memblock.c revision cd79481d27b9f90aad80c9b972292c42c25bbf8e
1/*
2 * Procedures for maintaining information about logical memory blocks.
3 *
4 * Peter Bergner, IBM Corp.	June 2001.
5 * Copyright (C) 2001 Peter Bergner.
6 *
7 *      This program is free software; you can redistribute it and/or
8 *      modify it under the terms of the GNU General Public License
9 *      as published by the Free Software Foundation; either version
10 *      2 of the License, or (at your option) any later version.
11 */
12
13#include <linux/kernel.h>
14#include <linux/slab.h>
15#include <linux/init.h>
16#include <linux/bitops.h>
17#include <linux/poison.h>
18#include <linux/pfn.h>
19#include <linux/debugfs.h>
20#include <linux/seq_file.h>
21#include <linux/memblock.h>
22
23struct memblock memblock __initdata_memblock;
24
25int memblock_debug __initdata_memblock;
26int memblock_can_resize __initdata_memblock;
27static struct memblock_region memblock_memory_init_regions[INIT_MEMBLOCK_REGIONS + 1] __initdata_memblock;
28static struct memblock_region memblock_reserved_init_regions[INIT_MEMBLOCK_REGIONS + 1] __initdata_memblock;
29
30/* inline so we don't get a warning when pr_debug is compiled out */
31static inline const char *memblock_type_name(struct memblock_type *type)
32{
33	if (type == &memblock.memory)
34		return "memory";
35	else if (type == &memblock.reserved)
36		return "reserved";
37	else
38		return "unknown";
39}
40
41/*
42 * Address comparison utilities
43 */
44
45static phys_addr_t __init_memblock memblock_align_down(phys_addr_t addr, phys_addr_t size)
46{
47	return addr & ~(size - 1);
48}
49
50static phys_addr_t __init_memblock memblock_align_up(phys_addr_t addr, phys_addr_t size)
51{
52	return (addr + (size - 1)) & ~(size - 1);
53}
54
55static unsigned long __init_memblock memblock_addrs_overlap(phys_addr_t base1, phys_addr_t size1,
56				       phys_addr_t base2, phys_addr_t size2)
57{
58	return ((base1 < (base2 + size2)) && (base2 < (base1 + size1)));
59}
60
61static long __init_memblock memblock_addrs_adjacent(phys_addr_t base1, phys_addr_t size1,
62			       phys_addr_t base2, phys_addr_t size2)
63{
64	if (base2 == base1 + size1)
65		return 1;
66	else if (base1 == base2 + size2)
67		return -1;
68
69	return 0;
70}
71
72static long __init_memblock memblock_regions_adjacent(struct memblock_type *type,
73				 unsigned long r1, unsigned long r2)
74{
75	phys_addr_t base1 = type->regions[r1].base;
76	phys_addr_t size1 = type->regions[r1].size;
77	phys_addr_t base2 = type->regions[r2].base;
78	phys_addr_t size2 = type->regions[r2].size;
79
80	return memblock_addrs_adjacent(base1, size1, base2, size2);
81}
82
83long __init_memblock memblock_overlaps_region(struct memblock_type *type, phys_addr_t base, phys_addr_t size)
84{
85	unsigned long i;
86
87	for (i = 0; i < type->cnt; i++) {
88		phys_addr_t rgnbase = type->regions[i].base;
89		phys_addr_t rgnsize = type->regions[i].size;
90		if (memblock_addrs_overlap(base, size, rgnbase, rgnsize))
91			break;
92	}
93
94	return (i < type->cnt) ? i : -1;
95}
96
97/*
98 * Find, allocate, deallocate or reserve unreserved regions. All allocations
99 * are top-down.
