memcontrol.c revision 0e574a932d2cab8eb3b02d21feb59f2c09154738
1/* memcontrol.c - Memory Controller
2 *
3 * Copyright IBM Corporation, 2007
4 * Author Balbir Singh <balbir@linux.vnet.ibm.com>
5 *
6 * Copyright 2007 OpenVZ SWsoft Inc
7 * Author: Pavel Emelianov <xemul@openvz.org>
8 *
9 * Memory thresholds
10 * Copyright (C) 2009 Nokia Corporation
11 * Author: Kirill A. Shutemov
12 *
13 * This program is free software; you can redistribute it and/or modify
14 * it under the terms of the GNU General Public License as published by
15 * the Free Software Foundation; either version 2 of the License, or
16 * (at your option) any later version.
17 *
18 * This program is distributed in the hope that it will be useful,
19 * but WITHOUT ANY WARRANTY; without even the implied warranty of
20 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
21 * GNU General Public License for more details.
22 */
23
24#include <linux/res_counter.h>
25#include <linux/memcontrol.h>
26#include <linux/cgroup.h>
27#include <linux/mm.h>
28#include <linux/hugetlb.h>
29#include <linux/pagemap.h>
30#include <linux/smp.h>
31#include <linux/page-flags.h>
32#include <linux/backing-dev.h>
33#include <linux/bit_spinlock.h>
34#include <linux/rcupdate.h>
35#include <linux/limits.h>
36#include <linux/export.h>
37#include <linux/mutex.h>
38#include <linux/rbtree.h>
39#include <linux/slab.h>
40#include <linux/swap.h>
41#include <linux/swapops.h>
42#include <linux/spinlock.h>
43#include <linux/eventfd.h>
44#include <linux/sort.h>
45#include <linux/fs.h>
46#include <linux/seq_file.h>
47#include <linux/vmalloc.h>
48#include <linux/mm_inline.h>
49#include <linux/page_cgroup.h>
50#include <linux/cpu.h>
51#include <linux/oom.h>
52#include "internal.h"
53#include <net/sock.h>
54#include <net/tcp_memcontrol.h>
55
56#include <asm/uaccess.h>
57
58#include <trace/events/vmscan.h>
59
60struct cgroup_subsys mem_cgroup_subsys __read_mostly;
61#define MEM_CGROUP_RECLAIM_RETRIES	5
62struct mem_cgroup *root_mem_cgroup __read_mostly;
63
64#ifdef CONFIG_CGROUP_MEM_RES_CTLR_SWAP
65/* Turned on only when memory cgroup is enabled && really_do_swap_account = 1 */
66int do_swap_account __read_mostly;
67
68/* for remember boot option*/
69#ifdef CONFIG_CGROUP_MEM_RES_CTLR_SWAP_ENABLED
70static int really_do_swap_account __initdata = 1;
71#else
72static int really_do_swap_account __initdata = 0;
73#endif
74
75#else
76#define do_swap_account		(0)
77#endif
78
79
80/*
81 * Statistics for memory cgroup.
82 */
83enum mem_cgroup_stat_index {
84	/*
85	 * For MEM_CONTAINER_TYPE_ALL, usage = pagecache + rss.
86	 */
87	MEM_CGROUP_STAT_CACHE, 	   /* # of pages charged as cache */
88	MEM_CGROUP_STAT_RSS,	   /* # of pages charged as anon rss */
89	MEM_CGROUP_STAT_FILE_MAPPED,  /* # of pages charged as file rss */
90	MEM_CGROUP_STAT_SWAPOUT, /* # of pages, swapped out */
91	MEM_CGROUP_STAT_DATA, /* end of data requires synchronization */
92	MEM_CGROUP_ON_MOVE,	/* someone is moving account between groups */
93	MEM_CGROUP_STAT_NSTATS,
94};
95
96enum mem_cgroup_events_index {
97	MEM_CGROUP_EVENTS_PGPGIN,	/* # of pages paged in */
98	MEM_CGROUP_EVENTS_PGPGOUT,	/* # of pages paged out */
99	MEM_CGROUP_EVENTS_COUNT,	/* # of pages paged in/out */
100	MEM_CGROUP_EVENTS_PGFAULT,	/* # of page-faults */
101	MEM_CGROUP_EVENTS_PGMAJFAULT,	/* # of major page-faults */
102	MEM_CGROUP_EVENTS_NSTATS,
103};
104/*
105 * Per memcg event counter is incremented at every pagein/pageout. With THP,
106 * it will be incremated by the number of pages. This counter is used for
107 * for trigger some periodic events. This is straightforward and better
108 * than using jiffies etc. to handle periodic memcg event.
109 */
110enum mem_cgroup_events_target {
111	MEM_CGROUP_TARGET_THRESH,
112	MEM_CGROUP_TARGET_SOFTLIMIT,
113	MEM_CGROUP_TARGET_NUMAINFO,
114	MEM_CGROUP_NTARGETS,
115};
116#define THRESHOLDS_EVENTS_TARGET (128)
117#define SOFTLIMIT_EVENTS_TARGET (1024)
118#define NUMAINFO_EVENTS_TARGET	(1024)
119
120struct mem_cgroup_stat_cpu {
121	long count[MEM_CGROUP_STAT_NSTATS];
122	unsigned long events[MEM_CGROUP_EVENTS_NSTATS];
123	unsigned long targets[MEM_CGROUP_NTARGETS];
124};
125
126struct mem_cgroup_reclaim_iter {
127	/* css_id of the last scanned hierarchy member */
128	int position;
129	/* scan generation, increased every round-trip */
130	unsigned int generation;
131};
132
133/*
134 * per-zone information in memory controller.
135 */
136struct mem_cgroup_per_zone {
137	struct lruvec		lruvec;
138	unsigned long		count[NR_LRU_LISTS];
139
140	struct mem_cgroup_reclaim_iter reclaim_iter[DEF_PRIORITY + 1];
141
142	struct zone_reclaim_stat reclaim_stat;
143	struct rb_node		tree_node;	/* RB tree node */
144	unsigned long long	usage_in_excess;/* Set to the value by which */
145						/* the soft limit is exceeded*/
146	bool			on_tree;
147	struct mem_cgroup	*mem;		/* Back pointer, we cannot */
148						/* use container_of	   */
149};
150/* Macro for accessing counter */
151#define MEM_CGROUP_ZSTAT(mz, idx)	((mz)->count[(idx)])
152
153struct mem_cgroup_per_node {
154	struct mem_cgroup_per_zone zoneinfo[MAX_NR_ZONES];
155};
156
157struct mem_cgroup_lru_info {
158	struct mem_cgroup_per_node *nodeinfo[MAX_NUMNODES];
159};
160
161/*
162 * Cgroups above their limits are maintained in a RB-Tree, independent of
163 * their hierarchy representation
164 */
165
166struct mem_cgroup_tree_per_zone {
167	struct rb_root rb_root;
168	spinlock_t lock;
169};
170
171struct mem_cgroup_tree_per_node {
172	struct mem_cgroup_tree_per_zone rb_tree_per_zone[MAX_NR_ZONES];
173};
174
175struct mem_cgroup_tree {
176	struct mem_cgroup_tree_per_node *rb_tree_per_node[MAX_NUMNODES];
177};
178
179static struct mem_cgroup_tree soft_limit_tree __read_mostly;
180
181struct mem_cgroup_threshold {
182	struct eventfd_ctx *eventfd;
183	u64 threshold;
184};
185
186/* For threshold */
187struct mem_cgroup_threshold_ary {
188	/* An array index points to threshold just below usage. */
189	int current_threshold;
190	/* Size of entries[] */
191	unsigned int size;
192	/* Array of thresholds */
193	struct mem_cgroup_threshold entries[0];
194};
195
196struct mem_cgroup_thresholds {
197	/* Primary thresholds array */
198	struct mem_cgroup_threshold_ary *primary;
199	/*
200	 * Spare threshold array.
201	 * This is needed to make mem_cgroup_unregister_event() "never fail".
202	 * It must be able to store at least primary->size - 1 entries.
203	 */
204	struct mem_cgroup_threshold_ary *spare;
205};
206
207/* for OOM */
208struct mem_cgroup_eventfd_list {
209	struct list_head list;
210	struct eventfd_ctx *eventfd;
211};
212
213static void mem_cgroup_threshold(struct mem_cgroup *memcg);
214static void mem_cgroup_oom_notify(struct mem_cgroup *memcg);
215
216/*
217 * The memory controller data structure. The memory controller controls both
218 * page cache and RSS per cgroup. We would eventually like to provide
219 * statistics based on the statistics developed by Rik Van Riel for clock-pro,
220 * to help the administrator determine what knobs to tune.
221 *
222 * TODO: Add a water mark for the memory controller. Reclaim will begin when
223 * we hit the water mark. May be even add a low water mark, such that
224 * no reclaim occurs from a cgroup at it's low water mark, this is
225 * a feature that will be implemented much later in the future.
226 */
227struct mem_cgroup {
228	struct cgroup_subsys_state css;
229	/*
230	 * the counter to account for memory usage
231	 */
232	struct res_counter res;
233	/*
234	 * the counter to account for mem+swap usage.
235	 */
236	struct res_counter memsw;
237	/*
238	 * Per cgroup active and inactive list, similar to the
239	 * per zone LRU lists.
240	 */
241	struct mem_cgroup_lru_info info;
242	int last_scanned_node;
243#if MAX_NUMNODES > 1
244	nodemask_t	scan_nodes;
245	atomic_t	numainfo_events;
246	atomic_t	numainfo_updating;
247#endif
248	/*
249	 * Should the accounting and control be hierarchical, per subtree?
250	 */
251	bool use_hierarchy;
252
253	bool		oom_lock;
254	atomic_t	under_oom;
255
256	atomic_t	refcnt;
257
258	int	swappiness;
259	/* OOM-Killer disable */
260	int		oom_kill_disable;
261
262	/* set when res.limit == memsw.limit */
263	bool		memsw_is_minimum;
264
265	/* protect arrays of thresholds */
266	struct mutex thresholds_lock;
267
268	/* thresholds for memory usage. RCU-protected */
269	struct mem_cgroup_thresholds thresholds;
270
271	/* thresholds for mem+swap usage. RCU-protected */
272	struct mem_cgroup_thresholds memsw_thresholds;
273
274	/* For oom notifier event fd */
275	struct list_head oom_notify;
276
277	/*
278	 * Should we move charges of a task when a task is moved into this
279	 * mem_cgroup ? And what type of charges should we move ?
