memblock.c revision 5d53cb27d849c899136c048ec84c940ac449494b
1/*
2 * Procedures for maintaining information about logical memory blocks.
3 *
4 * Peter Bergner, IBM Corp.	June 2001.
5 * Copyright (C) 2001 Peter Bergner.
6 *
7 *      This program is free software; you can redistribute it and/or
8 *      modify it under the terms of the GNU General Public License
9 *      as published by the Free Software Foundation; either version
10 *      2 of the License, or (at your option) any later version.
11 */
12
13#include <linux/kernel.h>
14#include <linux/slab.h>
15#include <linux/init.h>
16#include <linux/bitops.h>
17#include <linux/poison.h>
18#include <linux/pfn.h>
19#include <linux/debugfs.h>
20#include <linux/seq_file.h>
21#include <linux/memblock.h>
22
23static struct memblock_region memblock_memory_init_regions[INIT_MEMBLOCK_REGIONS] __initdata_memblock;
24static struct memblock_region memblock_reserved_init_regions[INIT_MEMBLOCK_REGIONS] __initdata_memblock;
25
26struct memblock memblock __initdata_memblock = {
27	.memory.regions		= memblock_memory_init_regions,
28	.memory.cnt		= 1,	/* empty dummy entry */
29	.memory.max		= INIT_MEMBLOCK_REGIONS,
30
31	.reserved.regions	= memblock_reserved_init_regions,
32	.reserved.cnt		= 1,	/* empty dummy entry */
33	.reserved.max		= INIT_MEMBLOCK_REGIONS,
34
35	.current_limit		= MEMBLOCK_ALLOC_ANYWHERE,
36};
37
38int memblock_debug __initdata_memblock;
39static int memblock_can_resize __initdata_memblock;
40
41/* inline so we don't get a warning when pr_debug is compiled out */
42static inline const char *memblock_type_name(struct memblock_type *type)
43{
44	if (type == &memblock.memory)
45		return "memory";
46	else if (type == &memblock.reserved)
47		return "reserved";
48	else
49		return "unknown";
50}
51
52/* adjust *@size so that (@base + *@size) doesn't overflow, return new size */
53static inline phys_addr_t memblock_cap_size(phys_addr_t base, phys_addr_t *size)
54{
55	return *size = min(*size, (phys_addr_t)ULLONG_MAX - base);
56}
57
58/*
59 * Address comparison utilities
60 */
61static unsigned long __init_memblock memblock_addrs_overlap(phys_addr_t base1, phys_addr_t size1,
62				       phys_addr_t base2, phys_addr_t size2)
63{
64	return ((base1 < (base2 + size2)) && (base2 < (base1 + size1)));
65}
66
67static long __init_memblock memblock_overlaps_region(struct memblock_type *type,
68					phys_addr_t base, phys_addr_t size)
69{
70	unsigned long i;
71
72	for (i = 0; i < type->cnt; i++) {
73		phys_addr_t rgnbase = type->regions[i].base;
74		phys_addr_t rgnsize = type->regions[i].size;
75		if (memblock_addrs_overlap(base, size, rgnbase, rgnsize))
76			break;
77	}
78
79	return (i < type->cnt) ? i : -1;
80}
81
82/**
83 * memblock_find_in_range_node - find free area in given range and node
84 * @start: start of candidate range
85 * @end: end of candidate range, can be %MEMBLOCK_ALLOC_{ANYWHERE|ACCESSIBLE}
86 * @size: size of free area to find
87 * @align: alignment of free area to find
88 * @nid: nid of the free area to find, %MAX_NUMNODES for any node
89 *
90 * Find @size free area aligned to @align in the specified range and node.
91 *
92 * RETURNS:
93 * Found address on success, %0 on failure.
