ksm.c revision 26465d3ea5a62d59efb3796b9e0e2b0656d02cb1
1/*
2 * Memory merging support.
3 *
4 * This code enables dynamic sharing of identical pages found in different
5 * memory areas, even if they are not shared by fork()
6 *
7 * Copyright (C) 2008-2009 Red Hat, Inc.
8 * Authors:
9 *	Izik Eidus
10 *	Andrea Arcangeli
11 *	Chris Wright
12 *	Hugh Dickins
13 *
14 * This work is licensed under the terms of the GNU GPL, version 2.
15 */
16
17#include <linux/errno.h>
18#include <linux/mm.h>
19#include <linux/fs.h>
20#include <linux/mman.h>
21#include <linux/sched.h>
22#include <linux/rwsem.h>
23#include <linux/pagemap.h>
24#include <linux/rmap.h>
25#include <linux/spinlock.h>
26#include <linux/jhash.h>
27#include <linux/delay.h>
28#include <linux/kthread.h>
29#include <linux/wait.h>
30#include <linux/slab.h>
31#include <linux/rbtree.h>
32#include <linux/mmu_notifier.h>
33#include <linux/ksm.h>
34
35#include <asm/tlbflush.h>
36
37/*
38 * A few notes about the KSM scanning process,
39 * to make it easier to understand the data structures below:
40 *
41 * In order to reduce excessive scanning, KSM sorts the memory pages by their
42 * contents into a data structure that holds pointers to the pages' locations.
43 *
44 * Since the contents of the pages may change at any moment, KSM cannot just
45 * insert the pages into a normal sorted tree and expect it to find anything.
46 * Therefore KSM uses two data structures - the stable and the unstable tree.
47 *
48 * The stable tree holds pointers to all the merged pages (ksm pages), sorted
49 * by their contents.  Because each such page is write-protected, searching on
50 * this tree is fully assured to be working (except when pages are unmapped),
51 * and therefore this tree is called the stable tree.
52 *
53 * In addition to the stable tree, KSM uses a second data structure called the
54 * unstable tree: this tree holds pointers to pages which have been found to
55 * be "unchanged for a period of time".  The unstable tree sorts these pages
56 * by their contents, but since they are not write-protected, KSM cannot rely
57 * upon the unstable tree to work correctly - the unstable tree is liable to
58 * be corrupted as its contents are modified, and so it is called unstable.
59 *
60 * KSM solves this problem by several techniques:
61 *
62 * 1) The unstable tree is flushed every time KSM completes scanning all
63 *    memory areas, and then the tree is rebuilt again from the beginning.
64 * 2) KSM will only insert into the unstable tree, pages whose hash value
65 *    has not changed since the previous scan of all memory areas.
66 * 3) The unstable tree is a RedBlack Tree - so its balancing is based on the
67 *    colors of the nodes and not on their contents, assuring that even when
68 *    the tree gets "corrupted" it won't get out of balance, so scanning time
69 *    remains the same (also, searching and inserting nodes in an rbtree uses
70 *    the same algorithm, so we have no overhead when we flush and rebuild).
71 * 4) KSM never flushes the stable tree, which means that even if it were to
72 *    take 10 attempts to find a page in the unstable tree, once it is found,
73 *    it is secured in the stable tree.  (When we scan a new page, we first
74 *    compare it against the stable tree, and then against the unstable tree.)
75 */
76
77/**
78 * struct mm_slot - ksm information per mm that is being scanned
79 * @link: link to the mm_slots hash list
80 * @mm_list: link into the mm_slots list, rooted in ksm_mm_head
81 * @rmap_list: head for this mm_slot's list of rmap_items
82 * @mm: the mm that this information is valid for
83 */
84struct mm_slot {
85	struct hlist_node link;
86	struct list_head mm_list;
87	struct list_head rmap_list;
88	struct mm_struct *mm;
89};
90
91/**
92 * struct ksm_scan - cursor for scanning
93 * @mm_slot: the current mm_slot we are scanning
94 * @address: the next address inside that to be scanned
95 * @rmap_item: the current rmap that we are scanning inside the rmap_list
96 * @seqnr: count of completed full scans (needed when removing unstable node)
97 *
98 * There is only the one ksm_scan instance of this cursor structure.
99 */
100struct ksm_scan {
101	struct mm_slot *mm_slot;
102	unsigned long address;
103	struct rmap_item *rmap_item;
104	unsigned long seqnr;
105};
106
107/**
108 * struct rmap_item - reverse mapping item for virtual addresses
109 * @link: link into mm_slot's rmap_list (rmap_list is per mm)
110 * @mm: the memory structure this rmap_item is pointing into
111 * @address: the virtual address this rmap_item tracks (+ flags in low bits)
112 * @oldchecksum: previous checksum of the page at that virtual address
113 * @node: rb_node of this rmap_item in either unstable or stable tree
114 * @next: next rmap_item hanging off the same node of the stable tree
115 * @prev: previous rmap_item hanging off the same node of the stable tree
116 */
117struct rmap_item {
118	struct list_head link;
119	struct mm_struct *mm;
120	unsigned long address;		/* + low bits used for flags below */
121	union {
122		unsigned int oldchecksum;		/* when unstable */
123		struct rmap_item *next;			/* when stable */
124	};
125	union {
126		struct rb_node node;			/* when tree node */
127		struct rmap_item *prev;			/* in stable list */
128	};
129};
130
131#define SEQNR_MASK	0x0ff	/* low bits of unstable tree seqnr */
132#define NODE_FLAG	0x100	/* is a node of unstable or stable tree */
133#define STABLE_FLAG	0x200	/* is a node or list item of stable tree */
134
135/* The stable and unstable tree heads */
136static struct rb_root root_stable_tree = RB_ROOT;
137static struct rb_root root_unstable_tree = RB_ROOT;
138
139#define MM_SLOTS_HASH_HEADS 1024
140static struct hlist_head *mm_slots_hash;
141
142static struct mm_slot ksm_mm_head = {
143	.mm_list = LIST_HEAD_INIT(ksm_mm_head.mm_list),
144};
145static struct ksm_scan ksm_scan = {
146	.mm_slot = &ksm_mm_head,
147};
148
149static struct kmem_cache *rmap_item_cache;
150static struct kmem_cache *mm_slot_cache;
151
152/* The number of nodes in the stable tree */
153static unsigned long ksm_pages_shared;
154
155/* The number of page slots additionally sharing those nodes */
156static unsigned long ksm_pages_sharing;
