memblock.c revision 3a9c2c81eb2024c136cc534df534f93682d516d0
1/*
2 * Procedures for maintaining information about logical memory blocks.
3 *
4 * Peter Bergner, IBM Corp.	June 2001.
5 * Copyright (C) 2001 Peter Bergner.
6 *
7 *      This program is free software; you can redistribute it and/or
8 *      modify it under the terms of the GNU General Public License
9 *      as published by the Free Software Foundation; either version
10 *      2 of the License, or (at your option) any later version.
11 */
12
13#include <linux/kernel.h>
14#include <linux/init.h>
15#include <linux/bitops.h>
16#include <linux/poison.h>
17#include <linux/memblock.h>
18
19struct memblock memblock;
20
21static int memblock_debug;
22static struct memblock_region memblock_memory_init_regions[INIT_MEMBLOCK_REGIONS + 1];
23static struct memblock_region memblock_reserved_init_regions[INIT_MEMBLOCK_REGIONS + 1];
24
25static int __init early_memblock(char *p)
26{
27	if (p && strstr(p, "debug"))
28		memblock_debug = 1;
29	return 0;
30}
31early_param("memblock", early_memblock);
32
33static void memblock_dump(struct memblock_type *region, char *name)
34{
35	unsigned long long base, size;
36	int i;
37
38	pr_info(" %s.cnt  = 0x%lx\n", name, region->cnt);
39
40	for (i = 0; i < region->cnt; i++) {
41		base = region->regions[i].base;
42		size = region->regions[i].size;
43
44		pr_info(" %s[0x%x]\t0x%016llx - 0x%016llx, 0x%llx bytes\n",
45		    name, i, base, base + size - 1, size);
46	}
47}
48
49void memblock_dump_all(void)
50{
51	if (!memblock_debug)
52		return;
53
54	pr_info("MEMBLOCK configuration:\n");
55	pr_info(" memory size = 0x%llx\n", (unsigned long long)memblock.memory_size);
56
57	memblock_dump(&memblock.memory, "memory");
58	memblock_dump(&memblock.reserved, "reserved");
59}
60
61static unsigned long memblock_addrs_overlap(phys_addr_t base1, phys_addr_t size1,
62				       phys_addr_t base2, phys_addr_t size2)
63{
64	return ((base1 < (base2 + size2)) && (base2 < (base1 + size1)));
65}
66
67static long memblock_addrs_adjacent(phys_addr_t base1, phys_addr_t size1,
68			       phys_addr_t base2, phys_addr_t size2)
69{
70	if (base2 == base1 + size1)
71		return 1;
72	else if (base1 == base2 + size2)
73		return -1;
74
75	return 0;
76}
77
78static long memblock_regions_adjacent(struct memblock_type *type,
79				 unsigned long r1, unsigned long r2)
80{
81	phys_addr_t base1 = type->regions[r1].base;
82	phys_addr_t size1 = type->regions[r1].size;
83	phys_addr_t base2 = type->regions[r2].base;
84	phys_addr_t size2 = type->regions[r2].size;
85
86	return memblock_addrs_adjacent(base1, size1, base2, size2);
87}
88
89static void memblock_remove_region(struct memblock_type *type, unsigned long r)
90{
91	unsigned long i;
92
93	for (i = r; i < type->cnt - 1; i++) {
94		type->regions[i].base = type->regions[i + 1].base;
95		type->regions[i].size = type->regions[i + 1].size;
96	}
97	type->cnt--;
98}
99
100/* Assumption: base addr of region 1 < base addr of region 2 */
101static void memblock_coalesce_regions(struct memblock_type *type,
102		unsigned long r1, unsigned long r2)
103{
104	type->regions[r1].size += type->regions[r2].size;
105	memblock_remove_region(type, r2);
106}
107
108void __init memblock_init(void)
109{
110	/* Hookup the initial arrays */
111	memblock.memory.regions	= memblock_memory_init_regions;
112	memblock.memory.max		= INIT_MEMBLOCK_REGIONS;
113	memblock.reserved.regions	= memblock_reserved_init_regions;
114	memblock.reserved.max	= INIT_MEMBLOCK_REGIONS;
115
116	/* Write a marker in the unused last array entry */
117	memblock.memory.regions[INIT_MEMBLOCK_REGIONS].base = (phys_addr_t)RED_INACTIVE;
118	memblock.reserved.regions[INIT_MEMBLOCK_REGIONS].base = (phys_addr_t)RED_INACTIVE;
119
120	/* Create a dummy zero size MEMBLOCK which will get coalesced away later.
