	size_t size;
143	/* minimum number of a pointers found before it is considered leak */
144	int min_count;
145	/* the total number of pointers found pointing to this object */
146	int count;
147	/* memory ranges to be scanned inside an object (empty for all) */
148	struct hlist_head area_list;
149	unsigned long trace[MAX_TRACE];
150	unsigned int trace_len;
151	unsigned long jiffies;		/* creation timestamp */
152	pid_t pid;			/* pid of the current task */
153	char comm[TASK_COMM_LEN];	/* executable name */
154};
155
156/* flag representing the memory block allocation status */
157#define OBJECT_ALLOCATED	(1 << 0)
158/* flag set after the first reporting of an unreference object */
159#define OBJECT_REPORTED		(1 << 1)
160/* flag set to not scan the object */
161#define OBJECT_NO_SCAN		(1 << 2)
162
163/* the list of all allocated objects */
164static LIST_HEAD(object_list);
165/* the list of gray-colored objects (see color_gray comment below) */
166static LIST_HEAD(gray_list);
167/* prio search tree for object boundaries */
168static struct prio_tree_root object_tree_root;
169/* rw_lock protecting the access to object_list and prio_tree_root */
170static DEFINE_RWLOCK(kmemleak_lock);
171
172/* allocation caches for kmemleak internal data */
173static struct kmem_cache *object_cache;
174static struct kmem_cache *scan_area_cache;
175
176/* set if tracing memory operations is enabled */
177static atomic_t kmemleak_enabled = ATOMIC_INIT(0);
178/* set in the late_initcall if there were no errors */
179static atomic_t kmemleak_initialized = ATOMIC_INIT(0);
180/* enables or disables early logging of the memory operations */
181static atomic_t kmemleak_early_log = ATOMIC_INIT(1);
182/* set if a fata kmemleak error has occurred */
183static atomic_t kmemleak_error = ATOMIC_INIT(0);
184
185/* minimum and maximum address that may be valid pointers */
186static unsigned long min_addr = ULONG_MAX;
187static unsigned long max_addr;
188
189/* used for yielding the CPU to other tasks during scanning */
190static unsigned long next_scan_yield;
191static struct task_struct *scan_thread;
192static unsigned long jiffies_scan_yield;
193static unsigned long jiffies_min_age;
194/* delay between automatic memory scannings */
195static signed long jiffies_scan_wait;
196/* enables or disables the task stacks scanning */
197static int kmemleak_stack_scan = 1;
198/* mutex protecting the memory scanning */
199static DEFINE_MUTEX(scan_mutex);
200/* mutex protecting the access to the /sys/kernel/debug/kmemleak file */
201static DEFINE_MUTEX(kmemleak_mutex);
202
203/* number of leaks reported (for limitation purposes) */
204static int reported_leaks;
205
206/*
207 * Early object allocation/freeing logging. Kmemleak is initialized after the
208 * kernel allocator. However, both the kernel allocator and kmemleak may
209 * allocate memory blocks which need to be tracked. Kmemleak defines an
210 * arbitrary buffer to hold the allocation/freeing information before it is
211 * fully initialized.
212 */
213
214/* kmemleak operation type for early logging */
215enum {
216	KMEMLEAK_ALLOC,
217	KMEMLEAK_FREE,
218	KMEMLEAK_NOT_LEAK,
219	KMEMLEAK_IGNORE,
220	KMEMLEAK_SCAN_AREA,
221	KMEMLEAK_NO_SCAN
222};
223
224/*
225 * Structure holding the information passed to kmemleak callbacks during the
226 * early logging.
227 */
228struct early_log {
229	int op_type;			/* kmemleak operation type */
230	const void *ptr;		/* allocated/freed memory block */
231	size_t size;			/* memory block size */
232	int min_count;			/* minimum reference count */
233	unsigned long offset;		/* scan area offset */
234	size_t length;			/* scan area length */
235};
236
237/* early logging buffer and current position */
238static struct early_log early_log[CONFIG_DEBUG_KMEMLEAK_EARLY_LOG_SIZE];
239static int crt_early_log;
240
241static void kmemleak_disable(void);
242
243/*
244 * Print a warning and dump the stack trace.
245 */
246#define kmemleak_warn(x...)	do {	\
247	pr_warning(x);			\
248	dump_stack();			\
249} while (0)
250
251/*
252 * Macro invoked when a serious kmemleak condition occured and cannot be
253 * recovered from. Kmemleak will be disabled and further allocation/freeing
254 * tracing no longer available.
255 */
256#define kmemleak_stop(x...)	do {	\
257	kmemleak_warn(x);		\
258	kmemleak_disable();		\
259} while (0)
260
261/*
262 * Object colors, encoded with count and min_count:
263 * - white - orphan object, not enough references to it (count < min_count)
264 * - gray  - not orphan, not marked as false positive (min_count == 0) or
265 *		sufficient references to it (count >= min_count)
266 * - black - ignore, it doesn't contain references (e.g. text section)
267 *		(min_count == -1). No function defined for this color.
268 * Newly created objects don't have any color assigned (object->count == -1)
269 * before the next memory scan when they become white.
270 */
271static int color_white(const struct kmemleak_object *object)
272{
273	return object->count != -1 && object->count < object->min_count;
274}
275
276static int color_gray(const struct kmemleak_object *object)
277{
278	return object->min_count != -1 && object->count >= object->min_count;
279}
280
281/*
282 * Objects are considered unreferenced only if their color is white, they have
283 * not be deleted and have a minimum age to avoid false positives caused by
284 * pointers temporarily stored in CPU registers.
285 */
286static int unreferenced_object(struct kmemleak_object *object)
287{
288	return (object->flags & OBJECT_ALLOCATED) && color_white(object) &&
289		time_is_before_eq_jiffies(object->jiffies + jiffies_min_age);
290}
291
292/*
293 * Printing of the unreferenced objects information to the seq file. The
294 * print_unreferenced function must be called with the object->lock held.