157
158/* The number of nodes in the unstable tree */
159static unsigned long ksm_pages_unshared;
160
161/* The number of rmap_items in use: to calculate pages_volatile */
162static unsigned long ksm_rmap_items;
163
164/* Limit on the number of unswappable pages used */
165static unsigned long ksm_max_kernel_pages;
166
167/* Number of pages ksmd should scan in one batch */
168static unsigned int ksm_thread_pages_to_scan;
169
170/* Milliseconds ksmd should sleep between batches */
171static unsigned int ksm_thread_sleep_millisecs;
172
173#define KSM_RUN_STOP	0
174#define KSM_RUN_MERGE	1
175#define KSM_RUN_UNMERGE	2
176static unsigned int ksm_run;
177
178static DECLARE_WAIT_QUEUE_HEAD(ksm_thread_wait);
179static DEFINE_MUTEX(ksm_thread_mutex);
180static DEFINE_SPINLOCK(ksm_mmlist_lock);
181
182#define KSM_KMEM_CACHE(__struct, __flags) kmem_cache_create("ksm_"#__struct,\
183		sizeof(struct __struct), __alignof__(struct __struct),\
184		(__flags), NULL)
185
186static int __init ksm_slab_init(void)
187{
188	rmap_item_cache = KSM_KMEM_CACHE(rmap_item, 0);
189	if (!rmap_item_cache)
190		goto out;
191
192	mm_slot_cache = KSM_KMEM_CACHE(mm_slot, 0);
193	if (!mm_slot_cache)
194		goto out_free;
195
196	return 0;
197
198out_free:
199	kmem_cache_destroy(rmap_item_cache);
200out:
201	return -ENOMEM;
202}
203
204static void __init ksm_slab_free(void)
205{
206	kmem_cache_destroy(mm_slot_cache);
207	kmem_cache_destroy(rmap_item_cache);
208	mm_slot_cache = NULL;
209}
210
211static inline struct rmap_item *alloc_rmap_item(void)
212{
213	struct rmap_item *rmap_item;
214
215	rmap_item = kmem_cache_zalloc(rmap_item_cache, GFP_KERNEL);
216	if (rmap_item)
217		ksm_rmap_items++;
218	return rmap_item;
219}
220
221static inline void free_rmap_item(struct rmap_item *rmap_item)
222{
223	ksm_rmap_items--;
224	rmap_item->mm = NULL;	/* debug safety */
225	kmem_cache_free(rmap_item_cache, rmap_item);
226}
227
228static inline struct mm_slot *alloc_mm_slot(void)
229{
230	if (!mm_slot_cache)	/* initialization failed */
231		return NULL;
232	return kmem_cache_zalloc(mm_slot_cache, GFP_KERNEL);
233}
234
235static inline void free_mm_slot(struct mm_slot *mm_slot)
236{
237	kmem_cache_free(mm_slot_cache, mm_slot);
238}
239
240static int __init mm_slots_hash_init(void)
241{
242	mm_slots_hash = kzalloc(MM_SLOTS_HASH_HEADS * sizeof(struct hlist_head),
243				GFP_KERNEL);
244	if (!mm_slots_hash)
245		return -ENOMEM;
246	return 0;
247}
248
249static void __init mm_slots_hash_free(void)
250{
251	kfree(mm_slots_hash);
252}
253
254static struct mm_slot *get_mm_slot(struct mm_struct *mm)
255{
256	struct mm_slot *mm_slot;
257	struct hlist_head *bucket;
258	struct hlist_node *node;
259
260	bucket = &mm_slots_hash[((unsigned long)mm / sizeof(struct mm_struct))
261				% MM_SLOTS_HASH_HEADS];
262	hlist_for_each_entry(mm_slot, node, bucket, link) {
263		if (mm == mm_slot->mm)
264			return mm_slot;
265	}
266	return NULL;
267}
268
269static void insert_to_mm_slots_hash(struct mm_struct *mm,
270				    struct mm_slot *mm_slot)
271{
272	struct hlist_head *bucket;
273
274	bucket = &mm_slots_hash[((unsigned long)mm / sizeof(struct mm_struct))
275				% MM_SLOTS_HASH_HEADS];
276	mm_slot->mm = mm;
277	INIT_LIST_HEAD(&mm_slot->rmap_list);
278	hlist_add_head(&mm_slot->link, bucket);
279}
280
281static inline int in_stable_tree(struct rmap_item *rmap_item)
282{
283	return rmap_item->address & STABLE_FLAG;
284}
285
286/*
287 * We use break_ksm to break COW on a ksm page: it's a stripped down
288 *
289 *	if (get_user_pages(current, mm, addr, 1, 1, 1, &page, NULL) == 1)
290 *		put_page(page);
291 *
292 * but taking great care only to touch a ksm page, in a VM_MERGEABLE vma,
293 * in case the application has unmapped and remapped mm,addr meanwhile.
294 * Could a ksm page appear anywhere else?  Actually yes, in a VM_PFNMAP
295 * mmap of /dev/mem or /dev/kmem, where we would not want to touch it.
296 */
297static void break_ksm(struct vm_area_struct *vma, unsigned long addr)
298{
299	struct page *page;
300	int ret;
301
302	do {
303		cond_resched();
304		page = follow_page(vma, addr, FOLL_GET);
305		if (!page)
306			break;
307		if (PageKsm(page))
308			ret = handle_mm_fault(vma->vm_mm, vma, addr,
309							FAULT_FLAG_WRITE);
310		else
311			ret = VM_FAULT_WRITE;
312		put_page(page);
313	} while (!(ret & (VM_FAULT_WRITE | VM_FAULT_SIGBUS)));
314
315	/* Which leaves us looping there if VM_FAULT_OOM: hmmm... */
316}
317
318static void __break_cow(struct mm_struct *mm, unsigned long addr)
319{
320	struct vm_area_struct *vma;
321
322	vma = find_vma(mm, addr);
323	if (!vma || vma->vm_start > addr)
324		return;
325	if (!(vma->vm_flags & VM_MERGEABLE) || !vma->anon_vma)
326		return;
327	break_ksm(vma, addr);
328}
329
330static void break_cow(struct mm_struct *mm, unsigned long addr)
331{
332	down_read(&mm->mmap_sem);
333	__break_cow(mm, addr);
334	up_read(&mm->mmap_sem);
335}
336
337static struct page *get_mergeable_page(struct rmap_item *rmap_item)
338{
339	struct mm_struct *mm = rmap_item->mm;
340	unsigned long addr = rmap_item->address;
341	struct vm_area_struct *vma;
342	struct page *page;
343
344	down_read(&mm->mmap_sem);
345	vma = find_vma(mm, addr);
346	if (!vma || vma->vm_start > addr)
347		goto out;
348	if (!(vma->vm_flags & VM_MERGEABLE) || !vma->anon_vma)
349		goto out;
350
351	page = follow_page(vma, addr, FOLL_GET);
352	if (!page)
353		goto out;
354	if (PageAnon(page)) {
355		flush_anon_page(vma, page, addr);
356		flush_dcache_page(page);
357	} else {
358		put_page(page);
359out:		page = NULL;
360	}
361	up_read(&mm->mmap_sem);
362	return page;
363}
364
365/*
366 * get_ksm_page: checks if the page at the virtual address in rmap_item
367 * is still PageKsm, in which case we can trust the content of the page,
368 * and it returns the gotten page; but NULL if the page has been zapped.
369 */
370static struct page *get_ksm_page(struct rmap_item *rmap_item)
371{
372	struct page *page;
373
374	page = get_mergeable_page(rmap_item);
375	if (page && !PageKsm(page)) {
376		put_page(page);
377		page = NULL;
378	}
379	return page;
380}
381
382/*
383 * Removing rmap_item from stable or unstable tree.
384 * This function will clean the information from the stable/unstable tree.