100 */
101
102static phys_addr_t __init_memblock memblock_find_region(phys_addr_t start, phys_addr_t end,
103					  phys_addr_t size, phys_addr_t align)
104{
105	phys_addr_t base, res_base;
106	long j;
107
108	/* In case, huge size is requested */
109	if (end < size)
110		return MEMBLOCK_ERROR;
111
112	base = memblock_align_down((end - size), align);
113
114	/* Prevent allocations returning 0 as it's also used to
115	 * indicate an allocation failure
116	 */
117	if (start == 0)
118		start = PAGE_SIZE;
119
120	while (start <= base) {
121		j = memblock_overlaps_region(&memblock.reserved, base, size);
122		if (j < 0)
123			return base;
124		res_base = memblock.reserved.regions[j].base;
125		if (res_base < size)
126			break;
127		base = memblock_align_down(res_base - size, align);
128	}
129
130	return MEMBLOCK_ERROR;
131}
132
133static phys_addr_t __init_memblock memblock_find_base(phys_addr_t size,
134			phys_addr_t align, phys_addr_t start, phys_addr_t end)
135{
136	long i;
137
138	BUG_ON(0 == size);
139
140	size = memblock_align_up(size, align);
141
142	/* Pump up max_addr */
143	if (end == MEMBLOCK_ALLOC_ACCESSIBLE)
144		end = memblock.current_limit;
145
146	/* We do a top-down search, this tends to limit memory
147	 * fragmentation by keeping early boot allocs near the
148	 * top of memory
149	 */
150	for (i = memblock.memory.cnt - 1; i >= 0; i--) {
151		phys_addr_t memblockbase = memblock.memory.regions[i].base;
152		phys_addr_t memblocksize = memblock.memory.regions[i].size;
153		phys_addr_t bottom, top, found;
154
155		if (memblocksize < size)
156			continue;
157		if ((memblockbase + memblocksize) <= start)
158			break;
159		bottom = max(memblockbase, start);
160		top = min(memblockbase + memblocksize, end);
161		if (bottom >= top)
162			continue;
163		found = memblock_find_region(bottom, top, size, align);
164		if (found != MEMBLOCK_ERROR)
165			return found;
166	}
167	return MEMBLOCK_ERROR;
168}
169
170/*
171 * Find a free area with specified alignment in a specific range.
172 */
173u64 __init_memblock memblock_find_in_range(u64 start, u64 end, u64 size, u64 align)
174{
175	return memblock_find_base(size, align, start, end);
176}
177
178/*
179 * Free memblock.reserved.regions
180 */
181int __init_memblock memblock_free_reserved_regions(void)
182{
183	if (memblock.reserved.regions == memblock_reserved_init_regions)
184		return 0;
185
186	return memblock_free(__pa(memblock.reserved.regions),
187		 sizeof(struct memblock_region) * memblock.reserved.max);
188}
189
190/*
191 * Reserve memblock.reserved.regions
192 */
193int __init_memblock memblock_reserve_reserved_regions(void)
194{
195	if (memblock.reserved.regions == memblock_reserved_init_regions)
196		return 0;
197
198	return memblock_reserve(__pa(memblock.reserved.regions),
199		 sizeof(struct memblock_region) * memblock.reserved.max);
200}
201
202static void __init_memblock memblock_remove_region(struct memblock_type *type, unsigned long r)
203{
204	unsigned long i;
205
206	for (i = r; i < type->cnt - 1; i++) {
207		type->regions[i].base = type->regions[i + 1].base;
208		type->regions[i].size = type->regions[i + 1].size;
209	}
210	type->cnt--;
211}
212
213/* Assumption: base addr of region 1 < base addr of region 2 */
214static void __init_memblock memblock_coalesce_regions(struct memblock_type *type,
215		unsigned long r1, unsigned long r2)
216{
217	type->regions[r1].size += type->regions[r2].size;
218	memblock_remove_region(type, r2);
219}
220
221/* Defined below but needed now */
222static long memblock_add_region(struct memblock_type *type, phys_addr_t base, phys_addr_t size);
223
224static int __init_memblock memblock_double_array(struct memblock_type *type)
225{
226	struct memblock_region *new_array, *old_array;
227	phys_addr_t old_size, new_size, addr;
228	int use_slab = slab_is_available();
229
230	/* We don't allow resizing until we know about the reserved regions
231	 * of memory that aren't suitable for allocation
232	 */
233	if (!memblock_can_resize)
234		return -1;
235
236	/* Calculate new doubled size */
237	old_size = type->max * sizeof(struct memblock_region);
238	new_size = old_size << 1;
239
240	/* Try to find some space for it.