121	 * This simplifies the memblock_add() code below...
122	 */
123	memblock.memory.regions[0].base = 0;
124	memblock.memory.regions[0].size = 0;
125	memblock.memory.cnt = 1;
126
127	/* Ditto. */
128	memblock.reserved.regions[0].base = 0;
129	memblock.reserved.regions[0].size = 0;
130	memblock.reserved.cnt = 1;
131
132	memblock.current_limit = MEMBLOCK_ALLOC_ANYWHERE;
133}
134
135void __init memblock_analyze(void)
136{
137	int i;
138
139	/* Check marker in the unused last array entry */
140	WARN_ON(memblock_memory_init_regions[INIT_MEMBLOCK_REGIONS].base
141		!= (phys_addr_t)RED_INACTIVE);
142	WARN_ON(memblock_reserved_init_regions[INIT_MEMBLOCK_REGIONS].base
143		!= (phys_addr_t)RED_INACTIVE);
144
145	memblock.memory_size = 0;
146
147	for (i = 0; i < memblock.memory.cnt; i++)
148		memblock.memory_size += memblock.memory.regions[i].size;
149}
150
151static long memblock_add_region(struct memblock_type *type, phys_addr_t base, phys_addr_t size)
152{
153	unsigned long coalesced = 0;
154	long adjacent, i;
155
156	if ((type->cnt == 1) && (type->regions[0].size == 0)) {
157		type->regions[0].base = base;
158		type->regions[0].size = size;
159		return 0;
160	}
161
162	/* First try and coalesce this MEMBLOCK with another. */
163	for (i = 0; i < type->cnt; i++) {
164		phys_addr_t rgnbase = type->regions[i].base;
165		phys_addr_t rgnsize = type->regions[i].size;
166
167		if ((rgnbase == base) && (rgnsize == size))
168			/* Already have this region, so we're done */
169			return 0;
170
171		adjacent = memblock_addrs_adjacent(base, size, rgnbase, rgnsize);
172		if (adjacent > 0) {
173			type->regions[i].base -= size;
174			type->regions[i].size += size;
175			coalesced++;
176			break;
177		} else if (adjacent < 0) {
178			type->regions[i].size += size;
179			coalesced++;
180			break;
181		}
182	}
183
184	if ((i < type->cnt - 1) && memblock_regions_adjacent(type, i, i+1)) {
185		memblock_coalesce_regions(type, i, i+1);
186		coalesced++;
187	}
188
189	if (coalesced)
190		return coalesced;
191	if (type->cnt >= type->max)
192		return -1;
193
194	/* Couldn't coalesce the MEMBLOCK, so add it to the sorted table. */
195	for (i = type->cnt - 1; i >= 0; i--) {
196		if (base < type->regions[i].base) {
197			type->regions[i+1].base = type->regions[i].base;
198			type->regions[i+1].size = type->regions[i].size;
199		} else {
200			type->regions[i+1].base = base;
201			type->regions[i+1].size = size;
202			break;
203		}
204	}
205
206	if (base < type->regions[0].base) {
207		type->regions[0].base = base;
208		type->regions[0].size = size;
209	}
210	type->cnt++;
211
212	return 0;
213}
214
215long memblock_add(phys_addr_t base, phys_addr_t size)
216{
217	return memblock_add_region(&memblock.memory, base, size);
218
219}
220
221static long __memblock_remove(struct memblock_type *type, phys_addr_t base, phys_addr_t size)
222{
223	phys_addr_t rgnbegin, rgnend;
224	phys_addr_t end = base + size;
225	int i;
226
227	rgnbegin = rgnend = 0; /* supress gcc warnings */
228
229	/* Find the region where (base, size) belongs to */
230	for (i=0; i < type->cnt; i++) {
231		rgnbegin = type->regions[i].base;
232		rgnend = rgnbegin + type->regions[i].size;
233
234		if ((rgnbegin <= base) && (end <= rgnend))
235			break;
236	}
237
238	/* Didn't find the region */
239	if (i == type->cnt)
240		return -1;
241
242	/* Check to see if we are removing entire region */
243	if ((rgnbegin == base) && (rgnend == end)) {
244		memblock_remove_region(type, i);
245		return 0;
246	}
247
248	/* Check to see if region is matching at the front */
249	if (rgnbegin == base) {
250		type->regions[i].base = end;
251		type->regions[i].size -= size;
252		return 0;
253	}
254
255	/* Check to see if the region is matching at the end */
256	if (rgnend == end) {
257		type->regions[i].size -= size;
258		return 0;
259	}
260
261	/*
262	 * We need to split the entry -  adjust the current one to the
263	 * beginging of the hole and add the region after hole.
