ksm.c revision cba48b98f2348c814316c4b4f411a07a0e4a2bf9
1/*
2 * Memory merging support.
3 *
4 * This code enables dynamic sharing of identical pages found in different
5 * memory areas, even if they are not shared by fork()
6 *
7 * Copyright (C) 2008-2009 Red Hat, Inc.
8 * Authors:
9 *	Izik Eidus
10 *	Andrea Arcangeli
11 *	Chris Wright
12 *	Hugh Dickins
13 *
14 * This work is licensed under the terms of the GNU GPL, version 2.
15 */
16
17#include <linux/errno.h>
18#include <linux/mm.h>
19#include <linux/fs.h>
20#include <linux/mman.h>
21#include <linux/sched.h>
22#include <linux/rwsem.h>
23#include <linux/pagemap.h>
24#include <linux/rmap.h>
25#include <linux/spinlock.h>
26#include <linux/jhash.h>
27#include <linux/delay.h>
28#include <linux/kthread.h>
29#include <linux/wait.h>
30#include <linux/slab.h>
31#include <linux/rbtree.h>
32#include <linux/memory.h>
33#include <linux/mmu_notifier.h>
34#include <linux/swap.h>
35#include <linux/ksm.h>
36
37#include <asm/tlbflush.h>
38#include "internal.h"
39
40/*
41 * A few notes about the KSM scanning process,
42 * to make it easier to understand the data structures below:
43 *
44 * In order to reduce excessive scanning, KSM sorts the memory pages by their
45 * contents into a data structure that holds pointers to the pages' locations.
46 *
47 * Since the contents of the pages may change at any moment, KSM cannot just
48 * insert the pages into a normal sorted tree and expect it to find anything.
49 * Therefore KSM uses two data structures - the stable and the unstable tree.
50 *
51 * The stable tree holds pointers to all the merged pages (ksm pages), sorted
52 * by their contents.  Because each such page is write-protected, searching on
53 * this tree is fully assured to be working (except when pages are unmapped),
54 * and therefore this tree is called the stable tree.
55 *
56 * In addition to the stable tree, KSM uses a second data structure called the
57 * unstable tree: this tree holds pointers to pages which have been found to
58 * be "unchanged for a period of time".  The unstable tree sorts these pages
59 * by their contents, but since they are not write-protected, KSM cannot rely
60 * upon the unstable tree to work correctly - the unstable tree is liable to
61 * be corrupted as its contents are modified, and so it is called unstable.
62 *
63 * KSM solves this problem by several techniques:
64 *
65 * 1) The unstable tree is flushed every time KSM completes scanning all
66 *    memory areas, and then the tree is rebuilt again from the beginning.
67 * 2) KSM will only insert into the unstable tree, pages whose hash value
68 *    has not changed since the previous scan of all memory areas.
69 * 3) The unstable tree is a RedBlack Tree - so its balancing is based on the
70 *    colors of the nodes and not on their contents, assuring that even when
71 *    the tree gets "corrupted" it won't get out of balance, so scanning time
72 *    remains the same (also, searching and inserting nodes in an rbtree uses
73 *    the same algorithm, so we have no overhead when we flush and rebuild).
74 * 4) KSM never flushes the stable tree, which means that even if it were to
75 *    take 10 attempts to find a page in the unstable tree, once it is found,
76 *    it is secured in the stable tree.  (When we scan a new page, we first
77 *    compare it against the stable tree, and then against the unstable tree.)
78 */
79
80/**
81 * struct mm_slot - ksm information per mm that is being scanned
82 * @link: link to the mm_slots hash list
83 * @mm_list: link into the mm_slots list, rooted in ksm_mm_head
84 * @rmap_list: head for this mm_slot's singly-linked list of rmap_items
85 * @mm: the mm that this information is valid for
86 */
87struct mm_slot {
88	struct hlist_node link;
89	struct list_head mm_list;
90	struct rmap_item *rmap_list;
91	struct mm_struct *mm;
92};
93
94/**
95 * struct ksm_scan - cursor for scanning
96 * @mm_slot: the current mm_slot we are scanning
97 * @address: the next address inside that to be scanned
98 * @rmap_list: link to the next rmap to be scanned in the rmap_list
99 * @seqnr: count of completed full scans (needed when removing unstable node)
100 *
101 * There is only the one ksm_scan instance of this cursor structure.
102 */
103struct ksm_scan {
104	struct mm_slot *mm_slot;
105	unsigned long address;
106	struct rmap_item **rmap_list;
107	unsigned long seqnr;
108};
109
110/**
111 * struct stable_node - node of the stable rbtree
112 * @node: rb node of this ksm page in the stable tree
113 * @hlist: hlist head of rmap_items using this ksm page
114 * @kpfn: page frame number of this ksm page
115 */
116struct stable_node {
117	struct rb_node node;
118	struct hlist_head hlist;
119	unsigned long kpfn;
120};
121
122/**
123 * struct rmap_item - reverse mapping item for virtual addresses
124 * @rmap_list: next rmap_item in mm_slot's singly-linked rmap_list
125 * @anon_vma: pointer to anon_vma for this mm,address, when in stable tree
126 * @mm: the memory structure this rmap_item is pointing into
127 * @address: the virtual address this rmap_item tracks (+ flags in low bits)
128 * @oldchecksum: previous checksum of the page at that virtual address
129 * @node: rb node of this rmap_item in the unstable tree
130 * @head: pointer to stable_node heading this list in the stable tree
131 * @hlist: link into hlist of rmap_items hanging off that stable_node
132 */
133struct rmap_item {
134	struct rmap_item *rmap_list;
135	struct anon_vma *anon_vma;	/* when stable */
136	struct mm_struct *mm;
137	unsigned long address;		/* + low bits used for flags below */
138	unsigned int oldchecksum;	/* when unstable */
139	union {
140		struct rb_node node;	/* when node of unstable tree */
141		struct {		/* when listed from stable tree */
142			struct stable_node *head;
143			struct hlist_node hlist;
144		};
145	};
146};
147
148#define SEQNR_MASK	0x0ff	/* low bits of unstable tree seqnr */
149#define UNSTABLE_FLAG	0x100	/* is a node of the unstable tree */
150#define STABLE_FLAG	0x200	/* is listed from the stable tree */
151
152/* The stable and unstable tree heads */
153static struct rb_root root_stable_tree = RB_ROOT;
154static struct rb_root root_unstable_tree = RB_ROOT;
155
156#define MM_SLOTS_HASH_HEADS 1024
157static struct hlist_head *mm_slots_hash;
158
159static struct mm_slot ksm_mm_head = {
160	.mm_list = LIST_HEAD_INIT(ksm_mm_head.mm_list),
161};
162static struct ksm_scan ksm_scan = {
163	.mm_slot = &ksm_mm_head,
164};
165
166static struct kmem_cache *rmap_item_cache;
167static struct kmem_cache *stable_node_cache;
168static struct kmem_cache *mm_slot_cache;
169
170/* The number of nodes in the stable tree */
171static unsigned long ksm_pages_shared;
172
173/* The number of page slots additionally sharing those nodes */
174static unsigned long ksm_pages_sharing;
175
176/* The number of nodes in the unstable tree */
177static unsigned long ksm_pages_unshared;
178
179/* The number of rmap_items in use: to calculate pages_volatile */
180static unsigned long ksm_rmap_items;
181
182/* Number of pages ksmd should scan in one batch */
183static unsigned int ksm_thread_pages_to_scan = 100;
184
185/* Milliseconds ksmd should sleep between batches */
186static unsigned int ksm_thread_sleep_millisecs = 20;
187
188#define KSM_RUN_STOP	0
189#define KSM_RUN_MERGE	1
190#define KSM_RUN_UNMERGE	2
191static unsigned int ksm_run = KSM_RUN_STOP;
192
193static DECLARE_WAIT_QUEUE_HEAD(ksm_thread_wait);
194static DEFINE_MUTEX(ksm_thread_mutex);
195static DEFINE_SPINLOCK(ksm_mmlist_lock);
196
197#define KSM_KMEM_CACHE(__struct, __flags) kmem_cache_create("ksm_"#__struct,\
198		sizeof(struct __struct), __alignof__(struct __struct),\
199		(__flags), NULL)
200
201static int __init ksm_slab_init(void)
202{
203	rmap_item_cache = KSM_KMEM_CACHE(rmap_item, 0);
204	if (!rmap_item_cache)
205		goto out;
206
207	stable_node_cache = KSM_KMEM_CACHE(stable_node, 0);
208	if (!stable_node_cache)
209		goto out_free1;
210
211	mm_slot_cache = KSM_KMEM_CACHE(mm_slot, 0);
212	if (!mm_slot_cache)
213		goto out_free2;
214
215	return 0;
216
217out_free2:
218	kmem_cache_destroy(stable_node_cache);
219out_free1:
220	kmem_cache_destroy(rmap_item_cache);