241	 *
242	 * WARNING: We assume that either slab_is_available() and we use it or
243	 * we use MEMBLOCK for allocations. That means that this is unsafe to use
244	 * when bootmem is currently active (unless bootmem itself is implemented
245	 * on top of MEMBLOCK which isn't the case yet)
246	 *
247	 * This should however not be an issue for now, as we currently only
248	 * call into MEMBLOCK while it's still active, or much later when slab is
249	 * active for memory hotplug operations
250	 */
251	if (use_slab) {
252		new_array = kmalloc(new_size, GFP_KERNEL);
253		addr = new_array == NULL ? MEMBLOCK_ERROR : __pa(new_array);
254	} else
255		addr = memblock_find_base(new_size, sizeof(phys_addr_t), 0, MEMBLOCK_ALLOC_ACCESSIBLE);
256	if (addr == MEMBLOCK_ERROR) {
257		pr_err("memblock: Failed to double %s array from %ld to %ld entries !\n",
258		       memblock_type_name(type), type->max, type->max * 2);
259		return -1;
260	}
261	new_array = __va(addr);
262
263	memblock_dbg("memblock: %s array is doubled to %ld at [%#010llx-%#010llx]",
264		 memblock_type_name(type), type->max * 2, (u64)addr, (u64)addr + new_size - 1);
265
266	/* Found space, we now need to move the array over before
267	 * we add the reserved region since it may be our reserved
268	 * array itself that is full.
269	 */
270	memcpy(new_array, type->regions, old_size);
271	memset(new_array + type->max, 0, old_size);
272	old_array = type->regions;
273	type->regions = new_array;
274	type->max <<= 1;
275
276	/* If we use SLAB that's it, we are done */
277	if (use_slab)
278		return 0;
279
280	/* Add the new reserved region now. Should not fail ! */
281	BUG_ON(memblock_add_region(&memblock.reserved, addr, new_size) < 0);
282
283	/* If the array wasn't our static init one, then free it. We only do
284	 * that before SLAB is available as later on, we don't know whether
285	 * to use kfree or free_bootmem_pages(). Shouldn't be a big deal
286	 * anyways
287	 */
288	if (old_array != memblock_memory_init_regions &&
289	    old_array != memblock_reserved_init_regions)
290		memblock_free(__pa(old_array), old_size);
291
292	return 0;
293}
294
295extern int __init_memblock __weak memblock_memory_can_coalesce(phys_addr_t addr1, phys_addr_t size1,
296					  phys_addr_t addr2, phys_addr_t size2)
297{
298	return 1;
299}
300
301static long __init_memblock memblock_add_region(struct memblock_type *type, phys_addr_t base, phys_addr_t size)
302{
303	unsigned long coalesced = 0;
304	long adjacent, i;
305
306	if ((type->cnt == 1) && (type->regions[0].size == 0)) {
307		type->regions[0].base = base;
308		type->regions[0].size = size;
309		return 0;
310	}
311
312	/* First try and coalesce this MEMBLOCK with another. */
313	for (i = 0; i < type->cnt; i++) {
314		phys_addr_t rgnbase = type->regions[i].base;
315		phys_addr_t rgnsize = type->regions[i].size;
316
317		if ((rgnbase == base) && (rgnsize == size))
318			/* Already have this region, so we're done */
319			return 0;
320
321		adjacent = memblock_addrs_adjacent(base, size, rgnbase, rgnsize);
322		/* Check if arch allows coalescing */
323		if (adjacent != 0 && type == &memblock.memory &&
324		    !memblock_memory_can_coalesce(base, size, rgnbase, rgnsize))
325			break;
326		if (adjacent > 0) {
327			type->regions[i].base -= size;
328			type->regions[i].size += size;
329			coalesced++;
330			break;
331		} else if (adjacent < 0) {
332			type->regions[i].size += size;
333			coalesced++;
334			break;
335		}
336	}
337
338	/* If we plugged a hole, we may want to also coalesce with the
339	 * next region
340	 */
341	if ((i < type->cnt - 1) && memblock_regions_adjacent(type, i, i+1) &&
342	    ((type != &memblock.memory || memblock_memory_can_coalesce(type->regions[i].base,
343							     type->regions[i].size,
344							     type->regions[i+1].base,
345							     type->regions[i+1].size)))) {
346		memblock_coalesce_regions(type, i, i+1);
347		coalesced++;
348	}
349
350	if (coalesced)
351		return coalesced;
352
353	/* If we are out of space, we fail. It's too late to resize the array
354	 * but then this shouldn't have happened in the first place.