295 */
296static void print_unreferenced(struct seq_file *seq,
297			       struct kmemleak_object *object)
298{
299	int i;
300
301	seq_printf(seq, "unreferenced object 0x%08lx (size %zu):\n",
302		   object->pointer, object->size);
303	seq_printf(seq, "  comm \"%s\", pid %d, jiffies %lu\n",
304		   object->comm, object->pid, object->jiffies);
305	seq_printf(seq, "  backtrace:\n");
306
307	for (i = 0; i < object->trace_len; i++) {
308		void *ptr = (void *)object->trace[i];
309		seq_printf(seq, "    [<%p>] %pS\n", ptr, ptr);
310	}
311}
312
313/*
314 * Print the kmemleak_object information. This function is used mainly for
315 * debugging special cases when kmemleak operations. It must be called with
316 * the object->lock held.
317 */
318static void dump_object_info(struct kmemleak_object *object)
319{
320	struct stack_trace trace;
321
322	trace.nr_entries = object->trace_len;
323	trace.entries = object->trace;
324
325	pr_notice("Object 0x%08lx (size %zu):\n",
326		  object->tree_node.start, object->size);
327	pr_notice("  comm \"%s\", pid %d, jiffies %lu\n",
328		  object->comm, object->pid, object->jiffies);
329	pr_notice("  min_count = %d\n", object->min_count);
330	pr_notice("  count = %d\n", object->count);
331	pr_notice("  backtrace:\n");
332	print_stack_trace(&trace, 4);
333}
334
335/*
336 * Look-up a memory block metadata (kmemleak_object) in the priority search
337 * tree based on a pointer value. If alias is 0, only values pointing to the
338 * beginning of the memory block are allowed. The kmemleak_lock must be held
339 * when calling this function.
340 */
341static struct kmemleak_object *lookup_object(unsigned long ptr, int alias)
342{
343	struct prio_tree_node *node;
344	struct prio_tree_iter iter;
345	struct kmemleak_object *object;
346
347	prio_tree_iter_init(&iter, &object_tree_root, ptr, ptr);
348	node = prio_tree_next(&iter);
349	if (node) {
350		object = prio_tree_entry(node, struct kmemleak_object,
351					 tree_node);
352		if (!alias && object->pointer != ptr) {
353			kmemleak_warn("Found object by alias");
354			object = NULL;
355		}
356	} else
357		object = NULL;
358
359	return object;
360}
361
362/*
363 * Increment the object use_count. Return 1 if successful or 0 otherwise. Note
364 * that once an object's use_count reached 0, the RCU freeing was already
365 * registered and the object should no longer be used. This function must be
366 * called under the protection of rcu_read_lock().
367 */
368static int get_object(struct kmemleak_object *object)
369{
370	return atomic_inc_not_zero(&object->use_count);
371}
372
373/*
374 * RCU callback to free a kmemleak_object.
375 */
376static void free_object_rcu(struct rcu_head *rcu)
377{
378	struct hlist_node *elem, *tmp;
379	struct kmemleak_scan_area *area;
380	struct kmemleak_object *object =
381		container_of(rcu, struct kmemleak_object, rcu);
382
383	/*
384	 * Once use_count is 0 (guaranteed by put_object), there is no other
385	 * code accessing this object, hence no need for locking.
386	 */
387	hlist_for_each_entry_safe(area, elem, tmp, &object->area_list, node) {
388		hlist_del(elem);
389		kmem_cache_free(scan_area_cache, area);
390	}
391	kmem_cache_free(object_cache, object);
392}
393
394/*
395 * Decrement the object use_count. Once the count is 0, free the object using
396 * an RCU callback. Since put_object() may be called via the kmemleak_free() ->
397 * delete_object() path, the delayed RCU freeing ensures that there is no
398 * recursive call to the kernel allocator. Lock-less RCU object_list traversal
399 * is also possible.
400 */
401static void put_object(struct kmemleak_object *object)
402{
403	if (!atomic_dec_and_test(&object->use_count))
404		return;
405
406	/* should only get here after delete_object was called */
407	WARN_ON(object->flags & OBJECT_ALLOCATED);
408
409	call_rcu(&object->rcu, free_object_rcu);
410}
411
412/*
413 * Look up an object in the prio search tree and increase its use_count.
414 */
415static struct kmemleak_object *find_and_get_object(unsigned long ptr, int alias)
416{
417	unsigned long flags;
418	struct kmemleak_object *object = NULL;
419
420	rcu_read_lock();
421	read_lock_irqsave(&kmemleak_lock, flags);
422	if (ptr >= min_addr && ptr < max_addr)
423		object = lookup_object(ptr, alias);
424	read_unlock_irqrestore(&kmemleak_lock, flags);
425
426	/* check whether the object is still available */
427	if (object && !get_object(object))
428		object = NULL;
429	rcu_read_unlock();
430
431	return object;
432}
433
434/*
435 * Create the metadata (struct kmemleak_object) corresponding to an allocated
436 * memory block and add it to the object_list and object_tree_root.
437 */
438static void create_object(unsigned long ptr, size_t size, int min_count,
439			  gfp_t gfp)
440{
441	unsigned long flags;
442	struct kmemleak_object *object;
443	struct prio_tree_node *node;
444	struct stack_trace trace;
445
446	object = kmem_cache_alloc(object_cache, gfp & GFP_KMEMLEAK_MASK);
447	if (!object) {
448		kmemleak_stop("Cannot allocate a kmemleak_object structure\n");
449		return;
450	}
451
452	INIT_LIST_HEAD(&object->object_list);
453	INIT_LIST_HEAD(&object->gray_list);
454	INIT_HLIST_HEAD(&object->area_list);
455	spin_lock_init(&object->lock);
456	atomic_set(&object->use_count, 1);
457	object->flags = OBJECT_ALLOCATED;
458	object->pointer = ptr;
459	object->size = size;
460	object->min_count = min_count;
461	object->count = -1;			/* no color initially */
462	object->jiffies = jiffies;
463
464	/* task information */
465	if (in_irq()) {
466		object->pid = 0;
467		strncpy(object->comm, "hardirq", sizeof(object->comm));
468	} else if (in_softirq()) {
469		object->pid = 0;
470		strncpy(object->comm, "softirq", sizeof(object->comm));
471	} else {
472		object->pid = current->pid;
473		/*
474		 * There is a small chance of a race with set_task_comm(),
475		 * however using get_task_comm() here may cause locking
476		 * dependency issues with current->alloc_lock. In the worst
477		 * case, the command line is not correct.
