ksm.c revision 08beca44dfb0ab008e365163df70dbd302ae1508
1/*
2 * Memory merging support.
3 *
4 * This code enables dynamic sharing of identical pages found in different
5 * memory areas, even if they are not shared by fork()
6 *
7 * Copyright (C) 2008-2009 Red Hat, Inc.
8 * Authors:
9 *	Izik Eidus
10 *	Andrea Arcangeli
11 *	Chris Wright
12 *	Hugh Dickins
13 *
14 * This work is licensed under the terms of the GNU GPL, version 2.
15 */
16
17#include <linux/errno.h>
18#include <linux/mm.h>
19#include <linux/fs.h>
20#include <linux/mman.h>
21#include <linux/sched.h>
22#include <linux/rwsem.h>
23#include <linux/pagemap.h>
24#include <linux/rmap.h>
25#include <linux/spinlock.h>
26#include <linux/jhash.h>
27#include <linux/delay.h>
28#include <linux/kthread.h>
29#include <linux/wait.h>
30#include <linux/slab.h>
31#include <linux/rbtree.h>
32#include <linux/mmu_notifier.h>
33#include <linux/swap.h>
34#include <linux/ksm.h>
35
36#include <asm/tlbflush.h>
37
38/*
39 * A few notes about the KSM scanning process,
40 * to make it easier to understand the data structures below:
41 *
42 * In order to reduce excessive scanning, KSM sorts the memory pages by their
43 * contents into a data structure that holds pointers to the pages' locations.
44 *
45 * Since the contents of the pages may change at any moment, KSM cannot just
46 * insert the pages into a normal sorted tree and expect it to find anything.
47 * Therefore KSM uses two data structures - the stable and the unstable tree.
48 *
49 * The stable tree holds pointers to all the merged pages (ksm pages), sorted
50 * by their contents.  Because each such page is write-protected, searching on
51 * this tree is fully assured to be working (except when pages are unmapped),
52 * and therefore this tree is called the stable tree.
53 *
54 * In addition to the stable tree, KSM uses a second data structure called the
55 * unstable tree: this tree holds pointers to pages which have been found to
56 * be "unchanged for a period of time".  The unstable tree sorts these pages
57 * by their contents, but since they are not write-protected, KSM cannot rely
58 * upon the unstable tree to work correctly - the unstable tree is liable to
59 * be corrupted as its contents are modified, and so it is called unstable.
60 *
61 * KSM solves this problem by several techniques:
62 *
63 * 1) The unstable tree is flushed every time KSM completes scanning all
64 *    memory areas, and then the tree is rebuilt again from the beginning.
65 * 2) KSM will only insert into the unstable tree, pages whose hash value
66 *    has not changed since the previous scan of all memory areas.
67 * 3) The unstable tree is a RedBlack Tree - so its balancing is based on the
68 *    colors of the nodes and not on their contents, assuring that even when
69 *    the tree gets "corrupted" it won't get out of balance, so scanning time
70 *    remains the same (also, searching and inserting nodes in an rbtree uses
71 *    the same algorithm, so we have no overhead when we flush and rebuild).
72 * 4) KSM never flushes the stable tree, which means that even if it were to
73 *    take 10 attempts to find a page in the unstable tree, once it is found,
74 *    it is secured in the stable tree.  (When we scan a new page, we first
75 *    compare it against the stable tree, and then against the unstable tree.)
76 */
77
78/**
79 * struct mm_slot - ksm information per mm that is being scanned
80 * @link: link to the mm_slots hash list
81 * @mm_list: link into the mm_slots list, rooted in ksm_mm_head
82 * @rmap_list: head for this mm_slot's singly-linked list of rmap_items
83 * @mm: the mm that this information is valid for
84 */
85struct mm_slot {
86	struct hlist_node link;
87	struct list_head mm_list;
88	struct rmap_item *rmap_list;
89	struct mm_struct *mm;
90};
91
92/**
93 * struct ksm_scan - cursor for scanning
94 * @mm_slot: the current mm_slot we are scanning
95 * @address: the next address inside that to be scanned
96 * @rmap_list: link to the next rmap to be scanned in the rmap_list
97 * @seqnr: count of completed full scans (needed when removing unstable node)
98 *
99 * There is only the one ksm_scan instance of this cursor structure.
100 */
101struct ksm_scan {
102	struct mm_slot *mm_slot;
103	unsigned long address;
104	struct rmap_item **rmap_list;
105	unsigned long seqnr;
106};
107
108/**
109 * struct stable_node - node of the stable rbtree
110 * @page: pointer to struct page of the ksm page
111 * @node: rb node of this ksm page in the stable tree
112 * @hlist: hlist head of rmap_items using this ksm page
113 */
114struct stable_node {
115	struct page *page;
116	struct rb_node node;
117	struct hlist_head hlist;
118};
119
120/**
121 * struct rmap_item - reverse mapping item for virtual addresses
122 * @rmap_list: next rmap_item in mm_slot's singly-linked rmap_list
123 * @filler: unused space we're making available in this patch
124 * @mm: the memory structure this rmap_item is pointing into
125 * @address: the virtual address this rmap_item tracks (+ flags in low bits)
126 * @oldchecksum: previous checksum of the page at that virtual address
127 * @node: rb node of this rmap_item in the unstable tree
128 * @head: pointer to stable_node heading this list in the stable tree
129 * @hlist: link into hlist of rmap_items hanging off that stable_node
130 */
131struct rmap_item {
132	struct rmap_item *rmap_list;
133	unsigned long filler;
134	struct mm_struct *mm;
135	unsigned long address;		/* + low bits used for flags below */
136	unsigned int oldchecksum;	/* when unstable */
137	union {
138		struct rb_node node;	/* when node of unstable tree */
139		struct {		/* when listed from stable tree */
140			struct stable_node *head;
141			struct hlist_node hlist;
142		};
143	};
144};
145
146#define SEQNR_MASK	0x0ff	/* low bits of unstable tree seqnr */
147#define UNSTABLE_FLAG	0x100	/* is a node of the unstable tree */
148#define STABLE_FLAG	0x200	/* is listed from the stable tree */
149
150/* The stable and unstable tree heads */
151static struct rb_root root_stable_tree = RB_ROOT;
152static struct rb_root root_unstable_tree = RB_ROOT;
153
154#define MM_SLOTS_HASH_HEADS 1024
155static struct hlist_head *mm_slots_hash;
156
157static struct mm_slot ksm_mm_head = {
158	.mm_list = LIST_HEAD_INIT(ksm_mm_head.mm_list),
159};
160static struct ksm_scan ksm_scan = {
161	.mm_slot = &ksm_mm_head,
162};
163
164static struct kmem_cache *rmap_item_cache;
165static struct kmem_cache *stable_node_cache;
166static struct kmem_cache *mm_slot_cache;
167
168/* The number of nodes in the stable tree */
169static unsigned long ksm_pages_shared;
170
171/* The number of page slots additionally sharing those nodes */