221out:
222	return -ENOMEM;
223}
224
225static void __init ksm_slab_free(void)
226{
227	kmem_cache_destroy(mm_slot_cache);
228	kmem_cache_destroy(stable_node_cache);
229	kmem_cache_destroy(rmap_item_cache);
230	mm_slot_cache = NULL;
231}
232
233static inline struct rmap_item *alloc_rmap_item(void)
234{
235	struct rmap_item *rmap_item;
236
237	rmap_item = kmem_cache_zalloc(rmap_item_cache, GFP_KERNEL);
238	if (rmap_item)
239		ksm_rmap_items++;
240	return rmap_item;
241}
242
243static inline void free_rmap_item(struct rmap_item *rmap_item)
244{
245	ksm_rmap_items--;
246	rmap_item->mm = NULL;	/* debug safety */
247	kmem_cache_free(rmap_item_cache, rmap_item);
248}
249
250static inline struct stable_node *alloc_stable_node(void)
251{
252	return kmem_cache_alloc(stable_node_cache, GFP_KERNEL);
253}
254
255static inline void free_stable_node(struct stable_node *stable_node)
256{
257	kmem_cache_free(stable_node_cache, stable_node);
258}
259
260static inline struct mm_slot *alloc_mm_slot(void)
261{
262	if (!mm_slot_cache)	/* initialization failed */
263		return NULL;
264	return kmem_cache_zalloc(mm_slot_cache, GFP_KERNEL);
265}
266
267static inline void free_mm_slot(struct mm_slot *mm_slot)
268{
269	kmem_cache_free(mm_slot_cache, mm_slot);
270}
271
272static int __init mm_slots_hash_init(void)
273{
274	mm_slots_hash = kzalloc(MM_SLOTS_HASH_HEADS * sizeof(struct hlist_head),
275				GFP_KERNEL);
276	if (!mm_slots_hash)
277		return -ENOMEM;
278	return 0;
279}
280
281static void __init mm_slots_hash_free(void)
282{
283	kfree(mm_slots_hash);
284}
285
286static struct mm_slot *get_mm_slot(struct mm_struct *mm)
287{
288	struct mm_slot *mm_slot;
289	struct hlist_head *bucket;
290	struct hlist_node *node;
291
292	bucket = &mm_slots_hash[((unsigned long)mm / sizeof(struct mm_struct))
293				% MM_SLOTS_HASH_HEADS];
294	hlist_for_each_entry(mm_slot, node, bucket, link) {
295		if (mm == mm_slot->mm)
296			return mm_slot;
297	}
298	return NULL;
299}
300
301static void insert_to_mm_slots_hash(struct mm_struct *mm,
302				    struct mm_slot *mm_slot)
303{
304	struct hlist_head *bucket;
305
306	bucket = &mm_slots_hash[((unsigned long)mm / sizeof(struct mm_struct))
307				% MM_SLOTS_HASH_HEADS];
308	mm_slot->mm = mm;
309	hlist_add_head(&mm_slot->link, bucket);
310}
311
312static inline int in_stable_tree(struct rmap_item *rmap_item)
313{
314	return rmap_item->address & STABLE_FLAG;
315}
316
317static void hold_anon_vma(struct rmap_item *rmap_item,
318			  struct anon_vma *anon_vma)
319{
320	rmap_item->anon_vma = anon_vma;
321	atomic_inc(&anon_vma->external_refcount);
322}
323
324static void drop_anon_vma(struct rmap_item *rmap_item)
325{
326	struct anon_vma *anon_vma = rmap_item->anon_vma;
327
328	if (atomic_dec_and_lock(&anon_vma->external_refcount, &anon_vma->lock)) {
329		int empty = list_empty(&anon_vma->head);
330		anon_vma_unlock(anon_vma);
331		if (empty)
332			anon_vma_free(anon_vma);
333	}
334}
335
336/*
337 * ksmd, and unmerge_and_remove_all_rmap_items(), must not touch an mm's
338 * page tables after it has passed through ksm_exit() - which, if necessary,
339 * takes mmap_sem briefly to serialize against them.  ksm_exit() does not set
340 * a special flag: they can just back out as soon as mm_users goes to zero.
341 * ksm_test_exit() is used throughout to make this test for exit: in some
342 * places for correctness, in some places just to avoid unnecessary work.
343 */
344static inline bool ksm_test_exit(struct mm_struct *mm)
345{
346	return atomic_read(&mm->mm_users) == 0;
347}
348
349/*
350 * We use break_ksm to break COW on a ksm page: it's a stripped down
351 *
352 *	if (get_user_pages(current, mm, addr, 1, 1, 1, &page, NULL) == 1)
353 *		put_page(page);
354 *
355 * but taking great care only to touch a ksm page, in a VM_MERGEABLE vma,
356 * in case the application has unmapped and remapped mm,addr meanwhile.
357 * Could a ksm page appear anywhere else?  Actually yes, in a VM_PFNMAP
358 * mmap of /dev/mem or /dev/kmem, where we would not want to touch it.
359 */
360static int break_ksm(struct vm_area_struct *vma, unsigned long addr)
361{
362	struct page *page;
363	int ret = 0;
364
365	do {
366		cond_resched();
367		page = follow_page(vma, addr, FOLL_GET);
368		if (IS_ERR_OR_NULL(page))
369			break;
370		if (PageKsm(page))
371			ret = handle_mm_fault(vma->vm_mm, vma, addr,
372							FAULT_FLAG_WRITE);
373		else
374			ret = VM_FAULT_WRITE;
375		put_page(page);
376	} while (!(ret & (VM_FAULT_WRITE | VM_FAULT_SIGBUS | VM_FAULT_OOM)));
377	/*
378	 * We must loop because handle_mm_fault() may back out if there's
379	 * any difficulty e.g. if pte accessed bit gets updated concurrently.
380	 *
381	 * VM_FAULT_WRITE is what we have been hoping for: it indicates that
382	 * COW has been broken, even if the vma does not permit VM_WRITE;
383	 * but note that a concurrent fault might break PageKsm for us.
384	 *
385	 * VM_FAULT_SIGBUS could occur if we race with truncation of the
386	 * backing file, which also invalidates anonymous pages: that's
387	 * okay, that truncation will have unmapped the PageKsm for us.
388	 *
389	 * VM_FAULT_OOM: at the time of writing (late July 2009), setting
390	 * aside mem_cgroup limits, VM_FAULT_OOM would only be set if the
391	 * current task has TIF_MEMDIE set, and will be OOM killed on return
392	 * to user; and ksmd, having no mm, would never be chosen for that.
393	 *
394	 * But if the mm is in a limited mem_cgroup, then the fault may fail
395	 * with VM_FAULT_OOM even if the current task is not TIF_MEMDIE; and
396	 * even ksmd can fail in this way - though it's usually breaking ksm
397	 * just to undo a merge it made a moment before, so unlikely to oom.
398	 *
399	 * That's a pity: we might therefore have more kernel pages allocated
400	 * than we're counting as nodes in the stable tree; but ksm_do_scan
401	 * will retry to break_cow on each pass, so should recover the page
402	 * in due course.  The important thing is to not let VM_MERGEABLE
403	 * be cleared while any such pages might remain in the area.
404	 */
405	return (ret & VM_FAULT_OOM) ? -ENOMEM : 0;
406}
407
408static void break_cow(struct rmap_item *rmap_item)
409{
410	struct mm_struct *mm = rmap_item->mm;
411	unsigned long addr = rmap_item->address;
412	struct vm_area_struct *vma;
413
414	/*
415	 * It is not an accident that whenever we want to break COW
416	 * to undo, we also need to drop a reference to the anon_vma.
417	 */
418	drop_anon_vma(rmap_item);
419
420	down_read(&mm->mmap_sem);
421	if (ksm_test_exit(mm))
422		goto out;
423	vma = find_vma(mm, addr);
424	if (!vma || vma->vm_start > addr)
425		goto out;
426	if (!(vma->vm_flags & VM_MERGEABLE) || !vma->anon_vma)
427		goto out;
428	break_ksm(vma, addr);
429out:
430	up_read(&mm->mmap_sem);
431}
432
433static struct page *get_mergeable_page(struct rmap_item *rmap_item)
434{
435	struct mm_struct *mm = rmap_item->mm;
436	unsigned long addr = rmap_item->address;
437	struct vm_area_struct *vma;
438	struct page *page;
439
440	down_read(&mm->mmap_sem);
441	if (ksm_test_exit(mm))
442		goto out;
443	vma = find_vma(mm, addr);
444	if (!vma || vma->vm_start > addr)
445		goto out;
446	if (!(vma->vm_flags & VM_MERGEABLE) || !vma->anon_vma)
447		goto out;
448
449	page = follow_page(vma, addr, FOLL_GET);
450	if (IS_ERR_OR_NULL(page))
451		goto out;
452	if (PageAnon(page)) {
453		flush_anon_page(vma, page, addr);
454		flush_dcache_page(page);
455	} else {
456		put_page(page);
457out:		page = NULL;
458	}
459	up_read(&mm->mmap_sem);
460	return page;
461}
462
463static void remove_node_from_stable_tree(struct stable_node *stable_node)
464{
465	struct rmap_item *rmap_item;
466	struct hlist_node *hlist;
467
468	hlist_for_each_entry(rmap_item, hlist, &stable_node->hlist, hlist) {
469		if (rmap_item->hlist.next)
470			ksm_pages_sharing--;
471		else
472			ksm_pages_shared--;
473		drop_anon_vma(rmap_item);
474		rmap_item->address &= PAGE_MASK;
475		cond_resched();
476	}
477
478	rb_erase(&stable_node->node, &root_stable_tree);
479	free_stable_node(stable_node);
480}
481
482/*
483 * get_ksm_page: checks if the page indicated by the stable node
484 * is still its ksm page, despite having held no reference to it.
