memblock.c revision 7590abe891c85fbc65dc906516d0bf89e070c19a
1/*
2 * Procedures for maintaining information about logical memory blocks.
3 *
4 * Peter Bergner, IBM Corp.	June 2001.
5 * Copyright (C) 2001 Peter Bergner.
6 *
7 *      This program is free software; you can redistribute it and/or
8 *      modify it under the terms of the GNU General Public License
9 *      as published by the Free Software Foundation; either version
10 *      2 of the License, or (at your option) any later version.
11 */
12
13#include <linux/kernel.h>
14#include <linux/init.h>
15#include <linux/bitops.h>
16#include <linux/poison.h>
17#include <linux/memblock.h>
18
19struct memblock memblock;
20
21static int memblock_debug;
22static struct memblock_region memblock_memory_init_regions[INIT_MEMBLOCK_REGIONS + 1];
23static struct memblock_region memblock_reserved_init_regions[INIT_MEMBLOCK_REGIONS + 1];
24
25#define MEMBLOCK_ERROR	(~(phys_addr_t)0)
26
27static int __init early_memblock(char *p)
28{
29	if (p && strstr(p, "debug"))
30		memblock_debug = 1;
31	return 0;
32}
33early_param("memblock", early_memblock);
34
35static void memblock_dump(struct memblock_type *region, char *name)
36{
37	unsigned long long base, size;
38	int i;
39
40	pr_info(" %s.cnt  = 0x%lx\n", name, region->cnt);
41
42	for (i = 0; i < region->cnt; i++) {
43		base = region->regions[i].base;
44		size = region->regions[i].size;
45
46		pr_info(" %s[0x%x]\t0x%016llx - 0x%016llx, 0x%llx bytes\n",
47		    name, i, base, base + size - 1, size);
48	}
49}
50
51void memblock_dump_all(void)
52{
53	if (!memblock_debug)
54		return;
55
56	pr_info("MEMBLOCK configuration:\n");
57	pr_info(" memory size = 0x%llx\n", (unsigned long long)memblock.memory_size);
58
59	memblock_dump(&memblock.memory, "memory");
60	memblock_dump(&memblock.reserved, "reserved");
61}
62
63static unsigned long memblock_addrs_overlap(phys_addr_t base1, phys_addr_t size1,
64				       phys_addr_t base2, phys_addr_t size2)
65{
66	return ((base1 < (base2 + size2)) && (base2 < (base1 + size1)));
67}
68
69static long memblock_addrs_adjacent(phys_addr_t base1, phys_addr_t size1,
70			       phys_addr_t base2, phys_addr_t size2)
71{
72	if (base2 == base1 + size1)
73		return 1;
74	else if (base1 == base2 + size2)
75		return -1;
76
77	return 0;
78}
79
80static long memblock_regions_adjacent(struct memblock_type *type,
81				 unsigned long r1, unsigned long r2)
82{
83	phys_addr_t base1 = type->regions[r1].base;
84	phys_addr_t size1 = type->regions[r1].size;
85	phys_addr_t base2 = type->regions[r2].base;
86	phys_addr_t size2 = type->regions[r2].size;
87
88	return memblock_addrs_adjacent(base1, size1, base2, size2);
89}
90
91static void memblock_remove_region(struct memblock_type *type, unsigned long r)
92{
93	unsigned long i;
94
95	for (i = r; i < type->cnt - 1; i++) {
96		type->regions[i].base = type->regions[i + 1].base;
97		type->regions[i].size = type->regions[i + 1].size;
98	}
99	type->cnt--;
100}
101
102/* Assumption: base addr of region 1 < base addr of region 2 */
103static void memblock_coalesce_regions(struct memblock_type *type,
104		unsigned long r1, unsigned long r2)
105{
106	type->regions[r1].size += type->regions[r2].size;
107	memblock_remove_region(type, r2);
108}
109
110void __init memblock_analyze(void)
111{
112	int i;
113
114	/* Check marker in the unused last array entry */
115	WARN_ON(memblock_memory_init_regions[INIT_MEMBLOCK_REGIONS].base