280	 */
281	unsigned long 	move_charge_at_immigrate;
282	/*
283	 * percpu counter.
284	 */
285	struct mem_cgroup_stat_cpu *stat;
286	/*
287	 * used when a cpu is offlined or other synchronizations
288	 * See mem_cgroup_read_stat().
289	 */
290	struct mem_cgroup_stat_cpu nocpu_base;
291	spinlock_t pcp_counter_lock;
292
293#ifdef CONFIG_INET
294	struct tcp_memcontrol tcp_mem;
295#endif
296};
297
298/* Stuffs for move charges at task migration. */
299/*
300 * Types of charges to be moved. "move_charge_at_immitgrate" is treated as a
301 * left-shifted bitmap of these types.
302 */
303enum move_type {
304	MOVE_CHARGE_TYPE_ANON,	/* private anonymous page and swap of it */
305	MOVE_CHARGE_TYPE_FILE,	/* file page(including tmpfs) and swap of it */
306	NR_MOVE_TYPE,
307};
308
309/* "mc" and its members are protected by cgroup_mutex */
310static struct move_charge_struct {
311	spinlock_t	  lock; /* for from, to */
312	struct mem_cgroup *from;
313	struct mem_cgroup *to;
314	unsigned long precharge;
315	unsigned long moved_charge;
316	unsigned long moved_swap;
317	struct task_struct *moving_task;	/* a task moving charges */
318	wait_queue_head_t waitq;		/* a waitq for other context */
319} mc = {
320	.lock = __SPIN_LOCK_UNLOCKED(mc.lock),
321	.waitq = __WAIT_QUEUE_HEAD_INITIALIZER(mc.waitq),
322};
323
324static bool move_anon(void)
325{
326	return test_bit(MOVE_CHARGE_TYPE_ANON,
327					&mc.to->move_charge_at_immigrate);
328}
329
330static bool move_file(void)
331{
332	return test_bit(MOVE_CHARGE_TYPE_FILE,
333					&mc.to->move_charge_at_immigrate);
334}
335
336/*
337 * Maximum loops in mem_cgroup_hierarchical_reclaim(), used for soft
338 * limit reclaim to prevent infinite loops, if they ever occur.
339 */
340#define	MEM_CGROUP_MAX_RECLAIM_LOOPS		(100)
341#define	MEM_CGROUP_MAX_SOFT_LIMIT_RECLAIM_LOOPS	(2)
342
343enum charge_type {
344	MEM_CGROUP_CHARGE_TYPE_CACHE = 0,
345	MEM_CGROUP_CHARGE_TYPE_MAPPED,
346	MEM_CGROUP_CHARGE_TYPE_SHMEM,	/* used by page migration of shmem */
347	MEM_CGROUP_CHARGE_TYPE_FORCE,	/* used by force_empty */
348	MEM_CGROUP_CHARGE_TYPE_SWAPOUT,	/* for accounting swapcache */
349	MEM_CGROUP_CHARGE_TYPE_DROP,	/* a page was unused swap cache */
350	NR_CHARGE_TYPE,
351};
352
353/* for encoding cft->private value on file */
354#define _MEM			(0)
355#define _MEMSWAP		(1)
356#define _OOM_TYPE		(2)
357#define MEMFILE_PRIVATE(x, val)	(((x) << 16) | (val))
358#define MEMFILE_TYPE(val)	(((val) >> 16) & 0xffff)
359#define MEMFILE_ATTR(val)	((val) & 0xffff)
360/* Used for OOM nofiier */
361#define OOM_CONTROL		(0)
362
363/*
364 * Reclaim flags for mem_cgroup_hierarchical_reclaim
365 */
366#define MEM_CGROUP_RECLAIM_NOSWAP_BIT	0x0
367#define MEM_CGROUP_RECLAIM_NOSWAP	(1 << MEM_CGROUP_RECLAIM_NOSWAP_BIT)
368#define MEM_CGROUP_RECLAIM_SHRINK_BIT	0x1
369#define MEM_CGROUP_RECLAIM_SHRINK	(1 << MEM_CGROUP_RECLAIM_SHRINK_BIT)
370
371static void mem_cgroup_get(struct mem_cgroup *memcg);
372static void mem_cgroup_put(struct mem_cgroup *memcg);
373
374/* Writing them here to avoid exposing memcg's inner layout */
375#ifdef CONFIG_CGROUP_MEM_RES_CTLR_KMEM
376#ifdef CONFIG_INET
377#include <net/sock.h>
378#include <net/ip.h>
379
380static bool mem_cgroup_is_root(struct mem_cgroup *memcg);
381void sock_update_memcg(struct sock *sk)
382{
383	if (static_branch(&memcg_socket_limit_enabled)) {
384		struct mem_cgroup *memcg;
385
386		BUG_ON(!sk->sk_prot->proto_cgroup);
387
388		/* Socket cloning can throw us here with sk_cgrp already
389		 * filled. It won't however, necessarily happen from
390		 * process context. So the test for root memcg given
391		 * the current task's memcg won't help us in this case.
392		 *
393		 * Respecting the original socket's memcg is a better
394		 * decision in this case.
395		 */
396		if (sk->sk_cgrp) {
397			BUG_ON(mem_cgroup_is_root(sk->sk_cgrp->memcg));
398			mem_cgroup_get(sk->sk_cgrp->memcg);
399			return;
400		}
401
402		rcu_read_lock();
403		memcg = mem_cgroup_from_task(current);
404		if (!mem_cgroup_is_root(memcg)) {
405			mem_cgroup_get(memcg);
406			sk->sk_cgrp = sk->sk_prot->proto_cgroup(memcg);
407		}
408		rcu_read_unlock();
409	}
410}
411EXPORT_SYMBOL(sock_update_memcg);
412
413void sock_release_memcg(struct sock *sk)
414{
415	if (static_branch(&memcg_socket_limit_enabled) && sk->sk_cgrp) {
416		struct mem_cgroup *memcg;
417		WARN_ON(!sk->sk_cgrp->memcg);
418		memcg = sk->sk_cgrp->memcg;
419		mem_cgroup_put(memcg);
420	}
421}
422
423struct cg_proto *tcp_proto_cgroup(struct mem_cgroup *memcg)
424{
425	if (!memcg || mem_cgroup_is_root(memcg))
426		return NULL;
427
428	return &memcg->tcp_mem.cg_proto;
429}
430EXPORT_SYMBOL(tcp_proto_cgroup);
431#endif /* CONFIG_INET */
432#endif /* CONFIG_CGROUP_MEM_RES_CTLR_KMEM */
433
434static void drain_all_stock_async(struct mem_cgroup *memcg);
435
436static struct mem_cgroup_per_zone *
437mem_cgroup_zoneinfo(struct mem_cgroup *memcg, int nid, int zid)
438{
439	return &memcg->info.nodeinfo[nid]->zoneinfo[zid];
440}
441
442struct cgroup_subsys_state *mem_cgroup_css(struct mem_cgroup *memcg)
443{
444	return &memcg->css;
445}
446
447static struct mem_cgroup_per_zone *
448page_cgroup_zoneinfo(struct mem_cgroup *memcg, struct page *page)
449{
450	int nid = page_to_nid(page);
451	int zid = page_zonenum(page);
452
453	return mem_cgroup_zoneinfo(memcg, nid, zid);
454}
455
456static struct mem_cgroup_tree_per_zone *
457soft_limit_tree_node_zone(int nid, int zid)
458{
459	return &soft_limit_tree.rb_tree_per_node[nid]->rb_tree_per_zone[zid];
460}
461
462static struct mem_cgroup_tree_per_zone *
463soft_limit_tree_from_page(struct page *page)
464{
465	int nid = page_to_nid(page);
466	int zid = page_zonenum(page);
467
468	return &soft_limit_tree.rb_tree_per_node[nid]->rb_tree_per_zone[zid];
469}
470
471static void
472__mem_cgroup_insert_exceeded(struct mem_cgroup *memcg,
473				struct mem_cgroup_per_zone *mz,
474				struct mem_cgroup_tree_per_zone *mctz,
475				unsigned long long new_usage_in_excess)
476{
477	struct rb_node **p = &mctz->rb_root.rb_node;
478	struct rb_node *parent = NULL;
479	struct mem_cgroup_per_zone *mz_node;
480
481	if (mz->on_tree)
482		return;
483
484	mz->usage_in_excess = new_usage_in_excess;
485	if (!mz->usage_in_excess)
486		return;
487	while (*p) {
488		parent = *p;
489		mz_node = rb_entry(parent, struct mem_cgroup_per_zone,
490					tree_node);
491		if (mz->usage_in_excess < mz_node->usage_in_excess)
492			p = &(*p)->rb_left;
493		/*
494		 * We can't avoid mem cgroups that are over their soft
495		 * limit by the same amount
496		 */
497		else if (mz->usage_in_excess >= mz_node->usage_in_excess)
498			p = &(*p)->rb_right;
499	}
500	rb_link_node(&mz->tree_node, parent, p);
501	rb_insert_color(&mz->tree_node, &mctz->rb_root);
502	mz->on_tree = true;
503}
504
505static void
506__mem_cgroup_remove_exceeded(struct mem_cgroup *memcg,
507				struct mem_cgroup_per_zone *mz,
508				struct mem_cgroup_tree_per_zone *mctz)
509{
510	if (!mz->on_tree)
511		return;
512	rb_erase(&mz->tree_node, &mctz->rb_root);
513	mz->on_tree = false;
514}
515
516static void
517mem_cgroup_remove_exceeded(struct mem_cgroup *memcg,
518				struct mem_cgroup_per_zone *mz,
519				struct mem_cgroup_tree_per_zone *mctz)
520{
521	spin_lock(&mctz->lock);
522	__mem_cgroup_remove_exceeded(memcg, mz, mctz);
523	spin_unlock(&mctz->lock);
524}
525
526
527static void mem_cgroup_update_tree(struct mem_cgroup *memcg, struct page *page)
528{
529	unsigned long long excess;
530	struct mem_cgroup_per_zone *mz;
531	struct mem_cgroup_tree_per_zone *mctz;
532	int nid = page_to_nid(page);
533	int zid = page_zonenum(page);
534	mctz = soft_limit_tree_from_page(page);
535
536	/*
537	 * Necessary to update all ancestors when hierarchy is used.
538	 * because their event counter is not touched.