385 */
386static void remove_rmap_item_from_tree(struct rmap_item *rmap_item)
387{
388	if (in_stable_tree(rmap_item)) {
389		struct rmap_item *next_item = rmap_item->next;
390
391		if (rmap_item->address & NODE_FLAG) {
392			if (next_item) {
393				rb_replace_node(&rmap_item->node,
394						&next_item->node,
395						&root_stable_tree);
396				next_item->address |= NODE_FLAG;
397				ksm_pages_sharing--;
398			} else {
399				rb_erase(&rmap_item->node, &root_stable_tree);
400				ksm_pages_shared--;
401			}
402		} else {
403			struct rmap_item *prev_item = rmap_item->prev;
404
405			BUG_ON(prev_item->next != rmap_item);
406			prev_item->next = next_item;
407			if (next_item) {
408				BUG_ON(next_item->prev != rmap_item);
409				next_item->prev = rmap_item->prev;
410			}
411			ksm_pages_sharing--;
412		}
413
414		rmap_item->next = NULL;
415
416	} else if (rmap_item->address & NODE_FLAG) {
417		unsigned char age;
418		/*
419		 * ksm_thread can and must skip the rb_erase, because
420		 * root_unstable_tree was already reset to RB_ROOT.
421		 * But __ksm_exit has to be careful: do the rb_erase
422		 * if it's interrupting a scan, and this rmap_item was
423		 * inserted by this scan rather than left from before.
424		 *
425		 * Because of the case in which remove_mm_from_lists
426		 * increments seqnr before removing rmaps, unstable_nr
427		 * may even be 2 behind seqnr, but should never be
428		 * further behind.  Yes, I did have trouble with this!
429		 */
430		age = (unsigned char)(ksm_scan.seqnr - rmap_item->address);
431		BUG_ON(age > 2);
432		if (!age)
433			rb_erase(&rmap_item->node, &root_unstable_tree);
434		ksm_pages_unshared--;
435	}
436
437	rmap_item->address &= PAGE_MASK;
438
439	cond_resched();		/* we're called from many long loops */
440}
441
442static void remove_all_slot_rmap_items(struct mm_slot *mm_slot)
443{
444	struct rmap_item *rmap_item, *node;
445
446	list_for_each_entry_safe(rmap_item, node, &mm_slot->rmap_list, link) {
447		remove_rmap_item_from_tree(rmap_item);
448		list_del(&rmap_item->link);
449		free_rmap_item(rmap_item);
450	}
451}
452
453static void remove_trailing_rmap_items(struct mm_slot *mm_slot,
454				       struct list_head *cur)
455{
456	struct rmap_item *rmap_item;
457
458	while (cur != &mm_slot->rmap_list) {
459		rmap_item = list_entry(cur, struct rmap_item, link);
460		cur = cur->next;
461		remove_rmap_item_from_tree(rmap_item);
462		list_del(&rmap_item->link);
463		free_rmap_item(rmap_item);
464	}
465}
466
467/*
468 * Though it's very tempting to unmerge in_stable_tree(rmap_item)s rather
469 * than check every pte of a given vma, the locking doesn't quite work for
470 * that - an rmap_item is assigned to the stable tree after inserting ksm
471 * page and upping mmap_sem.  Nor does it fit with the way we skip dup'ing
472 * rmap_items from parent to child at fork time (so as not to waste time
473 * if exit comes before the next scan reaches it).
474 */
475static void unmerge_ksm_pages(struct vm_area_struct *vma,
476			      unsigned long start, unsigned long end)
477{
478	unsigned long addr;
479
480	for (addr = start; addr < end; addr += PAGE_SIZE)
481		break_ksm(vma, addr);
482}
483
484static void unmerge_and_remove_all_rmap_items(void)
485{
486	struct mm_slot *mm_slot;
487	struct mm_struct *mm;
488	struct vm_area_struct *vma;
489
490	list_for_each_entry(mm_slot, &ksm_mm_head.mm_list, mm_list) {
491		mm = mm_slot->mm;
492		down_read(&mm->mmap_sem);
493		for (vma = mm->mmap; vma; vma = vma->vm_next) {
494			if (!(vma->vm_flags & VM_MERGEABLE) || !vma->anon_vma)
495				continue;
496			unmerge_ksm_pages(vma, vma->vm_start, vma->vm_end);
497		}
498		remove_all_slot_rmap_items(mm_slot);
499		up_read(&mm->mmap_sem);
500	}
501
502	spin_lock(&ksm_mmlist_lock);
503	if (ksm_scan.mm_slot != &ksm_mm_head) {
504		ksm_scan.mm_slot = &ksm_mm_head;
505		ksm_scan.seqnr++;
506	}
507	spin_unlock(&ksm_mmlist_lock);
508}
509
510static void remove_mm_from_lists(struct mm_struct *mm)
511{
512	struct mm_slot *mm_slot;
513
514	spin_lock(&ksm_mmlist_lock);
515	mm_slot = get_mm_slot(mm);
516
517	/*
518	 * This mm_slot is always at the scanning cursor when we're
519	 * called from scan_get_next_rmap_item; but it's a special
520	 * case when we're called from __ksm_exit.
521	 */
522	if (ksm_scan.mm_slot == mm_slot) {
523		ksm_scan.mm_slot = list_entry(
524			mm_slot->mm_list.next, struct mm_slot, mm_list);
525		ksm_scan.address = 0;
526		ksm_scan.rmap_item = list_entry(
527			&ksm_scan.mm_slot->rmap_list, struct rmap_item, link);
528		if (ksm_scan.mm_slot == &ksm_mm_head)
529			ksm_scan.seqnr++;
530	}
531
532	hlist_del(&mm_slot->link);
533	list_del(&mm_slot->mm_list);
534	spin_unlock(&ksm_mmlist_lock);
535
536	remove_all_slot_rmap_items(mm_slot);
537	free_mm_slot(mm_slot);
538	clear_bit(MMF_VM_MERGEABLE, &mm->flags);
539}
540
541static u32 calc_checksum(struct page *page)
542{
543	u32 checksum;
544	void *addr = kmap_atomic(page, KM_USER0);
545	checksum = jhash2(addr, PAGE_SIZE / 4, 17);
546	kunmap_atomic(addr, KM_USER0);
547	return checksum;
548}
549
550static int memcmp_pages(struct page *page1, struct page *page2)
551{
552	char *addr1, *addr2;
553	int ret;
554
555	addr1 = kmap_atomic(page1, KM_USER0);
556	addr2 = kmap_atomic(page2, KM_USER1);
557	ret = memcmp(addr1, addr2, PAGE_SIZE);
558	kunmap_atomic(addr2, KM_USER1);
559	kunmap_atomic(addr1, KM_USER0);
560	return ret;
561}
562
563static inline int pages_identical(struct page *page1, struct page *page2)
564{
565	return !memcmp_pages(page1, page2);
566}
567
568static int write_protect_page(struct vm_area_struct *vma, struct page *page,
569			      pte_t *orig_pte)
570{
571	struct mm_struct *mm = vma->vm_mm;
572	unsigned long addr;
573	pte_t *ptep;
574	spinlock_t *ptl;
575	int swapped;
576	int err = -EFAULT;
577
578	addr = page_address_in_vma(page, vma);
579	if (addr == -EFAULT)
580		goto out;
581
582	ptep = page_check_address(page, mm, addr, &ptl, 0);
583	if (!ptep)
584		goto out;
585
586	if (pte_write(*ptep)) {
587		pte_t entry;
588
589		swapped = PageSwapCache(page);
590		flush_cache_page(vma, addr, page_to_pfn(page));
591		/*
592		 * Ok this is tricky, when get_user_pages_fast() run it doesnt
593		 * take any lock, therefore the check that we are going to make
594		 * with the pagecount against the mapcount is racey and
595		 * O_DIRECT can happen right after the check.