94 */
95phys_addr_t __init_memblock memblock_find_in_range_node(phys_addr_t start,
96					phys_addr_t end, phys_addr_t size,
97					phys_addr_t align, int nid)
98{
99	phys_addr_t this_start, this_end, cand;
100	u64 i;
101
102	/* align @size to avoid excessive fragmentation on reserved array */
103	size = round_up(size, align);
104
105	/* pump up @end */
106	if (end == MEMBLOCK_ALLOC_ACCESSIBLE)
107		end = memblock.current_limit;
108
109	/* avoid allocating the first page */
110	start = max_t(phys_addr_t, start, PAGE_SIZE);
111	end = max(start, end);
112
113	for_each_free_mem_range_reverse(i, nid, &this_start, &this_end, NULL) {
114		this_start = clamp(this_start, start, end);
115		this_end = clamp(this_end, start, end);
116
117		if (this_end < size)
118			continue;
119
120		cand = round_down(this_end - size, align);
121		if (cand >= this_start)
122			return cand;
123	}
124	return 0;
125}
126
127/**
128 * memblock_find_in_range - find free area in given range
129 * @start: start of candidate range
130 * @end: end of candidate range, can be %MEMBLOCK_ALLOC_{ANYWHERE|ACCESSIBLE}
131 * @size: size of free area to find
132 * @align: alignment of free area to find
133 *
134 * Find @size free area aligned to @align in the specified range.
135 *
136 * RETURNS:
137 * Found address on success, %0 on failure.
138 */
139phys_addr_t __init_memblock memblock_find_in_range(phys_addr_t start,
140					phys_addr_t end, phys_addr_t size,
141					phys_addr_t align)
142{
143	return memblock_find_in_range_node(start, end, size, align,
144					   MAX_NUMNODES);
145}
146
147/*
148 * Free memblock.reserved.regions
149 */
150int __init_memblock memblock_free_reserved_regions(void)
151{
152	if (memblock.reserved.regions == memblock_reserved_init_regions)
153		return 0;
154
155	return memblock_free(__pa(memblock.reserved.regions),
156		 sizeof(struct memblock_region) * memblock.reserved.max);
157}
158
159/*
160 * Reserve memblock.reserved.regions
161 */
162int __init_memblock memblock_reserve_reserved_regions(void)
163{
164	if (memblock.reserved.regions == memblock_reserved_init_regions)
165		return 0;
166
167	return memblock_reserve(__pa(memblock.reserved.regions),
168		 sizeof(struct memblock_region) * memblock.reserved.max);
169}
170
171static void __init_memblock memblock_remove_region(struct memblock_type *type, unsigned long r)
172{
173	type->total_size -= type->regions[r].size;
174	memmove(&type->regions[r], &type->regions[r + 1],
175		(type->cnt - (r + 1)) * sizeof(type->regions[r]));
176	type->cnt--;
177
178	/* Special case for empty arrays */
179	if (type->cnt == 0) {
180		WARN_ON(type->total_size != 0);
181		type->cnt = 1;
182		type->regions[0].base = 0;
183		type->regions[0].size = 0;
184		memblock_set_region_node(&type->regions[0], MAX_NUMNODES);
185	}
186}
187
188static int __init_memblock memblock_double_array(struct memblock_type *type)
189{
190	struct memblock_region *new_array, *old_array;
191	phys_addr_t old_size, new_size, addr;
192	int use_slab = slab_is_available();
193
194	/* We don't allow resizing until we know about the reserved regions
195	 * of memory that aren't suitable for allocation
196	 */
197	if (!memblock_can_resize)
198		return -1;
199
200	/* Calculate new doubled size */
201	old_size = type->max * sizeof(struct memblock_region);
202	new_size = old_size << 1;
203
204	/* Try to find some space for it.
205	 *
206	 * WARNING: We assume that either slab_is_available() and we use it or
207	 * we use MEMBLOCK for allocations. That means that this is unsafe to use
208	 * when bootmem is currently active (unless bootmem itself is implemented
209	 * on top of MEMBLOCK which isn't the case yet)
210	 *
211	 * This should however not be an issue for now, as we currently only
212	 * call into MEMBLOCK while it's still active, or much later when slab is
213	 * active for memory hotplug operations
214	 */
215	if (use_slab) {
216		new_array = kmalloc(new_size, GFP_KERNEL);
217		addr = new_array ? __pa(new_array) : 0;
218	} else
219		addr = memblock_find_in_range(0, MEMBLOCK_ALLOC_ACCESSIBLE, new_size, sizeof(phys_addr_t));
220	if (!addr) {
221		pr_err("memblock: Failed to double %s array from %ld to %ld entries !\n",
222		       memblock_type_name(type), type->max, type->max * 2);
223		return -1;
224	}
225	new_array = __va(addr);
226
227	memblock_dbg("memblock: %s array is doubled to %ld at [%#010llx-%#010llx]",
228		 memblock_type_name(type), type->max * 2, (u64)addr, (u64)addr + new_size - 1);
229
230	/* Found space, we now need to move the array over before
231	 * we add the reserved region since it may be our reserved
232	 * array itself that is full.