539	 */
540	for (; memcg; memcg = parent_mem_cgroup(memcg)) {
541		mz = mem_cgroup_zoneinfo(memcg, nid, zid);
542		excess = res_counter_soft_limit_excess(&memcg->res);
543		/*
544		 * We have to update the tree if mz is on RB-tree or
545		 * mem is over its softlimit.
546		 */
547		if (excess || mz->on_tree) {
548			spin_lock(&mctz->lock);
549			/* if on-tree, remove it */
550			if (mz->on_tree)
551				__mem_cgroup_remove_exceeded(memcg, mz, mctz);
552			/*
553			 * Insert again. mz->usage_in_excess will be updated.
554			 * If excess is 0, no tree ops.
555			 */
556			__mem_cgroup_insert_exceeded(memcg, mz, mctz, excess);
557			spin_unlock(&mctz->lock);
558		}
559	}
560}
561
562static void mem_cgroup_remove_from_trees(struct mem_cgroup *memcg)
563{
564	int node, zone;
565	struct mem_cgroup_per_zone *mz;
566	struct mem_cgroup_tree_per_zone *mctz;
567
568	for_each_node_state(node, N_POSSIBLE) {
569		for (zone = 0; zone < MAX_NR_ZONES; zone++) {
570			mz = mem_cgroup_zoneinfo(memcg, node, zone);
571			mctz = soft_limit_tree_node_zone(node, zone);
572			mem_cgroup_remove_exceeded(memcg, mz, mctz);
573		}
574	}
575}
576
577static struct mem_cgroup_per_zone *
578__mem_cgroup_largest_soft_limit_node(struct mem_cgroup_tree_per_zone *mctz)
579{
580	struct rb_node *rightmost = NULL;
581	struct mem_cgroup_per_zone *mz;
582
583retry:
584	mz = NULL;
585	rightmost = rb_last(&mctz->rb_root);
586	if (!rightmost)
587		goto done;		/* Nothing to reclaim from */
588
589	mz = rb_entry(rightmost, struct mem_cgroup_per_zone, tree_node);
590	/*
591	 * Remove the node now but someone else can add it back,
592	 * we will to add it back at the end of reclaim to its correct
593	 * position in the tree.
594	 */
595	__mem_cgroup_remove_exceeded(mz->mem, mz, mctz);
596	if (!res_counter_soft_limit_excess(&mz->mem->res) ||
597		!css_tryget(&mz->mem->css))
598		goto retry;
599done:
600	return mz;
601}
602
603static struct mem_cgroup_per_zone *
604mem_cgroup_largest_soft_limit_node(struct mem_cgroup_tree_per_zone *mctz)
605{
606	struct mem_cgroup_per_zone *mz;
607
608	spin_lock(&mctz->lock);
609	mz = __mem_cgroup_largest_soft_limit_node(mctz);
610	spin_unlock(&mctz->lock);
611	return mz;
612}
613
614/*
615 * Implementation Note: reading percpu statistics for memcg.
616 *
617 * Both of vmstat[] and percpu_counter has threshold and do periodic
618 * synchronization to implement "quick" read. There are trade-off between
619 * reading cost and precision of value. Then, we may have a chance to implement
620 * a periodic synchronizion of counter in memcg's counter.
621 *
622 * But this _read() function is used for user interface now. The user accounts
623 * memory usage by memory cgroup and he _always_ requires exact value because
624 * he accounts memory. Even if we provide quick-and-fuzzy read, we always
625 * have to visit all online cpus and make sum. So, for now, unnecessary
626 * synchronization is not implemented. (just implemented for cpu hotplug)
627 *
628 * If there are kernel internal actions which can make use of some not-exact
629 * value, and reading all cpu value can be performance bottleneck in some
630 * common workload, threashold and synchonization as vmstat[] should be
631 * implemented.
632 */
633static long mem_cgroup_read_stat(struct mem_cgroup *memcg,
634				 enum mem_cgroup_stat_index idx)
635{
636	long val = 0;
637	int cpu;
638
639	get_online_cpus();
640	for_each_online_cpu(cpu)
641		val += per_cpu(memcg->stat->count[idx], cpu);
642#ifdef CONFIG_HOTPLUG_CPU
643	spin_lock(&memcg->pcp_counter_lock);
644	val += memcg->nocpu_base.count[idx];
645	spin_unlock(&memcg->pcp_counter_lock);
646#endif
647	put_online_cpus();
648	return val;
649}
650
651static void mem_cgroup_swap_statistics(struct mem_cgroup *memcg,
652					 bool charge)
653{
654	int val = (charge) ? 1 : -1;
655	this_cpu_add(memcg->stat->count[MEM_CGROUP_STAT_SWAPOUT], val);
656}
657
658static unsigned long mem_cgroup_read_events(struct mem_cgroup *memcg,
659					    enum mem_cgroup_events_index idx)
660{
661	unsigned long val = 0;
662	int cpu;
663
664	for_each_online_cpu(cpu)
665		val += per_cpu(memcg->stat->events[idx], cpu);
666#ifdef CONFIG_HOTPLUG_CPU
667	spin_lock(&memcg->pcp_counter_lock);
668	val += memcg->nocpu_base.events[idx];
669	spin_unlock(&memcg->pcp_counter_lock);
670#endif
671	return val;
672}
673
674static void mem_cgroup_charge_statistics(struct mem_cgroup *memcg,
675					 bool file, int nr_pages)
676{
677	preempt_disable();
678
679	if (file)
680		__this_cpu_add(memcg->stat->count[MEM_CGROUP_STAT_CACHE],
681				nr_pages);
682	else
683		__this_cpu_add(memcg->stat->count[MEM_CGROUP_STAT_RSS],
684				nr_pages);
685
686	/* pagein of a big page is an event. So, ignore page size */
687	if (nr_pages > 0)
688		__this_cpu_inc(memcg->stat->events[MEM_CGROUP_EVENTS_PGPGIN]);
689	else {
690		__this_cpu_inc(memcg->stat->events[MEM_CGROUP_EVENTS_PGPGOUT]);
691		nr_pages = -nr_pages; /* for event */
692	}
693
694	__this_cpu_add(memcg->stat->events[MEM_CGROUP_EVENTS_COUNT], nr_pages);
695
696	preempt_enable();
697}
698
699unsigned long
700mem_cgroup_zone_nr_lru_pages(struct mem_cgroup *memcg, int nid, int zid,
701			unsigned int lru_mask)
702{
703	struct mem_cgroup_per_zone *mz;
704	enum lru_list l;
705	unsigned long ret = 0;
706
707	mz = mem_cgroup_zoneinfo(memcg, nid, zid);
708
709	for_each_lru(l) {
710		if (BIT(l) & lru_mask)
711			ret += MEM_CGROUP_ZSTAT(mz, l);
712	}
713	return ret;
714}
715
716static unsigned long
717mem_cgroup_node_nr_lru_pages(struct mem_cgroup *memcg,
718			int nid, unsigned int lru_mask)
719{
720	u64 total = 0;
721	int zid;
722
723	for (zid = 0; zid < MAX_NR_ZONES; zid++)
724		total += mem_cgroup_zone_nr_lru_pages(memcg,
725						nid, zid, lru_mask);
726
727	return total;
728}
729
730static unsigned long mem_cgroup_nr_lru_pages(struct mem_cgroup *memcg,
731			unsigned int lru_mask)
732{
733	int nid;
734	u64 total = 0;
735
736	for_each_node_state(nid, N_HIGH_MEMORY)
737		total += mem_cgroup_node_nr_lru_pages(memcg, nid, lru_mask);
738	return total;
739}
740
741static bool mem_cgroup_event_ratelimit(struct mem_cgroup *memcg,
742				       enum mem_cgroup_events_target target)
743{
744	unsigned long val, next;
745
746	val = __this_cpu_read(memcg->stat->events[MEM_CGROUP_EVENTS_COUNT]);
747	next = __this_cpu_read(memcg->stat->targets[target]);
748	/* from time_after() in jiffies.h */
749	if ((long)next - (long)val < 0) {
750		switch (target) {
751		case MEM_CGROUP_TARGET_THRESH:
752			next = val + THRESHOLDS_EVENTS_TARGET;
753			break;
754		case MEM_CGROUP_TARGET_SOFTLIMIT:
755			next = val + SOFTLIMIT_EVENTS_TARGET;
756			break;
757		case MEM_CGROUP_TARGET_NUMAINFO:
758			next = val + NUMAINFO_EVENTS_TARGET;
759			break;
760		default:
761			break;
762		}
763		__this_cpu_write(memcg->stat->targets[target], next);
764		return true;
765	}
766	return false;
767}
768
769/*
770 * Check events in order.
771 *
772 */
773static void memcg_check_events(struct mem_cgroup *memcg, struct page *page)
774{
775	preempt_disable();
776	/* threshold event is triggered in finer grain than soft limit */
777	if (unlikely(mem_cgroup_event_ratelimit(memcg,
778						MEM_CGROUP_TARGET_THRESH))) {
779		bool do_softlimit, do_numainfo;
780
781		do_softlimit = mem_cgroup_event_ratelimit(memcg,
782						MEM_CGROUP_TARGET_SOFTLIMIT);
783#if MAX_NUMNODES > 1
784		do_numainfo = mem_cgroup_event_ratelimit(memcg,
785						MEM_CGROUP_TARGET_NUMAINFO);
786#endif
787		preempt_enable();
788
789		mem_cgroup_threshold(memcg);
790		if (unlikely(do_softlimit))
791			mem_cgroup_update_tree(memcg, page);
792#if MAX_NUMNODES > 1
793		if (unlikely(do_numainfo))
794			atomic_inc(&memcg->numainfo_events);
795#endif
796	} else
797		preempt_enable();
798}
799
800struct mem_cgroup *mem_cgroup_from_cont(struct cgroup *cont)
801{
802	return container_of(cgroup_subsys_state(cont,
803				mem_cgroup_subsys_id), struct mem_cgroup,
804				css);
805}
806
807struct mem_cgroup *mem_cgroup_from_task(struct task_struct *p)
808{
809	/*
810	 * mm_update_next_owner() may clear mm->owner to NULL
811	 * if it races with swapoff, page migration, etc.
812	 * So this can be called with p == NULL.
