ksm.c revision 21ae5b01750f14140809508a478a4413792e0261
1/*
2 * Memory merging support.
3 *
4 * This code enables dynamic sharing of identical pages found in different
5 * memory areas, even if they are not shared by fork()
6 *
7 * Copyright (C) 2008-2009 Red Hat, Inc.
8 * Authors:
9 *	Izik Eidus
10 *	Andrea Arcangeli
11 *	Chris Wright
12 *	Hugh Dickins
13 *
14 * This work is licensed under the terms of the GNU GPL, version 2.
15 */
16
17#include <linux/errno.h>
18#include <linux/mm.h>
19#include <linux/fs.h>
20#include <linux/mman.h>
21#include <linux/sched.h>
22#include <linux/rwsem.h>
23#include <linux/pagemap.h>
24#include <linux/rmap.h>
25#include <linux/spinlock.h>
26#include <linux/jhash.h>
27#include <linux/delay.h>
28#include <linux/kthread.h>
29#include <linux/wait.h>
30#include <linux/slab.h>
31#include <linux/rbtree.h>
32#include <linux/memory.h>
33#include <linux/mmu_notifier.h>
34#include <linux/swap.h>
35#include <linux/ksm.h>
36#include <linux/hash.h>
37
38#include <asm/tlbflush.h>
39#include "internal.h"
40
41/*
42 * A few notes about the KSM scanning process,
43 * to make it easier to understand the data structures below:
44 *
45 * In order to reduce excessive scanning, KSM sorts the memory pages by their
46 * contents into a data structure that holds pointers to the pages' locations.
47 *
48 * Since the contents of the pages may change at any moment, KSM cannot just
49 * insert the pages into a normal sorted tree and expect it to find anything.
50 * Therefore KSM uses two data structures - the stable and the unstable tree.
51 *
52 * The stable tree holds pointers to all the merged pages (ksm pages), sorted
53 * by their contents.  Because each such page is write-protected, searching on
54 * this tree is fully assured to be working (except when pages are unmapped),
55 * and therefore this tree is called the stable tree.
56 *
57 * In addition to the stable tree, KSM uses a second data structure called the
58 * unstable tree: this tree holds pointers to pages which have been found to
59 * be "unchanged for a period of time".  The unstable tree sorts these pages
60 * by their contents, but since they are not write-protected, KSM cannot rely
61 * upon the unstable tree to work correctly - the unstable tree is liable to
62 * be corrupted as its contents are modified, and so it is called unstable.
63 *
64 * KSM solves this problem by several techniques:
65 *
66 * 1) The unstable tree is flushed every time KSM completes scanning all
67 *    memory areas, and then the tree is rebuilt again from the beginning.
68 * 2) KSM will only insert into the unstable tree, pages whose hash value
69 *    has not changed since the previous scan of all memory areas.
70 * 3) The unstable tree is a RedBlack Tree - so its balancing is based on the
71 *    colors of the nodes and not on their contents, assuring that even when
72 *    the tree gets "corrupted" it won't get out of balance, so scanning time
73 *    remains the same (also, searching and inserting nodes in an rbtree uses
74 *    the same algorithm, so we have no overhead when we flush and rebuild).
75 * 4) KSM never flushes the stable tree, which means that even if it were to
76 *    take 10 attempts to find a page in the unstable tree, once it is found,
77 *    it is secured in the stable tree.  (When we scan a new page, we first
78 *    compare it against the stable tree, and then against the unstable tree.)
79 */
80
81/**
82 * struct mm_slot - ksm information per mm that is being scanned
83 * @link: link to the mm_slots hash list
84 * @mm_list: link into the mm_slots list, rooted in ksm_mm_head
85 * @rmap_list: head for this mm_slot's singly-linked list of rmap_items
86 * @mm: the mm that this information is valid for
87 */
88struct mm_slot {
89	struct hlist_node link;
90	struct list_head mm_list;
91	struct rmap_item *rmap_list;
92	struct mm_struct *mm;
93};
94
95/**
96 * struct ksm_scan - cursor for scanning
97 * @mm_slot: the current mm_slot we are scanning
98 * @address: the next address inside that to be scanned
99 * @rmap_list: link to the next rmap to be scanned in the rmap_list
100 * @seqnr: count of completed full scans (needed when removing unstable node)
101 *
102 * There is only the one ksm_scan instance of this cursor structure.
103 */
104struct ksm_scan {
105	struct mm_slot *mm_slot;
106	unsigned long address;
107	struct rmap_item **rmap_list;
108	unsigned long seqnr;
109};
110
111/**
112 * struct stable_node - node of the stable rbtree
113 * @node: rb node of this ksm page in the stable tree
114 * @hlist: hlist head of rmap_items using this ksm page
115 * @kpfn: page frame number of this ksm page
116 */
117struct stable_node {
118	struct rb_node node;
119	struct hlist_head hlist;
120	unsigned long kpfn;
121};
122
123/**
124 * struct rmap_item - reverse mapping item for virtual addresses
125 * @rmap_list: next rmap_item in mm_slot's singly-linked rmap_list
126 * @anon_vma: pointer to anon_vma for this mm,address, when in stable tree
127 * @mm: the memory structure this rmap_item is pointing into
128 * @address: the virtual address this rmap_item tracks (+ flags in low bits)
129 * @oldchecksum: previous checksum of the page at that virtual address
130 * @node: rb node of this rmap_item in the unstable tree
131 * @head: pointer to stable_node heading this list in the stable tree
132 * @hlist: link into hlist of rmap_items hanging off that stable_node
133 */
134struct rmap_item {
135	struct rmap_item *rmap_list;
136	struct anon_vma *anon_vma;	/* when stable */
137	struct mm_struct *mm;
138	unsigned long address;		/* + low bits used for flags below */
139	unsigned int oldchecksum;	/* when unstable */
140	union {
141		struct rb_node node;	/* when node of unstable tree */
142		struct {		/* when listed from stable tree */
143			struct stable_node *head;
144			struct hlist_node hlist;
145		};
146	};
147};
148
149#define SEQNR_MASK	0x0ff	/* low bits of unstable tree seqnr */
150#define UNSTABLE_FLAG	0x100	/* is a node of the unstable tree */
151#define STABLE_FLAG	0x200	/* is listed from the stable tree */
152
153/* The stable and unstable tree heads */
154static struct rb_root root_stable_tree = RB_ROOT;
155static struct rb_root root_unstable_tree = RB_ROOT;
156
157#define MM_SLOTS_HASH_SHIFT 10
158#define MM_SLOTS_HASH_HEADS (1 << MM_SLOTS_HASH_SHIFT)
159static struct hlist_head mm_slots_hash[MM_SLOTS_HASH_HEADS];
160
161static struct mm_slot ksm_mm_head = {
162	.mm_list = LIST_HEAD_INIT(ksm_mm_head.mm_list),
163};
164static struct ksm_scan ksm_scan = {
165	.mm_slot = &ksm_mm_head,
166};
167
168static struct kmem_cache *rmap_item_cache;
169static struct kmem_cache *stable_node_cache;
170static struct kmem_cache *mm_slot_cache;
171
172/* The number of nodes in the stable tree */
173static unsigned long ksm_pages_shared;
174
175/* The number of page slots additionally sharing those nodes */
176static unsigned long ksm_pages_sharing;
177
178/* The number of nodes in the unstable tree */
179static unsigned long ksm_pages_unshared;
180
181/* The number of rmap_items in use: to calculate pages_volatile */
182static unsigned long ksm_rmap_items;
183
184/* Number of pages ksmd should scan in one batch */
185static unsigned int ksm_thread_pages_to_scan = 100;
186
187/* Milliseconds ksmd should sleep between batches */
188static unsigned int ksm_thread_sleep_millisecs = 20;
189
190#define KSM_RUN_STOP	0
191#define KSM_RUN_MERGE	1
192#define KSM_RUN_UNMERGE	2
193static unsigned int ksm_run = KSM_RUN_STOP;
194
195static DECLARE_WAIT_QUEUE_HEAD(ksm_thread_wait);
196static DEFINE_MUTEX(ksm_thread_mutex);
197static DEFINE_SPINLOCK(ksm_mmlist_lock);
198
199#define KSM_KMEM_CACHE(__struct, __flags) kmem_cache_create("ksm_"#__struct,\
200		sizeof(struct __struct), __alignof__(struct __struct),\
201		(__flags), NULL)
202
203static int __init ksm_slab_init(void)
204{
205	rmap_item_cache = KSM_KMEM_CACHE(rmap_item, 0);
206	if (!rmap_item_cache)
207		goto out;
208