116		!= (phys_addr_t)RED_INACTIVE);
117	WARN_ON(memblock_reserved_init_regions[INIT_MEMBLOCK_REGIONS].base
118		!= (phys_addr_t)RED_INACTIVE);
119
120	memblock.memory_size = 0;
121
122	for (i = 0; i < memblock.memory.cnt; i++)
123		memblock.memory_size += memblock.memory.regions[i].size;
124}
125
126static long memblock_add_region(struct memblock_type *type, phys_addr_t base, phys_addr_t size)
127{
128	unsigned long coalesced = 0;
129	long adjacent, i;
130
131	if ((type->cnt == 1) && (type->regions[0].size == 0)) {
132		type->regions[0].base = base;
133		type->regions[0].size = size;
134		return 0;
135	}
136
137	/* First try and coalesce this MEMBLOCK with another. */
138	for (i = 0; i < type->cnt; i++) {
139		phys_addr_t rgnbase = type->regions[i].base;
140		phys_addr_t rgnsize = type->regions[i].size;
141
142		if ((rgnbase == base) && (rgnsize == size))
143			/* Already have this region, so we're done */
144			return 0;
145
146		adjacent = memblock_addrs_adjacent(base, size, rgnbase, rgnsize);
147		if (adjacent > 0) {
148			type->regions[i].base -= size;
149			type->regions[i].size += size;
150			coalesced++;
151			break;
152		} else if (adjacent < 0) {
153			type->regions[i].size += size;
154			coalesced++;
155			break;
156		}
157	}
158
159	if ((i < type->cnt - 1) && memblock_regions_adjacent(type, i, i+1)) {
160		memblock_coalesce_regions(type, i, i+1);
161		coalesced++;
162	}
163
164	if (coalesced)
165		return coalesced;
166	if (type->cnt >= type->max)
167		return -1;
168
169	/* Couldn't coalesce the MEMBLOCK, so add it to the sorted table. */
170	for (i = type->cnt - 1; i >= 0; i--) {
171		if (base < type->regions[i].base) {
172			type->regions[i+1].base = type->regions[i].base;
173			type->regions[i+1].size = type->regions[i].size;
174		} else {
175			type->regions[i+1].base = base;
176			type->regions[i+1].size = size;
177			break;
178		}
179	}
180
181	if (base < type->regions[0].base) {
182		type->regions[0].base = base;
183		type->regions[0].size = size;
184	}
185	type->cnt++;
186
187	return 0;
188}
189
190long memblock_add(phys_addr_t base, phys_addr_t size)
191{
192	return memblock_add_region(&memblock.memory, base, size);
193
194}
195
196static long __memblock_remove(struct memblock_type *type, phys_addr_t base, phys_addr_t size)
197{
198	phys_addr_t rgnbegin, rgnend;
199	phys_addr_t end = base + size;
200	int i;
201
202	rgnbegin = rgnend = 0; /* supress gcc warnings */
203
204	/* Find the region where (base, size) belongs to */
205	for (i=0; i < type->cnt; i++) {
206		rgnbegin = type->regions[i].base;
207		rgnend = rgnbegin + type->regions[i].size;
208
209		if ((rgnbegin <= base) && (end <= rgnend))
210			break;
211	}
212
213	/* Didn't find the region */
214	if (i == type->cnt)
215		return -1;
216
217	/* Check to see if we are removing entire region */
218	if ((rgnbegin == base) && (rgnend == end)) {
219		memblock_remove_region(type, i);
220		return 0;
221	}
222
223	/* Check to see if region is matching at the front */
224	if (rgnbegin == base) {
225		type->regions[i].base = end;
226		type->regions[i].size -= size;
227		return 0;
228	}
229
230	/* Check to see if the region is matching at the end */
231	if (rgnend == end) {
232		type->regions[i].size -= size;
233		return 0;
234	}
235
236	/*
237	 * We need to split the entry -  adjust the current one to the
238	 * beginging of the hole and add the region after hole.