172static unsigned long ksm_pages_sharing;
173
174/* The number of nodes in the unstable tree */
175static unsigned long ksm_pages_unshared;
176
177/* The number of rmap_items in use: to calculate pages_volatile */
178static unsigned long ksm_rmap_items;
179
180/* Limit on the number of unswappable pages used */
181static unsigned long ksm_max_kernel_pages;
182
183/* Number of pages ksmd should scan in one batch */
184static unsigned int ksm_thread_pages_to_scan = 100;
185
186/* Milliseconds ksmd should sleep between batches */
187static unsigned int ksm_thread_sleep_millisecs = 20;
188
189#define KSM_RUN_STOP	0
190#define KSM_RUN_MERGE	1
191#define KSM_RUN_UNMERGE	2
192static unsigned int ksm_run = KSM_RUN_STOP;
193
194static DECLARE_WAIT_QUEUE_HEAD(ksm_thread_wait);
195static DEFINE_MUTEX(ksm_thread_mutex);
196static DEFINE_SPINLOCK(ksm_mmlist_lock);
197
198#define KSM_KMEM_CACHE(__struct, __flags) kmem_cache_create("ksm_"#__struct,\
199		sizeof(struct __struct), __alignof__(struct __struct),\
200		(__flags), NULL)
201
202static int __init ksm_slab_init(void)
203{
204	rmap_item_cache = KSM_KMEM_CACHE(rmap_item, 0);
205	if (!rmap_item_cache)
206		goto out;
207
208	stable_node_cache = KSM_KMEM_CACHE(stable_node, 0);
209	if (!stable_node_cache)
210		goto out_free1;
211
212	mm_slot_cache = KSM_KMEM_CACHE(mm_slot, 0);
213	if (!mm_slot_cache)
214		goto out_free2;
215
216	return 0;
217
218out_free2:
219	kmem_cache_destroy(stable_node_cache);
220out_free1:
221	kmem_cache_destroy(rmap_item_cache);
222out:
223	return -ENOMEM;
224}
225
226static void __init ksm_slab_free(void)
227{
228	kmem_cache_destroy(mm_slot_cache);
229	kmem_cache_destroy(stable_node_cache);
230	kmem_cache_destroy(rmap_item_cache);
231	mm_slot_cache = NULL;
232}
233
234static inline struct rmap_item *alloc_rmap_item(void)
235{
236	struct rmap_item *rmap_item;
237
238	rmap_item = kmem_cache_zalloc(rmap_item_cache, GFP_KERNEL);
239	if (rmap_item)
240		ksm_rmap_items++;
241	return rmap_item;
242}
243
244static inline void free_rmap_item(struct rmap_item *rmap_item)
245{
246	ksm_rmap_items--;
247	rmap_item->mm = NULL;	/* debug safety */
248	kmem_cache_free(rmap_item_cache, rmap_item);
249}
250
251static inline struct stable_node *alloc_stable_node(void)
252{
253	return kmem_cache_alloc(stable_node_cache, GFP_KERNEL);
254}
255
256static inline void free_stable_node(struct stable_node *stable_node)
257{
258	kmem_cache_free(stable_node_cache, stable_node);
259}
260
261static inline struct mm_slot *alloc_mm_slot(void)
262{
263	if (!mm_slot_cache)	/* initialization failed */
264		return NULL;
265	return kmem_cache_zalloc(mm_slot_cache, GFP_KERNEL);
266}
267
268static inline void free_mm_slot(struct mm_slot *mm_slot)
269{
270	kmem_cache_free(mm_slot_cache, mm_slot);
271}
272
273static int __init mm_slots_hash_init(void)
274{
275	mm_slots_hash = kzalloc(MM_SLOTS_HASH_HEADS * sizeof(struct hlist_head),
276				GFP_KERNEL);
277	if (!mm_slots_hash)
278		return -ENOMEM;
279	return 0;
280}
281
282static void __init mm_slots_hash_free(void)
283{
284	kfree(mm_slots_hash);
285}
286
287static struct mm_slot *get_mm_slot(struct mm_struct *mm)
288{
289	struct mm_slot *mm_slot;
290	struct hlist_head *bucket;
291	struct hlist_node *node;
292
293	bucket = &mm_slots_hash[((unsigned long)mm / sizeof(struct mm_struct))
294				% MM_SLOTS_HASH_HEADS];
295	hlist_for_each_entry(mm_slot, node, bucket, link) {
296		if (mm == mm_slot->mm)
297			return mm_slot;
298	}
299	return NULL;
300}
301
302static void insert_to_mm_slots_hash(struct mm_struct *mm,
303				    struct mm_slot *mm_slot)
304{
305	struct hlist_head *bucket;
306
307	bucket = &mm_slots_hash[((unsigned long)mm / sizeof(struct mm_struct))
308				% MM_SLOTS_HASH_HEADS];
309	mm_slot->mm = mm;
310	hlist_add_head(&mm_slot->link, bucket);
311}
312
313static inline int in_stable_tree(struct rmap_item *rmap_item)
314{
315	return rmap_item->address & STABLE_FLAG;
316}
317
318/*
319 * ksmd, and unmerge_and_remove_all_rmap_items(), must not touch an mm's
320 * page tables after it has passed through ksm_exit() - which, if necessary,
321 * takes mmap_sem briefly to serialize against them.  ksm_exit() does not set
322 * a special flag: they can just back out as soon as mm_users goes to zero.
323 * ksm_test_exit() is used throughout to make this test for exit: in some
324 * places for correctness, in some places just to avoid unnecessary work.
325 */
326static inline bool ksm_test_exit(struct mm_struct *mm)
327{
328	return atomic_read(&mm->mm_users) == 0;
329}
330
331/*
332 * We use break_ksm to break COW on a ksm page: it's a stripped down
333 *
334 *	if (get_user_pages(current, mm, addr, 1, 1, 1, &page, NULL) == 1)
335 *		put_page(page);
336 *
337 * but taking great care only to touch a ksm page, in a VM_MERGEABLE vma,
338 * in case the application has unmapped and remapped mm,addr meanwhile.
339 * Could a ksm page appear anywhere else?  Actually yes, in a VM_PFNMAP
340 * mmap of /dev/mem or /dev/kmem, where we would not want to touch it.
341 */
342static int break_ksm(struct vm_area_struct *vma, unsigned long addr)
343{
344	struct page *page;
345	int ret = 0;
346
347	do {
348		cond_resched();
349		page = follow_page(vma, addr, FOLL_GET);
350		if (!page)
351			break;
352		if (PageKsm(page))
353			ret = handle_mm_fault(vma->vm_mm, vma, addr,
354							FAULT_FLAG_WRITE);
355		else
356			ret = VM_FAULT_WRITE;
357		put_page(page);
358	} while (!(ret & (VM_FAULT_WRITE | VM_FAULT_SIGBUS | VM_FAULT_OOM)));
359	/*
360	 * We must loop because handle_mm_fault() may back out if there's
361	 * any difficulty e.g. if pte accessed bit gets updated concurrently.
362	 *
363	 * VM_FAULT_WRITE is what we have been hoping for: it indicates that
364	 * COW has been broken, even if the vma does not permit VM_WRITE;
365	 * but note that a concurrent fault might break PageKsm for us.
366	 *
367	 * VM_FAULT_SIGBUS could occur if we race with truncation of the
368	 * backing file, which also invalidates anonymous pages: that's
369	 * okay, that truncation will have unmapped the PageKsm for us.
370	 *
371	 * VM_FAULT_OOM: at the time of writing (late July 2009), setting
372	 * aside mem_cgroup limits, VM_FAULT_OOM would only be set if the
373	 * current task has TIF_MEMDIE set, and will be OOM killed on return
374	 * to user; and ksmd, having no mm, would never be chosen for that.
375	 *
376	 * But if the mm is in a limited mem_cgroup, then the fault may fail
377	 * with VM_FAULT_OOM even if the current task is not TIF_MEMDIE; and
378	 * even ksmd can fail in this way - though it's usually breaking ksm
379	 * just to undo a merge it made a moment before, so unlikely to oom.