478		 */
479		strncpy(object->comm, current->comm, sizeof(object->comm));
480	}
481
482	/* kernel backtrace */
483	trace.max_entries = MAX_TRACE;
484	trace.nr_entries = 0;
485	trace.entries = object->trace;
486	trace.skip = 1;
487	save_stack_trace(&trace);
488	object->trace_len = trace.nr_entries;
489
490	INIT_PRIO_TREE_NODE(&object->tree_node);
491	object->tree_node.start = ptr;
492	object->tree_node.last = ptr + size - 1;
493
494	write_lock_irqsave(&kmemleak_lock, flags);
495	min_addr = min(min_addr, ptr);
496	max_addr = max(max_addr, ptr + size);
497	node = prio_tree_insert(&object_tree_root, &object->tree_node);
498	/*
499	 * The code calling the kernel does not yet have the pointer to the
500	 * memory block to be able to free it.  However, we still hold the
501	 * kmemleak_lock here in case parts of the kernel started freeing
502	 * random memory blocks.
503	 */
504	if (node != &object->tree_node) {
505		unsigned long flags;
506
507		kmemleak_stop("Cannot insert 0x%lx into the object search tree "
508			      "(already existing)\n", ptr);
509		object = lookup_object(ptr, 1);
510		spin_lock_irqsave(&object->lock, flags);
511		dump_object_info(object);
512		spin_unlock_irqrestore(&object->lock, flags);
513
514		goto out;
515	}
516	list_add_tail_rcu(&object->object_list, &object_list);
517out:
518	write_unlock_irqrestore(&kmemleak_lock, flags);
519}
520
521/*
522 * Remove the metadata (struct kmemleak_object) for a memory block from the
523 * object_list and object_tree_root and decrement its use_count.
524 */
525static void delete_object(unsigned long ptr)
526{
527	unsigned long flags;
528	struct kmemleak_object *object;
529
530	write_lock_irqsave(&kmemleak_lock, flags);
531	object = lookup_object(ptr, 0);
532	if (!object) {
533		kmemleak_warn("Freeing unknown object at 0x%08lx\n",
534			      ptr);
535		write_unlock_irqrestore(&kmemleak_lock, flags);
536		return;
537	}
538	prio_tree_remove(&object_tree_root, &object->tree_node);
539	list_del_rcu(&object->object_list);
540	write_unlock_irqrestore(&kmemleak_lock, flags);
541
542	WARN_ON(!(object->flags & OBJECT_ALLOCATED));
543	WARN_ON(atomic_read(&object->use_count) < 1);
544
545	/*
546	 * Locking here also ensures that the corresponding memory block
547	 * cannot be freed when it is being scanned.
548	 */
549	spin_lock_irqsave(&object->lock, flags);
550	object->flags &= ~OBJECT_ALLOCATED;
551	spin_unlock_irqrestore(&object->lock, flags);
552	put_object(object);
553}
554
555/*
556 * Make a object permanently as gray-colored so that it can no longer be
557 * reported as a leak. This is used in general to mark a false positive.
558 */
559static void make_gray_object(unsigned long ptr)
560{
561	unsigned long flags;
562	struct kmemleak_object *object;
563
564	object = find_and_get_object(ptr, 0);
565	if (!object) {
566		kmemleak_warn("Graying unknown object at 0x%08lx\n", ptr);
567		return;
568	}
569
570	spin_lock_irqsave(&object->lock, flags);
571	object->min_count = 0;
572	spin_unlock_irqrestore(&object->lock, flags);
573	put_object(object);
574}
575
576/*
577 * Mark the object as black-colored so that it is ignored from scans and
578 * reporting.
579 */
580static void make_black_object(unsigned long ptr)
581{
582	unsigned long flags;
583	struct kmemleak_object *object;
584
585	object = find_and_get_object(ptr, 0);
586	if (!object) {
587		kmemleak_warn("Blacking unknown object at 0x%08lx\n", ptr);
588		return;
589	}
590
591	spin_lock_irqsave(&object->lock, flags);
592	object->min_count = -1;
593	spin_unlock_irqrestore(&object->lock, flags);
594	put_object(object);
595}
596
597/*
598 * Add a scanning area to the object. If at least one such area is added,
599 * kmemleak will only scan these ranges rather than the whole memory block.
600 */
601static void add_scan_area(unsigned long ptr, unsigned long offset,
602			  size_t length, gfp_t gfp)
603{
604	unsigned long flags;
605	struct kmemleak_object *object;
606	struct kmemleak_scan_area *area;
607
608	object = find_and_get_object(ptr, 0);
609	if (!object) {
610		kmemleak_warn("Adding scan area to unknown object at 0x%08lx\n",
611			      ptr);
612		return;
613	}
614
615	area = kmem_cache_alloc(scan_area_cache, gfp & GFP_KMEMLEAK_MASK);
616	if (!area) {
617		kmemleak_warn("Cannot allocate a scan area\n");
618		goto out;
619	}
620
621	spin_lock_irqsave(&object->lock, flags);
622	if (offset + length > object->size) {
623		kmemleak_warn("Scan area larger than object 0x%08lx\n", ptr);
624		dump_object_info(object);
625		kmem_cache_free(scan_area_cache, area);
626		goto out_unlock;
627	}
628
629	INIT_HLIST_NODE(&area->node);
630	area->offset = offset;
631	area->length = length;
632
633	hlist_add_head(&area->node, &object->area_list);
634out_unlock:
635	spin_unlock_irqrestore(&object->lock, flags);
636out:
637	put_object(object);
638}
639
640/*
641 * Set the OBJECT_NO_SCAN flag for the object corresponding to the give
642 * pointer. Such object will not be scanned by kmemleak but references to it
643 * are searched.