813	 */
814	if (unlikely(!p))
815		return NULL;
816
817	return container_of(task_subsys_state(p, mem_cgroup_subsys_id),
818				struct mem_cgroup, css);
819}
820
821struct mem_cgroup *try_get_mem_cgroup_from_mm(struct mm_struct *mm)
822{
823	struct mem_cgroup *memcg = NULL;
824
825	if (!mm)
826		return NULL;
827	/*
828	 * Because we have no locks, mm->owner's may be being moved to other
829	 * cgroup. We use css_tryget() here even if this looks
830	 * pessimistic (rather than adding locks here).
831	 */
832	rcu_read_lock();
833	do {
834		memcg = mem_cgroup_from_task(rcu_dereference(mm->owner));
835		if (unlikely(!memcg))
836			break;
837	} while (!css_tryget(&memcg->css));
838	rcu_read_unlock();
839	return memcg;
840}
841
842/**
843 * mem_cgroup_iter - iterate over memory cgroup hierarchy
844 * @root: hierarchy root
845 * @prev: previously returned memcg, NULL on first invocation
846 * @reclaim: cookie for shared reclaim walks, NULL for full walks
847 *
848 * Returns references to children of the hierarchy below @root, or
849 * @root itself, or %NULL after a full round-trip.
850 *
851 * Caller must pass the return value in @prev on subsequent
852 * invocations for reference counting, or use mem_cgroup_iter_break()
853 * to cancel a hierarchy walk before the round-trip is complete.
854 *
855 * Reclaimers can specify a zone and a priority level in @reclaim to
856 * divide up the memcgs in the hierarchy among all concurrent
857 * reclaimers operating on the same zone and priority.
858 */
859struct mem_cgroup *mem_cgroup_iter(struct mem_cgroup *root,
860				   struct mem_cgroup *prev,
861				   struct mem_cgroup_reclaim_cookie *reclaim)
862{
863	struct mem_cgroup *memcg = NULL;
864	int id = 0;
865
866	if (mem_cgroup_disabled())
867		return NULL;
868
869	if (!root)
870		root = root_mem_cgroup;
871
872	if (prev && !reclaim)
873		id = css_id(&prev->css);
874
875	if (prev && prev != root)
876		css_put(&prev->css);
877
878	if (!root->use_hierarchy && root != root_mem_cgroup) {
879		if (prev)
880			return NULL;
881		return root;
882	}
883
884	while (!memcg) {
885		struct mem_cgroup_reclaim_iter *uninitialized_var(iter);
886		struct cgroup_subsys_state *css;
887
888		if (reclaim) {
889			int nid = zone_to_nid(reclaim->zone);
890			int zid = zone_idx(reclaim->zone);
891			struct mem_cgroup_per_zone *mz;
892
893			mz = mem_cgroup_zoneinfo(root, nid, zid);
894			iter = &mz->reclaim_iter[reclaim->priority];
895			if (prev && reclaim->generation != iter->generation)
896				return NULL;
897			id = iter->position;
898		}
899
900		rcu_read_lock();
901		css = css_get_next(&mem_cgroup_subsys, id + 1, &root->css, &id);
902		if (css) {
903			if (css == &root->css || css_tryget(css))
904				memcg = container_of(css,
905						     struct mem_cgroup, css);
906		} else
907			id = 0;
908		rcu_read_unlock();
909
910		if (reclaim) {
911			iter->position = id;
912			if (!css)
913				iter->generation++;
914			else if (!prev && memcg)
915				reclaim->generation = iter->generation;
916		}
917
918		if (prev && !css)
919			return NULL;
920	}
921	return memcg;
922}
923
924/**
925 * mem_cgroup_iter_break - abort a hierarchy walk prematurely
926 * @root: hierarchy root
927 * @prev: last visited hierarchy member as returned by mem_cgroup_iter()
928 */
929void mem_cgroup_iter_break(struct mem_cgroup *root,
930			   struct mem_cgroup *prev)
931{
932	if (!root)
933		root = root_mem_cgroup;
934	if (prev && prev != root)
935		css_put(&prev->css);
936}
937
938/*
939 * Iteration constructs for visiting all cgroups (under a tree).  If
940 * loops are exited prematurely (break), mem_cgroup_iter_break() must
941 * be used for reference counting.
942 */
943#define for_each_mem_cgroup_tree(iter, root)		\
944	for (iter = mem_cgroup_iter(root, NULL, NULL);	\
945	     iter != NULL;				\
946	     iter = mem_cgroup_iter(root, iter, NULL))
947
948#define for_each_mem_cgroup(iter)			\
949	for (iter = mem_cgroup_iter(NULL, NULL, NULL);	\
950	     iter != NULL;				\
951	     iter = mem_cgroup_iter(NULL, iter, NULL))
952
953static inline bool mem_cgroup_is_root(struct mem_cgroup *memcg)
954{
955	return (memcg == root_mem_cgroup);
956}
957
958void mem_cgroup_count_vm_event(struct mm_struct *mm, enum vm_event_item idx)
959{
960	struct mem_cgroup *memcg;
961
962	if (!mm)
963		return;
964
965	rcu_read_lock();
966	memcg = mem_cgroup_from_task(rcu_dereference(mm->owner));
967	if (unlikely(!memcg))
968		goto out;
969
970	switch (idx) {
971	case PGFAULT:
972		this_cpu_inc(memcg->stat->events[MEM_CGROUP_EVENTS_PGFAULT]);
973		break;
974	case PGMAJFAULT:
975		this_cpu_inc(memcg->stat->events[MEM_CGROUP_EVENTS_PGMAJFAULT]);
976		break;
977	default:
978		BUG();
979	}
980out:
981	rcu_read_unlock();
982}
983EXPORT_SYMBOL(mem_cgroup_count_vm_event);
984
985/**
986 * mem_cgroup_zone_lruvec - get the lru list vector for a zone and memcg
987 * @zone: zone of the wanted lruvec
988 * @mem: memcg of the wanted lruvec
989 *
990 * Returns the lru list vector holding pages for the given @zone and
991 * @mem.  This can be the global zone lruvec, if the memory controller
992 * is disabled.
993 */
994struct lruvec *mem_cgroup_zone_lruvec(struct zone *zone,
995				      struct mem_cgroup *memcg)
996{
997	struct mem_cgroup_per_zone *mz;
998
999	if (mem_cgroup_disabled())
1000		return &zone->lruvec;
1001
1002	mz = mem_cgroup_zoneinfo(memcg, zone_to_nid(zone), zone_idx(zone));
1003	return &mz->lruvec;
1004}
1005
1006/*
1007 * Following LRU functions are allowed to be used without PCG_LOCK.
1008 * Operations are called by routine of global LRU independently from memcg.
1009 * What we have to take care of here is validness of pc->mem_cgroup.
1010 *
1011 * Changes to pc->mem_cgroup happens when
1012 * 1. charge
1013 * 2. moving account
1014 * In typical case, "charge" is done before add-to-lru. Exception is SwapCache.
1015 * It is added to LRU before charge.
1016 * If PCG_USED bit is not set, page_cgroup is not added to this private LRU.
1017 * When moving account, the page is not on LRU. It's isolated.
1018 */
1019
1020/**
1021 * mem_cgroup_lru_add_list - account for adding an lru page and return lruvec
1022 * @zone: zone of the page
1023 * @page: the page
1024 * @lru: current lru
1025 *
1026 * This function accounts for @page being added to @lru, and returns
1027 * the lruvec for the given @zone and the memcg @page is charged to.
1028 *
1029 * The callsite is then responsible for physically linking the page to
1030 * the returned lruvec->lists[@lru].
1031 */
1032struct lruvec *mem_cgroup_lru_add_list(struct zone *zone, struct page *page,
1033				       enum lru_list lru)
1034{
1035	struct mem_cgroup_per_zone *mz;
1036	struct mem_cgroup *memcg;
1037	struct page_cgroup *pc;
1038
1039	if (mem_cgroup_disabled())
1040		return &zone->lruvec;
1041
1042	pc = lookup_page_cgroup(page);
1043	VM_BUG_ON(PageCgroupAcctLRU(pc));
1044	/*
1045	 * putback:				charge:
1046	 * SetPageLRU				SetPageCgroupUsed
1047	 * smp_mb				smp_mb
1048	 * PageCgroupUsed && add to memcg LRU	PageLRU && add to memcg LRU
1049	 *
1050	 * Ensure that one of the two sides adds the page to the memcg
1051	 * LRU during a race.
1052	 */
1053	smp_mb();
1054	/*
1055	 * If the page is uncharged, it may be freed soon, but it
1056	 * could also be swap cache (readahead, swapoff) that needs to
1057	 * be reclaimable in the future.  root_mem_cgroup will babysit
1058	 * it for the time being.
1059	 */
1060	if (PageCgroupUsed(pc)) {
1061		/* Ensure pc->mem_cgroup is visible after reading PCG_USED. */
1062		smp_rmb();
1063		memcg = pc->mem_cgroup;
1064		SetPageCgroupAcctLRU(pc);
1065	} else
1066		memcg = root_mem_cgroup;
1067	mz = page_cgroup_zoneinfo(memcg, page);
1068	/* compound_order() is stabilized through lru_lock */
1069	MEM_CGROUP_ZSTAT(mz, lru) += 1 << compound_order(page);
1070	return &mz->lruvec;
1071}
1072
1073/**
1074 * mem_cgroup_lru_del_list - account for removing an lru page
1075 * @page: the page
1076 * @lru: target lru
1077 *
1078 * This function accounts for @page being removed from @lru.
1079 *
1080 * The callsite is then responsible for physically unlinking
1081 * @page->lru.
1082 */
1083void mem_cgroup_lru_del_list(struct page *page, enum lru_list lru)
1084{
1085	struct mem_cgroup_per_zone *mz;
1086	struct mem_cgroup *memcg;
1087	struct page_cgroup *pc;
1088
1089	if (mem_cgroup_disabled())
1090		return;
1091
1092	pc = lookup_page_cgroup(page);
1093	/*
1094	 * root_mem_cgroup babysits uncharged LRU pages, but
1095	 * PageCgroupUsed is cleared when the page is about to get
1096	 * freed.  PageCgroupAcctLRU remembers whether the
1097	 * LRU-accounting happened against pc->mem_cgroup or
1098	 * root_mem_cgroup.