264	 */
265	type->regions[i].size = base - type->regions[i].base;
266	return memblock_add_region(type, end, rgnend - end);
267}
268
269long memblock_remove(phys_addr_t base, phys_addr_t size)
270{
271	return __memblock_remove(&memblock.memory, base, size);
272}
273
274long __init memblock_free(phys_addr_t base, phys_addr_t size)
275{
276	return __memblock_remove(&memblock.reserved, base, size);
277}
278
279long __init memblock_reserve(phys_addr_t base, phys_addr_t size)
280{
281	struct memblock_type *_rgn = &memblock.reserved;
282
283	BUG_ON(0 == size);
284
285	return memblock_add_region(_rgn, base, size);
286}
287
288long memblock_overlaps_region(struct memblock_type *type, phys_addr_t base, phys_addr_t size)
289{
290	unsigned long i;
291
292	for (i = 0; i < type->cnt; i++) {
293		phys_addr_t rgnbase = type->regions[i].base;
294		phys_addr_t rgnsize = type->regions[i].size;
295		if (memblock_addrs_overlap(base, size, rgnbase, rgnsize))
296			break;
297	}
298
299	return (i < type->cnt) ? i : -1;
300}
301
302static phys_addr_t memblock_align_down(phys_addr_t addr, phys_addr_t size)
303{
304	return addr & ~(size - 1);
305}
306
307static phys_addr_t memblock_align_up(phys_addr_t addr, phys_addr_t size)
308{
309	return (addr + (size - 1)) & ~(size - 1);
310}
311
312static phys_addr_t __init memblock_find_region(phys_addr_t start, phys_addr_t end,
313					  phys_addr_t size, phys_addr_t align)
314{
315	phys_addr_t base, res_base;
316	long j;
317
318	base = memblock_align_down((end - size), align);
319	while (start <= base) {
320		j = memblock_overlaps_region(&memblock.reserved, base, size);
321		if (j < 0)
322			return base;
323		res_base = memblock.reserved.regions[j].base;
324		if (res_base < size)
325			break;
326		base = memblock_align_down(res_base - size, align);
327	}
328
329	return ~(phys_addr_t)0;
330}
331
332phys_addr_t __weak __init memblock_nid_range(phys_addr_t start, phys_addr_t end, int *nid)
333{
334	*nid = 0;
335
336	return end;
337}
338
339static phys_addr_t __init memblock_alloc_nid_region(struct memblock_region *mp,
340					       phys_addr_t size,
341					       phys_addr_t align, int nid)
342{
343	phys_addr_t start, end;
344
345	start = mp->base;
346	end = start + mp->size;
347
348	start = memblock_align_up(start, align);
349	while (start < end) {
350		phys_addr_t this_end;
351		int this_nid;
352
353		this_end = memblock_nid_range(start, end, &this_nid);
354		if (this_nid == nid) {
355			phys_addr_t ret = memblock_find_region(start, this_end, size, align);
356			if (ret != ~(phys_addr_t)0 &&
357			    memblock_add_region(&memblock.reserved, ret, size) >= 0)
358				return ret;
359		}
360		start = this_end;
361	}
362
363	return ~(phys_addr_t)0;
364}
365
366phys_addr_t __init memblock_alloc_nid(phys_addr_t size, phys_addr_t align, int nid)
367{
368	struct memblock_type *mem = &memblock.memory;
369	int i;
370
371	BUG_ON(0 == size);
372
373	/* We do a bottom-up search for a region with the right
374	 * nid since that's easier considering how memblock_nid_range()
375	 * works
376	 */
377	size = memblock_align_up(size, align);
378
379	for (i = 0; i < mem->cnt; i++) {
380		phys_addr_t ret = memblock_alloc_nid_region(&mem->regions[i],
381					       size, align, nid);
382		if (ret != ~(phys_addr_t)0)
383			return ret;
384	}
385
386	return memblock_alloc(size, align);
387}
388
389phys_addr_t __init memblock_alloc(phys_addr_t size, phys_addr_t align)
390{
391	return memblock_alloc_base(size, align, MEMBLOCK_ALLOC_ACCESSIBLE);
392}
393
394phys_addr_t __init memblock_alloc_base(phys_addr_t size, phys_addr_t align, phys_addr_t max_addr)
395{
396	phys_addr_t alloc;
397
398	alloc = __memblock_alloc_base(size, align, max_addr);
399
400	if (alloc == 0)
401		panic("ERROR: Failed to allocate 0x%llx bytes below 0x%llx.\n",