380	 *
381	 * That's a pity: we might therefore have more kernel pages allocated
382	 * than we're counting as nodes in the stable tree; but ksm_do_scan
383	 * will retry to break_cow on each pass, so should recover the page
384	 * in due course.  The important thing is to not let VM_MERGEABLE
385	 * be cleared while any such pages might remain in the area.
386	 */
387	return (ret & VM_FAULT_OOM) ? -ENOMEM : 0;
388}
389
390static void break_cow(struct rmap_item *rmap_item)
391{
392	struct mm_struct *mm = rmap_item->mm;
393	unsigned long addr = rmap_item->address;
394	struct vm_area_struct *vma;
395
396	down_read(&mm->mmap_sem);
397	if (ksm_test_exit(mm))
398		goto out;
399	vma = find_vma(mm, addr);
400	if (!vma || vma->vm_start > addr)
401		goto out;
402	if (!(vma->vm_flags & VM_MERGEABLE) || !vma->anon_vma)
403		goto out;
404	break_ksm(vma, addr);
405out:
406	up_read(&mm->mmap_sem);
407}
408
409static struct page *get_mergeable_page(struct rmap_item *rmap_item)
410{
411	struct mm_struct *mm = rmap_item->mm;
412	unsigned long addr = rmap_item->address;
413	struct vm_area_struct *vma;
414	struct page *page;
415
416	down_read(&mm->mmap_sem);
417	if (ksm_test_exit(mm))
418		goto out;
419	vma = find_vma(mm, addr);
420	if (!vma || vma->vm_start > addr)
421		goto out;
422	if (!(vma->vm_flags & VM_MERGEABLE) || !vma->anon_vma)
423		goto out;
424
425	page = follow_page(vma, addr, FOLL_GET);
426	if (!page)
427		goto out;
428	if (PageAnon(page)) {
429		flush_anon_page(vma, page, addr);
430		flush_dcache_page(page);
431	} else {
432		put_page(page);
433out:		page = NULL;
434	}
435	up_read(&mm->mmap_sem);
436	return page;
437}
438
439/*
440 * Removing rmap_item from stable or unstable tree.
441 * This function will clean the information from the stable/unstable tree.
442 */
443static void remove_rmap_item_from_tree(struct rmap_item *rmap_item)
444{
445	if (rmap_item->address & STABLE_FLAG) {
446		struct stable_node *stable_node;
447
448		stable_node = rmap_item->head;
449		hlist_del(&rmap_item->hlist);
450		if (stable_node->hlist.first)
451			ksm_pages_sharing--;
452		else {
453			set_page_stable_node(stable_node->page, NULL);
454			put_page(stable_node->page);
455
456			rb_erase(&stable_node->node, &root_stable_tree);
457			free_stable_node(stable_node);
458			ksm_pages_shared--;
459		}
460
461		rmap_item->address &= PAGE_MASK;
462
463	} else if (rmap_item->address & UNSTABLE_FLAG) {
464		unsigned char age;
465		/*
466		 * Usually ksmd can and must skip the rb_erase, because
467		 * root_unstable_tree was already reset to RB_ROOT.
468		 * But be careful when an mm is exiting: do the rb_erase
469		 * if this rmap_item was inserted by this scan, rather
470		 * than left over from before.
471		 */
472		age = (unsigned char)(ksm_scan.seqnr - rmap_item->address);
473		BUG_ON(age > 1);
474		if (!age)
475			rb_erase(&rmap_item->node, &root_unstable_tree);
476
477		ksm_pages_unshared--;
478		rmap_item->address &= PAGE_MASK;
479	}
480
481	cond_resched();		/* we're called from many long loops */
482}
483
484static void remove_trailing_rmap_items(struct mm_slot *mm_slot,
485				       struct rmap_item **rmap_list)
486{
487	while (*rmap_list) {
488		struct rmap_item *rmap_item = *rmap_list;
489		*rmap_list = rmap_item->rmap_list;
490		remove_rmap_item_from_tree(rmap_item);
491		free_rmap_item(rmap_item);
492	}
493}
494
495/*
496 * Though it's very tempting to unmerge in_stable_tree(rmap_item)s rather
497 * than check every pte of a given vma, the locking doesn't quite work for
498 * that - an rmap_item is assigned to the stable tree after inserting ksm
499 * page and upping mmap_sem.  Nor does it fit with the way we skip dup'ing
500 * rmap_items from parent to child at fork time (so as not to waste time
501 * if exit comes before the next scan reaches it).
502 *
503 * Similarly, although we'd like to remove rmap_items (so updating counts
504 * and freeing memory) when unmerging an area, it's easier to leave that
505 * to the next pass of ksmd - consider, for example, how ksmd might be
506 * in cmp_and_merge_page on one of the rmap_items we would be removing.
507 */
508static int unmerge_ksm_pages(struct vm_area_struct *vma,
509			     unsigned long start, unsigned long end)
510{
511	unsigned long addr;
512	int err = 0;
513
514	for (addr = start; addr < end && !err; addr += PAGE_SIZE) {
515		if (ksm_test_exit(vma->vm_mm))
516			break;
517		if (signal_pending(current))
518			err = -ERESTARTSYS;
519		else
520			err = break_ksm(vma, addr);
521	}
522	return err;
523}
524
525#ifdef CONFIG_SYSFS
526/*
527 * Only called through the sysfs control interface:
528 */
529static int unmerge_and_remove_all_rmap_items(void)
530{
531	struct mm_slot *mm_slot;
532	struct mm_struct *mm;
533	struct vm_area_struct *vma;
534	int err = 0;
535
536	spin_lock(&ksm_mmlist_lock);
537	ksm_scan.mm_slot = list_entry(ksm_mm_head.mm_list.next,
538						struct mm_slot, mm_list);
539	spin_unlock(&ksm_mmlist_lock);
540
541	for (mm_slot = ksm_scan.mm_slot;
542			mm_slot != &ksm_mm_head; mm_slot = ksm_scan.mm_slot) {
543		mm = mm_slot->mm;
544		down_read(&mm->mmap_sem);
545		for (vma = mm->mmap; vma; vma = vma->vm_next) {
546			if (ksm_test_exit(mm))
547				break;
548			if (!(vma->vm_flags & VM_MERGEABLE) || !vma->anon_vma)
549				continue;
550			err = unmerge_ksm_pages(vma,
551						vma->vm_start, vma->vm_end);
552			if (err)
553				goto error;
554		}
555
556		remove_trailing_rmap_items(mm_slot, &mm_slot->rmap_list);
557
558		spin_lock(&ksm_mmlist_lock);
559		ksm_scan.mm_slot = list_entry(mm_slot->mm_list.next,
560						struct mm_slot, mm_list);
561		if (ksm_test_exit(mm)) {
562			hlist_del(&mm_slot->link);
563			list_del(&mm_slot->mm_list);
564			spin_unlock(&ksm_mmlist_lock);
565
566			free_mm_slot(mm_slot);
567			clear_bit(MMF_VM_MERGEABLE, &mm->flags);
568			up_read(&mm->mmap_sem);
569			mmdrop(mm);
570		} else {
571			spin_unlock(&ksm_mmlist_lock);
572			up_read(&mm->mmap_sem);
573		}
574	}
575
576	ksm_scan.seqnr = 0;
577	return 0;
578
579error:
580	up_read(&mm->mmap_sem);
581	spin_lock(&ksm_mmlist_lock);
582	ksm_scan.mm_slot = &ksm_mm_head;
583	spin_unlock(&ksm_mmlist_lock);
584	return err;
585}
586#endif /* CONFIG_SYSFS */
587
588static u32 calc_checksum(struct page *page)
589{
590	u32 checksum;
591	void *addr = kmap_atomic(page, KM_USER0);
592	checksum = jhash2(addr, PAGE_SIZE / 4, 17);
593	kunmap_atomic(addr, KM_USER0);
594	return checksum;
595}
596
597static int memcmp_pages(struct page *page1, struct page *page2)
598{
599	char *addr1, *addr2;
600	int ret;
601
602	addr1 = kmap_atomic(page1, KM_USER0);
603	addr2 = kmap_atomic(page2, KM_USER1);
604	ret = memcmp(addr1, addr2, PAGE_SIZE);
605	kunmap_atomic(addr2, KM_USER1);
606	kunmap_atomic(addr1, KM_USER0);
607	return ret;
608}
609
610static inline int pages_identical(struct page *page1, struct page *page2)
611{
612	return !memcmp_pages(page1, page2);
613}
614
615static int write_protect_page(struct vm_area_struct *vma, struct page *page,
616			      pte_t *orig_pte)
617{
618	struct mm_struct *mm = vma->vm_mm;
619	unsigned long addr;
620	pte_t *ptep;
621	spinlock_t *ptl;
622	int swapped;
623	int err = -EFAULT;
624
625	addr = page_address_in_vma(page, vma);
626	if (addr == -EFAULT)
627		goto out;
628
629	ptep = page_check_address(page, mm, addr, &ptl, 0);
630	if (!ptep)
631		goto out;
632
633	if (pte_write(*ptep)) {
634		pte_t entry;
635
636		swapped = PageSwapCache(page);
637		flush_cache_page(vma, addr, page_to_pfn(page));
638		/*
639		 * Ok this is tricky, when get_user_pages_fast() run it doesnt
640		 * take any lock, therefore the check that we are going to make
641		 * with the pagecount against the mapcount is racey and
642		 * O_DIRECT can happen right after the check.