485 * In which case we can trust the content of the page, and it
486 * returns the gotten page; but if the page has now been zapped,
487 * remove the stale node from the stable tree and return NULL.
488 *
489 * You would expect the stable_node to hold a reference to the ksm page.
490 * But if it increments the page's count, swapping out has to wait for
491 * ksmd to come around again before it can free the page, which may take
492 * seconds or even minutes: much too unresponsive.  So instead we use a
493 * "keyhole reference": access to the ksm page from the stable node peeps
494 * out through its keyhole to see if that page still holds the right key,
495 * pointing back to this stable node.  This relies on freeing a PageAnon
496 * page to reset its page->mapping to NULL, and relies on no other use of
497 * a page to put something that might look like our key in page->mapping.
498 *
499 * include/linux/pagemap.h page_cache_get_speculative() is a good reference,
500 * but this is different - made simpler by ksm_thread_mutex being held, but
501 * interesting for assuming that no other use of the struct page could ever
502 * put our expected_mapping into page->mapping (or a field of the union which
503 * coincides with page->mapping).  The RCU calls are not for KSM at all, but
504 * to keep the page_count protocol described with page_cache_get_speculative.
505 *
506 * Note: it is possible that get_ksm_page() will return NULL one moment,
507 * then page the next, if the page is in between page_freeze_refs() and
508 * page_unfreeze_refs(): this shouldn't be a problem anywhere, the page
509 * is on its way to being freed; but it is an anomaly to bear in mind.
510 */
511static struct page *get_ksm_page(struct stable_node *stable_node)
512{
513	struct page *page;
514	void *expected_mapping;
515
516	page = pfn_to_page(stable_node->kpfn);
517	expected_mapping = (void *)stable_node +
518				(PAGE_MAPPING_ANON | PAGE_MAPPING_KSM);
519	rcu_read_lock();
520	if (page->mapping != expected_mapping)
521		goto stale;
522	if (!get_page_unless_zero(page))
523		goto stale;
524	if (page->mapping != expected_mapping) {
525		put_page(page);
526		goto stale;
527	}
528	rcu_read_unlock();
529	return page;
530stale:
531	rcu_read_unlock();
532	remove_node_from_stable_tree(stable_node);
533	return NULL;
534}
535
536/*
537 * Removing rmap_item from stable or unstable tree.
538 * This function will clean the information from the stable/unstable tree.
539 */
540static void remove_rmap_item_from_tree(struct rmap_item *rmap_item)
541{
542	if (rmap_item->address & STABLE_FLAG) {
543		struct stable_node *stable_node;
544		struct page *page;
545
546		stable_node = rmap_item->head;
547		page = get_ksm_page(stable_node);
548		if (!page)
549			goto out;
550
551		lock_page(page);
552		hlist_del(&rmap_item->hlist);
553		unlock_page(page);
554		put_page(page);
555
556		if (stable_node->hlist.first)
557			ksm_pages_sharing--;
558		else
559			ksm_pages_shared--;
560
561		drop_anon_vma(rmap_item);
562		rmap_item->address &= PAGE_MASK;
563
564	} else if (rmap_item->address & UNSTABLE_FLAG) {
565		unsigned char age;
566		/*
567		 * Usually ksmd can and must skip the rb_erase, because
568		 * root_unstable_tree was already reset to RB_ROOT.
569		 * But be careful when an mm is exiting: do the rb_erase
570		 * if this rmap_item was inserted by this scan, rather
571		 * than left over from before.
572		 */
573		age = (unsigned char)(ksm_scan.seqnr - rmap_item->address);
574		BUG_ON(age > 1);
575		if (!age)
576			rb_erase(&rmap_item->node, &root_unstable_tree);
577
578		ksm_pages_unshared--;
579		rmap_item->address &= PAGE_MASK;
580	}
581out:
582	cond_resched();		/* we're called from many long loops */
583}
584
585static void remove_trailing_rmap_items(struct mm_slot *mm_slot,
586				       struct rmap_item **rmap_list)
587{
588	while (*rmap_list) {
589		struct rmap_item *rmap_item = *rmap_list;
590		*rmap_list = rmap_item->rmap_list;
591		remove_rmap_item_from_tree(rmap_item);
592		free_rmap_item(rmap_item);
593	}
594}
595
596/*
597 * Though it's very tempting to unmerge in_stable_tree(rmap_item)s rather
598 * than check every pte of a given vma, the locking doesn't quite work for
599 * that - an rmap_item is assigned to the stable tree after inserting ksm
600 * page and upping mmap_sem.  Nor does it fit with the way we skip dup'ing
601 * rmap_items from parent to child at fork time (so as not to waste time
602 * if exit comes before the next scan reaches it).
603 *
604 * Similarly, although we'd like to remove rmap_items (so updating counts
605 * and freeing memory) when unmerging an area, it's easier to leave that
606 * to the next pass of ksmd - consider, for example, how ksmd might be
607 * in cmp_and_merge_page on one of the rmap_items we would be removing.
608 */
609static int unmerge_ksm_pages(struct vm_area_struct *vma,
610			     unsigned long start, unsigned long end)
611{
612	unsigned long addr;
613	int err = 0;
614
615	for (addr = start; addr < end && !err; addr += PAGE_SIZE) {
616		if (ksm_test_exit(vma->vm_mm))
617			break;
618		if (signal_pending(current))
619			err = -ERESTARTSYS;
620		else
621			err = break_ksm(vma, addr);
622	}
623	return err;
624}
625
626#ifdef CONFIG_SYSFS
627/*
628 * Only called through the sysfs control interface:
629 */
630static int unmerge_and_remove_all_rmap_items(void)
631{
632	struct mm_slot *mm_slot;
633	struct mm_struct *mm;
634	struct vm_area_struct *vma;
635	int err = 0;
636
637	spin_lock(&ksm_mmlist_lock);
638	ksm_scan.mm_slot = list_entry(ksm_mm_head.mm_list.next,
639						struct mm_slot, mm_list);
640	spin_unlock(&ksm_mmlist_lock);
641
642	for (mm_slot = ksm_scan.mm_slot;
643			mm_slot != &ksm_mm_head; mm_slot = ksm_scan.mm_slot) {
644		mm = mm_slot->mm;
645		down_read(&mm->mmap_sem);
646		for (vma = mm->mmap; vma; vma = vma->vm_next) {
647			if (ksm_test_exit(mm))
648				break;
649			if (!(vma->vm_flags & VM_MERGEABLE) || !vma->anon_vma)
650				continue;
651			err = unmerge_ksm_pages(vma,
652						vma->vm_start, vma->vm_end);
653			if (err)
654				goto error;
655		}
656
657		remove_trailing_rmap_items(mm_slot, &mm_slot->rmap_list);
658
659		spin_lock(&ksm_mmlist_lock);
660		ksm_scan.mm_slot = list_entry(mm_slot->mm_list.next,
661						struct mm_slot, mm_list);
662		if (ksm_test_exit(mm)) {
663			hlist_del(&mm_slot->link);
664			list_del(&mm_slot->mm_list);
665			spin_unlock(&ksm_mmlist_lock);
666
667			free_mm_slot(mm_slot);
668			clear_bit(MMF_VM_MERGEABLE, &mm->flags);
669			up_read(&mm->mmap_sem);
670			mmdrop(mm);
671		} else {
672			spin_unlock(&ksm_mmlist_lock);
673			up_read(&mm->mmap_sem);
674		}
675	}
676
677	ksm_scan.seqnr = 0;
678	return 0;
679
680error:
681	up_read(&mm->mmap_sem);
682	spin_lock(&ksm_mmlist_lock);
683	ksm_scan.mm_slot = &ksm_mm_head;
684	spin_unlock(&ksm_mmlist_lock);
685	return err;
686}
687#endif /* CONFIG_SYSFS */
688
689static u32 calc_checksum(struct page *page)
690{
691	u32 checksum;
692	void *addr = kmap_atomic(page, KM_USER0);
693	checksum = jhash2(addr, PAGE_SIZE / 4, 17);
694	kunmap_atomic(addr, KM_USER0);
695	return checksum;
696}
697
698static int memcmp_pages(struct page *page1, struct page *page2)
699{
700	char *addr1, *addr2;
701	int ret;
702
703	addr1 = kmap_atomic(page1, KM_USER0);
704	addr2 = kmap_atomic(page2, KM_USER1);
705	ret = memcmp(addr1, addr2, PAGE_SIZE);
706	kunmap_atomic(addr2, KM_USER1);
707	kunmap_atomic(addr1, KM_USER0);
708	return ret;
709}
710
711static inline int pages_identical(struct page *page1, struct page *page2)
712{
713	return !memcmp_pages(page1, page2);
714}
715
716static int write_protect_page(struct vm_area_struct *vma, struct page *page,
717			      pte_t *orig_pte)
718{
719	struct mm_struct *mm = vma->vm_mm;
720	unsigned long addr;
721	pte_t *ptep;
722	spinlock_t *ptl;
723	int swapped;
724	int err = -EFAULT;
725
726	addr = page_address_in_vma(page, vma);
727	if (addr == -EFAULT)
728		goto out;
729
730	ptep = page_check_address(page, mm, addr, &ptl, 0);
731	if (!ptep)
732		goto out;
733
734	if (pte_write(*ptep)) {
735		pte_t entry;
736
737		swapped = PageSwapCache(page);
738		flush_cache_page(vma, addr, page_to_pfn(page));
739		/*
740		 * Ok this is tricky, when get_user_pages_fast() run it doesnt
741		 * take any lock, therefore the check that we are going to make
742		 * with the pagecount against the mapcount is racey and
743		 * O_DIRECT can happen right after the check.