355	 */
356	if (WARN_ON(type->cnt >= type->max))
357		return -1;
358
359	/* Couldn't coalesce the MEMBLOCK, so add it to the sorted table. */
360	for (i = type->cnt - 1; i >= 0; i--) {
361		if (base < type->regions[i].base) {
362			type->regions[i+1].base = type->regions[i].base;
363			type->regions[i+1].size = type->regions[i].size;
364		} else {
365			type->regions[i+1].base = base;
366			type->regions[i+1].size = size;
367			break;
368		}
369	}
370
371	if (base < type->regions[0].base) {
372		type->regions[0].base = base;
373		type->regions[0].size = size;
374	}
375	type->cnt++;
376
377	/* The array is full ? Try to resize it. If that fails, we undo
378	 * our allocation and return an error
379	 */
380	if (type->cnt == type->max && memblock_double_array(type)) {
381		type->cnt--;
382		return -1;
383	}
384
385	return 0;
386}
387
388long __init_memblock memblock_add(phys_addr_t base, phys_addr_t size)
389{
390	return memblock_add_region(&memblock.memory, base, size);
391
392}
393
394static long __init_memblock __memblock_remove(struct memblock_type *type, phys_addr_t base, phys_addr_t size)
395{
396	phys_addr_t rgnbegin, rgnend;
397	phys_addr_t end = base + size;
398	int i;
399
400	rgnbegin = rgnend = 0; /* supress gcc warnings */
401
402	/* Find the region where (base, size) belongs to */
403	for (i=0; i < type->cnt; i++) {
404		rgnbegin = type->regions[i].base;
405		rgnend = rgnbegin + type->regions[i].size;
406
407		if ((rgnbegin <= base) && (end <= rgnend))
408			break;
409	}
410
411	/* Didn't find the region */
412	if (i == type->cnt)
413		return -1;
414
415	/* Check to see if we are removing entire region */
416	if ((rgnbegin == base) && (rgnend == end)) {
417		memblock_remove_region(type, i);
418		return 0;
419	}
420
421	/* Check to see if region is matching at the front */
422	if (rgnbegin == base) {
423		type->regions[i].base = end;
424		type->regions[i].size -= size;
425		return 0;
426	}
427
428	/* Check to see if the region is matching at the end */
429	if (rgnend == end) {
430		type->regions[i].size -= size;
431		return 0;
432	}
433
434	/*
435	 * We need to split the entry -  adjust the current one to the
436	 * beginging of the hole and add the region after hole.
437	 */
438	type->regions[i].size = base - type->regions[i].base;
439	return memblock_add_region(type, end, rgnend - end);
440}
441
442long __init_memblock memblock_remove(phys_addr_t base, phys_addr_t size)
443{
444	return __memblock_remove(&memblock.memory, base, size);
445}
446
447long __init_memblock memblock_free(phys_addr_t base, phys_addr_t size)
448{
449	return __memblock_remove(&memblock.reserved, base, size);
450}
451
452long __init_memblock memblock_reserve(phys_addr_t base, phys_addr_t size)
453{
454	struct memblock_type *_rgn = &memblock.reserved;
455
456	BUG_ON(0 == size);
457
458	return memblock_add_region(_rgn, base, size);
459}
460
461phys_addr_t __init __memblock_alloc_base(phys_addr_t size, phys_addr_t align, phys_addr_t max_addr)
462{
463	phys_addr_t found;
464
465	/* We align the size to limit fragmentation. Without this, a lot of
466	 * small allocs quickly eat up the whole reserve array on sparc
467	 */
468	size = memblock_align_up(size, align);
469
470	found = memblock_find_base(size, align, 0, max_addr);
471	if (found != MEMBLOCK_ERROR &&
472	    memblock_add_region(&memblock.reserved, found, size) >= 0)
473		return found;
474
475	return 0;
476}
477
478phys_addr_t __init memblock_alloc_base(phys_addr_t size, phys_addr_t align, phys_addr_t max_addr)
479{
480	phys_addr_t alloc;
481
482	alloc = __memblock_alloc_base(size, align, max_addr);
483
484	if (alloc == 0)
485		panic("ERROR: Failed to allocate 0x%llx bytes below 0x%llx.\n",
486		      (unsigned long long) size, (unsigned long long) max_addr);
487
488	return alloc;
489}
490
491phys_addr_t __init memblock_alloc(phys_addr_t size, phys_addr_t align)
492{
493	return memblock_alloc_base(size, align, MEMBLOCK_ALLOC_ACCESSIBLE);
494}
495
496
497/*
498 * Additional node-local allocators. Search for node memory is bottom up
499 * and walks memblock regions within that node bottom-up as well, but allocation
500 * within an memblock region is top-down. XXX I plan to fix that at some stage
501 *
502 * WARNING: Only available after early_node_map[] has been populated,
503 * on some architectures, that is after all the calls to add_active_range()
504 * have been done to populate it.