643		 * So we clear the pte and flush the tlb before the check
644		 * this assure us that no O_DIRECT can happen after the check
645		 * or in the middle of the check.
646		 */
647		entry = ptep_clear_flush(vma, addr, ptep);
648		/*
649		 * Check that no O_DIRECT or similar I/O is in progress on the
650		 * page
651		 */
652		if (page_mapcount(page) + 1 + swapped != page_count(page)) {
653			set_pte_at_notify(mm, addr, ptep, entry);
654			goto out_unlock;
655		}
656		entry = pte_wrprotect(entry);
657		set_pte_at_notify(mm, addr, ptep, entry);
658	}
659	*orig_pte = *ptep;
660	err = 0;
661
662out_unlock:
663	pte_unmap_unlock(ptep, ptl);
664out:
665	return err;
666}
667
668/**
669 * replace_page - replace page in vma by new ksm page
670 * @vma:      vma that holds the pte pointing to page
671 * @page:     the page we are replacing by kpage
672 * @kpage:    the ksm page we replace page by
673 * @orig_pte: the original value of the pte
674 *
675 * Returns 0 on success, -EFAULT on failure.
676 */
677static int replace_page(struct vm_area_struct *vma, struct page *page,
678			struct page *kpage, pte_t orig_pte)
679{
680	struct mm_struct *mm = vma->vm_mm;
681	pgd_t *pgd;
682	pud_t *pud;
683	pmd_t *pmd;
684	pte_t *ptep;
685	spinlock_t *ptl;
686	unsigned long addr;
687	int err = -EFAULT;
688
689	addr = page_address_in_vma(page, vma);
690	if (addr == -EFAULT)
691		goto out;
692
693	pgd = pgd_offset(mm, addr);
694	if (!pgd_present(*pgd))
695		goto out;
696
697	pud = pud_offset(pgd, addr);
698	if (!pud_present(*pud))
699		goto out;
700
701	pmd = pmd_offset(pud, addr);
702	if (!pmd_present(*pmd))
703		goto out;
704
705	ptep = pte_offset_map_lock(mm, pmd, addr, &ptl);
706	if (!pte_same(*ptep, orig_pte)) {
707		pte_unmap_unlock(ptep, ptl);
708		goto out;
709	}
710
711	get_page(kpage);
712	page_add_ksm_rmap(kpage);
713
714	flush_cache_page(vma, addr, pte_pfn(*ptep));
715	ptep_clear_flush(vma, addr, ptep);
716	set_pte_at_notify(mm, addr, ptep, mk_pte(kpage, vma->vm_page_prot));
717
718	page_remove_rmap(page);
719	put_page(page);
720
721	pte_unmap_unlock(ptep, ptl);
722	err = 0;
723out:
724	return err;
725}
726
727/*
728 * try_to_merge_one_page - take two pages and merge them into one
729 * @vma: the vma that holds the pte pointing to page
730 * @page: the PageAnon page that we want to replace with kpage
731 * @kpage: the PageKsm page that we want to map instead of page
732 *
733 * This function returns 0 if the pages were merged, -EFAULT otherwise.
734 */
735static int try_to_merge_one_page(struct vm_area_struct *vma,
736				 struct page *page, struct page *kpage)
737{
738	pte_t orig_pte = __pte(0);
739	int err = -EFAULT;
740
741	if (!(vma->vm_flags & VM_MERGEABLE))
742		goto out;
743	if (!PageAnon(page))
744		goto out;
745
746	/*
747	 * We need the page lock to read a stable PageSwapCache in
748	 * write_protect_page().  We use trylock_page() instead of
749	 * lock_page() because we don't want to wait here - we
750	 * prefer to continue scanning and merging different pages,
751	 * then come back to this page when it is unlocked.
752	 */
753	if (!trylock_page(page))
754		goto out;
755	/*
756	 * If this anonymous page is mapped only here, its pte may need
757	 * to be write-protected.  If it's mapped elsewhere, all of its
758	 * ptes are necessarily already write-protected.  But in either
759	 * case, we need to lock and check page_count is not raised.
760	 */
761	if (write_protect_page(vma, page, &orig_pte) == 0 &&
762	    pages_identical(page, kpage))
763		err = replace_page(vma, page, kpage, orig_pte);
764
765	unlock_page(page);
766out:
767	return err;
768}
769
770/*
771 * try_to_merge_with_ksm_page - like try_to_merge_two_pages,
772 * but no new kernel page is allocated: kpage must already be a ksm page.
773 *
774 * This function returns 0 if the pages were merged, -EFAULT otherwise.
775 */
776static int try_to_merge_with_ksm_page(struct rmap_item *rmap_item,
777				      struct page *page, struct page *kpage)
778{
779	struct mm_struct *mm = rmap_item->mm;
780	struct vm_area_struct *vma;
781	int err = -EFAULT;
782
783	if (page == kpage)			/* ksm page forked */
784		return 0;
785
786	down_read(&mm->mmap_sem);
787	if (ksm_test_exit(mm))
788		goto out;
789	vma = find_vma(mm, rmap_item->address);
790	if (!vma || vma->vm_start > rmap_item->address)
791		goto out;
792
793	err = try_to_merge_one_page(vma, page, kpage);
794out:
795	up_read(&mm->mmap_sem);
796	return err;
797}
798
799/*
800 * try_to_merge_two_pages - take two identical pages and prepare them
801 * to be merged into one page.
802 *
803 * This function returns the kpage if we successfully merged two identical
804 * pages into one ksm page, NULL otherwise.
805 *
806 * Note that this function allocates a new kernel page: if one of the pages
807 * is already a ksm page, try_to_merge_with_ksm_page should be used.