596		 * So we clear the pte and flush the tlb before the check
597		 * this assure us that no O_DIRECT can happen after the check
598		 * or in the middle of the check.
599		 */
600		entry = ptep_clear_flush(vma, addr, ptep);
601		/*
602		 * Check that no O_DIRECT or similar I/O is in progress on the
603		 * page
604		 */
605		if ((page_mapcount(page) + 2 + swapped) != page_count(page)) {
606			set_pte_at_notify(mm, addr, ptep, entry);
607			goto out_unlock;
608		}
609		entry = pte_wrprotect(entry);
610		set_pte_at_notify(mm, addr, ptep, entry);
611	}
612	*orig_pte = *ptep;
613	err = 0;
614
615out_unlock:
616	pte_unmap_unlock(ptep, ptl);
617out:
618	return err;
619}
620
621/**
622 * replace_page - replace page in vma by new ksm page
623 * @vma:      vma that holds the pte pointing to oldpage
624 * @oldpage:  the page we are replacing by newpage
625 * @newpage:  the ksm page we replace oldpage by
626 * @orig_pte: the original value of the pte
627 *
628 * Returns 0 on success, -EFAULT on failure.
629 */
630static int replace_page(struct vm_area_struct *vma, struct page *oldpage,
631			struct page *newpage, pte_t orig_pte)
632{
633	struct mm_struct *mm = vma->vm_mm;
634	pgd_t *pgd;
635	pud_t *pud;
636	pmd_t *pmd;
637	pte_t *ptep;
638	spinlock_t *ptl;
639	unsigned long addr;
640	pgprot_t prot;
641	int err = -EFAULT;
642
643	prot = vm_get_page_prot(vma->vm_flags & ~VM_WRITE);
644
645	addr = page_address_in_vma(oldpage, vma);
646	if (addr == -EFAULT)
647		goto out;
648
649	pgd = pgd_offset(mm, addr);
650	if (!pgd_present(*pgd))
651		goto out;
652
653	pud = pud_offset(pgd, addr);
654	if (!pud_present(*pud))
655		goto out;
656
657	pmd = pmd_offset(pud, addr);
658	if (!pmd_present(*pmd))
659		goto out;
660
661	ptep = pte_offset_map_lock(mm, pmd, addr, &ptl);
662	if (!pte_same(*ptep, orig_pte)) {
663		pte_unmap_unlock(ptep, ptl);
664		goto out;
665	}
666
667	get_page(newpage);
668	page_add_ksm_rmap(newpage);
669
670	flush_cache_page(vma, addr, pte_pfn(*ptep));
671	ptep_clear_flush(vma, addr, ptep);
672	set_pte_at_notify(mm, addr, ptep, mk_pte(newpage, prot));
673
674	page_remove_rmap(oldpage);
675	put_page(oldpage);
676
677	pte_unmap_unlock(ptep, ptl);
678	err = 0;
679out:
680	return err;
681}
682
683/*
684 * try_to_merge_one_page - take two pages and merge them into one
685 * @vma: the vma that hold the pte pointing into oldpage
686 * @oldpage: the page that we want to replace with newpage
687 * @newpage: the page that we want to map instead of oldpage
688 *
689 * Note:
690 * oldpage should be a PageAnon page, while newpage should be a PageKsm page,
691 * or a newly allocated kernel page which page_add_ksm_rmap will make PageKsm.
692 *
693 * This function returns 0 if the pages were merged, -EFAULT otherwise.
694 */
695static int try_to_merge_one_page(struct vm_area_struct *vma,
696				 struct page *oldpage,
697				 struct page *newpage)
698{
699	pte_t orig_pte = __pte(0);
700	int err = -EFAULT;
701
702	if (!(vma->vm_flags & VM_MERGEABLE))
703		goto out;
704
705	if (!PageAnon(oldpage))
706		goto out;
707
708	get_page(newpage);
709	get_page(oldpage);
710
711	/*
712	 * We need the page lock to read a stable PageSwapCache in
713	 * write_protect_page().  We use trylock_page() instead of
714	 * lock_page() because we don't want to wait here - we
715	 * prefer to continue scanning and merging different pages,
716	 * then come back to this page when it is unlocked.
717	 */
718	if (!trylock_page(oldpage))
719		goto out_putpage;
720	/*
721	 * If this anonymous page is mapped only here, its pte may need
722	 * to be write-protected.  If it's mapped elsewhere, all of its
723	 * ptes are necessarily already write-protected.  But in either
724	 * case, we need to lock and check page_count is not raised.
725	 */
726	if (write_protect_page(vma, oldpage, &orig_pte)) {
727		unlock_page(oldpage);
728		goto out_putpage;
729	}
730	unlock_page(oldpage);
731
732	if (pages_identical(oldpage, newpage))
733		err = replace_page(vma, oldpage, newpage, orig_pte);
734
735out_putpage:
736	put_page(oldpage);
737	put_page(newpage);
738out:
739	return err;
740}
741
742/*
743 * try_to_merge_two_pages - take two identical pages and prepare them
744 * to be merged into one page.
745 *
746 * This function returns 0 if we successfully mapped two identical pages
747 * into one page, -EFAULT otherwise.
748 *
749 * Note that this function allocates a new kernel page: if one of the pages
750 * is already a ksm page, try_to_merge_with_ksm_page should be used.
751 */
752static int try_to_merge_two_pages(struct mm_struct *mm1, unsigned long addr1,
753				  struct page *page1, struct mm_struct *mm2,
754				  unsigned long addr2, struct page *page2)
755{
756	struct vm_area_struct *vma;
757	struct page *kpage;
758	int err = -EFAULT;
759
760	/*
761	 * The number of nodes in the stable tree
762	 * is the number of kernel pages that we hold.
763	 */
764	if (ksm_max_kernel_pages &&
765	    ksm_max_kernel_pages <= ksm_pages_shared)
766		return err;
767
768	kpage = alloc_page(GFP_HIGHUSER);
769	if (!kpage)
770		return err;
771
772	down_read(&mm1->mmap_sem);
773	vma = find_vma(mm1, addr1);
774	if (!vma || vma->vm_start > addr1) {
775		put_page(kpage);
776		up_read(&mm1->mmap_sem);
777		return err;
778	}
779
780	copy_user_highpage(kpage, page1, addr1, vma);
781	err = try_to_merge_one_page(vma, page1, kpage);
782	up_read(&mm1->mmap_sem);
783
784	if (!err) {
785		down_read(&mm2->mmap_sem);
786		vma = find_vma(mm2, addr2);
787		if (!vma || vma->vm_start > addr2) {
788			put_page(kpage);
789			up_read(&mm2->mmap_sem);
790			break_cow(mm1, addr1);
791			return -EFAULT;
792		}
793
794		err = try_to_merge_one_page(vma, page2, kpage);
795		up_read(&mm2->mmap_sem);
796
797		/*
798		 * If the second try_to_merge_one_page failed, we have a
799		 * ksm page with just one pte pointing to it, so break it.