505 */
506
507phys_addr_t __weak __init memblock_nid_range(phys_addr_t start, phys_addr_t end, int *nid)
508{
509#ifdef CONFIG_ARCH_POPULATES_NODE_MAP
510	/*
511	 * This code originates from sparc which really wants use to walk by addresses
512	 * and returns the nid. This is not very convenient for early_pfn_map[] users
513	 * as the map isn't sorted yet, and it really wants to be walked by nid.
514	 *
515	 * For now, I implement the inefficient method below which walks the early
516	 * map multiple times. Eventually we may want to use an ARCH config option
517	 * to implement a completely different method for both case.
518	 */
519	unsigned long start_pfn, end_pfn;
520	int i;
521
522	for (i = 0; i < MAX_NUMNODES; i++) {
523		get_pfn_range_for_nid(i, &start_pfn, &end_pfn);
524		if (start < PFN_PHYS(start_pfn) || start >= PFN_PHYS(end_pfn))
525			continue;
526		*nid = i;
527		return min(end, PFN_PHYS(end_pfn));
528	}
529#endif
530	*nid = 0;
531
532	return end;
533}
534
535static phys_addr_t __init memblock_alloc_nid_region(struct memblock_region *mp,
536					       phys_addr_t size,
537					       phys_addr_t align, int nid)
538{
539	phys_addr_t start, end;
540
541	start = mp->base;
542	end = start + mp->size;
543
544	start = memblock_align_up(start, align);
545	while (start < end) {
546		phys_addr_t this_end;
547		int this_nid;
548
549		this_end = memblock_nid_range(start, end, &this_nid);
550		if (this_nid == nid) {
551			phys_addr_t ret = memblock_find_region(start, this_end, size, align);
552			if (ret != MEMBLOCK_ERROR &&
553			    memblock_add_region(&memblock.reserved, ret, size) >= 0)
554				return ret;
555		}
556		start = this_end;
557	}
558
559	return MEMBLOCK_ERROR;
560}
561
562phys_addr_t __init memblock_alloc_nid(phys_addr_t size, phys_addr_t align, int nid)
563{
564	struct memblock_type *mem = &memblock.memory;
565	int i;
566
567	BUG_ON(0 == size);
568
569	/* We align the size to limit fragmentation. Without this, a lot of
570	 * small allocs quickly eat up the whole reserve array on sparc
571	 */
572	size = memblock_align_up(size, align);
573
574	/* We do a bottom-up search for a region with the right
575	 * nid since that's easier considering how memblock_nid_range()
576	 * works
577	 */
578	for (i = 0; i < mem->cnt; i++) {
579		phys_addr_t ret = memblock_alloc_nid_region(&mem->regions[i],
580					       size, align, nid);
581		if (ret != MEMBLOCK_ERROR)
582			return ret;
583	}
584
585	return 0;
586}
587
588phys_addr_t __init memblock_alloc_try_nid(phys_addr_t size, phys_addr_t align, int nid)
589{
590	phys_addr_t res = memblock_alloc_nid(size, align, nid);
591
592	if (res)
593		return res;
594	return memblock_alloc_base(size, align, MEMBLOCK_ALLOC_ANYWHERE);
595}
596
597
598/*
599 * Remaining API functions
600 */
601
602/* You must call memblock_analyze() before this. */
603phys_addr_t __init memblock_phys_mem_size(void)
604{
605	return memblock.memory_size;
606}
607
608phys_addr_t __init_memblock memblock_end_of_DRAM(void)
609{
610	int idx = memblock.memory.cnt - 1;
611
612	return (memblock.memory.regions[idx].base + memblock.memory.regions[idx].size);
613}
614
615/* You must call memblock_analyze() after this. */