808 */
809static struct page *try_to_merge_two_pages(struct rmap_item *rmap_item,
810					   struct page *page,
811					   struct rmap_item *tree_rmap_item,
812					   struct page *tree_page)
813{
814	struct mm_struct *mm = rmap_item->mm;
815	struct vm_area_struct *vma;
816	struct page *kpage;
817	int err = -EFAULT;
818
819	/*
820	 * The number of nodes in the stable tree
821	 * is the number of kernel pages that we hold.
822	 */
823	if (ksm_max_kernel_pages &&
824	    ksm_max_kernel_pages <= ksm_pages_shared)
825		return NULL;
826
827	kpage = alloc_page(GFP_HIGHUSER);
828	if (!kpage)
829		return NULL;
830
831	down_read(&mm->mmap_sem);
832	if (ksm_test_exit(mm))
833		goto up;
834	vma = find_vma(mm, rmap_item->address);
835	if (!vma || vma->vm_start > rmap_item->address)
836		goto up;
837
838	copy_user_highpage(kpage, page, rmap_item->address, vma);
839
840	set_page_stable_node(kpage, NULL);	/* mark it PageKsm */
841
842	err = try_to_merge_one_page(vma, page, kpage);
843up:
844	up_read(&mm->mmap_sem);
845
846	if (!err) {
847		err = try_to_merge_with_ksm_page(tree_rmap_item,
848							tree_page, kpage);
849		/*
850		 * If that fails, we have a ksm page with only one pte
851		 * pointing to it: so break it.
852		 */
853		if (err)
854			break_cow(rmap_item);
855	}
856	if (err) {
857		put_page(kpage);
858		kpage = NULL;
859	}
860	return kpage;
861}
862
863/*
864 * stable_tree_search - search for page inside the stable tree
865 *
866 * This function checks if there is a page inside the stable tree
867 * with identical content to the page that we are scanning right now.
868 *
869 * This function returns the stable tree node of identical content if found,
870 * NULL otherwise.
871 */
872static struct stable_node *stable_tree_search(struct page *page)
873{
874	struct rb_node *node = root_stable_tree.rb_node;
875	struct stable_node *stable_node;
876
877	stable_node = page_stable_node(page);
878	if (stable_node) {			/* ksm page forked */
879		get_page(page);
880		return stable_node;
881	}
882
883	while (node) {
884		int ret;
885
886		cond_resched();
887		stable_node = rb_entry(node, struct stable_node, node);
888
889		ret = memcmp_pages(page, stable_node->page);
890
891		if (ret < 0)
892			node = node->rb_left;
893		else if (ret > 0)
894			node = node->rb_right;
895		else {
896			get_page(stable_node->page);
897			return stable_node;
898		}
899	}
900
901	return NULL;
902}
903
904/*
905 * stable_tree_insert - insert rmap_item pointing to new ksm page
906 * into the stable tree.
907 *
908 * This function returns the stable tree node just allocated on success,
909 * NULL otherwise.
910 */
911static struct stable_node *stable_tree_insert(struct page *kpage)
912{
913	struct rb_node **new = &root_stable_tree.rb_node;
914	struct rb_node *parent = NULL;
915	struct stable_node *stable_node;
916
917	while (*new) {
918		int ret;
919
920		cond_resched();
921		stable_node = rb_entry(*new, struct stable_node, node);
922
923		ret = memcmp_pages(kpage, stable_node->page);
924
925		parent = *new;
926		if (ret < 0)
927			new = &parent->rb_left;
928		else if (ret > 0)
929			new = &parent->rb_right;
930		else {
931			/*
932			 * It is not a bug that stable_tree_search() didn't
933			 * find this node: because at that time our page was
934			 * not yet write-protected, so may have changed since.
935			 */
936			return NULL;
937		}
938	}
939
940	stable_node = alloc_stable_node();
941	if (!stable_node)
942		return NULL;
943
944	rb_link_node(&stable_node->node, parent, new);
945	rb_insert_color(&stable_node->node, &root_stable_tree);
946
947	INIT_HLIST_HEAD(&stable_node->hlist);
948
949	get_page(kpage);
950	stable_node->page = kpage;
951	set_page_stable_node(kpage, stable_node);
952
953	return stable_node;
954}
955
956/*
957 * unstable_tree_search_insert - search for identical page,
958 * else insert rmap_item into the unstable tree.
959 *
960 * This function searches for a page in the unstable tree identical to the
961 * page currently being scanned; and if no identical page is found in the
962 * tree, we insert rmap_item as a new object into the unstable tree.
963 *
964 * This function returns pointer to rmap_item found to be identical
965 * to the currently scanned page, NULL otherwise.
966 *
967 * This function does both searching and inserting, because they share
968 * the same walking algorithm in an rbtree.
969 */
970static
971struct rmap_item *unstable_tree_search_insert(struct rmap_item *rmap_item,
972					      struct page *page,
973					      struct page **tree_pagep)
974
975{
976	struct rb_node **new = &root_unstable_tree.rb_node;
977	struct rb_node *parent = NULL;
978
979	while (*new) {
980		struct rmap_item *tree_rmap_item;
981		struct page *tree_page;
982		int ret;
983
984		cond_resched();
985		tree_rmap_item = rb_entry(*new, struct rmap_item, node);
986		tree_page = get_mergeable_page(tree_rmap_item);
987		if (!tree_page)
988			return NULL;
989
990		/*
991		 * Don't substitute a ksm page for a forked page.
992		 */
993		if (page == tree_page) {
994			put_page(tree_page);
995			return NULL;
996		}
997
998		ret = memcmp_pages(page, tree_page);
999
1000		parent = *new;
1001		if (ret < 0) {
1002			put_page(tree_page);
1003			new = &parent->rb_left;
1004		} else if (ret > 0) {
1005			put_page(tree_page);
1006			new = &parent->rb_right;
1007		} else {
1008			*tree_pagep = tree_page;
1009			return tree_rmap_item;
1010		}
1011	}
1012
1013	rmap_item->address |= UNSTABLE_FLAG;
1014	rmap_item->address |= (ksm_scan.seqnr & SEQNR_MASK);
1015	rb_link_node(&rmap_item->node, parent, new);
1016	rb_insert_color(&rmap_item->node, &root_unstable_tree);
1017
1018	ksm_pages_unshared++;
1019	return NULL;
1020}
1021
1022/*
1023 * stable_tree_append - add another rmap_item to the linked list of
1024 * rmap_items hanging off a given node of the stable tree, all sharing
1025 * the same ksm page.
1026 */
1027static void stable_tree_append(struct rmap_item *rmap_item,
1028			       struct stable_node *stable_node)
1029{
1030	rmap_item->head = stable_node;
1031	rmap_item->address |= STABLE_FLAG;
1032	hlist_add_head(&rmap_item->hlist, &stable_node->hlist);
1033
1034	if (rmap_item->hlist.next)
1035		ksm_pages_sharing++;
1036	else
1037		ksm_pages_shared++;
1038}
1039
1040/*
1041 * cmp_and_merge_page - first see if page can be merged into the stable tree;
1042 * if not, compare checksum to previous and if it's the same, see if page can
1043 * be inserted into the unstable tree, or merged with a page already there and
1044 * both transferred to the stable tree.
1045 *
1046 * @page: the page that we are searching identical page to.