233	 */
234	memcpy(new_array, type->regions, old_size);
235	memset(new_array + type->max, 0, old_size);
236	old_array = type->regions;
237	type->regions = new_array;
238	type->max <<= 1;
239
240	/* If we use SLAB that's it, we are done */
241	if (use_slab)
242		return 0;
243
244	/* Add the new reserved region now. Should not fail ! */
245	BUG_ON(memblock_reserve(addr, new_size));
246
247	/* If the array wasn't our static init one, then free it. We only do
248	 * that before SLAB is available as later on, we don't know whether
249	 * to use kfree or free_bootmem_pages(). Shouldn't be a big deal
250	 * anyways
251	 */
252	if (old_array != memblock_memory_init_regions &&
253	    old_array != memblock_reserved_init_regions)
254		memblock_free(__pa(old_array), old_size);
255
256	return 0;
257}
258
259/**
260 * memblock_merge_regions - merge neighboring compatible regions
261 * @type: memblock type to scan
262 *
263 * Scan @type and merge neighboring compatible regions.
264 */
265static void __init_memblock memblock_merge_regions(struct memblock_type *type)
266{
267	int i = 0;
268
269	/* cnt never goes below 1 */
270	while (i < type->cnt - 1) {
271		struct memblock_region *this = &type->regions[i];
272		struct memblock_region *next = &type->regions[i + 1];
273
274		if (this->base + this->size != next->base ||
275		    memblock_get_region_node(this) !=
276		    memblock_get_region_node(next)) {
277			BUG_ON(this->base + this->size > next->base);
278			i++;
279			continue;
280		}
281
282		this->size += next->size;
283		memmove(next, next + 1, (type->cnt - (i + 1)) * sizeof(*next));
284		type->cnt--;
285	}
286}
287
288/**
289 * memblock_insert_region - insert new memblock region
290 * @type: memblock type to insert into
291 * @idx: index for the insertion point
292 * @base: base address of the new region
293 * @size: size of the new region
294 *
295 * Insert new memblock region [@base,@base+@size) into @type at @idx.
296 * @type must already have extra room to accomodate the new region.
297 */
298static void __init_memblock memblock_insert_region(struct memblock_type *type,
299						   int idx, phys_addr_t base,
300						   phys_addr_t size, int nid)
301{
302	struct memblock_region *rgn = &type->regions[idx];
303
304	BUG_ON(type->cnt >= type->max);
305	memmove(rgn + 1, rgn, (type->cnt - idx) * sizeof(*rgn));
306	rgn->base = base;
307	rgn->size = size;
308	memblock_set_region_node(rgn, nid);
309	type->cnt++;
310	type->total_size += size;
311}
312
313/**
314 * memblock_add_region - add new memblock region
315 * @type: memblock type to add new region into
316 * @base: base address of the new region
317 * @size: size of the new region
318 * @nid: nid of the new region
319 *
320 * Add new memblock region [@base,@base+@size) into @type.  The new region
321 * is allowed to overlap with existing ones - overlaps don't affect already
322 * existing regions.  @type is guaranteed to be minimal (all neighbouring
323 * compatible regions are merged) after the addition.
324 *
325 * RETURNS:
326 * 0 on success, -errno on failure.
327 */
328static int __init_memblock memblock_add_region(struct memblock_type *type,
329				phys_addr_t base, phys_addr_t size, int nid)
330{
331	bool insert = false;
332	phys_addr_t obase = base;
333	phys_addr_t end = base + memblock_cap_size(base, &size);
334	int i, nr_new;
335
336	/* special case for empty array */
337	if (type->regions[0].size == 0) {
338		WARN_ON(type->cnt != 1 || type->total_size);
339		type->regions[0].base = base;
340		type->regions[0].size = size;
341		memblock_set_region_node(&type->regions[0], nid);
342		type->total_size = size;
343		return 0;
344	}
345repeat:
346	/*
347	 * The following is executed twice.  Once with %false @insert and
348	 * then with %true.  The first counts the number of regions needed
349	 * to accomodate the new area.  The second actually inserts them.