616void __init memblock_enforce_memory_limit(phys_addr_t memory_limit)
617{
618	unsigned long i;
619	phys_addr_t limit;
620	struct memblock_region *p;
621
622	if (!memory_limit)
623		return;
624
625	/* Truncate the memblock regions to satisfy the memory limit. */
626	limit = memory_limit;
627	for (i = 0; i < memblock.memory.cnt; i++) {
628		if (limit > memblock.memory.regions[i].size) {
629			limit -= memblock.memory.regions[i].size;
630			continue;
631		}
632
633		memblock.memory.regions[i].size = limit;
634		memblock.memory.cnt = i + 1;
635		break;
636	}
637
638	memory_limit = memblock_end_of_DRAM();
639
640	/* And truncate any reserves above the limit also. */
641	for (i = 0; i < memblock.reserved.cnt; i++) {
642		p = &memblock.reserved.regions[i];
643
644		if (p->base > memory_limit)
645			p->size = 0;
646		else if ((p->base + p->size) > memory_limit)
647			p->size = memory_limit - p->base;
648
649		if (p->size == 0) {
650			memblock_remove_region(&memblock.reserved, i);
651			i--;
652		}
653	}
654}
655
656static int __init_memblock memblock_search(struct memblock_type *type, phys_addr_t addr)
657{
658	unsigned int left = 0, right = type->cnt;
659
660	do {
661		unsigned int mid = (right + left) / 2;
662
663		if (addr < type->regions[mid].base)
664			right = mid;
665		else if (addr >= (type->regions[mid].base +
666				  type->regions[mid].size))
667			left = mid + 1;
668		else
669			return mid;
670	} while (left < right);
671	return -1;
672}
673
674int __init memblock_is_reserved(phys_addr_t addr)
675{
676	return memblock_search(&memblock.reserved, addr) != -1;
677}
678
679int __init_memblock memblock_is_memory(phys_addr_t addr)
680{
681	return memblock_search(&memblock.memory, addr) != -1;
682}
683
684int __init_memblock memblock_is_region_memory(phys_addr_t base, phys_addr_t size)
685{
686	int idx = memblock_search(&memblock.reserved, base);
687
688	if (idx == -1)
689		return 0;
690	return memblock.reserved.regions[idx].base <= base &&
691		(memblock.reserved.regions[idx].base +
692		 memblock.reserved.regions[idx].size) >= (base + size);
693}
694
695int __init_memblock memblock_is_region_reserved(phys_addr_t base, phys_addr_t size)
696{
697	return memblock_overlaps_region(&memblock.reserved, base, size) >= 0;
698}
699
700
701void __init_memblock memblock_set_current_limit(phys_addr_t limit)
702{
703	memblock.current_limit = limit;
704}
705
706static void __init_memblock memblock_dump(struct memblock_type *region, char *name)
707{
708	unsigned long long base, size;
709	int i;
710
711	pr_info(" %s.cnt  = 0x%lx\n", name, region->cnt);
712
713	for (i = 0; i < region->cnt; i++) {
714		base = region->regions[i].base;
715		size = region->regions[i].size;
716
717		pr_info(" %s[%#x]\t[%#016llx-%#016llx], %#llx bytes\n",
718		    name, i, base, base + size - 1, size);
719	}
720}
721
722void __init_memblock memblock_dump_all(void)
723{
724	if (!memblock_debug)
725		return;
726
727	pr_info("MEMBLOCK configuration:\n");
728	pr_info(" memory size = 0x%llx\n", (unsigned long long)memblock.memory_size);
729
730	memblock_dump(&memblock.memory, "memory");
731	memblock_dump(&memblock.reserved, "reserved");
732}
733
734void __init memblock_analyze(void)
735{
736	int i;
737