800		 */
801		if (err)
802			break_cow(mm1, addr1);
803	}
804
805	put_page(kpage);
806	return err;
807}
808
809/*
810 * try_to_merge_with_ksm_page - like try_to_merge_two_pages,
811 * but no new kernel page is allocated: kpage must already be a ksm page.
812 */
813static int try_to_merge_with_ksm_page(struct mm_struct *mm1,
814				      unsigned long addr1,
815				      struct page *page1,
816				      struct page *kpage)
817{
818	struct vm_area_struct *vma;
819	int err = -EFAULT;
820
821	down_read(&mm1->mmap_sem);
822	vma = find_vma(mm1, addr1);
823	if (!vma || vma->vm_start > addr1) {
824		up_read(&mm1->mmap_sem);
825		return err;
826	}
827
828	err = try_to_merge_one_page(vma, page1, kpage);
829	up_read(&mm1->mmap_sem);
830
831	return err;
832}
833
834/*
835 * stable_tree_search - search page inside the stable tree
836 * @page: the page that we are searching identical pages to.
837 * @page2: pointer into identical page that we are holding inside the stable
838 *	   tree that we have found.
839 * @rmap_item: the reverse mapping item
840 *
841 * This function checks if there is a page inside the stable tree
842 * with identical content to the page that we are scanning right now.
843 *
844 * This function return rmap_item pointer to the identical item if found,
845 * NULL otherwise.
846 */
847static struct rmap_item *stable_tree_search(struct page *page,
848					    struct page **page2,
849					    struct rmap_item *rmap_item)
850{
851	struct rb_node *node = root_stable_tree.rb_node;
852
853	while (node) {
854		struct rmap_item *tree_rmap_item, *next_rmap_item;
855		int ret;
856
857		tree_rmap_item = rb_entry(node, struct rmap_item, node);
858		while (tree_rmap_item) {
859			BUG_ON(!in_stable_tree(tree_rmap_item));
860			cond_resched();
861			page2[0] = get_ksm_page(tree_rmap_item);
862			if (page2[0])
863				break;
864			next_rmap_item = tree_rmap_item->next;
865			remove_rmap_item_from_tree(tree_rmap_item);
866			tree_rmap_item = next_rmap_item;
867		}
868		if (!tree_rmap_item)
869			return NULL;
870
871		ret = memcmp_pages(page, page2[0]);
872
873		if (ret < 0) {
874			put_page(page2[0]);
875			node = node->rb_left;
876		} else if (ret > 0) {
877			put_page(page2[0]);
878			node = node->rb_right;
879		} else {
880			return tree_rmap_item;
881		}
882	}
883
884	return NULL;
885}
886
887/*
888 * stable_tree_insert - insert rmap_item pointing to new ksm page
889 * into the stable tree.
890 *
891 * @page: the page that we are searching identical page to inside the stable
892 *	  tree.
893 * @rmap_item: pointer to the reverse mapping item.
894 *
895 * This function returns rmap_item if success, NULL otherwise.
896 */
897static struct rmap_item *stable_tree_insert(struct page *page,
898					    struct rmap_item *rmap_item)
899{
900	struct rb_node **new = &root_stable_tree.rb_node;
901	struct rb_node *parent = NULL;
902
903	while (*new) {
904		struct rmap_item *tree_rmap_item, *next_rmap_item;
905		struct page *tree_page;
906		int ret;
907
908		tree_rmap_item = rb_entry(*new, struct rmap_item, node);
909		while (tree_rmap_item) {
910			BUG_ON(!in_stable_tree(tree_rmap_item));
911			cond_resched();
912			tree_page = get_ksm_page(tree_rmap_item);
913			if (tree_page)
914				break;
915			next_rmap_item = tree_rmap_item->next;
916			remove_rmap_item_from_tree(tree_rmap_item);
917			tree_rmap_item = next_rmap_item;
918		}
919		if (!tree_rmap_item)
920			return NULL;
921
922		ret = memcmp_pages(page, tree_page);
923		put_page(tree_page);
924
925		parent = *new;
926		if (ret < 0)
927			new = &parent->rb_left;
928		else if (ret > 0)
929			new = &parent->rb_right;
930		else {
931			/*
932			 * It is not a bug that stable_tree_search() didn't
933			 * find this node: because at that time our page was
934			 * not yet write-protected, so may have changed since.
935			 */
936			return NULL;
937		}
938	}
939
940	rmap_item->address |= NODE_FLAG | STABLE_FLAG;
941	rmap_item->next = NULL;
942	rb_link_node(&rmap_item->node, parent, new);
943	rb_insert_color(&rmap_item->node, &root_stable_tree);
944
945	ksm_pages_shared++;
946	return rmap_item;
947}
948
949/*
950 * unstable_tree_search_insert - search and insert items into the unstable tree.
951 *
952 * @page: the page that we are going to search for identical page or to insert
953 *	  into the unstable tree
954 * @page2: pointer into identical page that was found inside the unstable tree
955 * @rmap_item: the reverse mapping item of page
956 *
957 * This function searches for a page in the unstable tree identical to the
958 * page currently being scanned; and if no identical page is found in the
959 * tree, we insert rmap_item as a new object into the unstable tree.
960 *
961 * This function returns pointer to rmap_item found to be identical
962 * to the currently scanned page, NULL otherwise.
963 *
964 * This function does both searching and inserting, because they share
965 * the same walking algorithm in an rbtree.
966 */
967static struct rmap_item *unstable_tree_search_insert(struct page *page,
968						struct page **page2,
969						struct rmap_item *rmap_item)
970{
971	struct rb_node **new = &root_unstable_tree.rb_node;
972	struct rb_node *parent = NULL;
973
974	while (*new) {
975		struct rmap_item *tree_rmap_item;
976		int ret;
977
978		tree_rmap_item = rb_entry(*new, struct rmap_item, node);
979		page2[0] = get_mergeable_page(tree_rmap_item);
980		if (!page2[0])
981			return NULL;
982
983		/*
984		 * Don't substitute an unswappable ksm page
985		 * just for one good swappable forked page.
986		 */
987		if (page == page2[0]) {
988			put_page(page2[0]);
989			return NULL;
990		}
991
992		ret = memcmp_pages(page, page2[0]);
993
994		parent = *new;
995		if (ret < 0) {
996			put_page(page2[0]);
997			new = &parent->rb_left;
998		} else if (ret > 0) {
999			put_page(page2[0]);
1000			new = &parent->rb_right;
1001		} else {
1002			return tree_rmap_item;
1003		}
1004	}
1005
1006	rmap_item->address |= NODE_FLAG;
1007	rmap_item->address |= (ksm_scan.seqnr & SEQNR_MASK);
1008	rb_link_node(&rmap_item->node, parent, new);
1009	rb_insert_color(&rmap_item->node, &root_unstable_tree);
1010
1011	ksm_pages_unshared++;
1012	return NULL;
1013}
1014
1015/*
1016 * stable_tree_append - add another rmap_item to the linked list of
1017 * rmap_items hanging off a given node of the stable tree, all sharing
1018 * the same ksm page.