744		 * So we clear the pte and flush the tlb before the check
745		 * this assure us that no O_DIRECT can happen after the check
746		 * or in the middle of the check.
747		 */
748		entry = ptep_clear_flush(vma, addr, ptep);
749		/*
750		 * Check that no O_DIRECT or similar I/O is in progress on the
751		 * page
752		 */
753		if (page_mapcount(page) + 1 + swapped != page_count(page)) {
754			set_pte_at(mm, addr, ptep, entry);
755			goto out_unlock;
756		}
757		entry = pte_wrprotect(entry);
758		set_pte_at_notify(mm, addr, ptep, entry);
759	}
760	*orig_pte = *ptep;
761	err = 0;
762
763out_unlock:
764	pte_unmap_unlock(ptep, ptl);
765out:
766	return err;
767}
768
769/**
770 * replace_page - replace page in vma by new ksm page
771 * @vma:      vma that holds the pte pointing to page
772 * @page:     the page we are replacing by kpage
773 * @kpage:    the ksm page we replace page by
774 * @orig_pte: the original value of the pte
775 *
776 * Returns 0 on success, -EFAULT on failure.
777 */
778static int replace_page(struct vm_area_struct *vma, struct page *page,
779			struct page *kpage, pte_t orig_pte)
780{
781	struct mm_struct *mm = vma->vm_mm;
782	pgd_t *pgd;
783	pud_t *pud;
784	pmd_t *pmd;
785	pte_t *ptep;
786	spinlock_t *ptl;
787	unsigned long addr;
788	int err = -EFAULT;
789
790	addr = page_address_in_vma(page, vma);
791	if (addr == -EFAULT)
792		goto out;
793
794	pgd = pgd_offset(mm, addr);
795	if (!pgd_present(*pgd))
796		goto out;
797
798	pud = pud_offset(pgd, addr);
799	if (!pud_present(*pud))
800		goto out;
801
802	pmd = pmd_offset(pud, addr);
803	if (!pmd_present(*pmd))
804		goto out;
805
806	ptep = pte_offset_map_lock(mm, pmd, addr, &ptl);
807	if (!pte_same(*ptep, orig_pte)) {
808		pte_unmap_unlock(ptep, ptl);
809		goto out;
810	}
811
812	get_page(kpage);
813	page_add_anon_rmap(kpage, vma, addr);
814
815	flush_cache_page(vma, addr, pte_pfn(*ptep));
816	ptep_clear_flush(vma, addr, ptep);
817	set_pte_at_notify(mm, addr, ptep, mk_pte(kpage, vma->vm_page_prot));
818
819	page_remove_rmap(page);
820	put_page(page);
821
822	pte_unmap_unlock(ptep, ptl);
823	err = 0;
824out:
825	return err;
826}
827
828/*
829 * try_to_merge_one_page - take two pages and merge them into one
830 * @vma: the vma that holds the pte pointing to page
831 * @page: the PageAnon page that we want to replace with kpage
832 * @kpage: the PageKsm page that we want to map instead of page,
833 *         or NULL the first time when we want to use page as kpage.
834 *
835 * This function returns 0 if the pages were merged, -EFAULT otherwise.
836 */
837static int try_to_merge_one_page(struct vm_area_struct *vma,
838				 struct page *page, struct page *kpage)
839{
840	pte_t orig_pte = __pte(0);
841	int err = -EFAULT;
842
843	if (page == kpage)			/* ksm page forked */
844		return 0;
845
846	if (!(vma->vm_flags & VM_MERGEABLE))
847		goto out;
848	if (!PageAnon(page))
849		goto out;
850
851	/*
852	 * We need the page lock to read a stable PageSwapCache in
853	 * write_protect_page().  We use trylock_page() instead of
854	 * lock_page() because we don't want to wait here - we
855	 * prefer to continue scanning and merging different pages,
856	 * then come back to this page when it is unlocked.
857	 */
858	if (!trylock_page(page))
859		goto out;
860	/*
861	 * If this anonymous page is mapped only here, its pte may need
862	 * to be write-protected.  If it's mapped elsewhere, all of its
863	 * ptes are necessarily already write-protected.  But in either
864	 * case, we need to lock and check page_count is not raised.
865	 */
866	if (write_protect_page(vma, page, &orig_pte) == 0) {
867		if (!kpage) {
868			/*
869			 * While we hold page lock, upgrade page from
870			 * PageAnon+anon_vma to PageKsm+NULL stable_node:
871			 * stable_tree_insert() will update stable_node.
872			 */
873			set_page_stable_node(page, NULL);
874			mark_page_accessed(page);
875			err = 0;
876		} else if (pages_identical(page, kpage))
877			err = replace_page(vma, page, kpage, orig_pte);
878	}
879
880	if ((vma->vm_flags & VM_LOCKED) && kpage && !err) {
881		munlock_vma_page(page);
882		if (!PageMlocked(kpage)) {
883			unlock_page(page);
884			lock_page(kpage);
885			mlock_vma_page(kpage);
886			page = kpage;		/* for final unlock */
887		}
888	}
889
890	unlock_page(page);
891out:
892	return err;
893}
894
895/*
896 * try_to_merge_with_ksm_page - like try_to_merge_two_pages,
897 * but no new kernel page is allocated: kpage must already be a ksm page.
898 *
899 * This function returns 0 if the pages were merged, -EFAULT otherwise.
900 */
901static int try_to_merge_with_ksm_page(struct rmap_item *rmap_item,
902				      struct page *page, struct page *kpage)
903{
904	struct mm_struct *mm = rmap_item->mm;
905	struct vm_area_struct *vma;
906	int err = -EFAULT;
907
908	down_read(&mm->mmap_sem);
909	if (ksm_test_exit(mm))
910		goto out;
911	vma = find_vma(mm, rmap_item->address);
912	if (!vma || vma->vm_start > rmap_item->address)
913		goto out;
914
915	err = try_to_merge_one_page(vma, page, kpage);
916	if (err)
917		goto out;
918
919	/* Must get reference to anon_vma while still holding mmap_sem */
920	hold_anon_vma(rmap_item, vma->anon_vma);
921out:
922	up_read(&mm->mmap_sem);
923	return err;
924}
925
926/*
927 * try_to_merge_two_pages - take two identical pages and prepare them
928 * to be merged into one page.
929 *
930 * This function returns the kpage if we successfully merged two identical
931 * pages into one ksm page, NULL otherwise.
932 *
933 * Note that this function upgrades page to ksm page: if one of the pages
934 * is already a ksm page, try_to_merge_with_ksm_page should be used.
935 */
936static struct page *try_to_merge_two_pages(struct rmap_item *rmap_item,
937					   struct page *page,
938					   struct rmap_item *tree_rmap_item,
939					   struct page *tree_page)
940{
941	int err;
942
943	err = try_to_merge_with_ksm_page(rmap_item, page, NULL);
944	if (!err) {
945		err = try_to_merge_with_ksm_page(tree_rmap_item,
946							tree_page, page);
947		/*
948		 * If that fails, we have a ksm page with only one pte
949		 * pointing to it: so break it.
950		 */
951		if (err)
952			break_cow(rmap_item);
953	}
954	return err ? NULL : page;
955}
956
957/*
958 * stable_tree_search - search for page inside the stable tree
959 *
960 * This function checks if there is a page inside the stable tree
961 * with identical content to the page that we are scanning right now.
962 *
963 * This function returns the stable tree node of identical content if found,
964 * NULL otherwise.
965 */
966static struct page *stable_tree_search(struct page *page)
967{
968	struct rb_node *node = root_stable_tree.rb_node;
969	struct stable_node *stable_node;
970
971	stable_node = page_stable_node(page);
972	if (stable_node) {			/* ksm page forked */
973		get_page(page);
974		return page;
975	}
976
977	while (node) {
978		struct page *tree_page;
979		int ret;
980
981		cond_resched();
982		stable_node = rb_entry(node, struct stable_node, node);
983		tree_page = get_ksm_page(stable_node);
984		if (!tree_page)
985			return NULL;
986
987		ret = memcmp_pages(page, tree_page);
988
989		if (ret < 0) {
990			put_page(tree_page);
991			node = node->rb_left;
992		} else if (ret > 0) {
993			put_page(tree_page);
994			node = node->rb_right;
995		} else
996			return tree_page;
997	}
998
999	return NULL;
1000}
1001
1002/*
1003 * stable_tree_insert - insert rmap_item pointing to new ksm page
1004 * into the stable tree.