239	 */
240	type->regions[i].size = base - type->regions[i].base;
241	return memblock_add_region(type, end, rgnend - end);
242}
243
244long memblock_remove(phys_addr_t base, phys_addr_t size)
245{
246	return __memblock_remove(&memblock.memory, base, size);
247}
248
249long __init memblock_free(phys_addr_t base, phys_addr_t size)
250{
251	return __memblock_remove(&memblock.reserved, base, size);
252}
253
254long __init memblock_reserve(phys_addr_t base, phys_addr_t size)
255{
256	struct memblock_type *_rgn = &memblock.reserved;
257
258	BUG_ON(0 == size);
259
260	return memblock_add_region(_rgn, base, size);
261}
262
263long memblock_overlaps_region(struct memblock_type *type, phys_addr_t base, phys_addr_t size)
264{
265	unsigned long i;
266
267	for (i = 0; i < type->cnt; i++) {
268		phys_addr_t rgnbase = type->regions[i].base;
269		phys_addr_t rgnsize = type->regions[i].size;
270		if (memblock_addrs_overlap(base, size, rgnbase, rgnsize))
271			break;
272	}
273
274	return (i < type->cnt) ? i : -1;
275}
276
277static phys_addr_t memblock_align_down(phys_addr_t addr, phys_addr_t size)
278{
279	return addr & ~(size - 1);
280}
281
282static phys_addr_t memblock_align_up(phys_addr_t addr, phys_addr_t size)
283{
284	return (addr + (size - 1)) & ~(size - 1);
285}
286
287static phys_addr_t __init memblock_find_region(phys_addr_t start, phys_addr_t end,
288					  phys_addr_t size, phys_addr_t align)
289{
290	phys_addr_t base, res_base;
291	long j;
292
293	base = memblock_align_down((end - size), align);
294	while (start <= base) {
295		j = memblock_overlaps_region(&memblock.reserved, base, size);
296		if (j < 0)
297			return base;
298		res_base = memblock.reserved.regions[j].base;
299		if (res_base < size)
300			break;
301		base = memblock_align_down(res_base - size, align);
302	}
303
304	return MEMBLOCK_ERROR;
305}
306
307phys_addr_t __weak __init memblock_nid_range(phys_addr_t start, phys_addr_t end, int *nid)
308{
309	*nid = 0;
310
311	return end;
312}
313
314static phys_addr_t __init memblock_alloc_nid_region(struct memblock_region *mp,
315					       phys_addr_t size,
316					       phys_addr_t align, int nid)
317{
318	phys_addr_t start, end;
319
320	start = mp->base;
321	end = start + mp->size;
322
323	start = memblock_align_up(start, align);
324	while (start < end) {
325		phys_addr_t this_end;
326		int this_nid;
327
328		this_end = memblock_nid_range(start, end, &this_nid);
329		if (this_nid == nid) {
330			phys_addr_t ret = memblock_find_region(start, this_end, size, align);
331			if (ret != MEMBLOCK_ERROR &&
332			    memblock_add_region(&memblock.reserved, ret, size) >= 0)
333				return ret;
334		}
335		start = this_end;
336	}
337
338	return MEMBLOCK_ERROR;
339}
340
341phys_addr_t __init memblock_alloc_nid(phys_addr_t size, phys_addr_t align, int nid)
342{
343	struct memblock_type *mem = &memblock.memory;
344	int i;
345
346	BUG_ON(0 == size);
347
348	/* We do a bottom-up search for a region with the right
349	 * nid since that's easier considering how memblock_nid_range()
350	 * works
351	 */
352	size = memblock_align_up(size, align);
353
354	for (i = 0; i < mem->cnt; i++) {
355		phys_addr_t ret = memblock_alloc_nid_region(&mem->regions[i],
356					       size, align, nid);
357		if (ret != MEMBLOCK_ERROR)
358			return ret;
359	}
360
361	return memblock_alloc(size, align);
362}
363
364phys_addr_t __init memblock_alloc(phys_addr_t size, phys_addr_t align)
365{
366	return memblock_alloc_base(size, align, MEMBLOCK_ALLOC_ACCESSIBLE);
367}
368
369phys_addr_t __init memblock_alloc_base(phys_addr_t size, phys_addr_t align, phys_addr_t max_addr)
370{
371	phys_addr_t alloc;
372
373	alloc = __memblock_alloc_base(size, align, max_addr);
374
375	if (alloc == 0)
376		panic("ERROR: Failed to allocate 0x%llx bytes below 0x%llx.\n",
377		      (unsigned long long) size, (unsigned long long) max_addr);
378
379	return alloc;
380}
381
382phys_addr_t __init __memblock_alloc_base(phys_addr_t size, phys_addr_t align, phys_addr_t max_addr)
383{
384	long i;
385	phys_addr_t base = 0;
386	phys_addr_t res_base;
387
388	BUG_ON(0 == size);
389
390	size = memblock_align_up(size, align);
391
392	/* Pump up max_addr */
393	if (max_addr == MEMBLOCK_ALLOC_ACCESSIBLE)
394		max_addr = memblock.current_limit;
395
396	/* We do a top-down search, this tends to limit memory