1099	 */
1100	if (TestClearPageCgroupAcctLRU(pc)) {
1101		VM_BUG_ON(!pc->mem_cgroup);
1102		memcg = pc->mem_cgroup;
1103	} else
1104		memcg = root_mem_cgroup;
1105	mz = page_cgroup_zoneinfo(memcg, page);
1106	/* huge page split is done under lru_lock. so, we have no races. */
1107	MEM_CGROUP_ZSTAT(mz, lru) -= 1 << compound_order(page);
1108}
1109
1110void mem_cgroup_lru_del(struct page *page)
1111{
1112	mem_cgroup_lru_del_list(page, page_lru(page));
1113}
1114
1115/**
1116 * mem_cgroup_lru_move_lists - account for moving a page between lrus
1117 * @zone: zone of the page
1118 * @page: the page
1119 * @from: current lru
1120 * @to: target lru
1121 *
1122 * This function accounts for @page being moved between the lrus @from
1123 * and @to, and returns the lruvec for the given @zone and the memcg
1124 * @page is charged to.
1125 *
1126 * The callsite is then responsible for physically relinking
1127 * @page->lru to the returned lruvec->lists[@to].
1128 */
1129struct lruvec *mem_cgroup_lru_move_lists(struct zone *zone,
1130					 struct page *page,
1131					 enum lru_list from,
1132					 enum lru_list to)
1133{
1134	/* XXX: Optimize this, especially for @from == @to */
1135	mem_cgroup_lru_del_list(page, from);
1136	return mem_cgroup_lru_add_list(zone, page, to);
1137}
1138
1139/*
1140 * At handling SwapCache and other FUSE stuff, pc->mem_cgroup may be changed
1141 * while it's linked to lru because the page may be reused after it's fully
1142 * uncharged. To handle that, unlink page_cgroup from LRU when charge it again.
1143 * It's done under lock_page and expected that zone->lru_lock isnever held.
1144 */
1145static void mem_cgroup_lru_del_before_commit(struct page *page)
1146{
1147	enum lru_list lru;
1148	unsigned long flags;
1149	struct zone *zone = page_zone(page);
1150	struct page_cgroup *pc = lookup_page_cgroup(page);
1151
1152	/*
1153	 * Doing this check without taking ->lru_lock seems wrong but this
1154	 * is safe. Because if page_cgroup's USED bit is unset, the page
1155	 * will not be added to any memcg's LRU. If page_cgroup's USED bit is
1156	 * set, the commit after this will fail, anyway.
1157	 * This all charge/uncharge is done under some mutual execustion.
1158	 * So, we don't need to taking care of changes in USED bit.
1159	 */
1160	if (likely(!PageLRU(page)))
1161		return;
1162
1163	spin_lock_irqsave(&zone->lru_lock, flags);
1164	lru = page_lru(page);
1165	/*
1166	 * The uncharged page could still be registered to the LRU of
1167	 * the stale pc->mem_cgroup.
1168	 *
1169	 * As pc->mem_cgroup is about to get overwritten, the old LRU
1170	 * accounting needs to be taken care of.  Let root_mem_cgroup
1171	 * babysit the page until the new memcg is responsible for it.
1172	 *
1173	 * The PCG_USED bit is guarded by lock_page() as the page is
1174	 * swapcache/pagecache.
1175	 */
1176	if (PageLRU(page) && PageCgroupAcctLRU(pc) && !PageCgroupUsed(pc)) {
1177		del_page_from_lru_list(zone, page, lru);
1178		add_page_to_lru_list(zone, page, lru);
1179	}
1180	spin_unlock_irqrestore(&zone->lru_lock, flags);
1181}
1182
1183static void mem_cgroup_lru_add_after_commit(struct page *page)
1184{
1185	enum lru_list lru;
1186	unsigned long flags;
1187	struct zone *zone = page_zone(page);
1188	struct page_cgroup *pc = lookup_page_cgroup(page);
1189	/*
1190	 * putback:				charge:
1191	 * SetPageLRU				SetPageCgroupUsed
1192	 * smp_mb				smp_mb
1193	 * PageCgroupUsed && add to memcg LRU	PageLRU && add to memcg LRU
1194	 *
1195	 * Ensure that one of the two sides adds the page to the memcg
1196	 * LRU during a race.
1197	 */
1198	smp_mb();
1199	/* taking care of that the page is added to LRU while we commit it */
1200	if (likely(!PageLRU(page)))
1201		return;
1202	spin_lock_irqsave(&zone->lru_lock, flags);
1203	lru = page_lru(page);
1204	/*
1205	 * If the page is not on the LRU, someone will soon put it
1206	 * there.  If it is, and also already accounted for on the
1207	 * memcg-side, it must be on the right lruvec as setting
1208	 * pc->mem_cgroup and PageCgroupUsed is properly ordered.
1209	 * Otherwise, root_mem_cgroup has been babysitting the page
1210	 * during the charge.  Move it to the new memcg now.
1211	 */
1212	if (PageLRU(page) && !PageCgroupAcctLRU(pc)) {
1213		del_page_from_lru_list(zone, page, lru);
1214		add_page_to_lru_list(zone, page, lru);
1215	}
1216	spin_unlock_irqrestore(&zone->lru_lock, flags);
1217}
1218
1219/*
1220 * Checks whether given mem is same or in the root_mem_cgroup's
1221 * hierarchy subtree
1222 */
1223static bool mem_cgroup_same_or_subtree(const struct mem_cgroup *root_memcg,
1224		struct mem_cgroup *memcg)
1225{
1226	if (root_memcg != memcg) {
1227		return (root_memcg->use_hierarchy &&
1228			css_is_ancestor(&memcg->css, &root_memcg->css));
1229	}
1230
1231	return true;
1232}
1233
1234int task_in_mem_cgroup(struct task_struct *task, const struct mem_cgroup *memcg)
1235{
1236	int ret;
1237	struct mem_cgroup *curr = NULL;
1238	struct task_struct *p;
1239
1240	p = find_lock_task_mm(task);
1241	if (!p)
1242		return 0;
1243	curr = try_get_mem_cgroup_from_mm(p->mm);
1244	task_unlock(p);
1245	if (!curr)
1246		return 0;
1247	/*
1248	 * We should check use_hierarchy of "memcg" not "curr". Because checking
1249	 * use_hierarchy of "curr" here make this function true if hierarchy is
1250	 * enabled in "curr" and "curr" is a child of "memcg" in *cgroup*
1251	 * hierarchy(even if use_hierarchy is disabled in "memcg").
1252	 */
1253	ret = mem_cgroup_same_or_subtree(memcg, curr);
1254	css_put(&curr->css);
1255	return ret;
1256}
1257
1258int mem_cgroup_inactive_anon_is_low(struct mem_cgroup *memcg, struct zone *zone)
1259{
1260	unsigned long inactive_ratio;
1261	int nid = zone_to_nid(zone);
1262	int zid = zone_idx(zone);
1263	unsigned long inactive;
1264	unsigned long active;
1265	unsigned long gb;
1266
1267	inactive = mem_cgroup_zone_nr_lru_pages(memcg, nid, zid,
1268						BIT(LRU_INACTIVE_ANON));
1269	active = mem_cgroup_zone_nr_lru_pages(memcg, nid, zid,
1270					      BIT(LRU_ACTIVE_ANON));
1271
1272	gb = (inactive + active) >> (30 - PAGE_SHIFT);
1273	if (gb)
1274		inactive_ratio = int_sqrt(10 * gb);
1275	else
1276		inactive_ratio = 1;
1277
1278	return inactive * inactive_ratio < active;
1279}
1280
1281int mem_cgroup_inactive_file_is_low(struct mem_cgroup *memcg, struct zone *zone)
1282{
1283	unsigned long active;
1284	unsigned long inactive;
1285	int zid = zone_idx(zone);
1286	int nid = zone_to_nid(zone);
1287
1288	inactive = mem_cgroup_zone_nr_lru_pages(memcg, nid, zid,
1289						BIT(LRU_INACTIVE_FILE));
1290	active = mem_cgroup_zone_nr_lru_pages(memcg, nid, zid,
1291					      BIT(LRU_ACTIVE_FILE));
1292
1293	return (active > inactive);
1294}
1295
1296struct zone_reclaim_stat *mem_cgroup_get_reclaim_stat(struct mem_cgroup *memcg,
1297						      struct zone *zone)
1298{
1299	int nid = zone_to_nid(zone);
1300	int zid = zone_idx(zone);
1301	struct mem_cgroup_per_zone *mz = mem_cgroup_zoneinfo(memcg, nid, zid);
1302
1303	return &mz->reclaim_stat;
1304}
1305
1306struct zone_reclaim_stat *
1307mem_cgroup_get_reclaim_stat_from_page(struct page *page)
1308{
1309	struct page_cgroup *pc;
1310	struct mem_cgroup_per_zone *mz;
1311
1312	if (mem_cgroup_disabled())
1313		return NULL;
1314
1315	pc = lookup_page_cgroup(page);
1316	if (!PageCgroupUsed(pc))
1317		return NULL;
1318	/* Ensure pc->mem_cgroup is visible after reading PCG_USED. */
1319	smp_rmb();
1320	mz = page_cgroup_zoneinfo(pc->mem_cgroup, page);
1321	return &mz->reclaim_stat;
1322}
1323
1324#define mem_cgroup_from_res_counter(counter, member)	\
1325	container_of(counter, struct mem_cgroup, member)
1326
1327/**
1328 * mem_cgroup_margin - calculate chargeable space of a memory cgroup
1329 * @mem: the memory cgroup
1330 *
1331 * Returns the maximum amount of memory @mem can be charged with, in
1332 * pages.
1333 */
1334static unsigned long mem_cgroup_margin(struct mem_cgroup *memcg)
1335{
1336	unsigned long long margin;
1337
1338	margin = res_counter_margin(&memcg->res);
1339	if (do_swap_account)
1340		margin = min(margin, res_counter_margin(&memcg->memsw));
1341	return margin >> PAGE_SHIFT;
1342}
1343
1344int mem_cgroup_swappiness(struct mem_cgroup *memcg)
1345{
1346	struct cgroup *cgrp = memcg->css.cgroup;
1347
1348	/* root ? */
1349	if (cgrp->parent == NULL)
1350		return vm_swappiness;
1351
1352	return memcg->swappiness;
1353}
1354
1355static void mem_cgroup_start_move(struct mem_cgroup *memcg)
1356{
1357	int cpu;
1358
1359	get_online_cpus();
1360	spin_lock(&memcg->pcp_counter_lock);
1361	for_each_online_cpu(cpu)
1362		per_cpu(memcg->stat->count[MEM_CGROUP_ON_MOVE], cpu) += 1;
1363	memcg->nocpu_base.count[MEM_CGROUP_ON_MOVE] += 1;
1364	spin_unlock(&memcg->pcp_counter_lock);
1365	put_online_cpus();
1366
1367	synchronize_rcu();
1368}
1369
1370static void mem_cgroup_end_move(struct mem_cgroup *memcg)
1371{
1372	int cpu;
1373
1374	if (!memcg)
1375		return;
1376	get_online_cpus();
1377	spin_lock(&memcg->pcp_counter_lock);
1378	for_each_online_cpu(cpu)
1379		per_cpu(memcg->stat->count[MEM_CGROUP_ON_MOVE], cpu) -= 1;
1380	memcg->nocpu_base.count[MEM_CGROUP_ON_MOVE] -= 1;
1381	spin_unlock(&memcg->pcp_counter_lock);
1382	put_online_cpus();
1383}
1384/*
1385 * 2 routines for checking "mem" is under move_account() or not.