1005 *
1006 * This function returns the stable tree node just allocated on success,
1007 * NULL otherwise.
1008 */
1009static struct stable_node *stable_tree_insert(struct page *kpage)
1010{
1011	struct rb_node **new = &root_stable_tree.rb_node;
1012	struct rb_node *parent = NULL;
1013	struct stable_node *stable_node;
1014
1015	while (*new) {
1016		struct page *tree_page;
1017		int ret;
1018
1019		cond_resched();
1020		stable_node = rb_entry(*new, struct stable_node, node);
1021		tree_page = get_ksm_page(stable_node);
1022		if (!tree_page)
1023			return NULL;
1024
1025		ret = memcmp_pages(kpage, tree_page);
1026		put_page(tree_page);
1027
1028		parent = *new;
1029		if (ret < 0)
1030			new = &parent->rb_left;
1031		else if (ret > 0)
1032			new = &parent->rb_right;
1033		else {
1034			/*
1035			 * It is not a bug that stable_tree_search() didn't
1036			 * find this node: because at that time our page was
1037			 * not yet write-protected, so may have changed since.
1038			 */
1039			return NULL;
1040		}
1041	}
1042
1043	stable_node = alloc_stable_node();
1044	if (!stable_node)
1045		return NULL;
1046
1047	rb_link_node(&stable_node->node, parent, new);
1048	rb_insert_color(&stable_node->node, &root_stable_tree);
1049
1050	INIT_HLIST_HEAD(&stable_node->hlist);
1051
1052	stable_node->kpfn = page_to_pfn(kpage);
1053	set_page_stable_node(kpage, stable_node);
1054
1055	return stable_node;
1056}
1057
1058/*
1059 * unstable_tree_search_insert - search for identical page,
1060 * else insert rmap_item into the unstable tree.
1061 *
1062 * This function searches for a page in the unstable tree identical to the
1063 * page currently being scanned; and if no identical page is found in the
1064 * tree, we insert rmap_item as a new object into the unstable tree.
1065 *
1066 * This function returns pointer to rmap_item found to be identical
1067 * to the currently scanned page, NULL otherwise.
1068 *
1069 * This function does both searching and inserting, because they share
1070 * the same walking algorithm in an rbtree.
1071 */
1072static
1073struct rmap_item *unstable_tree_search_insert(struct rmap_item *rmap_item,
1074					      struct page *page,
1075					      struct page **tree_pagep)
1076
1077{
1078	struct rb_node **new = &root_unstable_tree.rb_node;
1079	struct rb_node *parent = NULL;
1080
1081	while (*new) {
1082		struct rmap_item *tree_rmap_item;
1083		struct page *tree_page;
1084		int ret;
1085
1086		cond_resched();
1087		tree_rmap_item = rb_entry(*new, struct rmap_item, node);
1088		tree_page = get_mergeable_page(tree_rmap_item);
1089		if (IS_ERR_OR_NULL(tree_page))
1090			return NULL;
1091
1092		/*
1093		 * Don't substitute a ksm page for a forked page.
1094		 */
1095		if (page == tree_page) {
1096			put_page(tree_page);
1097			return NULL;
1098		}
1099
1100		ret = memcmp_pages(page, tree_page);
1101
1102		parent = *new;
1103		if (ret < 0) {
1104			put_page(tree_page);
1105			new = &parent->rb_left;
1106		} else if (ret > 0) {
1107			put_page(tree_page);
1108			new = &parent->rb_right;
1109		} else {
1110			*tree_pagep = tree_page;
1111			return tree_rmap_item;
1112		}
1113	}
1114
1115	rmap_item->address |= UNSTABLE_FLAG;
1116	rmap_item->address |= (ksm_scan.seqnr & SEQNR_MASK);
1117	rb_link_node(&rmap_item->node, parent, new);
1118	rb_insert_color(&rmap_item->node, &root_unstable_tree);
1119
1120	ksm_pages_unshared++;
1121	return NULL;
1122}
1123
1124/*
1125 * stable_tree_append - add another rmap_item to the linked list of
1126 * rmap_items hanging off a given node of the stable tree, all sharing
1127 * the same ksm page.
1128 */
1129static void stable_tree_append(struct rmap_item *rmap_item,
1130			       struct stable_node *stable_node)
1131{
1132	rmap_item->head = stable_node;
1133	rmap_item->address |= STABLE_FLAG;
1134	hlist_add_head(&rmap_item->hlist, &stable_node->hlist);
1135
1136	if (rmap_item->hlist.next)
1137		ksm_pages_sharing++;
1138	else
1139		ksm_pages_shared++;
1140}
1141
1142/*
1143 * cmp_and_merge_page - first see if page can be merged into the stable tree;
1144 * if not, compare checksum to previous and if it's the same, see if page can
1145 * be inserted into the unstable tree, or merged with a page already there and
1146 * both transferred to the stable tree.
1147 *
1148 * @page: the page that we are searching identical page to.
1149 * @rmap_item: the reverse mapping into the virtual address of this page
1150 */
1151static void cmp_and_merge_page(struct page *page, struct rmap_item *rmap_item)
1152{
1153	struct rmap_item *tree_rmap_item;
1154	struct page *tree_page = NULL;
1155	struct stable_node *stable_node;
1156	struct page *kpage;
1157	unsigned int checksum;
1158	int err;
1159
1160	remove_rmap_item_from_tree(rmap_item);
1161
1162	/* We first start with searching the page inside the stable tree */
1163	kpage = stable_tree_search(page);
1164	if (kpage) {
1165		err = try_to_merge_with_ksm_page(rmap_item, page, kpage);
1166		if (!err) {
1167			/*
1168			 * The page was successfully merged:
1169			 * add its rmap_item to the stable tree.
1170			 */
1171			lock_page(kpage);
1172			stable_tree_append(rmap_item, page_stable_node(kpage));
1173			unlock_page(kpage);
1174		}
1175		put_page(kpage);
1176		return;
1177	}
1178
1179	/*
1180	 * If the hash value of the page has changed from the last time
1181	 * we calculated it, this page is changing frequently: therefore we
1182	 * don't want to insert it in the unstable tree, and we don't want
1183	 * to waste our time searching for something identical to it there.
1184	 */
1185	checksum = calc_checksum(page);
1186	if (rmap_item->oldchecksum != checksum) {
1187		rmap_item->oldchecksum = checksum;
1188		return;
1189	}
1190
1191	tree_rmap_item =
1192		unstable_tree_search_insert(rmap_item, page, &tree_page);
1193	if (tree_rmap_item) {
1194		kpage = try_to_merge_two_pages(rmap_item, page,
1195						tree_rmap_item, tree_page);
1196		put_page(tree_page);
1197		/*
1198		 * As soon as we merge this page, we want to remove the
1199		 * rmap_item of the page we have merged with from the unstable
1200		 * tree, and insert it instead as new node in the stable tree.
1201		 */
1202		if (kpage) {
1203			remove_rmap_item_from_tree(tree_rmap_item);
1204
1205			lock_page(kpage);
1206			stable_node = stable_tree_insert(kpage);
1207			if (stable_node) {
1208				stable_tree_append(tree_rmap_item, stable_node);
1209				stable_tree_append(rmap_item, stable_node);
1210			}
1211			unlock_page(kpage);
1212
1213			/*
1214			 * If we fail to insert the page into the stable tree,
1215			 * we will have 2 virtual addresses that are pointing
1216			 * to a ksm page left outside the stable tree,
1217			 * in which case we need to break_cow on both.