209	stable_node_cache = KSM_KMEM_CACHE(stable_node, 0);
210	if (!stable_node_cache)
211		goto out_free1;
212
213	mm_slot_cache = KSM_KMEM_CACHE(mm_slot, 0);
214	if (!mm_slot_cache)
215		goto out_free2;
216
217	return 0;
218
219out_free2:
220	kmem_cache_destroy(stable_node_cache);
221out_free1:
222	kmem_cache_destroy(rmap_item_cache);
223out:
224	return -ENOMEM;
225}
226
227static void __init ksm_slab_free(void)
228{
229	kmem_cache_destroy(mm_slot_cache);
230	kmem_cache_destroy(stable_node_cache);
231	kmem_cache_destroy(rmap_item_cache);
232	mm_slot_cache = NULL;
233}
234
235static inline struct rmap_item *alloc_rmap_item(void)
236{
237	struct rmap_item *rmap_item;
238
239	rmap_item = kmem_cache_zalloc(rmap_item_cache, GFP_KERNEL);
240	if (rmap_item)
241		ksm_rmap_items++;
242	return rmap_item;
243}
244
245static inline void free_rmap_item(struct rmap_item *rmap_item)
246{
247	ksm_rmap_items--;
248	rmap_item->mm = NULL;	/* debug safety */
249	kmem_cache_free(rmap_item_cache, rmap_item);
250}
251
252static inline struct stable_node *alloc_stable_node(void)
253{
254	return kmem_cache_alloc(stable_node_cache, GFP_KERNEL);
255}
256
257static inline void free_stable_node(struct stable_node *stable_node)
258{
259	kmem_cache_free(stable_node_cache, stable_node);
260}
261
262static inline struct mm_slot *alloc_mm_slot(void)
263{
264	if (!mm_slot_cache)	/* initialization failed */
265		return NULL;
266	return kmem_cache_zalloc(mm_slot_cache, GFP_KERNEL);
267}
268
269static inline void free_mm_slot(struct mm_slot *mm_slot)
270{
271	kmem_cache_free(mm_slot_cache, mm_slot);
272}
273
274static struct mm_slot *get_mm_slot(struct mm_struct *mm)
275{
276	struct mm_slot *mm_slot;
277	struct hlist_head *bucket;
278	struct hlist_node *node;
279
280	bucket = &mm_slots_hash[hash_ptr(mm, MM_SLOTS_HASH_SHIFT)];
281	hlist_for_each_entry(mm_slot, node, bucket, link) {
282		if (mm == mm_slot->mm)
283			return mm_slot;
284	}
285	return NULL;
286}
287
288static void insert_to_mm_slots_hash(struct mm_struct *mm,
289				    struct mm_slot *mm_slot)
290{
291	struct hlist_head *bucket;
292
293	bucket = &mm_slots_hash[hash_ptr(mm, MM_SLOTS_HASH_SHIFT)];
294	mm_slot->mm = mm;
295	hlist_add_head(&mm_slot->link, bucket);
296}
297
298static inline int in_stable_tree(struct rmap_item *rmap_item)
299{
300	return rmap_item->address & STABLE_FLAG;
301}
302
303static void hold_anon_vma(struct rmap_item *rmap_item,
304			  struct anon_vma *anon_vma)
305{
306	rmap_item->anon_vma = anon_vma;
307	get_anon_vma(anon_vma);
308}
309
310static void ksm_drop_anon_vma(struct rmap_item *rmap_item)
311{
312	struct anon_vma *anon_vma = rmap_item->anon_vma;
313
314	drop_anon_vma(anon_vma);
315}
316
317/*
318 * ksmd, and unmerge_and_remove_all_rmap_items(), must not touch an mm's
319 * page tables after it has passed through ksm_exit() - which, if necessary,
320 * takes mmap_sem briefly to serialize against them.  ksm_exit() does not set
321 * a special flag: they can just back out as soon as mm_users goes to zero.
322 * ksm_test_exit() is used throughout to make this test for exit: in some
323 * places for correctness, in some places just to avoid unnecessary work.
324 */
325static inline bool ksm_test_exit(struct mm_struct *mm)
326{
327	return atomic_read(&mm->mm_users) == 0;
328}
329
330/*
331 * We use break_ksm to break COW on a ksm page: it's a stripped down
332 *
333 *	if (get_user_pages(current, mm, addr, 1, 1, 1, &page, NULL) == 1)
334 *		put_page(page);
335 *
336 * but taking great care only to touch a ksm page, in a VM_MERGEABLE vma,
337 * in case the application has unmapped and remapped mm,addr meanwhile.
338 * Could a ksm page appear anywhere else?  Actually yes, in a VM_PFNMAP
339 * mmap of /dev/mem or /dev/kmem, where we would not want to touch it.
340 */
341static int break_ksm(struct vm_area_struct *vma, unsigned long addr)
342{
343	struct page *page;
344	int ret = 0;
345
346	do {
347		cond_resched();
348		page = follow_page(vma, addr, FOLL_GET);
349		if (IS_ERR_OR_NULL(page))
350			break;
351		if (PageKsm(page))
352			ret = handle_mm_fault(vma->vm_mm, vma, addr,
353							FAULT_FLAG_WRITE);
354		else
355			ret = VM_FAULT_WRITE;
356		put_page(page);
357	} while (!(ret & (VM_FAULT_WRITE | VM_FAULT_SIGBUS | VM_FAULT_OOM)));
358	/*
359	 * We must loop because handle_mm_fault() may back out if there's
360	 * any difficulty e.g. if pte accessed bit gets updated concurrently.
361	 *
362	 * VM_FAULT_WRITE is what we have been hoping for: it indicates that
363	 * COW has been broken, even if the vma does not permit VM_WRITE;
364	 * but note that a concurrent fault might break PageKsm for us.
365	 *
366	 * VM_FAULT_SIGBUS could occur if we race with truncation of the
367	 * backing file, which also invalidates anonymous pages: that's
368	 * okay, that truncation will have unmapped the PageKsm for us.
369	 *
370	 * VM_FAULT_OOM: at the time of writing (late July 2009), setting
371	 * aside mem_cgroup limits, VM_FAULT_OOM would only be set if the
372	 * current task has TIF_MEMDIE set, and will be OOM killed on return
373	 * to user; and ksmd, having no mm, would never be chosen for that.
374	 *
375	 * But if the mm is in a limited mem_cgroup, then the fault may fail
376	 * with VM_FAULT_OOM even if the current task is not TIF_MEMDIE; and
377	 * even ksmd can fail in this way - though it's usually breaking ksm
378	 * just to undo a merge it made a moment before, so unlikely to oom.
379	 *
380	 * That's a pity: we might therefore have more kernel pages allocated
381	 * than we're counting as nodes in the stable tree; but ksm_do_scan
382	 * will retry to break_cow on each pass, so should recover the page
383	 * in due course.  The important thing is to not let VM_MERGEABLE
384	 * be cleared while any such pages might remain in the area.
385	 */
386	return (ret & VM_FAULT_OOM) ? -ENOMEM : 0;
387}
388
389static void break_cow(struct rmap_item *rmap_item)
390{
391	struct mm_struct *mm = rmap_item->mm;
392	unsigned long addr = rmap_item->address;
393	struct vm_area_struct *vma;
394
395	/*
396	 * It is not an accident that whenever we want to break COW
397	 * to undo, we also need to drop a reference to the anon_vma.
398	 */
399	ksm_drop_anon_vma(rmap_item);
400
401	down_read(&mm->mmap_sem);
402	if (ksm_test_exit(mm))
403		goto out;
404	vma = find_vma(mm, addr);
405	if (!vma || vma->vm_start > addr)
406		goto out;
407	if (!(vma->vm_flags & VM_MERGEABLE) || !vma->anon_vma)
408		goto out;
409	break_ksm(vma, addr);
410out:
411	up_read(&mm->mmap_sem);
412}
413
414static struct page *get_mergeable_page(struct rmap_item *rmap_item)
415{
416	struct mm_struct *mm = rmap_item->mm;
417	unsigned long addr = rmap_item->address;
418	struct vm_area_struct *vma;
419	struct page *page;
420
421	down_read(&mm->mmap_sem);
422	if (ksm_test_exit(mm))
423		goto out;
424	vma = find_vma(mm, addr);
425	if (!vma || vma->vm_start > addr)
426		goto out;
427	if (!(vma->vm_flags & VM_MERGEABLE) || !vma->anon_vma)
428		goto out;
429
430	page = follow_page(vma, addr, FOLL_GET);
431	if (IS_ERR_OR_NULL(page))
432		goto out;
433	if (PageAnon(page) && !PageTransCompound(page)) {
434		flush_anon_page(vma, page, addr);
435		flush_dcache_page(page);
436	} else {
437		put_page(page);
438out:		page = NULL;
439	}
440	up_read(&mm->mmap_sem);
441	return page;
442}
443
444static void remove_node_from_stable_tree(struct stable_node *stable_node)
445{
446	struct rmap_item *rmap_item;
447	struct hlist_node *hlist;
448
449	hlist_for_each_entry(rmap_item, hlist, &stable_node->hlist, hlist) {
450		if (rmap_item->hlist.next)
451			ksm_pages_sharing--;
452		else
453			ksm_pages_shared--;
454		ksm_drop_anon_vma(rmap_item);
455		rmap_item->address &= PAGE_MASK;
456		cond_resched();
457	}
458
459	rb_erase(&stable_node->node, &root_stable_tree);
460	free_stable_node(stable_node);
461}
462
463/*
464 * get_ksm_page: checks if the page indicated by the stable node
465 * is still its ksm page, despite having held no reference to it.