738	/* Check marker in the unused last array entry */
739	WARN_ON(memblock_memory_init_regions[INIT_MEMBLOCK_REGIONS].base
740		!= (phys_addr_t)RED_INACTIVE);
741	WARN_ON(memblock_reserved_init_regions[INIT_MEMBLOCK_REGIONS].base
742		!= (phys_addr_t)RED_INACTIVE);
743
744	memblock.memory_size = 0;
745
746	for (i = 0; i < memblock.memory.cnt; i++)
747		memblock.memory_size += memblock.memory.regions[i].size;
748
749	/* We allow resizing from there */
750	memblock_can_resize = 1;
751}
752
753void __init memblock_init(void)
754{
755	static int init_done __initdata = 0;
756
757	if (init_done)
758		return;
759	init_done = 1;
760
761	/* Hookup the initial arrays */
762	memblock.memory.regions	= memblock_memory_init_regions;
763	memblock.memory.max		= INIT_MEMBLOCK_REGIONS;
764	memblock.reserved.regions	= memblock_reserved_init_regions;
765	memblock.reserved.max	= INIT_MEMBLOCK_REGIONS;
766
767	/* Write a marker in the unused last array entry */
768	memblock.memory.regions[INIT_MEMBLOCK_REGIONS].base = (phys_addr_t)RED_INACTIVE;
769	memblock.reserved.regions[INIT_MEMBLOCK_REGIONS].base = (phys_addr_t)RED_INACTIVE;
770
771	/* Create a dummy zero size MEMBLOCK which will get coalesced away later.
772	 * This simplifies the memblock_add() code below...
773	 */
774	memblock.memory.regions[0].base = 0;
775	memblock.memory.regions[0].size = 0;
776	memblock.memory.cnt = 1;
777
778	/* Ditto. */
779	memblock.reserved.regions[0].base = 0;
780	memblock.reserved.regions[0].size = 0;
781	memblock.reserved.cnt = 1;
782
783	memblock.current_limit = MEMBLOCK_ALLOC_ANYWHERE;
784}
785
786static int __init early_memblock(char *p)
787{
788	if (p && strstr(p, "debug"))
789		memblock_debug = 1;
790	return 0;
791}
792early_param("memblock", early_memblock);
793
794#if defined(CONFIG_DEBUG_FS) && !defined(ARCH_DISCARD_MEMBLOCK)
795
796static int memblock_debug_show(struct seq_file *m, void *private)
797{
798	struct memblock_type *type = m->private;
799	struct memblock_region *reg;
800	int i;
801
802	for (i = 0; i < type->cnt; i++) {
803		reg = &type->regions[i];
804		seq_printf(m, "%4d: ", i);
805		if (sizeof(phys_addr_t) == 4)
806			seq_printf(m, "0x%08lx..0x%08lx\n",
807				   (unsigned long)reg->base,
808				   (unsigned long)(reg->base + reg->size - 1));
809		else
810			seq_printf(m, "0x%016llx..0x%016llx\n",
811				   (unsigned long long)reg->base,
812				   (unsigned long long)(reg->base + reg->size - 1));
813
814	}
815	return 0;
816}
817
818static int memblock_debug_open(struct inode *inode, struct file *file)
819{
820	return single_open(file, memblock_debug_show, inode->i_private);
821}
822
823static const struct file_operations memblock_debug_fops = {
824	.open = memblock_debug_open,
825	.read = seq_read,
826	.llseek = seq_lseek,
827	.release = single_release,
828};
829
830static int __init memblock_init_debugfs(void)
831{
832	struct dentry *root = debugfs_create_dir("memblock", NULL);
833	if (!root)
834		return -ENXIO;
835	debugfs_create_file("memory", S_IRUGO, root, &memblock.memory, &memblock_debug_fops);
836	debugfs_create_file("reserved", S_IRUGO, root, &memblock.reserved, &memblock_debug_fops);
837
838	return 0;
839}
840__initcall(memblock_init_debugfs);
841
842#endif /* CONFIG_DEBUG_FS */
843