350	 */
351	base = obase;
352	nr_new = 0;
353
354	for (i = 0; i < type->cnt; i++) {
355		struct memblock_region *rgn = &type->regions[i];
356		phys_addr_t rbase = rgn->base;
357		phys_addr_t rend = rbase + rgn->size;
358
359		if (rbase >= end)
360			break;
361		if (rend <= base)
362			continue;
363		/*
364		 * @rgn overlaps.  If it separates the lower part of new
365		 * area, insert that portion.
366		 */
367		if (rbase > base) {
368			nr_new++;
369			if (insert)
370				memblock_insert_region(type, i++, base,
371						       rbase - base, nid);
372		}
373		/* area below @rend is dealt with, forget about it */
374		base = min(rend, end);
375	}
376
377	/* insert the remaining portion */
378	if (base < end) {
379		nr_new++;
380		if (insert)
381			memblock_insert_region(type, i, base, end - base, nid);
382	}
383
384	/*
385	 * If this was the first round, resize array and repeat for actual
386	 * insertions; otherwise, merge and return.
387	 */
388	if (!insert) {
389		while (type->cnt + nr_new > type->max)
390			if (memblock_double_array(type) < 0)
391				return -ENOMEM;
392		insert = true;
393		goto repeat;
394	} else {
395		memblock_merge_regions(type);
396		return 0;
397	}
398}
399
400int __init_memblock memblock_add_node(phys_addr_t base, phys_addr_t size,
401				       int nid)
402{
403	return memblock_add_region(&memblock.memory, base, size, nid);
404}
405
406int __init_memblock memblock_add(phys_addr_t base, phys_addr_t size)
407{
408	return memblock_add_region(&memblock.memory, base, size, MAX_NUMNODES);
409}
410
411/**
412 * memblock_isolate_range - isolate given range into disjoint memblocks
413 * @type: memblock type to isolate range for
414 * @base: base of range to isolate
415 * @size: size of range to isolate
416 * @start_rgn: out parameter for the start of isolated region
417 * @end_rgn: out parameter for the end of isolated region
418 *
419 * Walk @type and ensure that regions don't cross the boundaries defined by
420 * [@base,@base+@size).  Crossing regions are split at the boundaries,
421 * which may create at most two more regions.  The index of the first
422 * region inside the range is returned in *@start_rgn and end in *@end_rgn.
423 *
424 * RETURNS:
425 * 0 on success, -errno on failure.
426 */
427static int __init_memblock memblock_isolate_range(struct memblock_type *type,
428					phys_addr_t base, phys_addr_t size,
429					int *start_rgn, int *end_rgn)
430{
431	phys_addr_t end = base + memblock_cap_size(base, &size);
432	int i;
433
434	*start_rgn = *end_rgn = 0;
435
436	/* we'll create at most two more regions */
437	while (type->cnt + 2 > type->max)
438		if (memblock_double_array(type) < 0)
439			return -ENOMEM;
440
441	for (i = 0; i < type->cnt; i++) {
442		struct memblock_region *rgn = &type->regions[i];
443		phys_addr_t rbase = rgn->base;
444		phys_addr_t rend = rbase + rgn->size;
445
446		if (rbase >= end)
447			break;
448		if (rend <= base)
449			continue;
450
451		if (rbase < base) {
452			/*
453			 * @rgn intersects from below.  Split and continue
454			 * to process the next region - the new top half.
455			 */
456			rgn->base = base;
457			rgn->size -= base - rbase;
458			type->total_size -= base - rbase;
459			memblock_insert_region(type, i, rbase, base - rbase,
460					       memblock_get_region_node(rgn));
461		} else if (rend > end) {
462			/*
463			 * @rgn intersects from above.  Split and redo the
464			 * current region - the new bottom half.