466 * In which case we can trust the content of the page, and it
467 * returns the gotten page; but if the page has now been zapped,
468 * remove the stale node from the stable tree and return NULL.
469 *
470 * You would expect the stable_node to hold a reference to the ksm page.
471 * But if it increments the page's count, swapping out has to wait for
472 * ksmd to come around again before it can free the page, which may take
473 * seconds or even minutes: much too unresponsive.  So instead we use a
474 * "keyhole reference": access to the ksm page from the stable node peeps
475 * out through its keyhole to see if that page still holds the right key,
476 * pointing back to this stable node.  This relies on freeing a PageAnon
477 * page to reset its page->mapping to NULL, and relies on no other use of
478 * a page to put something that might look like our key in page->mapping.
479 *
480 * include/linux/pagemap.h page_cache_get_speculative() is a good reference,
481 * but this is different - made simpler by ksm_thread_mutex being held, but
482 * interesting for assuming that no other use of the struct page could ever
483 * put our expected_mapping into page->mapping (or a field of the union which
484 * coincides with page->mapping).  The RCU calls are not for KSM at all, but
485 * to keep the page_count protocol described with page_cache_get_speculative.
486 *
487 * Note: it is possible that get_ksm_page() will return NULL one moment,
488 * then page the next, if the page is in between page_freeze_refs() and
489 * page_unfreeze_refs(): this shouldn't be a problem anywhere, the page
490 * is on its way to being freed; but it is an anomaly to bear in mind.
491 */
492static struct page *get_ksm_page(struct stable_node *stable_node)
493{
494	struct page *page;
495	void *expected_mapping;
496
497	page = pfn_to_page(stable_node->kpfn);
498	expected_mapping = (void *)stable_node +
499				(PAGE_MAPPING_ANON | PAGE_MAPPING_KSM);
500	rcu_read_lock();
501	if (page->mapping != expected_mapping)
502		goto stale;
503	if (!get_page_unless_zero(page))
504		goto stale;
505	if (page->mapping != expected_mapping) {
506		put_page(page);
507		goto stale;
508	}
509	rcu_read_unlock();
510	return page;
511stale:
512	rcu_read_unlock();
513	remove_node_from_stable_tree(stable_node);
514	return NULL;
515}
516
517/*
518 * Removing rmap_item from stable or unstable tree.
519 * This function will clean the information from the stable/unstable tree.
520 */
521static void remove_rmap_item_from_tree(struct rmap_item *rmap_item)
522{
523	if (rmap_item->address & STABLE_FLAG) {
524		struct stable_node *stable_node;
525		struct page *page;
526
527		stable_node = rmap_item->head;
528		page = get_ksm_page(stable_node);
529		if (!page)
530			goto out;
531
532		lock_page(page);
533		hlist_del(&rmap_item->hlist);
534		unlock_page(page);
535		put_page(page);
536
537		if (stable_node->hlist.first)
538			ksm_pages_sharing--;
539		else
540			ksm_pages_shared--;
541
542		ksm_drop_anon_vma(rmap_item);
543		rmap_item->address &= PAGE_MASK;
544
545	} else if (rmap_item->address & UNSTABLE_FLAG) {
546		unsigned char age;
547		/*
548		 * Usually ksmd can and must skip the rb_erase, because
549		 * root_unstable_tree was already reset to RB_ROOT.
550		 * But be careful when an mm is exiting: do the rb_erase
551		 * if this rmap_item was inserted by this scan, rather
552		 * than left over from before.
553		 */
554		age = (unsigned char)(ksm_scan.seqnr - rmap_item->address);
555		BUG_ON(age > 1);
556		if (!age)
557			rb_erase(&rmap_item->node, &root_unstable_tree);
558
559		ksm_pages_unshared--;
560		rmap_item->address &= PAGE_MASK;
561	}
562out:
563	cond_resched();		/* we're called from many long loops */
564}
565
566static void remove_trailing_rmap_items(struct mm_slot *mm_slot,
567				       struct rmap_item **rmap_list)
568{
569	while (*rmap_list) {
570		struct rmap_item *rmap_item = *rmap_list;
571		*rmap_list = rmap_item->rmap_list;
572		remove_rmap_item_from_tree(rmap_item);
573		free_rmap_item(rmap_item);
574	}
575}
576
577/*
578 * Though it's very tempting to unmerge in_stable_tree(rmap_item)s rather
579 * than check every pte of a given vma, the locking doesn't quite work for
580 * that - an rmap_item is assigned to the stable tree after inserting ksm
581 * page and upping mmap_sem.  Nor does it fit with the way we skip dup'ing
582 * rmap_items from parent to child at fork time (so as not to waste time
583 * if exit comes before the next scan reaches it).
584 *
585 * Similarly, although we'd like to remove rmap_items (so updating counts
586 * and freeing memory) when unmerging an area, it's easier to leave that
587 * to the next pass of ksmd - consider, for example, how ksmd might be
588 * in cmp_and_merge_page on one of the rmap_items we would be removing.
589 */
590static int unmerge_ksm_pages(struct vm_area_struct *vma,
591			     unsigned long start, unsigned long end)
592{
593	unsigned long addr;
594	int err = 0;
595
596	for (addr = start; addr < end && !err; addr += PAGE_SIZE) {
597		if (ksm_test_exit(vma->vm_mm))
598			break;
599		if (signal_pending(current))
600			err = -ERESTARTSYS;
601		else
602			err = break_ksm(vma, addr);
603	}
604	return err;
605}
606
607#ifdef CONFIG_SYSFS
608/*
609 * Only called through the sysfs control interface:
610 */
611static int unmerge_and_remove_all_rmap_items(void)
612{
613	struct mm_slot *mm_slot;
614	struct mm_struct *mm;
615	struct vm_area_struct *vma;
616	int err = 0;
617
618	spin_lock(&ksm_mmlist_lock);
619	ksm_scan.mm_slot = list_entry(ksm_mm_head.mm_list.next,
620						struct mm_slot, mm_list);
621	spin_unlock(&ksm_mmlist_lock);
622
623	for (mm_slot = ksm_scan.mm_slot;
624			mm_slot != &ksm_mm_head; mm_slot = ksm_scan.mm_slot) {
625		mm = mm_slot->mm;
626		down_read(&mm->mmap_sem);
627		for (vma = mm->mmap; vma; vma = vma->vm_next) {
628			if (ksm_test_exit(mm))
629				break;
630			if (!(vma->vm_flags & VM_MERGEABLE) || !vma->anon_vma)
631				continue;
632			err = unmerge_ksm_pages(vma,
633						vma->vm_start, vma->vm_end);
634			if (err)
635				goto error;
636		}
637
638		remove_trailing_rmap_items(mm_slot, &mm_slot->rmap_list);
639
640		spin_lock(&ksm_mmlist_lock);
641		ksm_scan.mm_slot = list_entry(mm_slot->mm_list.next,
642						struct mm_slot, mm_list);
643		if (ksm_test_exit(mm)) {
644			hlist_del(&mm_slot->link);
645			list_del(&mm_slot->mm_list);
646			spin_unlock(&ksm_mmlist_lock);
647
648			free_mm_slot(mm_slot);
649			clear_bit(MMF_VM_MERGEABLE, &mm->flags);
650			up_read(&mm->mmap_sem);
651			mmdrop(mm);
652		} else {
653			spin_unlock(&ksm_mmlist_lock);
654			up_read(&mm->mmap_sem);
655		}
656	}
657
658	ksm_scan.seqnr = 0;
659	return 0;
660
661error:
662	up_read(&mm->mmap_sem);
663	spin_lock(&ksm_mmlist_lock);
664	ksm_scan.mm_slot = &ksm_mm_head;
665	spin_unlock(&ksm_mmlist_lock);
666	return err;
667}
668#endif /* CONFIG_SYSFS */
669
670static u32 calc_checksum(struct page *page)
671{
672	u32 checksum;
673	void *addr = kmap_atomic(page, KM_USER0);
674	checksum = jhash2(addr, PAGE_SIZE / 4, 17);
675	kunmap_atomic(addr, KM_USER0);
676	return checksum;
677}
678
679static int memcmp_pages(struct page *page1, struct page *page2)
680{
681	char *addr1, *addr2;
682	int ret;
683
684	addr1 = kmap_atomic(page1, KM_USER0);
685	addr2 = kmap_atomic(page2, KM_USER1);
686	ret = memcmp(addr1, addr2, PAGE_SIZE);
687	kunmap_atomic(addr2, KM_USER1);
688	kunmap_atomic(addr1, KM_USER0);
689	return ret;
690}
691
692static inline int pages_identical(struct page *page1, struct page *page2)
693{
694	return !memcmp_pages(page1, page2);
695}
696
697static int write_protect_page(struct vm_area_struct *vma, struct page *page,
698			      pte_t *orig_pte)
699{
700	struct mm_struct *mm = vma->vm_mm;
701	unsigned long addr;
702	pte_t *ptep;
703	spinlock_t *ptl;
704	int swapped;
705	int err = -EFAULT;
706
707	addr = page_address_in_vma(page, vma);
708	if (addr == -EFAULT)
709		goto out;
710
711	ptep = page_check_address(page, mm, addr, &ptl, 0);
712	if (!ptep)
713		goto out;
714
715	if (pte_write(*ptep) || pte_dirty(*ptep)) {
716		pte_t entry;
717
718		swapped = PageSwapCache(page);
719		flush_cache_page(vma, addr, page_to_pfn(page));
720		/*
721		 * Ok this is tricky, when get_user_pages_fast() run it doesnt
722		 * take any lock, therefore the check that we are going to make
723		 * with the pagecount against the mapcount is racey and
724		 * O_DIRECT can happen right after the check.