1019 */
1020static void stable_tree_append(struct rmap_item *rmap_item,
1021			       struct rmap_item *tree_rmap_item)
1022{
1023	rmap_item->next = tree_rmap_item->next;
1024	rmap_item->prev = tree_rmap_item;
1025
1026	if (tree_rmap_item->next)
1027		tree_rmap_item->next->prev = rmap_item;
1028
1029	tree_rmap_item->next = rmap_item;
1030	rmap_item->address |= STABLE_FLAG;
1031
1032	ksm_pages_sharing++;
1033}
1034
1035/*
1036 * cmp_and_merge_page - take a page computes its hash value and check if there
1037 * is similar hash value to different page,
1038 * in case we find that there is similar hash to different page we call to
1039 * try_to_merge_two_pages().
1040 *
1041 * @page: the page that we are searching identical page to.
1042 * @rmap_item: the reverse mapping into the virtual address of this page
1043 */
1044static void cmp_and_merge_page(struct page *page, struct rmap_item *rmap_item)
1045{
1046	struct page *page2[1];
1047	struct rmap_item *tree_rmap_item;
1048	unsigned int checksum;
1049	int err;
1050
1051	if (in_stable_tree(rmap_item))
1052		remove_rmap_item_from_tree(rmap_item);
1053
1054	/* We first start with searching the page inside the stable tree */
1055	tree_rmap_item = stable_tree_search(page, page2, rmap_item);
1056	if (tree_rmap_item) {
1057		if (page == page2[0])			/* forked */
1058			err = 0;
1059		else
1060			err = try_to_merge_with_ksm_page(rmap_item->mm,
1061							 rmap_item->address,
1062							 page, page2[0]);
1063		put_page(page2[0]);
1064
1065		if (!err) {
1066			/*
1067			 * The page was successfully merged:
1068			 * add its rmap_item to the stable tree.
1069			 */
1070			stable_tree_append(rmap_item, tree_rmap_item);
1071		}
1072		return;
1073	}
1074
1075	/*
1076	 * A ksm page might have got here by fork, but its other
1077	 * references have already been removed from the stable tree.
1078	 */
1079	if (PageKsm(page))
1080		break_cow(rmap_item->mm, rmap_item->address);
1081
1082	/*
1083	 * In case the hash value of the page was changed from the last time we
1084	 * have calculated it, this page to be changed frequely, therefore we
1085	 * don't want to insert it to the unstable tree, and we don't want to
1086	 * waste our time to search if there is something identical to it there.
1087	 */
1088	checksum = calc_checksum(page);
1089	if (rmap_item->oldchecksum != checksum) {
1090		rmap_item->oldchecksum = checksum;
1091		return;
1092	}
1093
1094	tree_rmap_item = unstable_tree_search_insert(page, page2, rmap_item);
1095	if (tree_rmap_item) {
1096		err = try_to_merge_two_pages(rmap_item->mm,
1097					     rmap_item->address, page,
1098					     tree_rmap_item->mm,
1099					     tree_rmap_item->address, page2[0]);
1100		/*
1101		 * As soon as we merge this page, we want to remove the
1102		 * rmap_item of the page we have merged with from the unstable
1103		 * tree, and insert it instead as new node in the stable tree.
1104		 */
1105		if (!err) {
1106			rb_erase(&tree_rmap_item->node, &root_unstable_tree);
1107			tree_rmap_item->address &= ~NODE_FLAG;
1108			ksm_pages_unshared--;
1109
1110			/*
1111			 * If we fail to insert the page into the stable tree,
1112			 * we will have 2 virtual addresses that are pointing
1113			 * to a ksm page left outside the stable tree,
1114			 * in which case we need to break_cow on both.
1115			 */
1116			if (stable_tree_insert(page2[0], tree_rmap_item))
1117				stable_tree_append(rmap_item, tree_rmap_item);
1118			else {
1119				break_cow(tree_rmap_item->mm,
1120						tree_rmap_item->address);
1121				break_cow(rmap_item->mm, rmap_item->address);
1122			}
1123		}
1124
1125		put_page(page2[0]);
1126	}
1127}
1128
1129static struct rmap_item *get_next_rmap_item(struct mm_slot *mm_slot,
1130					    struct list_head *cur,
1131					    unsigned long addr)
1132{
1133	struct rmap_item *rmap_item;
1134
1135	while (cur != &mm_slot->rmap_list) {
1136		rmap_item = list_entry(cur, struct rmap_item, link);
1137		if ((rmap_item->address & PAGE_MASK) == addr) {
1138			if (!in_stable_tree(rmap_item))
1139				remove_rmap_item_from_tree(rmap_item);
1140			return rmap_item;
1141		}
1142		if (rmap_item->address > addr)
1143			break;
1144		cur = cur->next;
1145		remove_rmap_item_from_tree(rmap_item);
1146		list_del(&rmap_item->link);
1147		free_rmap_item(rmap_item);
1148	}
1149
1150	rmap_item = alloc_rmap_item();
1151	if (rmap_item) {
1152		/* It has already been zeroed */
1153		rmap_item->mm = mm_slot->mm;
1154		rmap_item->address = addr;
1155		list_add_tail(&rmap_item->link, cur);
1156	}
1157	return rmap_item;
1158}
1159
1160static struct rmap_item *scan_get_next_rmap_item(struct page **page)
1161{
1162	struct mm_struct *mm;
1163	struct mm_slot *slot;
1164	struct vm_area_struct *vma;
1165	struct rmap_item *rmap_item;
1166
1167	if (list_empty(&ksm_mm_head.mm_list))
1168		return NULL;
1169
1170	slot = ksm_scan.mm_slot;
1171	if (slot == &ksm_mm_head) {
1172		root_unstable_tree = RB_ROOT;
1173
1174		spin_lock(&ksm_mmlist_lock);
1175		slot = list_entry(slot->mm_list.next, struct mm_slot, mm_list);
1176		ksm_scan.mm_slot = slot;
1177		spin_unlock(&ksm_mmlist_lock);
1178next_mm:
1179		ksm_scan.address = 0;
1180		ksm_scan.rmap_item = list_entry(&slot->rmap_list,
1181						struct rmap_item, link);
1182	}
1183
1184	mm = slot->mm;
1185	down_read(&mm->mmap_sem);
1186	for (vma = find_vma(mm, ksm_scan.address); vma; vma = vma->vm_next) {
1187		if (!(vma->vm_flags & VM_MERGEABLE))
1188			continue;
1189		if (ksm_scan.address < vma->vm_start)
1190			ksm_scan.address = vma->vm_start;
1191		if (!vma->anon_vma)
1192			ksm_scan.address = vma->vm_end;
1193
1194		while (ksm_scan.address < vma->vm_end) {
1195			*page = follow_page(vma, ksm_scan.address, FOLL_GET);
1196			if (*page && PageAnon(*page)) {
1197				flush_anon_page(vma, *page, ksm_scan.address);
1198				flush_dcache_page(*page);
1199				rmap_item = get_next_rmap_item(slot,
1200					ksm_scan.rmap_item->link.next,
1201					ksm_scan.address);
1202				if (rmap_item) {
1203					ksm_scan.rmap_item = rmap_item;
1204					ksm_scan.address += PAGE_SIZE;
1205				} else
1206					put_page(*page);
1207				up_read(&mm->mmap_sem);
1208				return rmap_item;
1209			}
1210			if (*page)
1211				put_page(*page);
1212			ksm_scan.address += PAGE_SIZE;
1213			cond_resched();
1214		}
1215	}
1216
1217	if (!ksm_scan.address) {
1218		/*
1219		 * We've completed a full scan of all vmas, holding mmap_sem
1220		 * throughout, and found no VM_MERGEABLE: so do the same as
1221		 * __ksm_exit does to remove this mm from all our lists now.