465			 */
466			rgn->base = end;
467			rgn->size -= end - rbase;
468			type->total_size -= end - rbase;
469			memblock_insert_region(type, i--, rbase, end - rbase,
470					       memblock_get_region_node(rgn));
471		} else {
472			/* @rgn is fully contained, record it */
473			if (!*end_rgn)
474				*start_rgn = i;
475			*end_rgn = i + 1;
476		}
477	}
478
479	return 0;
480}
481
482static int __init_memblock __memblock_remove(struct memblock_type *type,
483					     phys_addr_t base, phys_addr_t size)
484{
485	int start_rgn, end_rgn;
486	int i, ret;
487
488	ret = memblock_isolate_range(type, base, size, &start_rgn, &end_rgn);
489	if (ret)
490		return ret;
491
492	for (i = end_rgn - 1; i >= start_rgn; i--)
493		memblock_remove_region(type, i);
494	return 0;
495}
496
497int __init_memblock memblock_remove(phys_addr_t base, phys_addr_t size)
498{
499	return __memblock_remove(&memblock.memory, base, size);
500}
501
502int __init_memblock memblock_free(phys_addr_t base, phys_addr_t size)
503{
504	memblock_dbg("   memblock_free: [%#016llx-%#016llx] %pF\n",
505		     (unsigned long long)base,
506		     (unsigned long long)base + size,
507		     (void *)_RET_IP_);
508
509	return __memblock_remove(&memblock.reserved, base, size);
510}
511
512int __init_memblock memblock_reserve(phys_addr_t base, phys_addr_t size)
513{
514	struct memblock_type *_rgn = &memblock.reserved;
515
516	memblock_dbg("memblock_reserve: [%#016llx-%#016llx] %pF\n",
517		     (unsigned long long)base,
518		     (unsigned long long)base + size,
519		     (void *)_RET_IP_);
520	BUG_ON(0 == size);
521
522	return memblock_add_region(_rgn, base, size, MAX_NUMNODES);
523}
524
525/**
526 * __next_free_mem_range - next function for for_each_free_mem_range()
527 * @idx: pointer to u64 loop variable
528 * @nid: nid: node selector, %MAX_NUMNODES for all nodes
529 * @p_start: ptr to phys_addr_t for start address of the range, can be %NULL
530 * @p_end: ptr to phys_addr_t for end address of the range, can be %NULL
531 * @p_nid: ptr to int for nid of the range, can be %NULL
532 *
533 * Find the first free area from *@idx which matches @nid, fill the out
534 * parameters, and update *@idx for the next iteration.  The lower 32bit of
535 * *@idx contains index into memory region and the upper 32bit indexes the
536 * areas before each reserved region.  For example, if reserved regions
537 * look like the following,
538 *
539 *	0:[0-16), 1:[32-48), 2:[128-130)
540 *
541 * The upper 32bit indexes the following regions.
542 *
543 *	0:[0-0), 1:[16-32), 2:[48-128), 3:[130-MAX)
544 *
545 * As both region arrays are sorted, the function advances the two indices
546 * in lockstep and returns each intersection.
547 */
548void __init_memblock __next_free_mem_range(u64 *idx, int nid,
549					   phys_addr_t *out_start,
550					   phys_addr_t *out_end, int *out_nid)
551{
552	struct memblock_type *mem = &memblock.memory;
553	struct memblock_type *rsv = &memblock.reserved;
554	int mi = *idx & 0xffffffff;
555	int ri = *idx >> 32;
556
557	for ( ; mi < mem->cnt; mi++) {
558		struct memblock_region *m = &mem->regions[mi];
559		phys_addr_t m_start = m->base;
560		phys_addr_t m_end = m->base + m->size;
561
562		/* only memory regions are associated with nodes, check it */
563		if (nid != MAX_NUMNODES && nid != memblock_get_region_node(m))
564			continue;
565
566		/* scan areas before each reservation for intersection */
567		for ( ; ri < rsv->cnt + 1; ri++) {
568			struct memblock_region *r = &rsv->regions[ri];
569			phys_addr_t r_start = ri ? r[-1].base + r[-1].size : 0;
570			phys_addr_t r_end = ri < rsv->cnt ? r->base : ULLONG_MAX;
571
572			/* if ri advanced past mi, break out to advance mi */
573			if (r_start >= m_end)
574				break;
575			/* if the two regions intersect, we're done */
576			if (m_start < r_end) {
577				if (out_start)
578					*out_start = max(m_start, r_start);
579				if (out_end)
580					*out_end = min(m_end, r_end);
581				if (out_nid)
582					*out_nid = memblock_get_region_node(m);
583				/*
584				 * The region which ends first is advanced
585				 * for the next iteration.