1218			 */
1219			if (!stable_node) {
1220				break_cow(tree_rmap_item);
1221				break_cow(rmap_item);
1222			}
1223		}
1224	}
1225}
1226
1227static struct rmap_item *get_next_rmap_item(struct mm_slot *mm_slot,
1228					    struct rmap_item **rmap_list,
1229					    unsigned long addr)
1230{
1231	struct rmap_item *rmap_item;
1232
1233	while (*rmap_list) {
1234		rmap_item = *rmap_list;
1235		if ((rmap_item->address & PAGE_MASK) == addr)
1236			return rmap_item;
1237		if (rmap_item->address > addr)
1238			break;
1239		*rmap_list = rmap_item->rmap_list;
1240		remove_rmap_item_from_tree(rmap_item);
1241		free_rmap_item(rmap_item);
1242	}
1243
1244	rmap_item = alloc_rmap_item();
1245	if (rmap_item) {
1246		/* It has already been zeroed */
1247		rmap_item->mm = mm_slot->mm;
1248		rmap_item->address = addr;
1249		rmap_item->rmap_list = *rmap_list;
1250		*rmap_list = rmap_item;
1251	}
1252	return rmap_item;
1253}
1254
1255static struct rmap_item *scan_get_next_rmap_item(struct page **page)
1256{
1257	struct mm_struct *mm;
1258	struct mm_slot *slot;
1259	struct vm_area_struct *vma;
1260	struct rmap_item *rmap_item;
1261
1262	if (list_empty(&ksm_mm_head.mm_list))
1263		return NULL;
1264
1265	slot = ksm_scan.mm_slot;
1266	if (slot == &ksm_mm_head) {
1267		root_unstable_tree = RB_ROOT;
1268
1269		spin_lock(&ksm_mmlist_lock);
1270		slot = list_entry(slot->mm_list.next, struct mm_slot, mm_list);
1271		ksm_scan.mm_slot = slot;
1272		spin_unlock(&ksm_mmlist_lock);
1273next_mm:
1274		ksm_scan.address = 0;
1275		ksm_scan.rmap_list = &slot->rmap_list;
1276	}
1277
1278	mm = slot->mm;
1279	down_read(&mm->mmap_sem);
1280	if (ksm_test_exit(mm))
1281		vma = NULL;
1282	else
1283		vma = find_vma(mm, ksm_scan.address);
1284
1285	for (; vma; vma = vma->vm_next) {
1286		if (!(vma->vm_flags & VM_MERGEABLE))
1287			continue;
1288		if (ksm_scan.address < vma->vm_start)
1289			ksm_scan.address = vma->vm_start;
1290		if (!vma->anon_vma)
1291			ksm_scan.address = vma->vm_end;
1292
1293		while (ksm_scan.address < vma->vm_end) {
1294			if (ksm_test_exit(mm))
1295				break;
1296			*page = follow_page(vma, ksm_scan.address, FOLL_GET);
1297			if (!IS_ERR_OR_NULL(*page) && PageAnon(*page)) {
1298				flush_anon_page(vma, *page, ksm_scan.address);
1299				flush_dcache_page(*page);
1300				rmap_item = get_next_rmap_item(slot,
1301					ksm_scan.rmap_list, ksm_scan.address);
1302				if (rmap_item) {
1303					ksm_scan.rmap_list =
1304							&rmap_item->rmap_list;
1305					ksm_scan.address += PAGE_SIZE;
1306				} else
1307					put_page(*page);
1308				up_read(&mm->mmap_sem);
1309				return rmap_item;
1310			}
1311			if (!IS_ERR_OR_NULL(*page))
1312				put_page(*page);
1313			ksm_scan.address += PAGE_SIZE;
1314			cond_resched();
1315		}
1316	}
1317
1318	if (ksm_test_exit(mm)) {
1319		ksm_scan.address = 0;
1320		ksm_scan.rmap_list = &slot->rmap_list;
1321	}
1322	/*
1323	 * Nuke all the rmap_items that are above this current rmap:
1324	 * because there were no VM_MERGEABLE vmas with such addresses.
1325	 */
1326	remove_trailing_rmap_items(slot, ksm_scan.rmap_list);
1327
1328	spin_lock(&ksm_mmlist_lock);
1329	ksm_scan.mm_slot = list_entry(slot->mm_list.next,
1330						struct mm_slot, mm_list);
1331	if (ksm_scan.address == 0) {
1332		/*
1333		 * We've completed a full scan of all vmas, holding mmap_sem
1334		 * throughout, and found no VM_MERGEABLE: so do the same as
1335		 * __ksm_exit does to remove this mm from all our lists now.
1336		 * This applies either when cleaning up after __ksm_exit
1337		 * (but beware: we can reach here even before __ksm_exit),
1338		 * or when all VM_MERGEABLE areas have been unmapped (and
1339		 * mmap_sem then protects against race with MADV_MERGEABLE).
1340		 */
1341		hlist_del(&slot->link);
1342		list_del(&slot->mm_list);
1343		spin_unlock(&ksm_mmlist_lock);
1344
1345		free_mm_slot(slot);
1346		clear_bit(MMF_VM_MERGEABLE, &mm->flags);
1347		up_read(&mm->mmap_sem);
1348		mmdrop(mm);
1349	} else {
1350		spin_unlock(&ksm_mmlist_lock);
1351		up_read(&mm->mmap_sem);
1352	}
1353
1354	/* Repeat until we've completed scanning the whole list */
1355	slot = ksm_scan.mm_slot;
1356	if (slot != &ksm_mm_head)
1357		goto next_mm;
1358
1359	ksm_scan.seqnr++;
1360	return NULL;
1361}
1362
1363/**
1364 * ksm_do_scan  - the ksm scanner main worker function.
1365 * @scan_npages - number of pages we want to scan before we return.
1366 */
1367static void ksm_do_scan(unsigned int scan_npages)
1368{
1369	struct rmap_item *rmap_item;
1370	struct page *uninitialized_var(page);
1371
1372	while (scan_npages--) {
1373		cond_resched();
1374		rmap_item = scan_get_next_rmap_item(&page);
1375		if (!rmap_item)
1376			return;
1377		if (!PageKsm(page) || !in_stable_tree(rmap_item))
1378			cmp_and_merge_page(page, rmap_item);
1379		put_page(page);
1380	}
1381}
1382
1383static int ksmd_should_run(void)
1384{
1385	return (ksm_run & KSM_RUN_MERGE) && !list_empty(&ksm_mm_head.mm_list);
1386}
1387
1388static int ksm_scan_thread(void *nothing)
1389{
1390	set_user_nice(current, 5);
1391
1392	while (!kthread_should_stop()) {
1393		mutex_lock(&ksm_thread_mutex);
1394		if (ksmd_should_run())
1395			ksm_do_scan(ksm_thread_pages_to_scan);
1396		mutex_unlock(&ksm_thread_mutex);
1397
1398		if (ksmd_should_run()) {
1399			schedule_timeout_interruptible(
1400				msecs_to_jiffies(ksm_thread_sleep_millisecs));
1401		} else {
1402			wait_event_interruptible(ksm_thread_wait,
1403				ksmd_should_run() || kthread_should_stop());
1404		}
1405	}
1406	return 0;
1407}
1408
1409int ksm_madvise(struct vm_area_struct *vma, unsigned long start,
1410		unsigned long end, int advice, unsigned long *vm_flags)
1411{
1412	struct mm_struct *mm = vma->vm_mm;
1413	int err;
1414
1415	switch (advice) {
1416	case MADV_MERGEABLE:
1417		/*
1418		 * Be somewhat over-protective for now!
1419		 */
1420		if (*vm_flags & (VM_MERGEABLE | VM_SHARED  | VM_MAYSHARE   |
1421				 VM_PFNMAP    | VM_IO      | VM_DONTEXPAND |
1422				 VM_RESERVED  | VM_HUGETLB | VM_INSERTPAGE |
1423				 VM_NONLINEAR | VM_MIXEDMAP | VM_SAO))
1424			return 0;		/* just ignore the advice */
1425
1426		if (!test_bit(MMF_VM_MERGEABLE, &mm->flags)) {
1427			err = __ksm_enter(mm);
1428			if (err)
1429				return err;
1430		}
1431
1432		*vm_flags |= VM_MERGEABLE;
1433		break;
1434
1435	case MADV_UNMERGEABLE:
1436		if (!(*vm_flags & VM_MERGEABLE))
1437			return 0;		/* just ignore the advice */
1438
1439		if (vma->anon_vma) {
1440			err = unmerge_ksm_pages(vma, start, end);
1441			if (err)
1442				return err;
1443		}
1444
1445		*vm_flags &= ~VM_MERGEABLE;
1446		break;
1447	}
1448
1449	return 0;
1450}
1451
1452int __ksm_enter(struct mm_struct *mm)
1453{
1454	struct mm_slot *mm_slot;
1455	int needs_wakeup;
1456
1457	mm_slot = alloc_mm_slot();
1458	if (!mm_slot)
1459		return -ENOMEM;
1460
1461	/* Check ksm_run too?  Would need tighter locking */
1462	needs_wakeup = list_empty(&ksm_mm_head.mm_list);
1463
1464	spin_lock(&ksm_mmlist_lock);
1465	insert_to_mm_slots_hash(mm, mm_slot);
1466	/*
1467	 * Insert just behind the scanning cursor, to let the area settle
1468	 * down a little; when fork is followed by immediate exec, we don't
1469	 * want ksmd to waste time setting up and tearing down an rmap_list.
1470	 */
1471	list_add_tail(&mm_slot->mm_list, &ksm_scan.mm_slot->mm_list);
1472	spin_unlock(&ksm_mmlist_lock);
1473
1474	set_bit(MMF_VM_MERGEABLE, &mm->flags);
1475	atomic_inc(&mm->mm_count);
1476
1477	if (needs_wakeup)
1478		wake_up_interruptible(&ksm_thread_wait);
1479
1480	return 0;
1481}
1482
1483void __ksm_exit(struct mm_struct *mm)
1484{
1485	struct mm_slot *mm_slot;
1486	int easy_to_free = 0;
1487
1488	/*
1489	 * This process is exiting: if it's straightforward (as is the
1490	 * case when ksmd was never running), free mm_slot immediately.
1491	 * But if it's at the cursor or has rmap_items linked to it, use
1492	 * mmap_sem to synchronize with any break_cows before pagetables
1493	 * are freed, and leave the mm_slot on the list for ksmd to free.