1047 * @rmap_item: the reverse mapping into the virtual address of this page
1048 */
1049static void cmp_and_merge_page(struct page *page, struct rmap_item *rmap_item)
1050{
1051	struct rmap_item *tree_rmap_item;
1052	struct page *tree_page = NULL;
1053	struct stable_node *stable_node;
1054	struct page *kpage;
1055	unsigned int checksum;
1056	int err;
1057
1058	remove_rmap_item_from_tree(rmap_item);
1059
1060	/* We first start with searching the page inside the stable tree */
1061	stable_node = stable_tree_search(page);
1062	if (stable_node) {
1063		kpage = stable_node->page;
1064		err = try_to_merge_with_ksm_page(rmap_item, page, kpage);
1065		if (!err) {
1066			/*
1067			 * The page was successfully merged:
1068			 * add its rmap_item to the stable tree.
1069			 */
1070			stable_tree_append(rmap_item, stable_node);
1071		}
1072		put_page(kpage);
1073		return;
1074	}
1075
1076	/*
1077	 * A ksm page might have got here by fork, but its other
1078	 * references have already been removed from the stable tree.
1079	 * Or it might be left over from a break_ksm which failed
1080	 * when the mem_cgroup had reached its limit: try again now.
1081	 */
1082	if (PageKsm(page))
1083		break_cow(rmap_item);
1084
1085	/*
1086	 * In case the hash value of the page was changed from the last time we
1087	 * have calculated it, this page to be changed frequely, therefore we
1088	 * don't want to insert it to the unstable tree, and we don't want to
1089	 * waste our time to search if there is something identical to it there.
1090	 */
1091	checksum = calc_checksum(page);
1092	if (rmap_item->oldchecksum != checksum) {
1093		rmap_item->oldchecksum = checksum;
1094		return;
1095	}
1096
1097	tree_rmap_item =
1098		unstable_tree_search_insert(rmap_item, page, &tree_page);
1099	if (tree_rmap_item) {
1100		kpage = try_to_merge_two_pages(rmap_item, page,
1101						tree_rmap_item, tree_page);
1102		put_page(tree_page);
1103		/*
1104		 * As soon as we merge this page, we want to remove the
1105		 * rmap_item of the page we have merged with from the unstable
1106		 * tree, and insert it instead as new node in the stable tree.
1107		 */
1108		if (kpage) {
1109			remove_rmap_item_from_tree(tree_rmap_item);
1110
1111			stable_node = stable_tree_insert(kpage);
1112			if (stable_node) {
1113				stable_tree_append(tree_rmap_item, stable_node);
1114				stable_tree_append(rmap_item, stable_node);
1115			}
1116			put_page(kpage);
1117
1118			/*
1119			 * If we fail to insert the page into the stable tree,
1120			 * we will have 2 virtual addresses that are pointing
1121			 * to a ksm page left outside the stable tree,
1122			 * in which case we need to break_cow on both.
1123			 */
1124			if (!stable_node) {
1125				break_cow(tree_rmap_item);
1126				break_cow(rmap_item);
1127			}
1128		}
1129	}
1130}
1131
1132static struct rmap_item *get_next_rmap_item(struct mm_slot *mm_slot,
1133					    struct rmap_item **rmap_list,
1134					    unsigned long addr)
1135{
1136	struct rmap_item *rmap_item;
1137
1138	while (*rmap_list) {
1139		rmap_item = *rmap_list;
1140		if ((rmap_item->address & PAGE_MASK) == addr)
1141			return rmap_item;
1142		if (rmap_item->address > addr)
1143			break;
1144		*rmap_list = rmap_item->rmap_list;
1145		remove_rmap_item_from_tree(rmap_item);
1146		free_rmap_item(rmap_item);
1147	}
1148
1149	rmap_item = alloc_rmap_item();
1150	if (rmap_item) {
1151		/* It has already been zeroed */
1152		rmap_item->mm = mm_slot->mm;
1153		rmap_item->address = addr;
1154		rmap_item->rmap_list = *rmap_list;
1155		*rmap_list = rmap_item;
1156	}
1157	return rmap_item;
1158}
1159
1160static struct rmap_item *scan_get_next_rmap_item(struct page **page)
1161{
1162	struct mm_struct *mm;
1163	struct mm_slot *slot;
1164	struct vm_area_struct *vma;
1165	struct rmap_item *rmap_item;
1166
1167	if (list_empty(&ksm_mm_head.mm_list))
1168		return NULL;
1169
1170	slot = ksm_scan.mm_slot;
1171	if (slot == &ksm_mm_head) {
1172		root_unstable_tree = RB_ROOT;
1173
1174		spin_lock(&ksm_mmlist_lock);
1175		slot = list_entry(slot->mm_list.next, struct mm_slot, mm_list);
1176		ksm_scan.mm_slot = slot;
1177		spin_unlock(&ksm_mmlist_lock);
1178next_mm:
1179		ksm_scan.address = 0;
1180		ksm_scan.rmap_list = &slot->rmap_list;
1181	}
1182
1183	mm = slot->mm;
1184	down_read(&mm->mmap_sem);
1185	if (ksm_test_exit(mm))
1186		vma = NULL;
1187	else
1188		vma = find_vma(mm, ksm_scan.address);
1189
1190	for (; vma; vma = vma->vm_next) {
1191		if (!(vma->vm_flags & VM_MERGEABLE))
1192			continue;
1193		if (ksm_scan.address < vma->vm_start)
1194			ksm_scan.address = vma->vm_start;
1195		if (!vma->anon_vma)
1196			ksm_scan.address = vma->vm_end;
1197
1198		while (ksm_scan.address < vma->vm_end) {
1199			if (ksm_test_exit(mm))
1200				break;
1201			*page = follow_page(vma, ksm_scan.address, FOLL_GET);
1202			if (*page && PageAnon(*page)) {
1203				flush_anon_page(vma, *page, ksm_scan.address);
1204				flush_dcache_page(*page);
1205				rmap_item = get_next_rmap_item(slot,
1206					ksm_scan.rmap_list, ksm_scan.address);
1207				if (rmap_item) {
1208					ksm_scan.rmap_list =
1209							&rmap_item->rmap_list;
1210					ksm_scan.address += PAGE_SIZE;
1211				} else
1212					put_page(*page);
1213				up_read(&mm->mmap_sem);
1214				return rmap_item;
1215			}
1216			if (*page)
1217				put_page(*page);
1218			ksm_scan.address += PAGE_SIZE;
1219			cond_resched();
1220		}
1221	}
1222
1223	if (ksm_test_exit(mm)) {
1224		ksm_scan.address = 0;
1225		ksm_scan.rmap_list = &slot->rmap_list;
1226	}
1227	/*
1228	 * Nuke all the rmap_items that are above this current rmap:
1229	 * because there were no VM_MERGEABLE vmas with such addresses.
1230	 */
1231	remove_trailing_rmap_items(slot, ksm_scan.rmap_list);
1232
1233	spin_lock(&ksm_mmlist_lock);
1234	ksm_scan.mm_slot = list_entry(slot->mm_list.next,
1235						struct mm_slot, mm_list);
1236	if (ksm_scan.address == 0) {
1237		/*
1238		 * We've completed a full scan of all vmas, holding mmap_sem
1239		 * throughout, and found no VM_MERGEABLE: so do the same as
1240		 * __ksm_exit does to remove this mm from all our lists now.
1241		 * This applies either when cleaning up after __ksm_exit
1242		 * (but beware: we can reach here even before __ksm_exit),
1243		 * or when all VM_MERGEABLE areas have been unmapped (and
1244		 * mmap_sem then protects against race with MADV_MERGEABLE).