586				 */
587				if (m_end <= r_end)
588					mi++;
589				else
590					ri++;
591				*idx = (u32)mi | (u64)ri << 32;
592				return;
593			}
594		}
595	}
596
597	/* signal end of iteration */
598	*idx = ULLONG_MAX;
599}
600
601/**
602 * __next_free_mem_range_rev - next function for for_each_free_mem_range_reverse()
603 * @idx: pointer to u64 loop variable
604 * @nid: nid: node selector, %MAX_NUMNODES for all nodes
605 * @p_start: ptr to phys_addr_t for start address of the range, can be %NULL
606 * @p_end: ptr to phys_addr_t for end address of the range, can be %NULL
607 * @p_nid: ptr to int for nid of the range, can be %NULL
608 *
609 * Reverse of __next_free_mem_range().
610 */
611void __init_memblock __next_free_mem_range_rev(u64 *idx, int nid,
612					   phys_addr_t *out_start,
613					   phys_addr_t *out_end, int *out_nid)
614{
615	struct memblock_type *mem = &memblock.memory;
616	struct memblock_type *rsv = &memblock.reserved;
617	int mi = *idx & 0xffffffff;
618	int ri = *idx >> 32;
619
620	if (*idx == (u64)ULLONG_MAX) {
621		mi = mem->cnt - 1;
622		ri = rsv->cnt;
623	}
624
625	for ( ; mi >= 0; mi--) {
626		struct memblock_region *m = &mem->regions[mi];
627		phys_addr_t m_start = m->base;
628		phys_addr_t m_end = m->base + m->size;
629
630		/* only memory regions are associated with nodes, check it */
631		if (nid != MAX_NUMNODES && nid != memblock_get_region_node(m))
632			continue;
633
634		/* scan areas before each reservation for intersection */
635		for ( ; ri >= 0; ri--) {
636			struct memblock_region *r = &rsv->regions[ri];
637			phys_addr_t r_start = ri ? r[-1].base + r[-1].size : 0;
638			phys_addr_t r_end = ri < rsv->cnt ? r->base : ULLONG_MAX;
639
640			/* if ri advanced past mi, break out to advance mi */
641			if (r_end <= m_start)
642				break;
643			/* if the two regions intersect, we're done */
644			if (m_end > r_start) {
645				if (out_start)
646					*out_start = max(m_start, r_start);
647				if (out_end)
648					*out_end = min(m_end, r_end);
649				if (out_nid)
650					*out_nid = memblock_get_region_node(m);
651
652				if (m_start >= r_start)
653					mi--;
654				else
655					ri--;
656				*idx = (u32)mi | (u64)ri << 32;
657				return;
658			}
659		}
660	}
661
662	*idx = ULLONG_MAX;
663}
664
665#ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
666/*
667 * Common iterator interface used to define for_each_mem_range().
668 */
669void __init_memblock __next_mem_pfn_range(int *idx, int nid,
670				unsigned long *out_start_pfn,
671				unsigned long *out_end_pfn, int *out_nid)
672{
673	struct memblock_type *type = &memblock.memory;
674	struct memblock_region *r;
675
676	while (++*idx < type->cnt) {
677		r = &type->regions[*idx];
678
679		if (PFN_UP(r->base) >= PFN_DOWN(r->base + r->size))
680			continue;
681		if (nid == MAX_NUMNODES || nid == r->nid)
682			break;
683	}
684	if (*idx >= type->cnt) {
685		*idx = -1;
686		return;
687	}
688
689	if (out_start_pfn)
690		*out_start_pfn = PFN_UP(r->base);
691	if (out_end_pfn)
692		*out_end_pfn = PFN_DOWN(r->base + r->size);
693	if (out_nid)
694		*out_nid = r->nid;
695}
696
697/**
698 * memblock_set_node - set node ID on memblock regions
699 * @base: base of area to set node ID for
700 * @size: size of area to set node ID for
701 * @nid: node ID to set
702 *
703 * Set the nid of memblock memory regions in [@base,@base+@size) to @nid.
704 * Regions which cross the area boundaries are split as necessary.
705 *
706 * RETURNS:
707 * 0 on success, -errno on failure.