1494	 * Beware: ksm may already have noticed it exiting and freed the slot.
1495	 */
1496
1497	spin_lock(&ksm_mmlist_lock);
1498	mm_slot = get_mm_slot(mm);
1499	if (mm_slot && ksm_scan.mm_slot != mm_slot) {
1500		if (!mm_slot->rmap_list) {
1501			hlist_del(&mm_slot->link);
1502			list_del(&mm_slot->mm_list);
1503			easy_to_free = 1;
1504		} else {
1505			list_move(&mm_slot->mm_list,
1506				  &ksm_scan.mm_slot->mm_list);
1507		}
1508	}
1509	spin_unlock(&ksm_mmlist_lock);
1510
1511	if (easy_to_free) {
1512		free_mm_slot(mm_slot);
1513		clear_bit(MMF_VM_MERGEABLE, &mm->flags);
1514		mmdrop(mm);
1515	} else if (mm_slot) {
1516		down_write(&mm->mmap_sem);
1517		up_write(&mm->mmap_sem);
1518	}
1519}
1520
1521struct page *ksm_does_need_to_copy(struct page *page,
1522			struct vm_area_struct *vma, unsigned long address)
1523{
1524	struct page *new_page;
1525
1526	unlock_page(page);	/* any racers will COW it, not modify it */
1527
1528	new_page = alloc_page_vma(GFP_HIGHUSER_MOVABLE, vma, address);
1529	if (new_page) {
1530		copy_user_highpage(new_page, page, address, vma);
1531
1532		SetPageDirty(new_page);
1533		__SetPageUptodate(new_page);
1534		SetPageSwapBacked(new_page);
1535		__set_page_locked(new_page);
1536
1537		if (page_evictable(new_page, vma))
1538			lru_cache_add_lru(new_page, LRU_ACTIVE_ANON);
1539		else
1540			add_page_to_unevictable_list(new_page);
1541	}
1542
1543	page_cache_release(page);
1544	return new_page;
1545}
1546
1547int page_referenced_ksm(struct page *page, struct mem_cgroup *memcg,
1548			unsigned long *vm_flags)
1549{
1550	struct stable_node *stable_node;
1551	struct rmap_item *rmap_item;
1552	struct hlist_node *hlist;
1553	unsigned int mapcount = page_mapcount(page);
1554	int referenced = 0;
1555	int search_new_forks = 0;
1556
1557	VM_BUG_ON(!PageKsm(page));
1558	VM_BUG_ON(!PageLocked(page));
1559
1560	stable_node = page_stable_node(page);
1561	if (!stable_node)
1562		return 0;
1563again:
1564	hlist_for_each_entry(rmap_item, hlist, &stable_node->hlist, hlist) {
1565		struct anon_vma *anon_vma = rmap_item->anon_vma;
1566		struct anon_vma_chain *vmac;
1567		struct vm_area_struct *vma;
1568
1569		anon_vma_lock(anon_vma);
1570		list_for_each_entry(vmac, &anon_vma->head, same_anon_vma) {
1571			vma = vmac->vma;
1572			if (rmap_item->address < vma->vm_start ||
1573			    rmap_item->address >= vma->vm_end)
1574				continue;
1575			/*
1576			 * Initially we examine only the vma which covers this
1577			 * rmap_item; but later, if there is still work to do,
1578			 * we examine covering vmas in other mms: in case they
1579			 * were forked from the original since ksmd passed.
1580			 */
1581			if ((rmap_item->mm == vma->vm_mm) == search_new_forks)
1582				continue;
1583
1584			if (memcg && !mm_match_cgroup(vma->vm_mm, memcg))
1585				continue;
1586
1587			referenced += page_referenced_one(page, vma,
1588				rmap_item->address, &mapcount, vm_flags);
1589			if (!search_new_forks || !mapcount)
1590				break;
1591		}
1592		anon_vma_unlock(anon_vma);
1593		if (!mapcount)
1594			goto out;
1595	}
1596	if (!search_new_forks++)
1597		goto again;
1598out:
1599	return referenced;
1600}
1601
1602int try_to_unmap_ksm(struct page *page, enum ttu_flags flags)
1603{
1604	struct stable_node *stable_node;
1605	struct hlist_node *hlist;
1606	struct rmap_item *rmap_item;
1607	int ret = SWAP_AGAIN;
1608	int search_new_forks = 0;
1609
1610	VM_BUG_ON(!PageKsm(page));
1611	VM_BUG_ON(!PageLocked(page));
1612
1613	stable_node = page_stable_node(page);
1614	if (!stable_node)
1615		return SWAP_FAIL;
1616again:
1617	hlist_for_each_entry(rmap_item, hlist, &stable_node->hlist, hlist) {
1618		struct anon_vma *anon_vma = rmap_item->anon_vma;
1619		struct anon_vma_chain *vmac;
1620		struct vm_area_struct *vma;
1621
1622		anon_vma_lock(anon_vma);
1623		list_for_each_entry(vmac, &anon_vma->head, same_anon_vma) {
1624			vma = vmac->vma;
1625			if (rmap_item->address < vma->vm_start ||
1626			    rmap_item->address >= vma->vm_end)
1627				continue;
1628			/*
1629			 * Initially we examine only the vma which covers this
1630			 * rmap_item; but later, if there is still work to do,
1631			 * we examine covering vmas in other mms: in case they
1632			 * were forked from the original since ksmd passed.
1633			 */
1634			if ((rmap_item->mm == vma->vm_mm) == search_new_forks)
1635				continue;
1636
1637			ret = try_to_unmap_one(page, vma,
1638					rmap_item->address, flags);
1639			if (ret != SWAP_AGAIN || !page_mapped(page)) {
1640				anon_vma_unlock(anon_vma);
1641				goto out;
1642			}
1643		}
1644		anon_vma_unlock(anon_vma);
1645	}
1646	if (!search_new_forks++)
1647		goto again;
1648out:
1649	return ret;
1650}
1651
1652#ifdef CONFIG_MIGRATION
1653int rmap_walk_ksm(struct page *page, int (*rmap_one)(struct page *,
1654		  struct vm_area_struct *, unsigned long, void *), void *arg)
1655{
1656	struct stable_node *stable_node;
1657	struct hlist_node *hlist;
1658	struct rmap_item *rmap_item;
1659	int ret = SWAP_AGAIN;
1660	int search_new_forks = 0;
1661
1662	VM_BUG_ON(!PageKsm(page));
1663	VM_BUG_ON(!PageLocked(page));
1664
1665	stable_node = page_stable_node(page);
1666	if (!stable_node)
1667		return ret;
1668again:
1669	hlist_for_each_entry(rmap_item, hlist, &stable_node->hlist, hlist) {
1670		struct anon_vma *anon_vma = rmap_item->anon_vma;
1671		struct anon_vma_chain *vmac;
1672		struct vm_area_struct *vma;
1673
1674		anon_vma_lock(anon_vma);
1675		list_for_each_entry(vmac, &anon_vma->head, same_anon_vma) {
1676			vma = vmac->vma;
1677			if (rmap_item->address < vma->vm_start ||
1678			    rmap_item->address >= vma->vm_end)
1679				continue;
1680			/*
1681			 * Initially we examine only the vma which covers this
1682			 * rmap_item; but later, if there is still work to do,
1683			 * we examine covering vmas in other mms: in case they
1684			 * were forked from the original since ksmd passed.
1685			 */
1686			if ((rmap_item->mm == vma->vm_mm) == search_new_forks)
1687				continue;
1688
1689			ret = rmap_one(page, vma, rmap_item->address, arg);
1690			if (ret != SWAP_AGAIN) {
1691				anon_vma_unlock(anon_vma);
1692				goto out;
1693			}
1694		}
1695		anon_vma_unlock(anon_vma);
1696	}
1697	if (!search_new_forks++)
1698		goto again;
1699out:
1700	return ret;
1701}
1702
1703void ksm_migrate_page(struct page *newpage, struct page *oldpage)
1704{
1705	struct stable_node *stable_node;
1706
1707	VM_BUG_ON(!PageLocked(oldpage));
1708	VM_BUG_ON(!PageLocked(newpage));
1709	VM_BUG_ON(newpage->mapping != oldpage->mapping);
1710
1711	stable_node = page_stable_node(newpage);
1712	if (stable_node) {
1713		VM_BUG_ON(stable_node->kpfn != page_to_pfn(oldpage));
1714		stable_node->kpfn = page_to_pfn(newpage);
1715	}
1716}
1717#endif /* CONFIG_MIGRATION */
1718
1719#ifdef CONFIG_MEMORY_HOTREMOVE
1720static struct stable_node *ksm_check_stable_tree(unsigned long start_pfn,
1721						 unsigned long end_pfn)
1722{
1723	struct rb_node *node;
1724
1725	for (node = rb_first(&root_stable_tree); node; node = rb_next(node)) {
1726		struct stable_node *stable_node;
1727
1728		stable_node = rb_entry(node, struct stable_node, node);
1729		if (stable_node->kpfn >= start_pfn &&
1730		    stable_node->kpfn < end_pfn)
1731			return stable_node;
1732	}
1733	return NULL;
1734}
1735
1736static int ksm_memory_callback(struct notifier_block *self,
1737			       unsigned long action, void *arg)
1738{
1739	struct memory_notify *mn = arg;
1740	struct stable_node *stable_node;
1741
1742	switch (action) {
1743	case MEM_GOING_OFFLINE:
1744		/*
1745		 * Keep it very simple for now: just lock out ksmd and
1746		 * MADV_UNMERGEABLE while any memory is going offline.