397	 * fragmentation by keeping early boot allocs near the
398	 * top of memory
399	 */
400	for (i = memblock.memory.cnt - 1; i >= 0; i--) {
401		phys_addr_t memblockbase = memblock.memory.regions[i].base;
402		phys_addr_t memblocksize = memblock.memory.regions[i].size;
403
404		if (memblocksize < size)
405			continue;
406		base = min(memblockbase + memblocksize, max_addr);
407		res_base = memblock_find_region(memblockbase, base, size, align);
408		if (res_base != MEMBLOCK_ERROR &&
409		    memblock_add_region(&memblock.reserved, res_base, size) >= 0)
410			return res_base;
411	}
412	return 0;
413}
414
415/* You must call memblock_analyze() before this. */
416phys_addr_t __init memblock_phys_mem_size(void)
417{
418	return memblock.memory_size;
419}
420
421phys_addr_t memblock_end_of_DRAM(void)
422{
423	int idx = memblock.memory.cnt - 1;
424
425	return (memblock.memory.regions[idx].base + memblock.memory.regions[idx].size);
426}
427
428/* You must call memblock_analyze() after this. */
429void __init memblock_enforce_memory_limit(phys_addr_t memory_limit)
430{
431	unsigned long i;
432	phys_addr_t limit;
433	struct memblock_region *p;
434
435	if (!memory_limit)
436		return;
437
438	/* Truncate the memblock regions to satisfy the memory limit. */
439	limit = memory_limit;
440	for (i = 0; i < memblock.memory.cnt; i++) {
441		if (limit > memblock.memory.regions[i].size) {
442			limit -= memblock.memory.regions[i].size;
443			continue;
444		}
445
446		memblock.memory.regions[i].size = limit;
447		memblock.memory.cnt = i + 1;
448		break;
449	}
450
451	memory_limit = memblock_end_of_DRAM();
452
453	/* And truncate any reserves above the limit also. */
454	for (i = 0; i < memblock.reserved.cnt; i++) {
455		p = &memblock.reserved.regions[i];
456
457		if (p->base > memory_limit)
458			p->size = 0;
459		else if ((p->base + p->size) > memory_limit)
460			p->size = memory_limit - p->base;
461
462		if (p->size == 0) {
463			memblock_remove_region(&memblock.reserved, i);
464			i--;
465		}
466	}
467}
468
469static int memblock_search(struct memblock_type *type, phys_addr_t addr)
470{
471	unsigned int left = 0, right = type->cnt;
472
473	do {
474		unsigned int mid = (right + left) / 2;
475
476		if (addr < type->regions[mid].base)
477			right = mid;
478		else if (addr >= (type->regions[mid].base +
479				  type->regions[mid].size))
480			left = mid + 1;
481		else
482			return mid;
483	} while (left < right);
484	return -1;
485}
486
487int __init memblock_is_reserved(phys_addr_t addr)
488{
489	return memblock_search(&memblock.reserved, addr) != -1;
490}
491
492int memblock_is_memory(phys_addr_t addr)
493{
494	return memblock_search(&memblock.memory, addr) != -1;
495}
496
497int memblock_is_region_memory(phys_addr_t base, phys_addr_t size)
498{
499	int idx = memblock_search(&memblock.reserved, base);
500
501	if (idx == -1)
502		return 0;
503	return memblock.reserved.regions[idx].base <= base &&
504		(memblock.reserved.regions[idx].base +
505		 memblock.reserved.regions[idx].size) >= (base + size);
506}
507
508int memblock_is_region_reserved(phys_addr_t base, phys_addr_t size)
509{
510	return memblock_overlaps_region(&memblock.reserved, base, size) >= 0;
511}
512
513
514void __init memblock_set_current_limit(phys_addr_t limit)
515{
516	memblock.current_limit = limit;
517}
518
519void __init memblock_init(void)
520{
521	/* Hookup the initial arrays */
522	memblock.memory.regions	= memblock_memory_init_regions;
523	memblock.memory.max		= INIT_MEMBLOCK_REGIONS;
524	memblock.reserved.regions	= memblock_reserved_init_regions;
525	memblock.reserved.max	= INIT_MEMBLOCK_REGIONS;
526
527	/* Write a marker in the unused last array entry */
528	memblock.memory.regions[INIT_MEMBLOCK_REGIONS].base = (phys_addr_t)RED_INACTIVE;
529	memblock.reserved.regions[INIT_MEMBLOCK_REGIONS].base = (phys_addr_t)RED_INACTIVE;
530
531	/* Create a dummy zero size MEMBLOCK which will get coalesced away later.
532	 * This simplifies the memblock_add() code below...
533	 */
534	memblock.memory.regions[0].base = 0;
535	memblock.memory.regions[0].size = 0;
536	memblock.memory.cnt = 1;
537
538	/* Ditto. */
539	memblock.reserved.regions[0].base = 0;
540	memblock.reserved.regions[0].size = 0;
541	memblock.reserved.cnt = 1;
542
543	memblock.current_limit = MEMBLOCK_ALLOC_ANYWHERE;
544}
545
546