1386 *
1387 * mem_cgroup_stealed() - checking a cgroup is mc.from or not. This is used
1388 *			  for avoiding race in accounting. If true,
1389 *			  pc->mem_cgroup may be overwritten.
1390 *
1391 * mem_cgroup_under_move() - checking a cgroup is mc.from or mc.to or
1392 *			  under hierarchy of moving cgroups. This is for
1393 *			  waiting at hith-memory prressure caused by "move".
1394 */
1395
1396static bool mem_cgroup_stealed(struct mem_cgroup *memcg)
1397{
1398	VM_BUG_ON(!rcu_read_lock_held());
1399	return this_cpu_read(memcg->stat->count[MEM_CGROUP_ON_MOVE]) > 0;
1400}
1401
1402static bool mem_cgroup_under_move(struct mem_cgroup *memcg)
1403{
1404	struct mem_cgroup *from;
1405	struct mem_cgroup *to;
1406	bool ret = false;
1407	/*
1408	 * Unlike task_move routines, we access mc.to, mc.from not under
1409	 * mutual exclusion by cgroup_mutex. Here, we take spinlock instead.
1410	 */
1411	spin_lock(&mc.lock);
1412	from = mc.from;
1413	to = mc.to;
1414	if (!from)
1415		goto unlock;
1416
1417	ret = mem_cgroup_same_or_subtree(memcg, from)
1418		|| mem_cgroup_same_or_subtree(memcg, to);
1419unlock:
1420	spin_unlock(&mc.lock);
1421	return ret;
1422}
1423
1424static bool mem_cgroup_wait_acct_move(struct mem_cgroup *memcg)
1425{
1426	if (mc.moving_task && current != mc.moving_task) {
1427		if (mem_cgroup_under_move(memcg)) {
1428			DEFINE_WAIT(wait);
1429			prepare_to_wait(&mc.waitq, &wait, TASK_INTERRUPTIBLE);
1430			/* moving charge context might have finished. */
1431			if (mc.moving_task)
1432				schedule();
1433			finish_wait(&mc.waitq, &wait);
1434			return true;
1435		}
1436	}
1437	return false;
1438}
1439
1440/**
1441 * mem_cgroup_print_oom_info: Called from OOM with tasklist_lock held in read mode.
1442 * @memcg: The memory cgroup that went over limit
1443 * @p: Task that is going to be killed
1444 *
1445 * NOTE: @memcg and @p's mem_cgroup can be different when hierarchy is
1446 * enabled
1447 */
1448void mem_cgroup_print_oom_info(struct mem_cgroup *memcg, struct task_struct *p)
1449{
1450	struct cgroup *task_cgrp;
1451	struct cgroup *mem_cgrp;
1452	/*
1453	 * Need a buffer in BSS, can't rely on allocations. The code relies
1454	 * on the assumption that OOM is serialized for memory controller.
1455	 * If this assumption is broken, revisit this code.
1456	 */
1457	static char memcg_name[PATH_MAX];
1458	int ret;
1459
1460	if (!memcg || !p)
1461		return;
1462
1463
1464	rcu_read_lock();
1465
1466	mem_cgrp = memcg->css.cgroup;
1467	task_cgrp = task_cgroup(p, mem_cgroup_subsys_id);
1468
1469	ret = cgroup_path(task_cgrp, memcg_name, PATH_MAX);
1470	if (ret < 0) {
1471		/*
1472		 * Unfortunately, we are unable to convert to a useful name
1473		 * But we'll still print out the usage information
1474		 */
1475		rcu_read_unlock();
1476		goto done;
1477	}
1478	rcu_read_unlock();
1479
1480	printk(KERN_INFO "Task in %s killed", memcg_name);
1481
1482	rcu_read_lock();
1483	ret = cgroup_path(mem_cgrp, memcg_name, PATH_MAX);
1484	if (ret < 0) {
1485		rcu_read_unlock();
1486		goto done;
1487	}
1488	rcu_read_unlock();
1489
1490	/*
1491	 * Continues from above, so we don't need an KERN_ level
1492	 */
1493	printk(KERN_CONT " as a result of limit of %s\n", memcg_name);
1494done:
1495
1496	printk(KERN_INFO "memory: usage %llukB, limit %llukB, failcnt %llu\n",
1497		res_counter_read_u64(&memcg->res, RES_USAGE) >> 10,
1498		res_counter_read_u64(&memcg->res, RES_LIMIT) >> 10,
1499		res_counter_read_u64(&memcg->res, RES_FAILCNT));
1500	printk(KERN_INFO "memory+swap: usage %llukB, limit %llukB, "
1501		"failcnt %llu\n",
1502		res_counter_read_u64(&memcg->memsw, RES_USAGE) >> 10,
1503		res_counter_read_u64(&memcg->memsw, RES_LIMIT) >> 10,
1504		res_counter_read_u64(&memcg->memsw, RES_FAILCNT));
1505}
1506
1507/*
1508 * This function returns the number of memcg under hierarchy tree. Returns
1509 * 1(self count) if no children.
1510 */
1511static int mem_cgroup_count_children(struct mem_cgroup *memcg)
1512{
1513	int num = 0;
1514	struct mem_cgroup *iter;
1515
1516	for_each_mem_cgroup_tree(iter, memcg)
1517		num++;
1518	return num;
1519}
1520
1521/*
1522 * Return the memory (and swap, if configured) limit for a memcg.
1523 */
1524u64 mem_cgroup_get_limit(struct mem_cgroup *memcg)
1525{
1526	u64 limit;
1527	u64 memsw;
1528
1529	limit = res_counter_read_u64(&memcg->res, RES_LIMIT);
1530	limit += total_swap_pages << PAGE_SHIFT;
1531
1532	memsw = res_counter_read_u64(&memcg->memsw, RES_LIMIT);
1533	/*
1534	 * If memsw is finite and limits the amount of swap space available
1535	 * to this memcg, return that limit.
1536	 */
1537	return min(limit, memsw);
1538}
1539
1540static unsigned long mem_cgroup_reclaim(struct mem_cgroup *memcg,
1541					gfp_t gfp_mask,
1542					unsigned long flags)
1543{
1544	unsigned long total = 0;
1545	bool noswap = false;
1546	int loop;
1547
1548	if (flags & MEM_CGROUP_RECLAIM_NOSWAP)
1549		noswap = true;
1550	if (!(flags & MEM_CGROUP_RECLAIM_SHRINK) && memcg->memsw_is_minimum)
1551		noswap = true;
1552
1553	for (loop = 0; loop < MEM_CGROUP_MAX_RECLAIM_LOOPS; loop++) {
1554		if (loop)
1555			drain_all_stock_async(memcg);
1556		total += try_to_free_mem_cgroup_pages(memcg, gfp_mask, noswap);
1557		/*
1558		 * Allow limit shrinkers, which are triggered directly
1559		 * by userspace, to catch signals and stop reclaim
1560		 * after minimal progress, regardless of the margin.
1561		 */
1562		if (total && (flags & MEM_CGROUP_RECLAIM_SHRINK))
1563			break;
1564		if (mem_cgroup_margin(memcg))
1565			break;
1566		/*
1567		 * If nothing was reclaimed after two attempts, there
1568		 * may be no reclaimable pages in this hierarchy.
1569		 */
1570		if (loop && !total)
1571			break;
1572	}
1573	return total;
1574}
1575
1576/**
1577 * test_mem_cgroup_node_reclaimable
1578 * @mem: the target memcg
1579 * @nid: the node ID to be checked.
1580 * @noswap : specify true here if the user wants flle only information.
1581 *
1582 * This function returns whether the specified memcg contains any
1583 * reclaimable pages on a node. Returns true if there are any reclaimable
1584 * pages in the node.
1585 */
1586static bool test_mem_cgroup_node_reclaimable(struct mem_cgroup *memcg,
1587		int nid, bool noswap)
1588{
1589	if (mem_cgroup_node_nr_lru_pages(memcg, nid, LRU_ALL_FILE))
1590		return true;
1591	if (noswap || !total_swap_pages)
1592		return false;
1593	if (mem_cgroup_node_nr_lru_pages(memcg, nid, LRU_ALL_ANON))
1594		return true;
1595	return false;
1596
1597}
1598#if MAX_NUMNODES > 1
1599
1600/*
1601 * Always updating the nodemask is not very good - even if we have an empty
1602 * list or the wrong list here, we can start from some node and traverse all
1603 * nodes based on the zonelist. So update the list loosely once per 10 secs.
1604 *
1605 */
1606static void mem_cgroup_may_update_nodemask(struct mem_cgroup *memcg)
1607{
1608	int nid;
1609	/*
1610	 * numainfo_events > 0 means there was at least NUMAINFO_EVENTS_TARGET
1611	 * pagein/pageout changes since the last update.
1612	 */
1613	if (!atomic_read(&memcg->numainfo_events))
1614		return;
1615	if (atomic_inc_return(&memcg->numainfo_updating) > 1)
1616		return;
1617
1618	/* make a nodemask where this memcg uses memory from */
1619	memcg->scan_nodes = node_states[N_HIGH_MEMORY];
1620
1621	for_each_node_mask(nid, node_states[N_HIGH_MEMORY]) {
1622
1623		if (!test_mem_cgroup_node_reclaimable(memcg, nid, false))
1624			node_clear(nid, memcg->scan_nodes);
1625	}
1626
1627	atomic_set(&memcg->numainfo_events, 0);
1628	atomic_set(&memcg->numainfo_updating, 0);
1629}
1630
1631/*
1632 * Selecting a node where we start reclaim from. Because what we need is just
1633 * reducing usage counter, start from anywhere is O,K. Considering
1634 * memory reclaim from current node, there are pros. and cons.