1222		 */
1223		remove_mm_from_lists(mm);
1224		up_read(&mm->mmap_sem);
1225		slot = ksm_scan.mm_slot;
1226		if (slot != &ksm_mm_head)
1227			goto next_mm;
1228		return NULL;
1229	}
1230
1231	/*
1232	 * Nuke all the rmap_items that are above this current rmap:
1233	 * because there were no VM_MERGEABLE vmas with such addresses.
1234	 */
1235	remove_trailing_rmap_items(slot, ksm_scan.rmap_item->link.next);
1236	up_read(&mm->mmap_sem);
1237
1238	spin_lock(&ksm_mmlist_lock);
1239	slot = list_entry(slot->mm_list.next, struct mm_slot, mm_list);
1240	ksm_scan.mm_slot = slot;
1241	spin_unlock(&ksm_mmlist_lock);
1242
1243	/* Repeat until we've completed scanning the whole list */
1244	if (slot != &ksm_mm_head)
1245		goto next_mm;
1246
1247	/*
1248	 * Bump seqnr here rather than at top, so that __ksm_exit
1249	 * can skip rb_erase on unstable tree until we run again.
1250	 */
1251	ksm_scan.seqnr++;
1252	return NULL;
1253}
1254
1255/**
1256 * ksm_do_scan  - the ksm scanner main worker function.
1257 * @scan_npages - number of pages we want to scan before we return.
1258 */
1259static void ksm_do_scan(unsigned int scan_npages)
1260{
1261	struct rmap_item *rmap_item;
1262	struct page *page;
1263
1264	while (scan_npages--) {
1265		cond_resched();
1266		rmap_item = scan_get_next_rmap_item(&page);
1267		if (!rmap_item)
1268			return;
1269		if (!PageKsm(page) || !in_stable_tree(rmap_item))
1270			cmp_and_merge_page(page, rmap_item);
1271		else if (page_mapcount(page) == 1) {
1272			/*
1273			 * Replace now-unshared ksm page by ordinary page.
1274			 */
1275			break_cow(rmap_item->mm, rmap_item->address);
1276			remove_rmap_item_from_tree(rmap_item);
1277			rmap_item->oldchecksum = calc_checksum(page);
1278		}
1279		put_page(page);
1280	}
1281}
1282
1283static int ksm_scan_thread(void *nothing)
1284{
1285	set_user_nice(current, 5);
1286
1287	while (!kthread_should_stop()) {
1288		if (ksm_run & KSM_RUN_MERGE) {
1289			mutex_lock(&ksm_thread_mutex);
1290			ksm_do_scan(ksm_thread_pages_to_scan);
1291			mutex_unlock(&ksm_thread_mutex);
1292			schedule_timeout_interruptible(
1293				msecs_to_jiffies(ksm_thread_sleep_millisecs));
1294		} else {
1295			wait_event_interruptible(ksm_thread_wait,
1296					(ksm_run & KSM_RUN_MERGE) ||
1297					kthread_should_stop());
1298		}
1299	}
1300	return 0;
1301}
1302
1303int ksm_madvise(struct vm_area_struct *vma, unsigned long start,
1304		unsigned long end, int advice, unsigned long *vm_flags)
1305{
1306	struct mm_struct *mm = vma->vm_mm;
1307
1308	switch (advice) {
1309	case MADV_MERGEABLE:
1310		/*
1311		 * Be somewhat over-protective for now!
1312		 */
1313		if (*vm_flags & (VM_MERGEABLE | VM_SHARED  | VM_MAYSHARE   |
1314				 VM_PFNMAP    | VM_IO      | VM_DONTEXPAND |
1315				 VM_RESERVED  | VM_HUGETLB | VM_INSERTPAGE |
1316				 VM_MIXEDMAP  | VM_SAO))
1317			return 0;		/* just ignore the advice */
1318
1319		if (!test_bit(MMF_VM_MERGEABLE, &mm->flags))
1320			if (__ksm_enter(mm) < 0)
1321				return -EAGAIN;
1322
1323		*vm_flags |= VM_MERGEABLE;
1324		break;
1325
1326	case MADV_UNMERGEABLE:
1327		if (!(*vm_flags & VM_MERGEABLE))
1328			return 0;		/* just ignore the advice */
1329
1330		if (vma->anon_vma)
1331			unmerge_ksm_pages(vma, start, end);
1332
1333		*vm_flags &= ~VM_MERGEABLE;
1334		break;
1335	}
1336
1337	return 0;
1338}
1339
1340int __ksm_enter(struct mm_struct *mm)
1341{
1342	struct mm_slot *mm_slot = alloc_mm_slot();
1343	if (!mm_slot)
1344		return -ENOMEM;
1345
1346	spin_lock(&ksm_mmlist_lock);
1347	insert_to_mm_slots_hash(mm, mm_slot);
1348	/*
1349	 * Insert just behind the scanning cursor, to let the area settle
1350	 * down a little; when fork is followed by immediate exec, we don't
1351	 * want ksmd to waste time setting up and tearing down an rmap_list.
1352	 */
1353	list_add_tail(&mm_slot->mm_list, &ksm_scan.mm_slot->mm_list);
1354	spin_unlock(&ksm_mmlist_lock);
1355
1356	set_bit(MMF_VM_MERGEABLE, &mm->flags);
1357	return 0;
1358}
1359
1360void __ksm_exit(struct mm_struct *mm)
1361{
1362	/*
1363	 * This process is exiting: doesn't hold and doesn't need mmap_sem;
1364	 * but we do need to exclude ksmd and other exiters while we modify
1365	 * the various lists and trees.