1747		 */
1748		mutex_lock(&ksm_thread_mutex);
1749		break;
1750
1751	case MEM_OFFLINE:
1752		/*
1753		 * Most of the work is done by page migration; but there might
1754		 * be a few stable_nodes left over, still pointing to struct
1755		 * pages which have been offlined: prune those from the tree.
1756		 */
1757		while ((stable_node = ksm_check_stable_tree(mn->start_pfn,
1758					mn->start_pfn + mn->nr_pages)) != NULL)
1759			remove_node_from_stable_tree(stable_node);
1760		/* fallthrough */
1761
1762	case MEM_CANCEL_OFFLINE:
1763		mutex_unlock(&ksm_thread_mutex);
1764		break;
1765	}
1766	return NOTIFY_OK;
1767}
1768#endif /* CONFIG_MEMORY_HOTREMOVE */
1769
1770#ifdef CONFIG_SYSFS
1771/*
1772 * This all compiles without CONFIG_SYSFS, but is a waste of space.
1773 */
1774
1775#define KSM_ATTR_RO(_name) \
1776	static struct kobj_attribute _name##_attr = __ATTR_RO(_name)
1777#define KSM_ATTR(_name) \
1778	static struct kobj_attribute _name##_attr = \
1779		__ATTR(_name, 0644, _name##_show, _name##_store)
1780
1781static ssize_t sleep_millisecs_show(struct kobject *kobj,
1782				    struct kobj_attribute *attr, char *buf)
1783{
1784	return sprintf(buf, "%u\n", ksm_thread_sleep_millisecs);
1785}
1786
1787static ssize_t sleep_millisecs_store(struct kobject *kobj,
1788				     struct kobj_attribute *attr,
1789				     const char *buf, size_t count)
1790{
1791	unsigned long msecs;
1792	int err;
1793
1794	err = strict_strtoul(buf, 10, &msecs);
1795	if (err || msecs > UINT_MAX)
1796		return -EINVAL;
1797
1798	ksm_thread_sleep_millisecs = msecs;
1799
1800	return count;
1801}
1802KSM_ATTR(sleep_millisecs);
1803
1804static ssize_t pages_to_scan_show(struct kobject *kobj,
1805				  struct kobj_attribute *attr, char *buf)
1806{
1807	return sprintf(buf, "%u\n", ksm_thread_pages_to_scan);
1808}
1809
1810static ssize_t pages_to_scan_store(struct kobject *kobj,
1811				   struct kobj_attribute *attr,
1812				   const char *buf, size_t count)
1813{
1814	int err;
1815	unsigned long nr_pages;
1816
1817	err = strict_strtoul(buf, 10, &nr_pages);
1818	if (err || nr_pages > UINT_MAX)
1819		return -EINVAL;
1820
1821	ksm_thread_pages_to_scan = nr_pages;
1822
1823	return count;
1824}
1825KSM_ATTR(pages_to_scan);
1826
1827static ssize_t run_show(struct kobject *kobj, struct kobj_attribute *attr,
1828			char *buf)
1829{
1830	return sprintf(buf, "%u\n", ksm_run);
1831}
1832
1833static ssize_t run_store(struct kobject *kobj, struct kobj_attribute *attr,
1834			 const char *buf, size_t count)
1835{
1836	int err;
1837	unsigned long flags;
1838
1839	err = strict_strtoul(buf, 10, &flags);
1840	if (err || flags > UINT_MAX)
1841		return -EINVAL;
1842	if (flags > KSM_RUN_UNMERGE)
1843		return -EINVAL;
1844
1845	/*
1846	 * KSM_RUN_MERGE sets ksmd running, and 0 stops it running.
1847	 * KSM_RUN_UNMERGE stops it running and unmerges all rmap_items,
1848	 * breaking COW to free the pages_shared (but leaves mm_slots
1849	 * on the list for when ksmd may be set running again).
1850	 */
1851
1852	mutex_lock(&ksm_thread_mutex);
1853	if (ksm_run != flags) {
1854		ksm_run = flags;
1855		if (flags & KSM_RUN_UNMERGE) {
1856			current->flags |= PF_OOM_ORIGIN;
1857			err = unmerge_and_remove_all_rmap_items();
1858			current->flags &= ~PF_OOM_ORIGIN;
1859			if (err) {
1860				ksm_run = KSM_RUN_STOP;
1861				count = err;
1862			}
1863		}
1864	}
1865	mutex_unlock(&ksm_thread_mutex);
1866
1867	if (flags & KSM_RUN_MERGE)
1868		wake_up_interruptible(&ksm_thread_wait);
1869
1870	return count;
1871}
1872KSM_ATTR(run);
1873
1874static ssize_t pages_shared_show(struct kobject *kobj,
1875				 struct kobj_attribute *attr, char *buf)
1876{
1877	return sprintf(buf, "%lu\n", ksm_pages_shared);
1878}
1879KSM_ATTR_RO(pages_shared);
1880
1881static ssize_t pages_sharing_show(struct kobject *kobj,
1882				  struct kobj_attribute *attr, char *buf)
1883{
1884	return sprintf(buf, "%lu\n", ksm_pages_sharing);
1885}
1886KSM_ATTR_RO(pages_sharing);
1887
1888static ssize_t pages_unshared_show(struct kobject *kobj,
1889				   struct kobj_attribute *attr, char *buf)
1890{
1891	return sprintf(buf, "%lu\n", ksm_pages_unshared);
1892}
1893KSM_ATTR_RO(pages_unshared);
1894
1895static ssize_t pages_volatile_show(struct kobject *kobj,
1896				   struct kobj_attribute *attr, char *buf)
1897{
1898	long ksm_pages_volatile;
1899
1900	ksm_pages_volatile = ksm_rmap_items - ksm_pages_shared
1901				- ksm_pages_sharing - ksm_pages_unshared;
1902	/*
1903	 * It was not worth any locking to calculate that statistic,
1904	 * but it might therefore sometimes be negative: conceal that.
1905	 */
1906	if (ksm_pages_volatile < 0)
1907		ksm_pages_volatile = 0;
1908	return sprintf(buf, "%ld\n", ksm_pages_volatile);
1909}
1910KSM_ATTR_RO(pages_volatile);
1911
1912static ssize_t full_scans_show(struct kobject *kobj,
1913			       struct kobj_attribute *attr, char *buf)
1914{
1915	return sprintf(buf, "%lu\n", ksm_scan.seqnr);
1916}
1917KSM_ATTR_RO(full_scans);
1918
1919static struct attribute *ksm_attrs[] = {
1920	&sleep_millisecs_attr.attr,
1921	&pages_to_scan_attr.attr,
1922	&run_attr.attr,
1923	&pages_shared_attr.attr,
1924	&pages_sharing_attr.attr,
1925	&pages_unshared_attr.attr,
1926	&pages_volatile_attr.attr,
1927	&full_scans_attr.attr,
1928	NULL,
1929};
1930
1931static struct attribute_group ksm_attr_group = {
1932	.attrs = ksm_attrs,
1933	.name = "ksm",
1934};
1935#endif /* CONFIG_SYSFS */
1936
1937static int __init ksm_init(void)
1938{
1939	struct task_struct *ksm_thread;
1940	int err;
1941
1942	err = ksm_slab_init();
1943	if (err)
1944		goto out;
1945
1946	err = mm_slots_hash_init();
1947	if (err)
1948		goto out_free1;
1949
1950	ksm_thread = kthread_run(ksm_scan_thread, NULL, "ksmd");
1951	if (IS_ERR(ksm_thread)) {
1952		printk(KERN_ERR "ksm: creating kthread failed\n");
1953		err = PTR_ERR(ksm_thread);
1954		goto out_free2;
1955	}
1956
1957#ifdef CONFIG_SYSFS
1958	err = sysfs_create_group(mm_kobj, &ksm_attr_group);
1959	if (err) {
1960		printk(KERN_ERR "ksm: register sysfs failed\n");
1961		kthread_stop(ksm_thread);
1962		goto out_free2;
1963	}
1964#else
1965	ksm_run = KSM_RUN_MERGE;	/* no way for user to start it */
1966
1967#endif /* CONFIG_SYSFS */
1968
1969#ifdef CONFIG_MEMORY_HOTREMOVE
1970	/*
1971	 * Choose a high priority since the callback takes ksm_thread_mutex:
1972	 * later callbacks could only be taking locks which nest within that.
1973	 */
1974	hotplug_memory_notifier(ksm_memory_callback, 100);
1975#endif
1976	return 0;
1977
1978out_free2:
1979	mm_slots_hash_free();
1980out_free1:
1981	ksm_slab_free();
1982out:
1983	return err;
1984}
1985module_init(ksm_init)
1986