1635 *
1636 * Freeing memory from current node means freeing memory from a node which
1637 * we'll use or we've used. So, it may make LRU bad. And if several threads
1638 * hit limits, it will see a contention on a node. But freeing from remote
1639 * node means more costs for memory reclaim because of memory latency.
1640 *
1641 * Now, we use round-robin. Better algorithm is welcomed.
1642 */
1643int mem_cgroup_select_victim_node(struct mem_cgroup *memcg)
1644{
1645	int node;
1646
1647	mem_cgroup_may_update_nodemask(memcg);
1648	node = memcg->last_scanned_node;
1649
1650	node = next_node(node, memcg->scan_nodes);
1651	if (node == MAX_NUMNODES)
1652		node = first_node(memcg->scan_nodes);
1653	/*
1654	 * We call this when we hit limit, not when pages are added to LRU.
1655	 * No LRU may hold pages because all pages are UNEVICTABLE or
1656	 * memcg is too small and all pages are not on LRU. In that case,
1657	 * we use curret node.
1658	 */
1659	if (unlikely(node == MAX_NUMNODES))
1660		node = numa_node_id();
1661
1662	memcg->last_scanned_node = node;
1663	return node;
1664}
1665
1666/*
1667 * Check all nodes whether it contains reclaimable pages or not.
1668 * For quick scan, we make use of scan_nodes. This will allow us to skip
1669 * unused nodes. But scan_nodes is lazily updated and may not cotain
1670 * enough new information. We need to do double check.
1671 */
1672bool mem_cgroup_reclaimable(struct mem_cgroup *memcg, bool noswap)
1673{
1674	int nid;
1675
1676	/*
1677	 * quick check...making use of scan_node.
1678	 * We can skip unused nodes.
1679	 */
1680	if (!nodes_empty(memcg->scan_nodes)) {
1681		for (nid = first_node(memcg->scan_nodes);
1682		     nid < MAX_NUMNODES;
1683		     nid = next_node(nid, memcg->scan_nodes)) {
1684
1685			if (test_mem_cgroup_node_reclaimable(memcg, nid, noswap))
1686				return true;
1687		}
1688	}
1689	/*
1690	 * Check rest of nodes.
1691	 */
1692	for_each_node_state(nid, N_HIGH_MEMORY) {
1693		if (node_isset(nid, memcg->scan_nodes))
1694			continue;
1695		if (test_mem_cgroup_node_reclaimable(memcg, nid, noswap))
1696			return true;
1697	}
1698	return false;
1699}
1700
1701#else
1702int mem_cgroup_select_victim_node(struct mem_cgroup *memcg)
1703{
1704	return 0;
1705}
1706
1707bool mem_cgroup_reclaimable(struct mem_cgroup *memcg, bool noswap)
1708{
1709	return test_mem_cgroup_node_reclaimable(memcg, 0, noswap);
1710}
1711#endif
1712
1713static int mem_cgroup_soft_reclaim(struct mem_cgroup *root_memcg,
1714				   struct zone *zone,
1715				   gfp_t gfp_mask,
1716				   unsigned long *total_scanned)
1717{
1718	struct mem_cgroup *victim = NULL;
1719	int total = 0;
1720	int loop = 0;
1721	unsigned long excess;
1722	unsigned long nr_scanned;
1723	struct mem_cgroup_reclaim_cookie reclaim = {
1724		.zone = zone,
1725		.priority = 0,
1726	};
1727
1728	excess = res_counter_soft_limit_excess(&root_memcg->res) >> PAGE_SHIFT;
1729
1730	while (1) {
1731		victim = mem_cgroup_iter(root_memcg, victim, &reclaim);
1732		if (!victim) {
1733			loop++;
1734			if (loop >= 2) {
1735				/*
1736				 * If we have not been able to reclaim
1737				 * anything, it might because there are
1738				 * no reclaimable pages under this hierarchy
1739				 */
1740				if (!total)
1741					break;
1742				/*
1743				 * We want to do more targeted reclaim.
1744				 * excess >> 2 is not to excessive so as to
1745				 * reclaim too much, nor too less that we keep
1746				 * coming back to reclaim from this cgroup
1747				 */
1748				if (total >= (excess >> 2) ||
1749					(loop > MEM_CGROUP_MAX_RECLAIM_LOOPS))
1750					break;
1751			}
1752			continue;
1753		}
1754		if (!mem_cgroup_reclaimable(victim, false))
1755			continue;
1756		total += mem_cgroup_shrink_node_zone(victim, gfp_mask, false,
1757						     zone, &nr_scanned);
1758		*total_scanned += nr_scanned;
1759		if (!res_counter_soft_limit_excess(&root_memcg->res))
1760			break;
1761	}
1762	mem_cgroup_iter_break(root_memcg, victim);
1763	return total;
1764}
1765
1766/*
1767 * Check OOM-Killer is already running under our hierarchy.
1768 * If someone is running, return false.
1769 * Has to be called with memcg_oom_lock
1770 */
1771static bool mem_cgroup_oom_lock(struct mem_cgroup *memcg)
1772{
1773	struct mem_cgroup *iter, *failed = NULL;
1774
1775	for_each_mem_cgroup_tree(iter, memcg) {
1776		if (iter->oom_lock) {
1777			/*
1778			 * this subtree of our hierarchy is already locked
1779			 * so we cannot give a lock.
1780			 */
1781			failed = iter;
1782			mem_cgroup_iter_break(memcg, iter);
1783			break;
1784		} else
1785			iter->oom_lock = true;
1786	}
1787
1788	if (!failed)
1789		return true;
1790
1791	/*
1792	 * OK, we failed to lock the whole subtree so we have to clean up
1793	 * what we set up to the failing subtree
1794	 */
1795	for_each_mem_cgroup_tree(iter, memcg) {
1796		if (iter == failed) {
1797			mem_cgroup_iter_break(memcg, iter);
1798			break;
1799		}
1800		iter->oom_lock = false;
1801	}
1802	return false;
1803}
1804
1805/*
1806 * Has to be called with memcg_oom_lock
1807 */
1808static int mem_cgroup_oom_unlock(struct mem_cgroup *memcg)
1809{
1810	struct mem_cgroup *iter;
1811
1812	for_each_mem_cgroup_tree(iter, memcg)
1813		iter->oom_lock = false;
1814	return 0;
1815}
1816
1817static void mem_cgroup_mark_under_oom(struct mem_cgroup *memcg)
1818{
1819	struct mem_cgroup *iter;
1820
1821	for_each_mem_cgroup_tree(iter, memcg)
1822		atomic_inc(&iter->under_oom);
1823}
1824
1825static void mem_cgroup_unmark_under_oom(struct mem_cgroup *memcg)
1826{
1827	struct mem_cgroup *iter;
1828
1829	/*
1830	 * When a new child is created while the hierarchy is under oom,
1831	 * mem_cgroup_oom_lock() may not be called. We have to use
1832	 * atomic_add_unless() here.
1833	 */
1834	for_each_mem_cgroup_tree(iter, memcg)
1835		atomic_add_unless(&iter->under_oom, -1, 0);
1836}
1837
1838static DEFINE_SPINLOCK(memcg_oom_lock);
1839static DECLARE_WAIT_QUEUE_HEAD(memcg_oom_waitq);
1840
1841struct oom_wait_info {
1842	struct mem_cgroup *mem;
1843	wait_queue_t	wait;
1844};
1845
1846static int memcg_oom_wake_function(wait_queue_t *wait,
1847	unsigned mode, int sync, void *arg)
1848{
1849	struct mem_cgroup *wake_memcg = (struct mem_cgroup *)arg,
1850			  *oom_wait_memcg;
1851	struct oom_wait_info *oom_wait_info;
1852
1853	oom_wait_info = container_of(wait, struct oom_wait_info, wait);
1854	oom_wait_memcg = oom_wait_info->mem;
1855
1856	/*
1857	 * Both of oom_wait_info->mem and wake_mem are stable under us.
1858	 * Then we can use css_is_ancestor without taking care of RCU.
1859	 */
1860	if (!mem_cgroup_same_or_subtree(oom_wait_memcg, wake_memcg)
1861		&& !mem_cgroup_same_or_subtree(wake_memcg, oom_wait_memcg))
1862		return 0;
1863	return autoremove_wake_function(wait, mode, sync, arg);
1864}
1865
1866static void memcg_wakeup_oom(struct mem_cgroup *memcg)
1867{
1868	/* for filtering, pass "memcg" as argument. */
1869	__wake_up(&memcg_oom_waitq, TASK_NORMAL, 0, memcg);
1870}
1871
1872static void memcg_oom_recover(struct mem_cgroup *memcg)
1873{
1874	if (memcg && atomic_read(&memcg->under_oom))
1875		memcg_wakeup_oom(memcg);
1876}
1877
1878/*
1879 * try to call OOM killer. returns false if we should exit memory-reclaim loop.
1880 */
1881bool mem_cgroup_handle_oom(struct mem_cgroup *memcg, gfp_t mask)
1882{
1883	struct oom_wait_info owait;
1884	bool locked, need_to_kill;
1885
1886	owait.mem = memcg;
1887	owait.wait.flags = 0;
1888	owait.wait.func = memcg_oom_wake_function;
1889	owait.wait.private = current;
1890	INIT_LIST_HEAD(&owait.wait.task_list);
1891	need_to_kill = true;
1892	mem_cgroup_mark_under_oom(memcg);
1893
1894	/* At first, try to OOM lock hierarchy under memcg.*/
1895	spin_lock(&memcg_oom_lock);
1896	locked = mem_cgroup_oom_lock(memcg);
1897	/*
1898	 * Even if signal_pending(), we can't quit charge() loop without
1899	 * accounting. So, UNINTERRUPTIBLE is appropriate. But SIGKILL
1900	 * under OOM is always welcomed, use TASK_KILLABLE here.