644 */
645static void object_no_scan(unsigned long ptr)
646{
647	unsigned long flags;
648	struct kmemleak_object *object;
649
650	object = find_and_get_object(ptr, 0);
651	if (!object) {
652		kmemleak_warn("Not scanning unknown object at 0x%08lx\n", ptr);
653		return;
654	}
655
656	spin_lock_irqsave(&object->lock, flags);
657	object->flags |= OBJECT_NO_SCAN;
658	spin_unlock_irqrestore(&object->lock, flags);
659	put_object(object);
660}
661
662/*
663 * Log an early kmemleak_* call to the early_log buffer. These calls will be
664 * processed later once kmemleak is fully initialized.
665 */
666static void log_early(int op_type, const void *ptr, size_t size,
667		      int min_count, unsigned long offset, size_t length)
668{
669	unsigned long flags;
670	struct early_log *log;
671
672	if (crt_early_log >= ARRAY_SIZE(early_log)) {
673		pr_warning("Early log buffer exceeded\n");
674		kmemleak_disable();
675		return;
676	}
677
678	/*
679	 * There is no need for locking since the kernel is still in UP mode
680	 * at this stage. Disabling the IRQs is enough.
681	 */
682	local_irq_save(flags);
683	log = &early_log[crt_early_log];
684	log->op_type = op_type;
685	log->ptr = ptr;
686	log->size = size;
687	log->min_count = min_count;
688	log->offset = offset;
689	log->length = length;
690	crt_early_log++;
691	local_irq_restore(flags);
692}
693
694/*
695 * Memory allocation function callback. This function is called from the
696 * kernel allocators when a new block is allocated (kmem_cache_alloc, kmalloc,
697 * vmalloc etc.).
698 */
699void kmemleak_alloc(const void *ptr, size_t size, int min_count, gfp_t gfp)
700{
701	pr_debug("%s(0x%p, %zu, %d)\n", __func__, ptr, size, min_count);
702
703	if (atomic_read(&kmemleak_enabled) && ptr && !IS_ERR(ptr))
704		create_object((unsigned long)ptr, size, min_count, gfp);
705	else if (atomic_read(&kmemleak_early_log))
706		log_early(KMEMLEAK_ALLOC, ptr, size, min_count, 0, 0);
707}
708EXPORT_SYMBOL_GPL(kmemleak_alloc);
709
710/*
711 * Memory freeing function callback. This function is called from the kernel
712 * allocators when a block is freed (kmem_cache_free, kfree, vfree etc.).
713 */
714void kmemleak_free(const void *ptr)
715{
716	pr_debug("%s(0x%p)\n", __func__, ptr);
717
718	if (atomic_read(&kmemleak_enabled) && ptr && !IS_ERR(ptr))
719		delete_object((unsigned long)ptr);
720	else if (atomic_read(&kmemleak_early_log))
721		log_early(KMEMLEAK_FREE, ptr, 0, 0, 0, 0);
722}
723EXPORT_SYMBOL_GPL(kmemleak_free);
724
725/*
726 * Mark an already allocated memory block as a false positive. This will cause
727 * the block to no longer be reported as leak and always be scanned.
728 */
729void kmemleak_not_leak(const void *ptr)
730{
731	pr_debug("%s(0x%p)\n", __func__, ptr);
732
733	if (atomic_read(&kmemleak_enabled) && ptr && !IS_ERR(ptr))
734		make_gray_object((unsigned long)ptr);
735	else if (atomic_read(&kmemleak_early_log))
736		log_early(KMEMLEAK_NOT_LEAK, ptr, 0, 0, 0, 0);
737}
738EXPORT_SYMBOL(kmemleak_not_leak);
739
740/*
741 * Ignore a memory block. This is usually done when it is known that the
742 * corresponding block is not a leak and does not contain any references to
743 * other allocated memory blocks.
744 */
745void kmemleak_ignore(const void *ptr)
746{
747	pr_debug("%s(0x%p)\n", __func__, ptr);
748
749	if (atomic_read(&kmemleak_enabled) && ptr && !IS_ERR(ptr))
750		make_black_object((unsigned long)ptr);
751	else if (atomic_read(&kmemleak_early_log))
752		log_early(KMEMLEAK_IGNORE, ptr, 0, 0, 0, 0);
753}
754EXPORT_SYMBOL(kmemleak_ignore);
755
756/*
757 * Limit the range to be scanned in an allocated memory block.
758 */
759void kmemleak_scan_area(const void *ptr, unsigned long offset, size_t length,
760			gfp_t gfp)
761{
762	pr_debug("%s(0x%p)\n", __func__, ptr);
763
764	if (atomic_read(&kmemleak_enabled) && ptr && !IS_ERR(ptr))
765		add_scan_area((unsigned long)ptr, offset, length, gfp);
766	else if (atomic_read(&kmemleak_early_log))
767		log_early(KMEMLEAK_SCAN_AREA, ptr, 0, 0, offset, length);
768}
769EXPORT_SYMBOL(kmemleak_scan_area);
770
771/*
772 * Inform kmemleak not to scan the given memory block.