725		 * So we clear the pte and flush the tlb before the check
726		 * this assure us that no O_DIRECT can happen after the check
727		 * or in the middle of the check.
728		 */
729		entry = ptep_clear_flush(vma, addr, ptep);
730		/*
731		 * Check that no O_DIRECT or similar I/O is in progress on the
732		 * page
733		 */
734		if (page_mapcount(page) + 1 + swapped != page_count(page)) {
735			set_pte_at(mm, addr, ptep, entry);
736			goto out_unlock;
737		}
738		if (pte_dirty(entry))
739			set_page_dirty(page);
740		entry = pte_mkclean(pte_wrprotect(entry));
741		set_pte_at_notify(mm, addr, ptep, entry);
742	}
743	*orig_pte = *ptep;
744	err = 0;
745
746out_unlock:
747	pte_unmap_unlock(ptep, ptl);
748out:
749	return err;
750}
751
752/**
753 * replace_page - replace page in vma by new ksm page
754 * @vma:      vma that holds the pte pointing to page
755 * @page:     the page we are replacing by kpage
756 * @kpage:    the ksm page we replace page by
757 * @orig_pte: the original value of the pte
758 *
759 * Returns 0 on success, -EFAULT on failure.
760 */
761static int replace_page(struct vm_area_struct *vma, struct page *page,
762			struct page *kpage, pte_t orig_pte)
763{
764	struct mm_struct *mm = vma->vm_mm;
765	pgd_t *pgd;
766	pud_t *pud;
767	pmd_t *pmd;
768	pte_t *ptep;
769	spinlock_t *ptl;
770	unsigned long addr;
771	int err = -EFAULT;
772
773	addr = page_address_in_vma(page, vma);
774	if (addr == -EFAULT)
775		goto out;
776
777	pgd = pgd_offset(mm, addr);
778	if (!pgd_present(*pgd))
779		goto out;
780
781	pud = pud_offset(pgd, addr);
782	if (!pud_present(*pud))
783		goto out;
784
785	pmd = pmd_offset(pud, addr);
786	if (!pmd_present(*pmd))
787		goto out;
788
789	ptep = pte_offset_map_lock(mm, pmd, addr, &ptl);
790	if (!pte_same(*ptep, orig_pte)) {
791		pte_unmap_unlock(ptep, ptl);
792		goto out;
793	}
794
795	get_page(kpage);
796	page_add_anon_rmap(kpage, vma, addr);
797
798	flush_cache_page(vma, addr, pte_pfn(*ptep));
799	ptep_clear_flush(vma, addr, ptep);
800	set_pte_at_notify(mm, addr, ptep, mk_pte(kpage, vma->vm_page_prot));
801
802	page_remove_rmap(page);
803	if (!page_mapped(page))
804		try_to_free_swap(page);
805	put_page(page);
806
807	pte_unmap_unlock(ptep, ptl);
808	err = 0;
809out:
810	return err;
811}
812
813/*
814 * try_to_merge_one_page - take two pages and merge them into one
815 * @vma: the vma that holds the pte pointing to page
816 * @page: the PageAnon page that we want to replace with kpage
817 * @kpage: the PageKsm page that we want to map instead of page,
818 *         or NULL the first time when we want to use page as kpage.
819 *
820 * This function returns 0 if the pages were merged, -EFAULT otherwise.
821 */
822static int try_to_merge_one_page(struct vm_area_struct *vma,
823				 struct page *page, struct page *kpage)
824{
825	pte_t orig_pte = __pte(0);
826	int err = -EFAULT;
827
828	if (page == kpage)			/* ksm page forked */
829		return 0;
830
831	if (!(vma->vm_flags & VM_MERGEABLE))
832		goto out;
833	if (!PageAnon(page))
834		goto out;
835
836	/*
837	 * We need the page lock to read a stable PageSwapCache in
838	 * write_protect_page().  We use trylock_page() instead of
839	 * lock_page() because we don't want to wait here - we
840	 * prefer to continue scanning and merging different pages,
841	 * then come back to this page when it is unlocked.
842	 */
843	if (!trylock_page(page))
844		goto out;
845	/*
846	 * If this anonymous page is mapped only here, its pte may need
847	 * to be write-protected.  If it's mapped elsewhere, all of its
848	 * ptes are necessarily already write-protected.  But in either
849	 * case, we need to lock and check page_count is not raised.
850	 */
851	if (write_protect_page(vma, page, &orig_pte) == 0) {
852		if (!kpage) {
853			/*
854			 * While we hold page lock, upgrade page from
855			 * PageAnon+anon_vma to PageKsm+NULL stable_node:
856			 * stable_tree_insert() will update stable_node.
857			 */
858			set_page_stable_node(page, NULL);
859			mark_page_accessed(page);
860			err = 0;
861		} else if (pages_identical(page, kpage))
862			err = replace_page(vma, page, kpage, orig_pte);
863	}
864
865	if ((vma->vm_flags & VM_LOCKED) && kpage && !err) {
866		munlock_vma_page(page);
867		if (!PageMlocked(kpage)) {
868			unlock_page(page);
869			lock_page(kpage);
870			mlock_vma_page(kpage);
871			page = kpage;		/* for final unlock */
872		}
873	}
874
875	unlock_page(page);
876out:
877	return err;
878}
879
880/*
881 * try_to_merge_with_ksm_page - like try_to_merge_two_pages,
882 * but no new kernel page is allocated: kpage must already be a ksm page.
883 *
884 * This function returns 0 if the pages were merged, -EFAULT otherwise.
885 */
886static int try_to_merge_with_ksm_page(struct rmap_item *rmap_item,
887				      struct page *page, struct page *kpage)
888{
889	struct mm_struct *mm = rmap_item->mm;
890	struct vm_area_struct *vma;
891	int err = -EFAULT;
892
893	down_read(&mm->mmap_sem);
894	if (ksm_test_exit(mm))
895		goto out;
896	vma = find_vma(mm, rmap_item->address);
897	if (!vma || vma->vm_start > rmap_item->address)
898		goto out;
899
900	err = try_to_merge_one_page(vma, page, kpage);
901	if (err)
902		goto out;
903
904	/* Must get reference to anon_vma while still holding mmap_sem */
905	hold_anon_vma(rmap_item, vma->anon_vma);
906out:
907	up_read(&mm->mmap_sem);
908	return err;
909}
910
911/*
912 * try_to_merge_two_pages - take two identical pages and prepare them
913 * to be merged into one page.
914 *
915 * This function returns the kpage if we successfully merged two identical
916 * pages into one ksm page, NULL otherwise.
917 *
918 * Note that this function upgrades page to ksm page: if one of the pages
919 * is already a ksm page, try_to_merge_with_ksm_page should be used.
920 */
921static struct page *try_to_merge_two_pages(struct rmap_item *rmap_item,
922					   struct page *page,
923					   struct rmap_item *tree_rmap_item,
924					   struct page *tree_page)
925{
926	int err;
927
928	err = try_to_merge_with_ksm_page(rmap_item, page, NULL);
929	if (!err) {
930		err = try_to_merge_with_ksm_page(tree_rmap_item,
931							tree_page, page);
932		/*
933		 * If that fails, we have a ksm page with only one pte
934		 * pointing to it: so break it.
935		 */
936		if (err)
937			break_cow(rmap_item);
938	}
939	return err ? NULL : page;
940}
941
942/*
943 * stable_tree_search - search for page inside the stable tree
944 *
945 * This function checks if there is a page inside the stable tree
946 * with identical content to the page that we are scanning right now.
947 *
948 * This function returns the stable tree node of identical content if found,
949 * NULL otherwise.
950 */
951static struct page *stable_tree_search(struct page *page)
952{
953	struct rb_node *node = root_stable_tree.rb_node;
954	struct stable_node *stable_node;
955
956	stable_node = page_stable_node(page);
957	if (stable_node) {			/* ksm page forked */
958		get_page(page);
959		return page;
960	}
961
962	while (node) {
963		struct page *tree_page;
964		int ret;
965
966		cond_resched();
967		stable_node = rb_entry(node, struct stable_node, node);
968		tree_page = get_ksm_page(stable_node);
969		if (!tree_page)
970			return NULL;
971
972		ret = memcmp_pages(page, tree_page);
973
974		if (ret < 0) {
975			put_page(tree_page);
976			node = node->rb_left;
977		} else if (ret > 0) {
978			put_page(tree_page);
979			node = node->rb_right;
980		} else
981			return tree_page;
982	}
983
984	return NULL;
985}
986
987/*
988 * stable_tree_insert - insert rmap_item pointing to new ksm page
989 * into the stable tree.