708 */
709int __init_memblock memblock_set_node(phys_addr_t base, phys_addr_t size,
710				      int nid)
711{
712	struct memblock_type *type = &memblock.memory;
713	int start_rgn, end_rgn;
714	int i, ret;
715
716	ret = memblock_isolate_range(type, base, size, &start_rgn, &end_rgn);
717	if (ret)
718		return ret;
719
720	for (i = start_rgn; i < end_rgn; i++)
721		type->regions[i].nid = nid;
722
723	memblock_merge_regions(type);
724	return 0;
725}
726#endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
727
728static phys_addr_t __init memblock_alloc_base_nid(phys_addr_t size,
729					phys_addr_t align, phys_addr_t max_addr,
730					int nid)
731{
732	phys_addr_t found;
733
734	found = memblock_find_in_range_node(0, max_addr, size, align, nid);
735	if (found && !memblock_reserve(found, size))
736		return found;
737
738	return 0;
739}
740
741phys_addr_t __init memblock_alloc_nid(phys_addr_t size, phys_addr_t align, int nid)
742{
743	return memblock_alloc_base_nid(size, align, MEMBLOCK_ALLOC_ACCESSIBLE, nid);
744}
745
746phys_addr_t __init __memblock_alloc_base(phys_addr_t size, phys_addr_t align, phys_addr_t max_addr)
747{
748	return memblock_alloc_base_nid(size, align, max_addr, MAX_NUMNODES);
749}
750
751phys_addr_t __init memblock_alloc_base(phys_addr_t size, phys_addr_t align, phys_addr_t max_addr)
752{
753	phys_addr_t alloc;
754
755	alloc = __memblock_alloc_base(size, align, max_addr);
756
757	if (alloc == 0)
758		panic("ERROR: Failed to allocate 0x%llx bytes below 0x%llx.\n",
759		      (unsigned long long) size, (unsigned long long) max_addr);
760
761	return alloc;
762}
763
764phys_addr_t __init memblock_alloc(phys_addr_t size, phys_addr_t align)
765{
766	return memblock_alloc_base(size, align, MEMBLOCK_ALLOC_ACCESSIBLE);
767}
768
769phys_addr_t __init memblock_alloc_try_nid(phys_addr_t size, phys_addr_t align, int nid)
770{
771	phys_addr_t res = memblock_alloc_nid(size, align, nid);
772
773	if (res)
774		return res;
775	return memblock_alloc_base(size, align, MEMBLOCK_ALLOC_ACCESSIBLE);
776}
777
778
779/*
780 * Remaining API functions
781 */
782
783phys_addr_t __init memblock_phys_mem_size(void)
784{
785	return memblock.memory.total_size;
786}
787
788/* lowest address */
789phys_addr_t __init_memblock memblock_start_of_DRAM(void)
790{
791	return memblock.memory.regions[0].base;
792}
793
794phys_addr_t __init_memblock memblock_end_of_DRAM(void)
795{
796	int idx = memblock.memory.cnt - 1;
797
798	return (memblock.memory.regions[idx].base + memblock.memory.regions[idx].size);
799}
800
801void __init memblock_enforce_memory_limit(phys_addr_t limit)
802{
803	unsigned long i;
804	phys_addr_t max_addr = (phys_addr_t)ULLONG_MAX;
805
806	if (!limit)
807		return;
808
809	/* find out max address */
810	for (i = 0; i < memblock.memory.cnt; i++) {
811		struct memblock_region *r = &memblock.memory.regions[i];
812
813		if (limit <= r->size) {
814			max_addr = r->base + limit;
815			break;
816		}
817		limit -= r->size;
818	}
819
820	/* truncate both memory and reserved regions */
821	__memblock_remove(&memblock.memory, max_addr, (phys_addr_t)ULLONG_MAX);
822	__memblock_remove(&memblock.reserved, max_addr, (phys_addr_t)ULLONG_MAX);
823}
824
825static int __init_memblock memblock_search(struct memblock_type *type, phys_addr_t addr)
826{
827	unsigned int left = 0, right = type->cnt;
828
829	do {
830		unsigned int mid = (right + left) / 2;
831
832		if (addr < type->regions[mid].base)
833			right = mid;
834		else if (addr >= (type->regions[mid].base +
835				  type->regions[mid].size))
836			left = mid + 1;
837		else
838			return mid;
839	} while (left < right);
840	return -1;
841}
842
843int __init memblock_is_reserved(phys_addr_t addr)
844{
845	return memblock_search(&memblock.reserved, addr) != -1;