773 */
774void kmemleak_no_scan(const void *ptr)
775{
776	pr_debug("%s(0x%p)\n", __func__, ptr);
777
778	if (atomic_read(&kmemleak_enabled) && ptr && !IS_ERR(ptr))
779		object_no_scan((unsigned long)ptr);
780	else if (atomic_read(&kmemleak_early_log))
781		log_early(KMEMLEAK_NO_SCAN, ptr, 0, 0, 0, 0);
782}
783EXPORT_SYMBOL(kmemleak_no_scan);
784
785/*
786 * Yield the CPU so that other tasks get a chance to run.  The yielding is
787 * rate-limited to avoid excessive number of calls to the schedule() function
788 * during memory scanning.
789 */
790static void scan_yield(void)
791{
792	might_sleep();
793
794	if (time_is_before_eq_jiffies(next_scan_yield)) {
795		schedule();
796		next_scan_yield = jiffies + jiffies_scan_yield;
797	}
798}
799
800/*
801 * Memory scanning is a long process and it needs to be interruptable. This
802 * function checks whether such interrupt condition occured.
803 */
804static int scan_should_stop(void)
805{
806	if (!atomic_read(&kmemleak_enabled))
807		return 1;
808
809	/*
810	 * This function may be called from either process or kthread context,
811	 * hence the need to check for both stop conditions.
812	 */
813	if (current->mm)
814		return signal_pending(current);
815	else
816		return kthread_should_stop();
817
818	return 0;
819}
820
821/*
822 * Scan a memory block (exclusive range) for valid pointers and add those
823 * found to the gray list.
824 */
825static void scan_block(void *_start, void *_end,
826		       struct kmemleak_object *scanned)
827{
828	unsigned long *ptr;
829	unsigned long *start = PTR_ALIGN(_start, BYTES_PER_POINTER);
830	unsigned long *end = _end - (BYTES_PER_POINTER - 1);
831
832	for (ptr = start; ptr < end; ptr++) {
833		unsigned long flags;
834		unsigned long pointer = *ptr;
835		struct kmemleak_object *object;
836
837		if (scan_should_stop())
838			break;
839
840		/*
841		 * When scanning a memory block with a corresponding
842		 * kmemleak_object, the CPU yielding is handled in the calling
843		 * code since it holds the object->lock to avoid the block
844		 * freeing.
845		 */
846		if (!scanned)
847			scan_yield();
848
849		object = find_and_get_object(pointer, 1);
850		if (!object)
851			continue;
852		if (object == scanned) {
853			/* self referenced, ignore */
854			put_object(object);
855			continue;
856		}
857
858		/*
859		 * Avoid the lockdep recursive warning on object->lock being
860		 * previously acquired in scan_object(). These locks are
861		 * enclosed by scan_mutex.
862		 */
863		spin_lock_irqsave_nested(&object->lock, flags,
864					 SINGLE_DEPTH_NESTING);
865		if (!color_white(object)) {
866			/* non-orphan, ignored or new */
867			spin_unlock_irqrestore(&object->lock, flags);
868			put_object(object);
869			continue;
870		}
871
872		/*
873		 * Increase the object's reference count (number of pointers
874		 * to the memory block). If this count reaches the required
875		 * minimum, the object's color will become gray and it will be
876		 * added to the gray_list.
877		 */
878		object->count++;
879		if (color_gray(object))
880			list_add_tail(&object->gray_list, &gray_list);
881		else
882			put_object(object);
883		spin_unlock_irqrestore(&object->lock, flags);
884	}
885}
886
887/*
888 * Scan a memory block corresponding to a kmemleak_object. A condition is
889 * that object->use_count >= 1.
890 */
891static void scan_object(struct kmemleak_object *object)
892{
893	struct kmemleak_scan_area *area;
894	struct hlist_node *elem;
895	unsigned long flags;
896
897	/*
898	 * Once the object->lock is aquired, the corresponding memory block
899	 * cannot be freed (the same lock is aquired in delete_object).
900	 */
901	spin_lock_irqsave(&object->lock, flags);
902	if (object->flags & OBJECT_NO_SCAN)
903		goto out;
904	if (!(object->flags & OBJECT_ALLOCATED))
905		/* already freed object */
906		goto out;
907	if (hlist_empty(&object->area_list))
908		scan_block((void *)object->pointer,
909			   (void *)(object->pointer + object->size), object);
910	else
911		hlist_for_each_entry(area, elem, &object->area_list, node)
912			scan_block((void *)(object->pointer + area->offset),
913				   (void *)(object->pointer + area->offset
914					    + area->length), object);
915out:
916	spin_unlock_irqrestore(&object->lock, flags);
917}
918
919/*
920 * Scan data sections and all the referenced memory blocks allocated via the
921 * kernel's standard allocators. This function must be called with the
922 * scan_mutex held.
923 */
924static void kmemleak_scan(void)
925{
926	unsigned long flags;
927	struct kmemleak_object *object, *tmp;
928	struct task_struct *task;
929	int i;
930
931	/* prepare the kmemleak_object's */
932	rcu_read_lock();
933	list_for_each_entry_rcu(object, &object_list, object_list) {
934		spin_lock_irqsave(&object->lock, flags);
935#ifdef DEBUG
936		/*
937		 * With a few exceptions there should be a maximum of
938		 * 1 reference to any object at this point.
939		 */
940		if (atomic_read(&object->use_count) > 1) {
941			pr_debug("object->use_count = %d\n",
942				 atomic_read(&object->use_count));
943			dump_object_info(object);
944		}
945#endif
946		/* reset the reference count (whiten the object) */
947		object->count = 0;
948		if (color_gray(object) && get_object(object))
949			list_add_tail(&object->gray_list, &gray_list);
950
951		spin_unlock_irqrestore(&object->lock, flags);
952	}
953	rcu_read_unlock();
954
955	/* data/bss scanning */
956	scan_block(_sdata, _edata, NULL);
957	scan_block(__bss_start, __bss_stop, NULL);
958
959#ifdef CONFIG_SMP
960	/* per-cpu sections scanning */
961	for_each_possible_cpu(i)
962		scan_block(__per_cpu_start + per_cpu_offset(i),
963			   __per_cpu_end + per_cpu_offset(i), NULL);
964#endif
965
966	/*
967	 * Struct page scanning for each node. The code below is not yet safe
968	 * with MEMORY_HOTPLUG.