990 *
991 * This function returns the stable tree node just allocated on success,
992 * NULL otherwise.
993 */
994static struct stable_node *stable_tree_insert(struct page *kpage)
995{
996	struct rb_node **new = &root_stable_tree.rb_node;
997	struct rb_node *parent = NULL;
998	struct stable_node *stable_node;
999
1000	while (*new) {
1001		struct page *tree_page;
1002		int ret;
1003
1004		cond_resched();
1005		stable_node = rb_entry(*new, struct stable_node, node);
1006		tree_page = get_ksm_page(stable_node);
1007		if (!tree_page)
1008			return NULL;
1009
1010		ret = memcmp_pages(kpage, tree_page);
1011		put_page(tree_page);
1012
1013		parent = *new;
1014		if (ret < 0)
1015			new = &parent->rb_left;
1016		else if (ret > 0)
1017			new = &parent->rb_right;
1018		else {
1019			/*
1020			 * It is not a bug that stable_tree_search() didn't
1021			 * find this node: because at that time our page was
1022			 * not yet write-protected, so may have changed since.
1023			 */
1024			return NULL;
1025		}
1026	}
1027
1028	stable_node = alloc_stable_node();
1029	if (!stable_node)
1030		return NULL;
1031
1032	rb_link_node(&stable_node->node, parent, new);
1033	rb_insert_color(&stable_node->node, &root_stable_tree);
1034
1035	INIT_HLIST_HEAD(&stable_node->hlist);
1036
1037	stable_node->kpfn = page_to_pfn(kpage);
1038	set_page_stable_node(kpage, stable_node);
1039
1040	return stable_node;
1041}
1042
1043/*
1044 * unstable_tree_search_insert - search for identical page,
1045 * else insert rmap_item into the unstable tree.
1046 *
1047 * This function searches for a page in the unstable tree identical to the
1048 * page currently being scanned; and if no identical page is found in the
1049 * tree, we insert rmap_item as a new object into the unstable tree.
1050 *
1051 * This function returns pointer to rmap_item found to be identical
1052 * to the currently scanned page, NULL otherwise.
1053 *
1054 * This function does both searching and inserting, because they share
1055 * the same walking algorithm in an rbtree.
1056 */
1057static
1058struct rmap_item *unstable_tree_search_insert(struct rmap_item *rmap_item,
1059					      struct page *page,
1060					      struct page **tree_pagep)
1061
1062{
1063	struct rb_node **new = &root_unstable_tree.rb_node;
1064	struct rb_node *parent = NULL;
1065
1066	while (*new) {
1067		struct rmap_item *tree_rmap_item;
1068		struct page *tree_page;
1069		int ret;
1070
1071		cond_resched();
1072		tree_rmap_item = rb_entry(*new, struct rmap_item, node);
1073		tree_page = get_mergeable_page(tree_rmap_item);
1074		if (IS_ERR_OR_NULL(tree_page))
1075			return NULL;
1076
1077		/*
1078		 * Don't substitute a ksm page for a forked page.
1079		 */
1080		if (page == tree_page) {
1081			put_page(tree_page);
1082			return NULL;
1083		}
1084
1085		ret = memcmp_pages(page, tree_page);
1086
1087		parent = *new;
1088		if (ret < 0) {
1089			put_page(tree_page);
1090			new = &parent->rb_left;
1091		} else if (ret > 0) {
1092			put_page(tree_page);
1093			new = &parent->rb_right;
1094		} else {
1095			*tree_pagep = tree_page;
1096			return tree_rmap_item;
1097		}
1098	}
1099
1100	rmap_item->address |= UNSTABLE_FLAG;
1101	rmap_item->address |= (ksm_scan.seqnr & SEQNR_MASK);
1102	rb_link_node(&rmap_item->node, parent, new);
1103	rb_insert_color(&rmap_item->node, &root_unstable_tree);
1104
1105	ksm_pages_unshared++;
1106	return NULL;
1107}
1108
1109/*
1110 * stable_tree_append - add another rmap_item to the linked list of
1111 * rmap_items hanging off a given node of the stable tree, all sharing
1112 * the same ksm page.
1113 */
1114static void stable_tree_append(struct rmap_item *rmap_item,
1115			       struct stable_node *stable_node)
1116{
1117	rmap_item->head = stable_node;
1118	rmap_item->address |= STABLE_FLAG;
1119	hlist_add_head(&rmap_item->hlist, &stable_node->hlist);
1120
1121	if (rmap_item->hlist.next)
1122		ksm_pages_sharing++;
1123	else
1124		ksm_pages_shared++;
1125}
1126
1127/*
1128 * cmp_and_merge_page - first see if page can be merged into the stable tree;
1129 * if not, compare checksum to previous and if it's the same, see if page can
1130 * be inserted into the unstable tree, or merged with a page already there and
1131 * both transferred to the stable tree.
1132 *
1133 * @page: the page that we are searching identical page to.
1134 * @rmap_item: the reverse mapping into the virtual address of this page
1135 */
1136static void cmp_and_merge_page(struct page *page, struct rmap_item *rmap_item)
1137{
1138	struct rmap_item *tree_rmap_item;
1139	struct page *tree_page = NULL;
1140	struct stable_node *stable_node;
1141	struct page *kpage;
1142	unsigned int checksum;
1143	int err;
1144
1145	remove_rmap_item_from_tree(rmap_item);
1146
1147	/* We first start with searching the page inside the stable tree */
1148	kpage = stable_tree_search(page);
1149	if (kpage) {
1150		err = try_to_merge_with_ksm_page(rmap_item, page, kpage);
1151		if (!err) {
1152			/*
1153			 * The page was successfully merged:
1154			 * add its rmap_item to the stable tree.
1155			 */
1156			lock_page(kpage);
1157			stable_tree_append(rmap_item, page_stable_node(kpage));
1158			unlock_page(kpage);
1159		}
1160		put_page(kpage);
1161		return;
1162	}
1163
1164	/*
1165	 * If the hash value of the page has changed from the last time
1166	 * we calculated it, this page is changing frequently: therefore we
1167	 * don't want to insert it in the unstable tree, and we don't want
1168	 * to waste our time searching for something identical to it there.
1169	 */
1170	checksum = calc_checksum(page);
1171	if (rmap_item->oldchecksum != checksum) {
1172		rmap_item->oldchecksum = checksum;
1173		return;
1174	}
1175
1176	tree_rmap_item =
1177		unstable_tree_search_insert(rmap_item, page, &tree_page);
1178	if (tree_rmap_item) {
1179		kpage = try_to_merge_two_pages(rmap_item, page,
1180						tree_rmap_item, tree_page);
1181		put_page(tree_page);
1182		/*
1183		 * As soon as we merge this page, we want to remove the
1184		 * rmap_item of the page we have merged with from the unstable
1185		 * tree, and insert it instead as new node in the stable tree.
1186		 */
1187		if (kpage) {
1188			remove_rmap_item_from_tree(tree_rmap_item);
1189
1190			lock_page(kpage);
1191			stable_node = stable_tree_insert(kpage);
1192			if (stable_node) {
1193				stable_tree_append(tree_rmap_item, stable_node);
1194				stable_tree_append(rmap_item, stable_node);
1195			}
1196			unlock_page(kpage);
1197
1198			/*
1199			 * If we fail to insert the page into the stable tree,
1200			 * we will have 2 virtual addresses that are pointing
1201			 * to a ksm page left outside the stable tree,
1202			 * in which case we need to break_cow on both.