402		      (unsigned long long) size, (unsigned long long) max_addr);
403
404	return alloc;
405}
406
407phys_addr_t __init __memblock_alloc_base(phys_addr_t size, phys_addr_t align, phys_addr_t max_addr)
408{
409	long i;
410	phys_addr_t base = 0;
411	phys_addr_t res_base;
412
413	BUG_ON(0 == size);
414
415	size = memblock_align_up(size, align);
416
417	/* Pump up max_addr */
418	if (max_addr == MEMBLOCK_ALLOC_ACCESSIBLE)
419		max_addr = memblock.current_limit;
420
421	/* We do a top-down search, this tends to limit memory
422	 * fragmentation by keeping early boot allocs near the
423	 * top of memory
424	 */
425	for (i = memblock.memory.cnt - 1; i >= 0; i--) {
426		phys_addr_t memblockbase = memblock.memory.regions[i].base;
427		phys_addr_t memblocksize = memblock.memory.regions[i].size;
428
429		if (memblocksize < size)
430			continue;
431		base = min(memblockbase + memblocksize, max_addr);
432		res_base = memblock_find_region(memblockbase, base, size, align);
433		if (res_base != ~(phys_addr_t)0 &&
434		    memblock_add_region(&memblock.reserved, res_base, size) >= 0)
435			return res_base;
436	}
437	return 0;
438}
439
440/* You must call memblock_analyze() before this. */
441phys_addr_t __init memblock_phys_mem_size(void)
442{
443	return memblock.memory_size;
444}
445
446phys_addr_t memblock_end_of_DRAM(void)
447{
448	int idx = memblock.memory.cnt - 1;
449
450	return (memblock.memory.regions[idx].base + memblock.memory.regions[idx].size);
451}
452
453/* You must call memblock_analyze() after this. */
454void __init memblock_enforce_memory_limit(phys_addr_t memory_limit)
455{
456	unsigned long i;
457	phys_addr_t limit;
458	struct memblock_region *p;
459
460	if (!memory_limit)
461		return;
462
463	/* Truncate the memblock regions to satisfy the memory limit. */
464	limit = memory_limit;
465	for (i = 0; i < memblock.memory.cnt; i++) {
466		if (limit > memblock.memory.regions[i].size) {
467			limit -= memblock.memory.regions[i].size;
468			continue;
469		}
470
471		memblock.memory.regions[i].size = limit;
472		memblock.memory.cnt = i + 1;
473		break;
474	}
475
476	memory_limit = memblock_end_of_DRAM();
477
478	/* And truncate any reserves above the limit also. */
479	for (i = 0; i < memblock.reserved.cnt; i++) {
480		p = &memblock.reserved.regions[i];
481
482		if (p->base > memory_limit)
483			p->size = 0;
484		else if ((p->base + p->size) > memory_limit)
485			p->size = memory_limit - p->base;
486
487		if (p->size == 0) {
488			memblock_remove_region(&memblock.reserved, i);
489			i--;
490		}
491	}
492}
493
494static int memblock_search(struct memblock_type *type, phys_addr_t addr)
495{
496	unsigned int left = 0, right = type->cnt;
497
498	do {
499		unsigned int mid = (right + left) / 2;
500
501		if (addr < type->regions[mid].base)
502			right = mid;
503		else if (addr >= (type->regions[mid].base +
504				  type->regions[mid].size))
505			left = mid + 1;
506		else
507			return mid;
508	} while (left < right);
509	return -1;
510}
511
512int __init memblock_is_reserved(phys_addr_t addr)
513{
514	return memblock_search(&memblock.reserved, addr) != -1;
515}
516
517int memblock_is_memory(phys_addr_t addr)
518{
519	return memblock_search(&memblock.memory, addr) != -1;
520}
521
522int memblock_is_region_memory(phys_addr_t base, phys_addr_t size)
523{
524	int idx = memblock_search(&memblock.reserved, base);
525
526	if (idx == -1)
527		return 0;
528	return memblock.reserved.regions[idx].base <= base &&
529		(memblock.reserved.regions[idx].base +
530		 memblock.reserved.regions[idx].size) >= (base + size);
531}
532
533int memblock_is_region_reserved(phys_addr_t base, phys_addr_t size)
534{
535	return memblock_overlaps_region(&memblock.reserved, base, size) >= 0;
536}
537
538
539void __init memblock_set_current_limit(phys_addr_t limit)
540{
541	memblock.current_limit = limit;
542}
543
544