969	 */
970	for_each_online_node(i) {
971		pg_data_t *pgdat = NODE_DATA(i);
972		unsigned long start_pfn = pgdat->node_start_pfn;
973		unsigned long end_pfn = start_pfn + pgdat->node_spanned_pages;
974		unsigned long pfn;
975
976		for (pfn = start_pfn; pfn < end_pfn; pfn++) {
977			struct page *page;
978
979			if (!pfn_valid(pfn))
980				continue;
981			page = pfn_to_page(pfn);
982			/* only scan if page is in use */
983			if (page_count(page) == 0)
984				continue;
985			scan_block(page, page + 1, NULL);
986		}
987	}
988
989	/*
990	 * Scanning the task stacks may introduce false negatives and it is
991	 * not enabled by default.
992	 */
993	if (kmemleak_stack_scan) {
994		read_lock(&tasklist_lock);
995		for_each_process(task)
996			scan_block(task_stack_page(task),
997				   task_stack_page(task) + THREAD_SIZE, NULL);
998		read_unlock(&tasklist_lock);
999	}
1000
1001	/*
1002	 * Scan the objects already referenced from the sections scanned
1003	 * above. More objects will be referenced and, if there are no memory
1004	 * leaks, all the objects will be scanned. The list traversal is safe
1005	 * for both tail additions and removals from inside the loop. The
1006	 * kmemleak objects cannot be freed from outside the loop because their
1007	 * use_count was increased.
1008	 */
1009	object = list_entry(gray_list.next, typeof(*object), gray_list);
1010	while (&object->gray_list != &gray_list) {
1011		scan_yield();
1012
1013		/* may add new objects to the list */
1014		if (!scan_should_stop())
1015			scan_object(object);
1016
1017		tmp = list_entry(object->gray_list.next, typeof(*object),
1018				 gray_list);
1019
1020		/* remove the object from the list and release it */
1021		list_del(&object->gray_list);
1022		put_object(object);
1023
1024		object = tmp;
1025	}
1026	WARN_ON(!list_empty(&gray_list));
1027}
1028
1029/*
1030 * Thread function performing automatic memory scanning. Unreferenced objects
1031 * at the end of a memory scan are reported but only the first time.
1032 */
1033static int kmemleak_scan_thread(void *arg)
1034{
1035	static int first_run = 1;
1036
1037	pr_info("Automatic memory scanning thread started\n");
1038
1039	/*
1040	 * Wait before the first scan to allow the system to fully initialize.
1041	 */
1042	if (first_run) {
1043		first_run = 0;
1044		ssleep(SECS_FIRST_SCAN);
1045	}
1046
1047	while (!kthread_should_stop()) {
1048		struct kmemleak_object *object;
1049		signed long timeout = jiffies_scan_wait;
1050		int new_leaks = 0;
1051
1052		mutex_lock(&scan_mutex);
1053
1054		kmemleak_scan();
1055
1056		rcu_read_lock();
1057		list_for_each_entry_rcu(object, &object_list, object_list) {
1058			unsigned long flags;
1059
1060			spin_lock_irqsave(&object->lock, flags);
1061			if (unreferenced_object(object) &&
1062			    !(object->flags & OBJECT_REPORTED)) {
1063				object->flags |= OBJECT_REPORTED;
1064				new_leaks++;
1065			}
1066			spin_unlock_irqrestore(&object->lock, flags);
1067		}
1068		rcu_read_unlock();
1069
1070		if (new_leaks)
1071			pr_info("%d new suspected memory leaks (see "
1072				"/sys/kernel/debug/kmemleak)\n", new_leaks);
1073
1074		mutex_unlock(&scan_mutex);
1075		/* wait before the next scan */
1076		while (timeout && !kthread_should_stop())
1077			timeout = schedule_timeout_interruptible(timeout);
1078	}
1079
1080	pr_info("Automatic memory scanning thread ended\n");
1081
1082	return 0;
1083}
1084
1085/*
1086 * Start the automatic memory scanning thread. This function must be called
1087 * with the kmemleak_mutex held.
1088 */
1089void start_scan_thread(void)
1090{
1091	if (scan_thread)
1092		return;
1093	scan_thread = kthread_run(kmemleak_scan_thread, NULL, "kmemleak");
1094	if (IS_ERR(scan_thread)) {
1095		pr_warning("Failed to create the scan thread\n");
1096		scan_thread = NULL;
1097	}
1098}
1099
1100/*
1101 * Stop the automatic memory scanning thread. This function must be called
1102 * with the kmemleak_mutex held.
1103 */
1104void stop_scan_thread(void)
1105{
1106	if (scan_thread) {
1107		kthread_stop(scan_thread);
1108		scan_thread = NULL;
1109	}
1110}
1111
1112/*
1113 * Iterate over the object_list and return the first valid object at or after
1114 * the required position with its use_count incremented. The function triggers
1115 * a memory scanning when the pos argument points to the first position.
1116 */
1117static void *kmemleak_seq_start(struct seq_file *seq, loff_t *pos)
1118{
1119	struct kmemleak_object *object;
1120	loff_t n = *pos;
1121
1122	if (!n) {
1123		kmemleak_scan();
1124		reported_leaks = 0;
1125	}
1126	if (reported_leaks >= REPORTS_NR)
1127		return NULL;
1128
1129	rcu_read_lock();
1130	list_for_each_entry_rcu(object, &object_list, object_list) {
1131		if (n-- > 0)
1132			continue;
1133		if (get_object(object))
1134			goto out;
1135	}
1136	object = NULL;
1137out:
1138	rcu_read_unlock();
1139	return object;
1140}
1141
1142/*
1143 * Return the next object in the object_list. The function decrements the
1144 * use_count of the previous object and increases that of the next one.