1203			 */
1204			if (!stable_node) {
1205				break_cow(tree_rmap_item);
1206				break_cow(rmap_item);
1207			}
1208		}
1209	}
1210}
1211
1212static struct rmap_item *get_next_rmap_item(struct mm_slot *mm_slot,
1213					    struct rmap_item **rmap_list,
1214					    unsigned long addr)
1215{
1216	struct rmap_item *rmap_item;
1217
1218	while (*rmap_list) {
1219		rmap_item = *rmap_list;
1220		if ((rmap_item->address & PAGE_MASK) == addr)
1221			return rmap_item;
1222		if (rmap_item->address > addr)
1223			break;
1224		*rmap_list = rmap_item->rmap_list;
1225		remove_rmap_item_from_tree(rmap_item);
1226		free_rmap_item(rmap_item);
1227	}
1228
1229	rmap_item = alloc_rmap_item();
1230	if (rmap_item) {
1231		/* It has already been zeroed */
1232		rmap_item->mm = mm_slot->mm;
1233		rmap_item->address = addr;
1234		rmap_item->rmap_list = *rmap_list;
1235		*rmap_list = rmap_item;
1236	}
1237	return rmap_item;
1238}
1239
1240static struct rmap_item *scan_get_next_rmap_item(struct page **page)
1241{
1242	struct mm_struct *mm;
1243	struct mm_slot *slot;
1244	struct vm_area_struct *vma;
1245	struct rmap_item *rmap_item;
1246
1247	if (list_empty(&ksm_mm_head.mm_list))
1248		return NULL;
1249
1250	slot = ksm_scan.mm_slot;
1251	if (slot == &ksm_mm_head) {
1252		root_unstable_tree = RB_ROOT;
1253
1254		spin_lock(&ksm_mmlist_lock);
1255		slot = list_entry(slot->mm_list.next, struct mm_slot, mm_list);
1256		ksm_scan.mm_slot = slot;
1257		spin_unlock(&ksm_mmlist_lock);
1258next_mm:
1259		ksm_scan.address = 0;
1260		ksm_scan.rmap_list = &slot->rmap_list;
1261	}
1262
1263	mm = slot->mm;
1264	down_read(&mm->mmap_sem);
1265	if (ksm_test_exit(mm))
1266		vma = NULL;
1267	else
1268		vma = find_vma(mm, ksm_scan.address);
1269
1270	for (; vma; vma = vma->vm_next) {
1271		if (!(vma->vm_flags & VM_MERGEABLE))
1272			continue;
1273		if (ksm_scan.address < vma->vm_start)
1274			ksm_scan.address = vma->vm_start;
1275		if (!vma->anon_vma)
1276			ksm_scan.address = vma->vm_end;
1277
1278		while (ksm_scan.address < vma->vm_end) {
1279			if (ksm_test_exit(mm))
1280				break;
1281			*page = follow_page(vma, ksm_scan.address, FOLL_GET);
1282			if (IS_ERR_OR_NULL(*page)) {
1283				ksm_scan.address += PAGE_SIZE;
1284				cond_resched();
1285				continue;
1286			}
1287			if (PageTransCompound(*page)) {
1288				put_page(*page);
1289				ksm_scan.address &= HPAGE_PMD_MASK;
1290				ksm_scan.address += HPAGE_PMD_SIZE;
1291				cond_resched();
1292				continue;
1293			}
1294			if (PageAnon(*page)) {
1295				flush_anon_page(vma, *page, ksm_scan.address);
1296				flush_dcache_page(*page);
1297				rmap_item = get_next_rmap_item(slot,
1298					ksm_scan.rmap_list, ksm_scan.address);
1299				if (rmap_item) {
1300					ksm_scan.rmap_list =
1301							&rmap_item->rmap_list;
1302					ksm_scan.address += PAGE_SIZE;
1303				} else
1304					put_page(*page);
1305				up_read(&mm->mmap_sem);
1306				return rmap_item;
1307			}
1308			put_page(*page);
1309			ksm_scan.address += PAGE_SIZE;
1310			cond_resched();
1311		}
1312	}
1313
1314	if (ksm_test_exit(mm)) {
1315		ksm_scan.address = 0;
1316		ksm_scan.rmap_list = &slot->rmap_list;
1317	}
1318	/*
1319	 * Nuke all the rmap_items that are above this current rmap:
1320	 * because there were no VM_MERGEABLE vmas with such addresses.
1321	 */
1322	remove_trailing_rmap_items(slot, ksm_scan.rmap_list);
1323
1324	spin_lock(&ksm_mmlist_lock);
1325	ksm_scan.mm_slot = list_entry(slot->mm_list.next,
1326						struct mm_slot, mm_list);
1327	if (ksm_scan.address == 0) {
1328		/*
1329		 * We've completed a full scan of all vmas, holding mmap_sem
1330		 * throughout, and found no VM_MERGEABLE: so do the same as
1331		 * __ksm_exit does to remove this mm from all our lists now.
1332		 * This applies either when cleaning up after __ksm_exit
1333		 * (but beware: we can reach here even before __ksm_exit),
1334		 * or when all VM_MERGEABLE areas have been unmapped (and
1335		 * mmap_sem then protects against race with MADV_MERGEABLE).
1336		 */
1337		hlist_del(&slot->link);
1338		list_del(&slot->mm_list);
1339		spin_unlock(&ksm_mmlist_lock);
1340
1341		free_mm_slot(slot);
1342		clear_bit(MMF_VM_MERGEABLE, &mm->flags);
1343		up_read(&mm->mmap_sem);
1344		mmdrop(mm);
1345	} else {
1346		spin_unlock(&ksm_mmlist_lock);
1347		up_read(&mm->mmap_sem);
1348	}
1349
1350	/* Repeat until we've completed scanning the whole list */
1351	slot = ksm_scan.mm_slot;
1352	if (slot != &ksm_mm_head)
1353		goto next_mm;
1354
1355	ksm_scan.seqnr++;
1356	return NULL;
1357}
1358
1359/**
1360 * ksm_do_scan  - the ksm scanner main worker function.
1361 * @scan_npages - number of pages we want to scan before we return.
1362 */
1363static void ksm_do_scan(unsigned int scan_npages)
1364{
1365	struct rmap_item *rmap_item;
1366	struct page *uninitialized_var(page);
1367
1368	while (scan_npages--) {
1369		cond_resched();
1370		rmap_item = scan_get_next_rmap_item(&page);
1371		if (!rmap_item)
1372			return;
1373		if (!PageKsm(page) || !in_stable_tree(rmap_item))
1374			cmp_and_merge_page(page, rmap_item);
1375		put_page(page);
1376	}
1377}
1378
1379static int ksmd_should_run(void)
1380{
1381	return (ksm_run & KSM_RUN_MERGE) && !list_empty(&ksm_mm_head.mm_list);
1382}
1383
1384static int ksm_scan_thread(void *nothing)
1385{
1386	set_user_nice(current, 5);
1387
1388	while (!kthread_should_stop()) {
1389		mutex_lock(&ksm_thread_mutex);
1390		if (ksmd_should_run())
1391			ksm_do_scan(ksm_thread_pages_to_scan);
1392		mutex_unlock(&ksm_thread_mutex);
1393
1394		if (ksmd_should_run()) {
1395			schedule_timeout_interruptible(
1396				msecs_to_jiffies(ksm_thread_sleep_millisecs));
1397		} else {
1398			wait_event_interruptible(ksm_thread_wait,
1399				ksmd_should_run() || kthread_should_stop());
1400		}
1401	}
1402	return 0;
1403}
1404
1405int ksm_madvise(struct vm_area_struct *vma, unsigned long start,
1406		unsigned long end, int advice, unsigned long *vm_flags)
1407{
1408	struct mm_struct *mm = vma->vm_mm;
1409	int err;
1410
1411	switch (advice) {
1412	case MADV_MERGEABLE:
1413		/*
1414		 * Be somewhat over-protective for now!
1415		 */
1416		if (*vm_flags & (VM_MERGEABLE | VM_SHARED  | VM_MAYSHARE   |
1417				 VM_PFNMAP    | VM_IO      | VM_DONTEXPAND |
1418				 VM_RESERVED  | VM_HUGETLB | VM_INSERTPAGE |
1419				 VM_NONLINEAR | VM_MIXEDMAP | VM_SAO))
1420			return 0;		/* just ignore the advice */
1421
1422		if (!test_bit(MMF_VM_MERGEABLE, &mm->flags)) {
1423			err = __ksm_enter(mm);
1424			if (err)
1425				return err;
1426		}
1427
1428		*vm_flags |= VM_MERGEABLE;
1429		break;
1430
1431	case MADV_UNMERGEABLE:
1432		if (!(*vm_flags & VM_MERGEABLE))
1433			return 0;		/* just ignore the advice */
1434
1435		if (vma->anon_vma) {
1436			err = unmerge_ksm_pages(vma, start, end);
1437			if (err)
1438				return err;
1439		}
1440
1441		*vm_flags &= ~VM_MERGEABLE;
1442		break;
1443	}
1444
1445	return 0;
1446}
1447
1448int __ksm_enter(struct mm_struct *mm)
1449{
1450	struct mm_slot *mm_slot;
1451	int needs_wakeup;
1452
1453	mm_slot = alloc_mm_slot();
1454	if (!mm_slot)
1455		return -ENOMEM;
1456
1457	/* Check ksm_run too?  Would need tighter locking */
1458	needs_wakeup = list_empty(&ksm_mm_head.mm_list);
1459
1460	spin_lock(&ksm_mmlist_lock);
1461	insert_to_mm_slots_hash(mm, mm_slot);
1462	/*
1463	 * Insert just behind the scanning cursor, to let the area settle
1464	 * down a little; when fork is followed by immediate exec, we don't
1465	 * want ksmd to waste time setting up and tearing down an rmap_list.
1466	 */
1467	list_add_tail(&mm_slot->mm_list, &ksm_scan.mm_slot->mm_list);
1468	spin_unlock(&ksm_mmlist_lock);
1469
1470	set_bit(MMF_VM_MERGEABLE, &mm->flags);
1471	atomic_inc(&mm->mm_count);
1472
1473	if (needs_wakeup)
1474		wake_up_interruptible(&ksm_thread_wait);
1475
1476	return 0;
1477}
1478
1479void __ksm_exit(struct mm_struct *mm)
1480{
1481	struct mm_slot *mm_slot;
1482	int easy_to_free = 0;
1483
1484	/*
1485	 * This process is exiting: if it's straightforward (as is the
1486	 * case when ksmd was never running), free mm_slot immediately.
1487	 * But if it's at the cursor or has rmap_items linked to it, use
1488	 * mmap_sem to synchronize with any break_cows before pagetables
1489	 * are freed, and leave the mm_slot on the list for ksmd to free.
1490	 * Beware: ksm may already have noticed it exiting and freed the slot.