1245		 */
1246		hlist_del(&slot->link);
1247		list_del(&slot->mm_list);
1248		spin_unlock(&ksm_mmlist_lock);
1249
1250		free_mm_slot(slot);
1251		clear_bit(MMF_VM_MERGEABLE, &mm->flags);
1252		up_read(&mm->mmap_sem);
1253		mmdrop(mm);
1254	} else {
1255		spin_unlock(&ksm_mmlist_lock);
1256		up_read(&mm->mmap_sem);
1257	}
1258
1259	/* Repeat until we've completed scanning the whole list */
1260	slot = ksm_scan.mm_slot;
1261	if (slot != &ksm_mm_head)
1262		goto next_mm;
1263
1264	ksm_scan.seqnr++;
1265	return NULL;
1266}
1267
1268/**
1269 * ksm_do_scan  - the ksm scanner main worker function.
1270 * @scan_npages - number of pages we want to scan before we return.
1271 */
1272static void ksm_do_scan(unsigned int scan_npages)
1273{
1274	struct rmap_item *rmap_item;
1275	struct page *page;
1276
1277	while (scan_npages--) {
1278		cond_resched();
1279		rmap_item = scan_get_next_rmap_item(&page);
1280		if (!rmap_item)
1281			return;
1282		if (!PageKsm(page) || !in_stable_tree(rmap_item))
1283			cmp_and_merge_page(page, rmap_item);
1284		else if (page_mapcount(page) == 1) {
1285			/*
1286			 * Replace now-unshared ksm page by ordinary page.
1287			 */
1288			break_cow(rmap_item);
1289			remove_rmap_item_from_tree(rmap_item);
1290			rmap_item->oldchecksum = calc_checksum(page);
1291		}
1292		put_page(page);
1293	}
1294}
1295
1296static int ksmd_should_run(void)
1297{
1298	return (ksm_run & KSM_RUN_MERGE) && !list_empty(&ksm_mm_head.mm_list);
1299}
1300
1301static int ksm_scan_thread(void *nothing)
1302{
1303	set_user_nice(current, 5);
1304
1305	while (!kthread_should_stop()) {
1306		mutex_lock(&ksm_thread_mutex);
1307		if (ksmd_should_run())
1308			ksm_do_scan(ksm_thread_pages_to_scan);
1309		mutex_unlock(&ksm_thread_mutex);
1310
1311		if (ksmd_should_run()) {
1312			schedule_timeout_interruptible(
1313				msecs_to_jiffies(ksm_thread_sleep_millisecs));
1314		} else {
1315			wait_event_interruptible(ksm_thread_wait,
1316				ksmd_should_run() || kthread_should_stop());
1317		}
1318	}
1319	return 0;
1320}
1321
1322int ksm_madvise(struct vm_area_struct *vma, unsigned long start,
1323		unsigned long end, int advice, unsigned long *vm_flags)
1324{
1325	struct mm_struct *mm = vma->vm_mm;
1326	int err;
1327
1328	switch (advice) {
1329	case MADV_MERGEABLE:
1330		/*
1331		 * Be somewhat over-protective for now!
1332		 */
1333		if (*vm_flags & (VM_MERGEABLE | VM_SHARED  | VM_MAYSHARE   |
1334				 VM_PFNMAP    | VM_IO      | VM_DONTEXPAND |
1335				 VM_RESERVED  | VM_HUGETLB | VM_INSERTPAGE |
1336				 VM_MIXEDMAP  | VM_SAO))
1337			return 0;		/* just ignore the advice */
1338
1339		if (!test_bit(MMF_VM_MERGEABLE, &mm->flags)) {
1340			err = __ksm_enter(mm);
1341			if (err)
1342				return err;
1343		}
1344
1345		*vm_flags |= VM_MERGEABLE;
1346		break;
1347
1348	case MADV_UNMERGEABLE:
1349		if (!(*vm_flags & VM_MERGEABLE))
1350			return 0;		/* just ignore the advice */
1351
1352		if (vma->anon_vma) {
1353			err = unmerge_ksm_pages(vma, start, end);
1354			if (err)
1355				return err;
1356		}
1357
1358		*vm_flags &= ~VM_MERGEABLE;
1359		break;
1360	}
1361
1362	return 0;
1363}
1364
1365int __ksm_enter(struct mm_struct *mm)
1366{
1367	struct mm_slot *mm_slot;
1368	int needs_wakeup;
1369
1370	mm_slot = alloc_mm_slot();
1371	if (!mm_slot)
1372		return -ENOMEM;
1373
1374	/* Check ksm_run too?  Would need tighter locking */
1375	needs_wakeup = list_empty(&ksm_mm_head.mm_list);
1376
1377	spin_lock(&ksm_mmlist_lock);
1378	insert_to_mm_slots_hash(mm, mm_slot);
1379	/*
1380	 * Insert just behind the scanning cursor, to let the area settle
1381	 * down a little; when fork is followed by immediate exec, we don't
1382	 * want ksmd to waste time setting up and tearing down an rmap_list.
1383	 */
1384	list_add_tail(&mm_slot->mm_list, &ksm_scan.mm_slot->mm_list);
1385	spin_unlock(&ksm_mmlist_lock);
1386
1387	set_bit(MMF_VM_MERGEABLE, &mm->flags);
1388	atomic_inc(&mm->mm_count);
1389
1390	if (needs_wakeup)
1391		wake_up_interruptible(&ksm_thread_wait);
1392
1393	return 0;
1394}
1395
1396void __ksm_exit(struct mm_struct *mm)
1397{
1398	struct mm_slot *mm_slot;
1399	int easy_to_free = 0;
1400
1401	/*
1402	 * This process is exiting: if it's straightforward (as is the
1403	 * case when ksmd was never running), free mm_slot immediately.
1404	 * But if it's at the cursor or has rmap_items linked to it, use
1405	 * mmap_sem to synchronize with any break_cows before pagetables
1406	 * are freed, and leave the mm_slot on the list for ksmd to free.
1407	 * Beware: ksm may already have noticed it exiting and freed the slot.
1408	 */
1409
1410	spin_lock(&ksm_mmlist_lock);
1411	mm_slot = get_mm_slot(mm);
1412	if (mm_slot && ksm_scan.mm_slot != mm_slot) {
1413		if (!mm_slot->rmap_list) {
1414			hlist_del(&mm_slot->link);
1415			list_del(&mm_slot->mm_list);
1416			easy_to_free = 1;
1417		} else {
1418			list_move(&mm_slot->mm_list,
1419				  &ksm_scan.mm_slot->mm_list);
1420		}
1421	}
1422	spin_unlock(&ksm_mmlist_lock);
1423
1424	if (easy_to_free) {
1425		free_mm_slot(mm_slot);
1426		clear_bit(MMF_VM_MERGEABLE, &mm->flags);
1427		mmdrop(mm);
1428	} else if (mm_slot) {
1429		down_write(&mm->mmap_sem);
1430		up_write(&mm->mmap_sem);
1431	}
1432}
1433
1434#ifdef CONFIG_SYSFS
1435/*
1436 * This all compiles without CONFIG_SYSFS, but is a waste of space.