1145 */
1146static void *kmemleak_seq_next(struct seq_file *seq, void *v, loff_t *pos)
1147{
1148	struct kmemleak_object *prev_obj = v;
1149	struct kmemleak_object *next_obj = NULL;
1150	struct list_head *n = &prev_obj->object_list;
1151
1152	++(*pos);
1153	if (reported_leaks >= REPORTS_NR)
1154		goto out;
1155
1156	rcu_read_lock();
1157	list_for_each_continue_rcu(n, &object_list) {
1158		next_obj = list_entry(n, struct kmemleak_object, object_list);
1159		if (get_object(next_obj))
1160			break;
1161	}
1162	rcu_read_unlock();
1163out:
1164	put_object(prev_obj);
1165	return next_obj;
1166}
1167
1168/*
1169 * Decrement the use_count of the last object required, if any.
1170 */
1171static void kmemleak_seq_stop(struct seq_file *seq, void *v)
1172{
1173	if (v)
1174		put_object(v);
1175}
1176
1177/*
1178 * Print the information for an unreferenced object to the seq file.
1179 */
1180static int kmemleak_seq_show(struct seq_file *seq, void *v)
1181{
1182	struct kmemleak_object *object = v;
1183	unsigned long flags;
1184
1185	spin_lock_irqsave(&object->lock, flags);
1186	if (!unreferenced_object(object))
1187		goto out;
1188	print_unreferenced(seq, object);
1189	reported_leaks++;
1190out:
1191	spin_unlock_irqrestore(&object->lock, flags);
1192	return 0;
1193}
1194
1195static const struct seq_operations kmemleak_seq_ops = {
1196	.start = kmemleak_seq_start,
1197	.next  = kmemleak_seq_next,
1198	.stop  = kmemleak_seq_stop,
1199	.show  = kmemleak_seq_show,
1200};
1201
1202static int kmemleak_open(struct inode *inode, struct file *file)
1203{
1204	int ret = 0;
1205
1206	if (!atomic_read(&kmemleak_enabled))
1207		return -EBUSY;
1208
1209	ret = mutex_lock_interruptible(&kmemleak_mutex);
1210	if (ret < 0)
1211		goto out;
1212	if (file->f_mode & FMODE_READ) {
1213		ret = mutex_lock_interruptible(&scan_mutex);
1214		if (ret < 0)
1215			goto kmemleak_unlock;
1216		ret = seq_open(file, &kmemleak_seq_ops);
1217		if (ret < 0)
1218			goto scan_unlock;
1219	}
1220	return ret;
1221
1222scan_unlock:
1223	mutex_unlock(&scan_mutex);
1224kmemleak_unlock:
1225	mutex_unlock(&kmemleak_mutex);
1226out:
1227	return ret;
1228}
1229
1230static int kmemleak_release(struct inode *inode, struct file *file)
1231{
1232	int ret = 0;
1233
1234	if (file->f_mode & FMODE_READ) {
1235		seq_release(inode, file);
1236		mutex_unlock(&scan_mutex);
1237	}
1238	mutex_unlock(&kmemleak_mutex);
1239
1240	return ret;
1241}
1242
1243/*
1244 * File write operation to configure kmemleak at run-time. The following
1245 * commands can be written to the /sys/kernel/debug/kmemleak file:
1246 *   off	- disable kmemleak (irreversible)
1247 *   stack=on	- enable the task stacks scanning
1248 *   stack=off	- disable the tasks stacks scanning
1249 *   scan=on	- start the automatic memory scanning thread
1250 *   scan=off	- stop the automatic memory scanning thread
1251 *   scan=...	- set the automatic memory scanning period in seconds (0 to
1252 *		  disable it)
1253 */
1254static ssize_t kmemleak_write(struct file *file, const char __user *user_buf,
1255			      size_t size, loff_t *ppos)
1256{
1257	char buf[64];
1258	int buf_size;
1259
1260	if (!atomic_read(&kmemleak_enabled))
1261		return -EBUSY;
1262
1263	buf_size = min(size, (sizeof(buf) - 1));
1264	if (strncpy_from_user(buf, user_buf, buf_size) < 0)
1265		return -EFAULT;
1266	buf[buf_size] = 0;
1267
1268	if (strncmp(buf, "off", 3) == 0)
1269		kmemleak_disable();
1270	else if (strncmp(buf, "stack=on", 8) == 0)
1271		kmemleak_stack_scan = 1;
1272	else if (strncmp(buf, "stack=off", 9) == 0)
1273		kmemleak_stack_scan = 0;
1274	else if (strncmp(buf, "scan=on", 7) == 0)
1275		start_scan_thread();
1276	else if (strncmp(buf, "scan=off", 8) == 0)
1277		stop_scan_thread();
1278	else if (strncmp(buf, "scan=", 5) == 0) {
1279		unsigned long secs;
1280		int err;
1281
1282		err = strict_strtoul(buf + 5, 0, &secs);
1283		if (err < 0)
1284			return err;
1285		stop_scan_thread();
1286		if (secs) {
1287			jiffies_scan_wait = msecs_to_jiffies(secs * 1000);
1288			start_scan_thread();
1289		}
1290	} else
1291		return -EINVAL;
1292
1293	/* ignore the rest of the buffer, only one command at a time */
1294	*ppos += size;
1295	return size;
1296}
1297
1298static const struct file_operations kmemleak_fops = {
1299	.owner		= THIS_MODULE,
1300	.open		= kmemleak_open,
1301	.read		= seq_read,
1302	.write		= kmemleak_write,
1303	.llseek		= seq_lseek,
1304	.release	= kmemleak_release,
1305};
1306
1307/*
1308 * Perform the freeing of the kmemleak internal objects after waiting for any
1309 * current memory scan to complete.