1491	 */
1492
1493	spin_lock(&ksm_mmlist_lock);
1494	mm_slot = get_mm_slot(mm);
1495	if (mm_slot && ksm_scan.mm_slot != mm_slot) {
1496		if (!mm_slot->rmap_list) {
1497			hlist_del(&mm_slot->link);
1498			list_del(&mm_slot->mm_list);
1499			easy_to_free = 1;
1500		} else {
1501			list_move(&mm_slot->mm_list,
1502				  &ksm_scan.mm_slot->mm_list);
1503		}
1504	}
1505	spin_unlock(&ksm_mmlist_lock);
1506
1507	if (easy_to_free) {
1508		free_mm_slot(mm_slot);
1509		clear_bit(MMF_VM_MERGEABLE, &mm->flags);
1510		mmdrop(mm);
1511	} else if (mm_slot) {
1512		down_write(&mm->mmap_sem);
1513		up_write(&mm->mmap_sem);
1514	}
1515}
1516
1517struct page *ksm_does_need_to_copy(struct page *page,
1518			struct vm_area_struct *vma, unsigned long address)
1519{
1520	struct page *new_page;
1521
1522	new_page = alloc_page_vma(GFP_HIGHUSER_MOVABLE, vma, address);
1523	if (new_page) {
1524		copy_user_highpage(new_page, page, address, vma);
1525
1526		SetPageDirty(new_page);
1527		__SetPageUptodate(new_page);
1528		SetPageSwapBacked(new_page);
1529		__set_page_locked(new_page);
1530
1531		if (page_evictable(new_page, vma))
1532			lru_cache_add_lru(new_page, LRU_ACTIVE_ANON);
1533		else
1534			add_page_to_unevictable_list(new_page);
1535	}
1536
1537	return new_page;
1538}
1539
1540int page_referenced_ksm(struct page *page, struct mem_cgroup *memcg,
1541			unsigned long *vm_flags)
1542{
1543	struct stable_node *stable_node;
1544	struct rmap_item *rmap_item;
1545	struct hlist_node *hlist;
1546	unsigned int mapcount = page_mapcount(page);
1547	int referenced = 0;
1548	int search_new_forks = 0;
1549
1550	VM_BUG_ON(!PageKsm(page));
1551	VM_BUG_ON(!PageLocked(page));
1552
1553	stable_node = page_stable_node(page);
1554	if (!stable_node)
1555		return 0;
1556again:
1557	hlist_for_each_entry(rmap_item, hlist, &stable_node->hlist, hlist) {
1558		struct anon_vma *anon_vma = rmap_item->anon_vma;
1559		struct anon_vma_chain *vmac;
1560		struct vm_area_struct *vma;
1561
1562		anon_vma_lock(anon_vma);
1563		list_for_each_entry(vmac, &anon_vma->head, same_anon_vma) {
1564			vma = vmac->vma;
1565			if (rmap_item->address < vma->vm_start ||
1566			    rmap_item->address >= vma->vm_end)
1567				continue;
1568			/*
1569			 * Initially we examine only the vma which covers this
1570			 * rmap_item; but later, if there is still work to do,
1571			 * we examine covering vmas in other mms: in case they
1572			 * were forked from the original since ksmd passed.
1573			 */
1574			if ((rmap_item->mm == vma->vm_mm) == search_new_forks)
1575				continue;
1576
1577			if (memcg && !mm_match_cgroup(vma->vm_mm, memcg))
1578				continue;
1579
1580			referenced += page_referenced_one(page, vma,
1581				rmap_item->address, &mapcount, vm_flags);
1582			if (!search_new_forks || !mapcount)
1583				break;
1584		}
1585		anon_vma_unlock(anon_vma);
1586		if (!mapcount)
1587			goto out;
1588	}
1589	if (!search_new_forks++)
1590		goto again;
1591out:
1592	return referenced;
1593}
1594
1595int try_to_unmap_ksm(struct page *page, enum ttu_flags flags)
1596{
1597	struct stable_node *stable_node;
1598	struct hlist_node *hlist;
1599	struct rmap_item *rmap_item;
1600	int ret = SWAP_AGAIN;
1601	int search_new_forks = 0;
1602
1603	VM_BUG_ON(!PageKsm(page));
1604	VM_BUG_ON(!PageLocked(page));
1605
1606	stable_node = page_stable_node(page);
1607	if (!stable_node)
1608		return SWAP_FAIL;
1609again:
1610	hlist_for_each_entry(rmap_item, hlist, &stable_node->hlist, hlist) {
1611		struct anon_vma *anon_vma = rmap_item->anon_vma;
1612		struct anon_vma_chain *vmac;
1613		struct vm_area_struct *vma;
1614
1615		anon_vma_lock(anon_vma);
1616		list_for_each_entry(vmac, &anon_vma->head, same_anon_vma) {
1617			vma = vmac->vma;
1618			if (rmap_item->address < vma->vm_start ||
1619			    rmap_item->address >= vma->vm_end)
1620				continue;
1621			/*
1622			 * Initially we examine only the vma which covers this
1623			 * rmap_item; but later, if there is still work to do,
1624			 * we examine covering vmas in other mms: in case they
1625			 * were forked from the original since ksmd passed.
1626			 */
1627			if ((rmap_item->mm == vma->vm_mm) == search_new_forks)
1628				continue;
1629
1630			ret = try_to_unmap_one(page, vma,
1631					rmap_item->address, flags);
1632			if (ret != SWAP_AGAIN || !page_mapped(page)) {
1633				anon_vma_unlock(anon_vma);
1634				goto out;
1635			}
1636		}
1637		anon_vma_unlock(anon_vma);
1638	}
1639	if (!search_new_forks++)
1640		goto again;
1641out:
1642	return ret;
1643}
1644
1645#ifdef CONFIG_MIGRATION
1646int rmap_walk_ksm(struct page *page, int (*rmap_one)(struct page *,
1647		  struct vm_area_struct *, unsigned long, void *), void *arg)
1648{
1649	struct stable_node *stable_node;
1650	struct hlist_node *hlist;
1651	struct rmap_item *rmap_item;
1652	int ret = SWAP_AGAIN;
1653	int search_new_forks = 0;
1654
1655	VM_BUG_ON(!PageKsm(page));
1656	VM_BUG_ON(!PageLocked(page));
1657
1658	stable_node = page_stable_node(page);
1659	if (!stable_node)
1660		return ret;
1661again:
1662	hlist_for_each_entry(rmap_item, hlist, &stable_node->hlist, hlist) {
1663		struct anon_vma *anon_vma = rmap_item->anon_vma;
1664		struct anon_vma_chain *vmac;
1665		struct vm_area_struct *vma;
1666
1667		anon_vma_lock(anon_vma);
1668		list_for_each_entry(vmac, &anon_vma->head, same_anon_vma) {
1669			vma = vmac->vma;
1670			if (rmap_item->address < vma->vm_start ||
1671			    rmap_item->address >= vma->vm_end)
1672				continue;
1673			/*
1674			 * Initially we examine only the vma which covers this
1675			 * rmap_item; but later, if there is still work to do,
1676			 * we examine covering vmas in other mms: in case they
1677			 * were forked from the original since ksmd passed.
1678			 */
1679			if ((rmap_item->mm == vma->vm_mm) == search_new_forks)
1680				continue;
1681
1682			ret = rmap_one(page, vma, rmap_item->address, arg);
1683			if (ret != SWAP_AGAIN) {
1684				anon_vma_unlock(anon_vma);
1685				goto out;
1686			}
1687		}
1688		anon_vma_unlock(anon_vma);
1689	}
1690	if (!search_new_forks++)
1691		goto again;
1692out:
1693	return ret;
1694}
1695
1696void ksm_migrate_page(struct page *newpage, struct page *oldpage)
1697{
1698	struct stable_node *stable_node;
1699
1700	VM_BUG_ON(!PageLocked(oldpage));
1701	VM_BUG_ON(!PageLocked(newpage));
1702	VM_BUG_ON(newpage->mapping != oldpage->mapping);
1703
1704	stable_node = page_stable_node(newpage);
1705	if (stable_node) {
1706		VM_BUG_ON(stable_node->kpfn != page_to_pfn(oldpage));
1707		stable_node->kpfn = page_to_pfn(newpage);
1708	}
1709}
1710#endif /* CONFIG_MIGRATION */
1711
1712#ifdef CONFIG_MEMORY_HOTREMOVE
1713static struct stable_node *ksm_check_stable_tree(unsigned long start_pfn,
1714						 unsigned long end_pfn)
1715{
1716	struct rb_node *node;
1717
1718	for (node = rb_first(&root_stable_tree); node; node = rb_next(node)) {
1719		struct stable_node *stable_node;
1720
1721		stable_node = rb_entry(node, struct stable_node, node);
1722		if (stable_node->kpfn >= start_pfn &&
1723		    stable_node->kpfn < end_pfn)
1724			return stable_node;
1725	}
1726	return NULL;
1727}
1728
1729static int ksm_memory_callback(struct notifier_block *self,
1730			       unsigned long action, void *arg)
1731{
1732	struct memory_notify *mn = arg;
1733	struct stable_node *stable_node;
1734
1735	switch (action) {
1736	case MEM_GOING_OFFLINE:
1737		/*
1738		 * Keep it very simple for now: just lock out ksmd and
1739		 * MADV_UNMERGEABLE while any memory is going offline.