846}
847
848int __init_memblock memblock_is_memory(phys_addr_t addr)
849{
850	return memblock_search(&memblock.memory, addr) != -1;
851}
852
853int __init_memblock memblock_is_region_memory(phys_addr_t base, phys_addr_t size)
854{
855	int idx = memblock_search(&memblock.memory, base);
856	phys_addr_t end = base + memblock_cap_size(base, &size);
857
858	if (idx == -1)
859		return 0;
860	return memblock.memory.regions[idx].base <= base &&
861		(memblock.memory.regions[idx].base +
862		 memblock.memory.regions[idx].size) >= end;
863}
864
865int __init_memblock memblock_is_region_reserved(phys_addr_t base, phys_addr_t size)
866{
867	memblock_cap_size(base, &size);
868	return memblock_overlaps_region(&memblock.reserved, base, size) >= 0;
869}
870
871
872void __init_memblock memblock_set_current_limit(phys_addr_t limit)
873{
874	memblock.current_limit = limit;
875}
876
877static void __init_memblock memblock_dump(struct memblock_type *type, char *name)
878{
879	unsigned long long base, size;
880	int i;
881
882	pr_info(" %s.cnt  = 0x%lx\n", name, type->cnt);
883
884	for (i = 0; i < type->cnt; i++) {
885		struct memblock_region *rgn = &type->regions[i];
886		char nid_buf[32] = "";
887
888		base = rgn->base;
889		size = rgn->size;
890#ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
891		if (memblock_get_region_node(rgn) != MAX_NUMNODES)
892			snprintf(nid_buf, sizeof(nid_buf), " on node %d",
893				 memblock_get_region_node(rgn));
894#endif
895		pr_info(" %s[%#x]\t[%#016llx-%#016llx], %#llx bytes%s\n",
896			name, i, base, base + size - 1, size, nid_buf);
897	}
898}
899
900void __init_memblock __memblock_dump_all(void)
901{
902	pr_info("MEMBLOCK configuration:\n");
903	pr_info(" memory size = %#llx reserved size = %#llx\n",
904		(unsigned long long)memblock.memory.total_size,
905		(unsigned long long)memblock.reserved.total_size);
906
907	memblock_dump(&memblock.memory, "memory");
908	memblock_dump(&memblock.reserved, "reserved");
909}
910
911void __init memblock_allow_resize(void)
912{
913	memblock_can_resize = 1;
914}
915
916static int __init early_memblock(char *p)
917{
918	if (p && strstr(p, "debug"))
919		memblock_debug = 1;
920	return 0;
921}
922early_param("memblock", early_memblock);
923
924#if defined(CONFIG_DEBUG_FS) && !defined(CONFIG_ARCH_DISCARD_MEMBLOCK)
925
926static int memblock_debug_show(struct seq_file *m, void *private)
927{
928	struct memblock_type *type = m->private;
929	struct memblock_region *reg;
930	int i;
931
932	for (i = 0; i < type->cnt; i++) {
933		reg = &type->regions[i];
934		seq_printf(m, "%4d: ", i);
935		if (sizeof(phys_addr_t) == 4)
936			seq_printf(m, "0x%08lx..0x%08lx\n",
937				   (unsigned long)reg->base,
938				   (unsigned long)(reg->base + reg->size - 1));
939		else
940			seq_printf(m, "0x%016llx..0x%016llx\n",
941				   (unsigned long long)reg->base,
942				   (unsigned long long)(reg->base + reg->size - 1));
943
944	}
945	return 0;
946}
947
948static int memblock_debug_open(struct inode *inode, struct file *file)
949{
950	return single_open(file, memblock_debug_show, inode->i_private);
951}
952
953static const struct file_operations memblock_debug_fops = {
954	.open = memblock_debug_open,
955	.read = seq_read,
956	.llseek = seq_lseek,
957	.release = single_release,
958};
959
960static int __init memblock_init_debugfs(void)
961{
962	struct dentry *root = debugfs_create_dir("memblock", NULL);
963	if (!root)
964		return -ENXIO;
965	debugfs_create_file("memory", S_IRUGO, root, &memblock.memory, &memblock_debug_fops);
966	debugfs_create_file("reserved", S_IRUGO, root, &memblock.reserved, &memblock_debug_fops);
967
968	return 0;
969}
970__initcall(memblock_init_debugfs);
971
972#endif /* CONFIG_DEBUG_FS */
973