1366	 */
1367	mutex_lock(&ksm_thread_mutex);
1368	remove_mm_from_lists(mm);
1369	mutex_unlock(&ksm_thread_mutex);
1370}
1371
1372#define KSM_ATTR_RO(_name) \
1373	static struct kobj_attribute _name##_attr = __ATTR_RO(_name)
1374#define KSM_ATTR(_name) \
1375	static struct kobj_attribute _name##_attr = \
1376		__ATTR(_name, 0644, _name##_show, _name##_store)
1377
1378static ssize_t sleep_millisecs_show(struct kobject *kobj,
1379				    struct kobj_attribute *attr, char *buf)
1380{
1381	return sprintf(buf, "%u\n", ksm_thread_sleep_millisecs);
1382}
1383
1384static ssize_t sleep_millisecs_store(struct kobject *kobj,
1385				     struct kobj_attribute *attr,
1386				     const char *buf, size_t count)
1387{
1388	unsigned long msecs;
1389	int err;
1390
1391	err = strict_strtoul(buf, 10, &msecs);
1392	if (err || msecs > UINT_MAX)
1393		return -EINVAL;
1394
1395	ksm_thread_sleep_millisecs = msecs;
1396
1397	return count;
1398}
1399KSM_ATTR(sleep_millisecs);
1400
1401static ssize_t pages_to_scan_show(struct kobject *kobj,
1402				  struct kobj_attribute *attr, char *buf)
1403{
1404	return sprintf(buf, "%u\n", ksm_thread_pages_to_scan);
1405}
1406
1407static ssize_t pages_to_scan_store(struct kobject *kobj,
1408				   struct kobj_attribute *attr,
1409				   const char *buf, size_t count)
1410{
1411	int err;
1412	unsigned long nr_pages;
1413
1414	err = strict_strtoul(buf, 10, &nr_pages);
1415	if (err || nr_pages > UINT_MAX)
1416		return -EINVAL;
1417
1418	ksm_thread_pages_to_scan = nr_pages;
1419
1420	return count;
1421}
1422KSM_ATTR(pages_to_scan);
1423
1424static ssize_t run_show(struct kobject *kobj, struct kobj_attribute *attr,
1425			char *buf)
1426{
1427	return sprintf(buf, "%u\n", ksm_run);
1428}
1429
1430static ssize_t run_store(struct kobject *kobj, struct kobj_attribute *attr,
1431			 const char *buf, size_t count)
1432{
1433	int err;
1434	unsigned long flags;
1435
1436	err = strict_strtoul(buf, 10, &flags);
1437	if (err || flags > UINT_MAX)
1438		return -EINVAL;
1439	if (flags > KSM_RUN_UNMERGE)
1440		return -EINVAL;
1441
1442	/*
1443	 * KSM_RUN_MERGE sets ksmd running, and 0 stops it running.
1444	 * KSM_RUN_UNMERGE stops it running and unmerges all rmap_items,
1445	 * breaking COW to free the unswappable pages_shared (but leaves
1446	 * mm_slots on the list for when ksmd may be set running again).
1447	 */
1448
1449	mutex_lock(&ksm_thread_mutex);
1450	if (ksm_run != flags) {
1451		ksm_run = flags;
1452		if (flags & KSM_RUN_UNMERGE)
1453			unmerge_and_remove_all_rmap_items();
1454	}
1455	mutex_unlock(&ksm_thread_mutex);
1456
1457	if (flags & KSM_RUN_MERGE)
1458		wake_up_interruptible(&ksm_thread_wait);
1459
1460	return count;
1461}
1462KSM_ATTR(run);
1463
1464static ssize_t max_kernel_pages_store(struct kobject *kobj,
1465				      struct kobj_attribute *attr,
1466				      const char *buf, size_t count)
1467{
1468	int err;
1469	unsigned long nr_pages;
1470
1471	err = strict_strtoul(buf, 10, &nr_pages);
1472	if (err)
1473		return -EINVAL;
1474
1475	ksm_max_kernel_pages = nr_pages;
1476
1477	return count;
1478}
1479
1480static ssize_t max_kernel_pages_show(struct kobject *kobj,
1481				     struct kobj_attribute *attr, char *buf)
1482{
1483	return sprintf(buf, "%lu\n", ksm_max_kernel_pages);
1484}
1485KSM_ATTR(max_kernel_pages);
1486
1487static ssize_t pages_shared_show(struct kobject *kobj,
1488				 struct kobj_attribute *attr, char *buf)
1489{
1490	return sprintf(buf, "%lu\n", ksm_pages_shared);
1491}
1492KSM_ATTR_RO(pages_shared);
1493
1494static ssize_t pages_sharing_show(struct kobject *kobj,
1495				  struct kobj_attribute *attr, char *buf)
1496{
1497	return sprintf(buf, "%lu\n", ksm_pages_sharing);
1498}
1499KSM_ATTR_RO(pages_sharing);
1500
1501static ssize_t pages_unshared_show(struct kobject *kobj,
1502				   struct kobj_attribute *attr, char *buf)
1503{
1504	return sprintf(buf, "%lu\n", ksm_pages_unshared);
1505}
1506KSM_ATTR_RO(pages_unshared);
1507
1508static ssize_t pages_volatile_show(struct kobject *kobj,
1509				   struct kobj_attribute *attr, char *buf)
1510{
1511	long ksm_pages_volatile;
1512
1513	ksm_pages_volatile = ksm_rmap_items - ksm_pages_shared
1514				- ksm_pages_sharing - ksm_pages_unshared;
1515	/*
1516	 * It was not worth any locking to calculate that statistic,
1517	 * but it might therefore sometimes be negative: conceal that.
1518	 */
1519	if (ksm_pages_volatile < 0)
1520		ksm_pages_volatile = 0;
1521	return sprintf(buf, "%ld\n", ksm_pages_volatile);
1522}
1523KSM_ATTR_RO(pages_volatile);
1524
1525static ssize_t full_scans_show(struct kobject *kobj,
1526			       struct kobj_attribute *attr, char *buf)
1527{
1528	return sprintf(buf, "%lu\n", ksm_scan.seqnr);
1529}
1530KSM_ATTR_RO(full_scans);
1531
1532static struct attribute *ksm_attrs[] = {
1533	&sleep_millisecs_attr.attr,
1534	&pages_to_scan_attr.attr,
1535	&run_attr.attr,
1536	&max_kernel_pages_attr.attr,
1537	&pages_shared_attr.attr,
1538	&pages_sharing_attr.attr,
1539	&pages_unshared_attr.attr,
1540	&pages_volatile_attr.attr,
1541	&full_scans_attr.attr,
1542	NULL,
1543};
1544
1545static struct attribute_group ksm_attr_group = {
1546	.attrs = ksm_attrs,
1547	.name = "ksm",
1548};
1549
1550static int __init ksm_init(void)
1551{
1552	struct task_struct *ksm_thread;
1553	int err;
1554
1555	err = ksm_slab_init();
1556	if (err)
1557		goto out;
1558
1559	err = mm_slots_hash_init();
1560	if (err)
1561		goto out_free1;
1562
1563	ksm_thread = kthread_run(ksm_scan_thread, NULL, "ksmd");
1564	if (IS_ERR(ksm_thread)) {
1565		printk(KERN_ERR "ksm: creating kthread failed\n");
1566		err = PTR_ERR(ksm_thread);
1567		goto out_free2;
1568	}
1569
1570	err = sysfs_create_group(mm_kobj, &ksm_attr_group);
1571	if (err) {
1572		printk(KERN_ERR "ksm: register sysfs failed\n");
1573		goto out_free3;
1574	}
1575
1576	return 0;
1577
1578out_free3:
1579	kthread_stop(ksm_thread);
1580out_free2:
1581	mm_slots_hash_free();
1582out_free1:
1583	ksm_slab_free();
1584out:
1585	return err;
1586}
1587module_init(ksm_init)
1588