1740		 * mutex_lock_nested() is necessary because lockdep was alarmed
1741		 * that here we take ksm_thread_mutex inside notifier chain
1742		 * mutex, and later take notifier chain mutex inside
1743		 * ksm_thread_mutex to unlock it.   But that's safe because both
1744		 * are inside mem_hotplug_mutex.
1745		 */
1746		mutex_lock_nested(&ksm_thread_mutex, SINGLE_DEPTH_NESTING);
1747		break;
1748
1749	case MEM_OFFLINE:
1750		/*
1751		 * Most of the work is done by page migration; but there might
1752		 * be a few stable_nodes left over, still pointing to struct
1753		 * pages which have been offlined: prune those from the tree.
1754		 */
1755		while ((stable_node = ksm_check_stable_tree(mn->start_pfn,
1756					mn->start_pfn + mn->nr_pages)) != NULL)
1757			remove_node_from_stable_tree(stable_node);
1758		/* fallthrough */
1759
1760	case MEM_CANCEL_OFFLINE:
1761		mutex_unlock(&ksm_thread_mutex);
1762		break;
1763	}
1764	return NOTIFY_OK;
1765}
1766#endif /* CONFIG_MEMORY_HOTREMOVE */
1767
1768#ifdef CONFIG_SYSFS
1769/*
1770 * This all compiles without CONFIG_SYSFS, but is a waste of space.
1771 */
1772
1773#define KSM_ATTR_RO(_name) \
1774	static struct kobj_attribute _name##_attr = __ATTR_RO(_name)
1775#define KSM_ATTR(_name) \
1776	static struct kobj_attribute _name##_attr = \
1777		__ATTR(_name, 0644, _name##_show, _name##_store)
1778
1779static ssize_t sleep_millisecs_show(struct kobject *kobj,
1780				    struct kobj_attribute *attr, char *buf)
1781{
1782	return sprintf(buf, "%u\n", ksm_thread_sleep_millisecs);
1783}
1784
1785static ssize_t sleep_millisecs_store(struct kobject *kobj,
1786				     struct kobj_attribute *attr,
1787				     const char *buf, size_t count)
1788{
1789	unsigned long msecs;
1790	int err;
1791
1792	err = strict_strtoul(buf, 10, &msecs);
1793	if (err || msecs > UINT_MAX)
1794		return -EINVAL;
1795
1796	ksm_thread_sleep_millisecs = msecs;
1797
1798	return count;
1799}
1800KSM_ATTR(sleep_millisecs);
1801
1802static ssize_t pages_to_scan_show(struct kobject *kobj,
1803				  struct kobj_attribute *attr, char *buf)
1804{
1805	return sprintf(buf, "%u\n", ksm_thread_pages_to_scan);
1806}
1807
1808static ssize_t pages_to_scan_store(struct kobject *kobj,
1809				   struct kobj_attribute *attr,
1810				   const char *buf, size_t count)
1811{
1812	int err;
1813	unsigned long nr_pages;
1814
1815	err = strict_strtoul(buf, 10, &nr_pages);
1816	if (err || nr_pages > UINT_MAX)
1817		return -EINVAL;
1818
1819	ksm_thread_pages_to_scan = nr_pages;
1820
1821	return count;
1822}
1823KSM_ATTR(pages_to_scan);
1824
1825static ssize_t run_show(struct kobject *kobj, struct kobj_attribute *attr,
1826			char *buf)
1827{
1828	return sprintf(buf, "%u\n", ksm_run);
1829}
1830
1831static ssize_t run_store(struct kobject *kobj, struct kobj_attribute *attr,
1832			 const char *buf, size_t count)
1833{
1834	int err;
1835	unsigned long flags;
1836
1837	err = strict_strtoul(buf, 10, &flags);
1838	if (err || flags > UINT_MAX)
1839		return -EINVAL;
1840	if (flags > KSM_RUN_UNMERGE)
1841		return -EINVAL;
1842
1843	/*
1844	 * KSM_RUN_MERGE sets ksmd running, and 0 stops it running.
1845	 * KSM_RUN_UNMERGE stops it running and unmerges all rmap_items,
1846	 * breaking COW to free the pages_shared (but leaves mm_slots
1847	 * on the list for when ksmd may be set running again).
1848	 */
1849
1850	mutex_lock(&ksm_thread_mutex);
1851	if (ksm_run != flags) {
1852		ksm_run = flags;
1853		if (flags & KSM_RUN_UNMERGE) {
1854			current->flags |= PF_OOM_ORIGIN;
1855			err = unmerge_and_remove_all_rmap_items();
1856			current->flags &= ~PF_OOM_ORIGIN;
1857			if (err) {
1858				ksm_run = KSM_RUN_STOP;
1859				count = err;
1860			}
1861		}
1862	}
1863	mutex_unlock(&ksm_thread_mutex);
1864
1865	if (flags & KSM_RUN_MERGE)
1866		wake_up_interruptible(&ksm_thread_wait);
1867
1868	return count;
1869}
1870KSM_ATTR(run);
1871
1872static ssize_t pages_shared_show(struct kobject *kobj,
1873				 struct kobj_attribute *attr, char *buf)
1874{
1875	return sprintf(buf, "%lu\n", ksm_pages_shared);
1876}
1877KSM_ATTR_RO(pages_shared);
1878
1879static ssize_t pages_sharing_show(struct kobject *kobj,
1880				  struct kobj_attribute *attr, char *buf)
1881{
1882	return sprintf(buf, "%lu\n", ksm_pages_sharing);
1883}
1884KSM_ATTR_RO(pages_sharing);
1885
1886static ssize_t pages_unshared_show(struct kobject *kobj,
1887				   struct kobj_attribute *attr, char *buf)
1888{
1889	return sprintf(buf, "%lu\n", ksm_pages_unshared);
1890}
1891KSM_ATTR_RO(pages_unshared);
1892
1893static ssize_t pages_volatile_show(struct kobject *kobj,
1894				   struct kobj_attribute *attr, char *buf)
1895{
1896	long ksm_pages_volatile;
1897
1898	ksm_pages_volatile = ksm_rmap_items - ksm_pages_shared
1899				- ksm_pages_sharing - ksm_pages_unshared;
1900	/*
1901	 * It was not worth any locking to calculate that statistic,
1902	 * but it might therefore sometimes be negative: conceal that.
1903	 */
1904	if (ksm_pages_volatile < 0)
1905		ksm_pages_volatile = 0;
1906	return sprintf(buf, "%ld\n", ksm_pages_volatile);
1907}
1908KSM_ATTR_RO(pages_volatile);
1909
1910static ssize_t full_scans_show(struct kobject *kobj,
1911			       struct kobj_attribute *attr, char *buf)
1912{
1913	return sprintf(buf, "%lu\n", ksm_scan.seqnr);
1914}
1915KSM_ATTR_RO(full_scans);
1916
1917static struct attribute *ksm_attrs[] = {
1918	&sleep_millisecs_attr.attr,
1919	&pages_to_scan_attr.attr,
1920	&run_attr.attr,
1921	&pages_shared_attr.attr,
1922	&pages_sharing_attr.attr,
1923	&pages_unshared_attr.attr,
1924	&pages_volatile_attr.attr,
1925	&full_scans_attr.attr,
1926	NULL,
1927};
1928
1929static struct attribute_group ksm_attr_group = {
1930	.attrs = ksm_attrs,
1931	.name = "ksm",
1932};
1933#endif /* CONFIG_SYSFS */
1934
1935static int __init ksm_init(void)
1936{
1937	struct task_struct *ksm_thread;
1938	int err;
1939
1940	err = ksm_slab_init();
1941	if (err)
1942		goto out;
1943
1944	ksm_thread = kthread_run(ksm_scan_thread, NULL, "ksmd");
1945	if (IS_ERR(ksm_thread)) {
1946		printk(KERN_ERR "ksm: creating kthread failed\n");
1947		err = PTR_ERR(ksm_thread);
1948		goto out_free;
1949	}
1950
1951#ifdef CONFIG_SYSFS
1952	err = sysfs_create_group(mm_kobj, &ksm_attr_group);
1953	if (err) {
1954		printk(KERN_ERR "ksm: register sysfs failed\n");
1955		kthread_stop(ksm_thread);
1956		goto out_free;
1957	}
1958#else
1959	ksm_run = KSM_RUN_MERGE;	/* no way for user to start it */
1960
1961#endif /* CONFIG_SYSFS */
1962
1963#ifdef CONFIG_MEMORY_HOTREMOVE
1964	/*
1965	 * Choose a high priority since the callback takes ksm_thread_mutex:
1966	 * later callbacks could only be taking locks which nest within that.
1967	 */
1968	hotplug_memory_notifier(ksm_memory_callback, 100);
1969#endif
1970	return 0;
1971
1972out_free:
1973	ksm_slab_free();
1974out:
1975	return err;
1976}
1977module_init(ksm_init)
1978