1437 */
1438
1439#define KSM_ATTR_RO(_name) \
1440	static struct kobj_attribute _name##_attr = __ATTR_RO(_name)
1441#define KSM_ATTR(_name) \
1442	static struct kobj_attribute _name##_attr = \
1443		__ATTR(_name, 0644, _name##_show, _name##_store)
1444
1445static ssize_t sleep_millisecs_show(struct kobject *kobj,
1446				    struct kobj_attribute *attr, char *buf)
1447{
1448	return sprintf(buf, "%u\n", ksm_thread_sleep_millisecs);
1449}
1450
1451static ssize_t sleep_millisecs_store(struct kobject *kobj,
1452				     struct kobj_attribute *attr,
1453				     const char *buf, size_t count)
1454{
1455	unsigned long msecs;
1456	int err;
1457
1458	err = strict_strtoul(buf, 10, &msecs);
1459	if (err || msecs > UINT_MAX)
1460		return -EINVAL;
1461
1462	ksm_thread_sleep_millisecs = msecs;
1463
1464	return count;
1465}
1466KSM_ATTR(sleep_millisecs);
1467
1468static ssize_t pages_to_scan_show(struct kobject *kobj,
1469				  struct kobj_attribute *attr, char *buf)
1470{
1471	return sprintf(buf, "%u\n", ksm_thread_pages_to_scan);
1472}
1473
1474static ssize_t pages_to_scan_store(struct kobject *kobj,
1475				   struct kobj_attribute *attr,
1476				   const char *buf, size_t count)
1477{
1478	int err;
1479	unsigned long nr_pages;
1480
1481	err = strict_strtoul(buf, 10, &nr_pages);
1482	if (err || nr_pages > UINT_MAX)
1483		return -EINVAL;
1484
1485	ksm_thread_pages_to_scan = nr_pages;
1486
1487	return count;
1488}
1489KSM_ATTR(pages_to_scan);
1490
1491static ssize_t run_show(struct kobject *kobj, struct kobj_attribute *attr,
1492			char *buf)
1493{
1494	return sprintf(buf, "%u\n", ksm_run);
1495}
1496
1497static ssize_t run_store(struct kobject *kobj, struct kobj_attribute *attr,
1498			 const char *buf, size_t count)
1499{
1500	int err;
1501	unsigned long flags;
1502
1503	err = strict_strtoul(buf, 10, &flags);
1504	if (err || flags > UINT_MAX)
1505		return -EINVAL;
1506	if (flags > KSM_RUN_UNMERGE)
1507		return -EINVAL;
1508
1509	/*
1510	 * KSM_RUN_MERGE sets ksmd running, and 0 stops it running.
1511	 * KSM_RUN_UNMERGE stops it running and unmerges all rmap_items,
1512	 * breaking COW to free the unswappable pages_shared (but leaves
1513	 * mm_slots on the list for when ksmd may be set running again).
1514	 */
1515
1516	mutex_lock(&ksm_thread_mutex);
1517	if (ksm_run != flags) {
1518		ksm_run = flags;
1519		if (flags & KSM_RUN_UNMERGE) {
1520			current->flags |= PF_OOM_ORIGIN;
1521			err = unmerge_and_remove_all_rmap_items();
1522			current->flags &= ~PF_OOM_ORIGIN;
1523			if (err) {
1524				ksm_run = KSM_RUN_STOP;
1525				count = err;
1526			}
1527		}
1528	}
1529	mutex_unlock(&ksm_thread_mutex);
1530
1531	if (flags & KSM_RUN_MERGE)
1532		wake_up_interruptible(&ksm_thread_wait);
1533
1534	return count;
1535}
1536KSM_ATTR(run);
1537
1538static ssize_t max_kernel_pages_store(struct kobject *kobj,
1539				      struct kobj_attribute *attr,
1540				      const char *buf, size_t count)
1541{
1542	int err;
1543	unsigned long nr_pages;
1544
1545	err = strict_strtoul(buf, 10, &nr_pages);
1546	if (err)
1547		return -EINVAL;
1548
1549	ksm_max_kernel_pages = nr_pages;
1550
1551	return count;
1552}
1553
1554static ssize_t max_kernel_pages_show(struct kobject *kobj,
1555				     struct kobj_attribute *attr, char *buf)
1556{
1557	return sprintf(buf, "%lu\n", ksm_max_kernel_pages);
1558}
1559KSM_ATTR(max_kernel_pages);
1560
1561static ssize_t pages_shared_show(struct kobject *kobj,
1562				 struct kobj_attribute *attr, char *buf)
1563{
1564	return sprintf(buf, "%lu\n", ksm_pages_shared);
1565}
1566KSM_ATTR_RO(pages_shared);
1567
1568static ssize_t pages_sharing_show(struct kobject *kobj,
1569				  struct kobj_attribute *attr, char *buf)
1570{
1571	return sprintf(buf, "%lu\n", ksm_pages_sharing);
1572}
1573KSM_ATTR_RO(pages_sharing);
1574
1575static ssize_t pages_unshared_show(struct kobject *kobj,
1576				   struct kobj_attribute *attr, char *buf)
1577{
1578	return sprintf(buf, "%lu\n", ksm_pages_unshared);
1579}
1580KSM_ATTR_RO(pages_unshared);
1581
1582static ssize_t pages_volatile_show(struct kobject *kobj,
1583				   struct kobj_attribute *attr, char *buf)
1584{
1585	long ksm_pages_volatile;
1586
1587	ksm_pages_volatile = ksm_rmap_items - ksm_pages_shared
1588				- ksm_pages_sharing - ksm_pages_unshared;
1589	/*
1590	 * It was not worth any locking to calculate that statistic,
1591	 * but it might therefore sometimes be negative: conceal that.
1592	 */
1593	if (ksm_pages_volatile < 0)
1594		ksm_pages_volatile = 0;
1595	return sprintf(buf, "%ld\n", ksm_pages_volatile);
1596}
1597KSM_ATTR_RO(pages_volatile);
1598
1599static ssize_t full_scans_show(struct kobject *kobj,
1600			       struct kobj_attribute *attr, char *buf)
1601{
1602	return sprintf(buf, "%lu\n", ksm_scan.seqnr);
1603}
1604KSM_ATTR_RO(full_scans);
1605
1606static struct attribute *ksm_attrs[] = {
1607	&sleep_millisecs_attr.attr,
1608	&pages_to_scan_attr.attr,
1609	&run_attr.attr,
1610	&max_kernel_pages_attr.attr,
1611	&pages_shared_attr.attr,
1612	&pages_sharing_attr.attr,
1613	&pages_unshared_attr.attr,
1614	&pages_volatile_attr.attr,
1615	&full_scans_attr.attr,
1616	NULL,
1617};
1618
1619static struct attribute_group ksm_attr_group = {
1620	.attrs = ksm_attrs,
1621	.name = "ksm",
1622};
1623#endif /* CONFIG_SYSFS */
1624
1625static int __init ksm_init(void)
1626{
1627	struct task_struct *ksm_thread;
1628	int err;
1629
1630	ksm_max_kernel_pages = totalram_pages / 4;
1631
1632	err = ksm_slab_init();
1633	if (err)
1634		goto out;
1635
1636	err = mm_slots_hash_init();
1637	if (err)
1638		goto out_free1;
1639
1640	ksm_thread = kthread_run(ksm_scan_thread, NULL, "ksmd");
1641	if (IS_ERR(ksm_thread)) {
1642		printk(KERN_ERR "ksm: creating kthread failed\n");
1643		err = PTR_ERR(ksm_thread);
1644		goto out_free2;
1645	}
1646
1647#ifdef CONFIG_SYSFS
1648	err = sysfs_create_group(mm_kobj, &ksm_attr_group);
1649	if (err) {
1650		printk(KERN_ERR "ksm: register sysfs failed\n");
1651		kthread_stop(ksm_thread);
1652		goto out_free2;
1653	}
1654#else
1655	ksm_run = KSM_RUN_MERGE;	/* no way for user to start it */
1656
1657#endif /* CONFIG_SYSFS */
1658
1659	return 0;
1660
1661out_free2:
1662	mm_slots_hash_free();
1663out_free1:
1664	ksm_slab_free();
1665out:
1666	return err;
1667}
1668module_init(ksm_init)
1669