1310 */
1311static int kmemleak_cleanup_thread(void *arg)
1312{
1313	struct kmemleak_object *object;
1314
1315	mutex_lock(&kmemleak_mutex);
1316	stop_scan_thread();
1317	mutex_unlock(&kmemleak_mutex);
1318
1319	mutex_lock(&scan_mutex);
1320	rcu_read_lock();
1321	list_for_each_entry_rcu(object, &object_list, object_list)
1322		delete_object(object->pointer);
1323	rcu_read_unlock();
1324	mutex_unlock(&scan_mutex);
1325
1326	return 0;
1327}
1328
1329/*
1330 * Start the clean-up thread.
1331 */
1332static void kmemleak_cleanup(void)
1333{
1334	struct task_struct *cleanup_thread;
1335
1336	cleanup_thread = kthread_run(kmemleak_cleanup_thread, NULL,
1337				     "kmemleak-clean");
1338	if (IS_ERR(cleanup_thread))
1339		pr_warning("Failed to create the clean-up thread\n");
1340}
1341
1342/*
1343 * Disable kmemleak. No memory allocation/freeing will be traced once this
1344 * function is called. Disabling kmemleak is an irreversible operation.
1345 */
1346static void kmemleak_disable(void)
1347{
1348	/* atomically check whether it was already invoked */
1349	if (atomic_cmpxchg(&kmemleak_error, 0, 1))
1350		return;
1351
1352	/* stop any memory operation tracing */
1353	atomic_set(&kmemleak_early_log, 0);
1354	atomic_set(&kmemleak_enabled, 0);
1355
1356	/* check whether it is too early for a kernel thread */
1357	if (atomic_read(&kmemleak_initialized))
1358		kmemleak_cleanup();
1359
1360	pr_info("Kernel memory leak detector disabled\n");
1361}
1362
1363/*
1364 * Allow boot-time kmemleak disabling (enabled by default).
1365 */
1366static int kmemleak_boot_config(char *str)
1367{
1368	if (!str)
1369		return -EINVAL;
1370	if (strcmp(str, "off") == 0)
1371		kmemleak_disable();
1372	else if (strcmp(str, "on") != 0)
1373		return -EINVAL;
1374	return 0;
1375}
1376early_param("kmemleak", kmemleak_boot_config);
1377
1378/*
1379 * Kmemleak initialization.
1380 */
1381void __init kmemleak_init(void)
1382{
1383	int i;
1384	unsigned long flags;
1385
1386	jiffies_scan_yield = msecs_to_jiffies(MSECS_SCAN_YIELD);
1387	jiffies_min_age = msecs_to_jiffies(MSECS_MIN_AGE);
1388	jiffies_scan_wait = msecs_to_jiffies(SECS_SCAN_WAIT * 1000);
1389
1390	object_cache = KMEM_CACHE(kmemleak_object, SLAB_NOLEAKTRACE);
1391	scan_area_cache = KMEM_CACHE(kmemleak_scan_area, SLAB_NOLEAKTRACE);
1392	INIT_PRIO_TREE_ROOT(&object_tree_root);
1393
1394	/* the kernel is still in UP mode, so disabling the IRQs is enough */
1395	local_irq_save(flags);
1396	if (!atomic_read(&kmemleak_error)) {
1397		atomic_set(&kmemleak_enabled, 1);
1398		atomic_set(&kmemleak_early_log, 0);
1399	}
1400	local_irq_restore(flags);
1401
1402	/*
1403	 * This is the point where tracking allocations is safe. Automatic
1404	 * scanning is started during the late initcall. Add the early logged
1405	 * callbacks to the kmemleak infrastructure.
1406	 */
1407	for (i = 0; i < crt_early_log; i++) {
1408		struct early_log *log = &early_log[i];
1409
1410		switch (log->op_type) {
1411		case KMEMLEAK_ALLOC:
1412			kmemleak_alloc(log->ptr, log->size, log->min_count,
1413				       GFP_KERNEL);
1414			break;
1415		case KMEMLEAK_FREE:
1416			kmemleak_free(log->ptr);
1417			break;
1418		case KMEMLEAK_NOT_LEAK:
1419			kmemleak_not_leak(log->ptr);
1420			break;
1421		case KMEMLEAK_IGNORE:
1422			kmemleak_ignore(log->ptr);
1423			break;
1424		case KMEMLEAK_SCAN_AREA:
1425			kmemleak_scan_area(log->ptr, log->offset, log->length,
1426					   GFP_KERNEL);
1427			break;
1428		case KMEMLEAK_NO_SCAN:
1429			kmemleak_no_scan(log->ptr);
1430			break;
1431		default:
1432			WARN_ON(1);
1433		}
1434	}
1435}
1436
1437/*
1438 * Late initialization function.
1439 */
1440static int __init kmemleak_late_init(void)
1441{
1442	struct dentry *dentry;
1443
1444	atomic_set(&kmemleak_initialized, 1);
1445
1446	if (atomic_read(&kmemleak_error)) {
1447		/*
1448		 * Some error occured and kmemleak was disabled. There is a
1449		 * small chance that kmemleak_disable() was called immediately
1450		 * after setting kmemleak_initialized and we may end up with
1451		 * two clean-up threads but serialized by scan_mutex.
1452		 */
1453		kmemleak_cleanup();
1454		return -ENOMEM;
1455	}
1456
1457	dentry = debugfs_create_file("kmemleak", S_IRUGO, NULL, NULL,
1458				     &kmemleak_fops);
1459	if (!dentry)
1460		pr_warning("Failed to create the debugfs kmemleak file\n");
1461	mutex_lock(&kmemleak_mutex);
1462	start_scan_thread();
1463	mutex_unlock(&kmemleak_mutex);
1464
1465	pr_info("Kernel memory leak detector initialized\n");
1466
1467	return 0;
1468}
1469late_initcall(kmemleak_late_init);
1470