1901	 */
1902	prepare_to_wait(&memcg_oom_waitq, &owait.wait, TASK_KILLABLE);
1903	if (!locked || memcg->oom_kill_disable)
1904		need_to_kill = false;
1905	if (locked)
1906		mem_cgroup_oom_notify(memcg);
1907	spin_unlock(&memcg_oom_lock);
1908
1909	if (need_to_kill) {
1910		finish_wait(&memcg_oom_waitq, &owait.wait);
1911		mem_cgroup_out_of_memory(memcg, mask);
1912	} else {
1913		schedule();
1914		finish_wait(&memcg_oom_waitq, &owait.wait);
1915	}
1916	spin_lock(&memcg_oom_lock);
1917	if (locked)
1918		mem_cgroup_oom_unlock(memcg);
1919	memcg_wakeup_oom(memcg);
1920	spin_unlock(&memcg_oom_lock);
1921
1922	mem_cgroup_unmark_under_oom(memcg);
1923
1924	if (test_thread_flag(TIF_MEMDIE) || fatal_signal_pending(current))
1925		return false;
1926	/* Give chance to dying process */
1927	schedule_timeout_uninterruptible(1);
1928	return true;
1929}
1930
1931/*
1932 * Currently used to update mapped file statistics, but the routine can be
1933 * generalized to update other statistics as well.
1934 *
1935 * Notes: Race condition
1936 *
1937 * We usually use page_cgroup_lock() for accessing page_cgroup member but
1938 * it tends to be costly. But considering some conditions, we doesn't need
1939 * to do so _always_.
1940 *
1941 * Considering "charge", lock_page_cgroup() is not required because all
1942 * file-stat operations happen after a page is attached to radix-tree. There
1943 * are no race with "charge".
1944 *
1945 * Considering "uncharge", we know that memcg doesn't clear pc->mem_cgroup
1946 * at "uncharge" intentionally. So, we always see valid pc->mem_cgroup even
1947 * if there are race with "uncharge". Statistics itself is properly handled
1948 * by flags.
1949 *
1950 * Considering "move", this is an only case we see a race. To make the race
1951 * small, we check MEM_CGROUP_ON_MOVE percpu value and detect there are
1952 * possibility of race condition. If there is, we take a lock.
1953 */
1954
1955void mem_cgroup_update_page_stat(struct page *page,
1956				 enum mem_cgroup_page_stat_item idx, int val)
1957{
1958	struct mem_cgroup *memcg;
1959	struct page_cgroup *pc = lookup_page_cgroup(page);
1960	bool need_unlock = false;
1961	unsigned long uninitialized_var(flags);
1962
1963	if (unlikely(!pc))
1964		return;
1965
1966	rcu_read_lock();
1967	memcg = pc->mem_cgroup;
1968	if (unlikely(!memcg || !PageCgroupUsed(pc)))
1969		goto out;
1970	/* pc->mem_cgroup is unstable ? */
1971	if (unlikely(mem_cgroup_stealed(memcg)) || PageTransHuge(page)) {
1972		/* take a lock against to access pc->mem_cgroup */
1973		move_lock_page_cgroup(pc, &flags);
1974		need_unlock = true;
1975		memcg = pc->mem_cgroup;
1976		if (!memcg || !PageCgroupUsed(pc))
1977			goto out;
1978	}
1979
1980	switch (idx) {
1981	case MEMCG_NR_FILE_MAPPED:
1982		if (val > 0)
1983			SetPageCgroupFileMapped(pc);
1984		else if (!page_mapped(page))
1985			ClearPageCgroupFileMapped(pc);
1986		idx = MEM_CGROUP_STAT_FILE_MAPPED;
1987		break;
1988	default:
1989		BUG();
1990	}
1991
1992	this_cpu_add(memcg->stat->count[idx], val);
1993
1994out:
1995	if (unlikely(need_unlock))
1996		move_unlock_page_cgroup(pc, &flags);
1997	rcu_read_unlock();
1998	return;
1999}
2000EXPORT_SYMBOL(mem_cgroup_update_page_stat);
2001
2002/*
2003 * size of first charge trial. "32" comes from vmscan.c's magic value.
2004 * TODO: maybe necessary to use big numbers in big irons.
2005 */
2006#define CHARGE_BATCH	32U
2007struct memcg_stock_pcp {
2008	struct mem_cgroup *cached; /* this never be root cgroup */
2009	unsigned int nr_pages;
2010	struct work_struct work;
2011	unsigned long flags;
2012#define FLUSHING_CACHED_CHARGE	(0)
2013};
2014static DEFINE_PER_CPU(struct memcg_stock_pcp, memcg_stock);
2015static DEFINE_MUTEX(percpu_charge_mutex);
2016
2017/*
2018 * Try to consume stocked charge on this cpu. If success, one page is consumed
2019 * from local stock and true is returned. If the stock is 0 or charges from a
2020 * cgroup which is not current target, returns false. This stock will be
2021 * refilled.
2022 */
2023static bool consume_stock(struct mem_cgroup *memcg)
2024{
2025	struct memcg_stock_pcp *stock;
2026	bool ret = true;
2027
2028	stock = &get_cpu_var(memcg_stock);
2029	if (memcg == stock->cached && stock->nr_pages)
2030		stock->nr_pages--;
2031	else /* need to call res_counter_charge */
2032		ret = false;
2033	put_cpu_var(memcg_stock);
2034	return ret;
2035}
2036
2037/*
2038 * Returns stocks cached in percpu to res_counter and reset cached information.
2039 */
2040static void drain_stock(struct memcg_stock_pcp *stock)
2041{
2042	struct mem_cgroup *old = stock->cached;
2043
2044	if (stock->nr_pages) {
2045		unsigned long bytes = stock->nr_pages * PAGE_SIZE;
2046
2047		res_counter_uncharge(&old->res, bytes);
2048		if (do_swap_account)
2049			res_counter_uncharge(&old->memsw, bytes);
2050		stock->nr_pages = 0;
2051	}
2052	stock->cached = NULL;
2053}
2054
2055/*
2056 * This must be called under preempt disabled or must be called by
2057 * a thread which is pinned to local cpu.
2058 */
2059static void drain_local_stock(struct work_struct *dummy)
2060{
2061	struct memcg_stock_pcp *stock = &__get_cpu_var(memcg_stock);
2062	drain_stock(stock);
2063	clear_bit(FLUSHING_CACHED_CHARGE, &stock->flags);
2064}
2065
2066/*
2067 * Cache charges(val) which is from res_counter, to local per_cpu area.
2068 * This will be consumed by consume_stock() function, later.
2069 */
2070static void refill_stock(struct mem_cgroup *memcg, unsigned int nr_pages)
2071{
2072	struct memcg_stock_pcp *stock = &get_cpu_var(memcg_stock);
2073
2074	if (stock->cached != memcg) { /* reset if necessary */
2075		drain_stock(stock);
2076		stock->cached = memcg;
2077	}
2078	stock->nr_pages += nr_pages;
2079	put_cpu_var(memcg_stock);
2080}
2081
2082/*
2083 * Drains all per-CPU charge caches for given root_memcg resp. subtree
2084 * of the hierarchy under it. sync flag says whether we should block
2085 * until the work is done.
2086 */
2087static void drain_all_stock(struct mem_cgroup *root_memcg, bool sync)
2088{
2089	int cpu, curcpu;
2090
2091	/* Notify other cpus that system-wide "drain" is running */
2092	get_online_cpus();
2093	curcpu = get_cpu();
2094	for_each_online_cpu(cpu) {
2095		struct memcg_stock_pcp *stock = &per_cpu(memcg_stock, cpu);
2096		struct mem_cgroup *memcg;
2097
2098		memcg = stock->cached;
2099		if (!memcg || !stock->nr_pages)
2100			continue;
2101		if (!mem_cgroup_same_or_subtree(root_memcg, memcg))
2102			continue;
2103		if (!test_and_set_bit(FLUSHING_CACHED_CHARGE, &stock->flags)) {
2104			if (cpu == curcpu)
2105				drain_local_stock(&stock->work);
2106			else
2107				schedule_work_on(cpu, &stock->work);
2108		}
2109	}
2110	put_cpu();
2111
2112	if (!sync)
2113		goto out;
2114
2115	for_each_online_cpu(cpu) {
2116		struct memcg_stock_pcp *stock = &per_cpu(memcg_stock, cpu);
2117		if (test_bit(FLUSHING_CACHED_CHARGE, &stock->flags))
2118			flush_work(&stock->work);
2119	}
2120out:
2121 	put_online_cpus();
2122}
2123
2124/*
2125 * Tries to drain stocked charges in other cpus. This function is asynchronous
2126 * and just put a work per cpu for draining localy on each cpu. Caller can
2127 * expects some charges will be back to res_counter later but cannot wait for
2128 * it.
2129 */
2130static void drain_all_stock_async(struct mem_cgroup *root_memcg)
2131{
2132	/*
2133	 * If someone calls draining, avoid adding more kworker runs.
2134	 */
2135	if (!mutex_trylock(&percpu_charge_mutex))
2136		return;
2137	drain_all_stock(root_memcg, false);
2138	mutex_unlock(&percpu_charge_mutex);
2139}
2140
2141/* This is a synchronous drain interface. */
2142static void drain_all_stock_sync(struct mem_cgroup *root_memcg)
2143{
2144	/* called when force_empty is called */
2145	mutex_lock(&percpu_charge_mutex);
2146	drain_all_stock(root_memcg, true);
2147	mutex_unlock(&percpu_charge_mutex);
2148}
2149
2150/*
2151 * This function drains percpu counter value from DEAD cpu and
2152 * move it to local cpu. Note that this function can be preempted.
2153 */
2154static void mem_cgroup_drain_pcp_counter(struct mem_cgroup *memcg, int cpu)
2155{
2156	int i;
2157
2158	spin_lock(&memcg->pcp_counter_lock);
2159	for (i = 0; i < MEM_CGROUP_STAT_DATA; i++) {
2160		long x = per_cpu(memcg->stat->count[i], cpu);
2161
2162		per_cpu(memcg->stat->count[i], cpu) = 0;
2163		memcg->nocpu_base.count[i] += x;
2164	}
2165	for (i = 0; i < MEM_CGROUP_EVENTS_NSTATS; i++) {
2166		unsigned long x = per_cpu(memcg->stat->events[i], cpu);
2167
2168		per_cpu(memcg->stat->events[i], cpu) = 0;
2169		memcg->nocpu_base.events[i] += x;
2170	}
2171	/* need to clear ON_MOVE value, works as a kind of lock. */
2172	per_cpu(memcg->stat->count[MEM_CGROUP_ON_MOVE], cpu) = 0;
2173	spin_unlock(&memcg->pcp_counter_lock);
2174}
2175
2176static void synchronize_mem_cgroup_on_move(struct mem_cgroup *memcg, int cpu)
2177{
2178	int idx = MEM_CGROUP_ON_MOVE;
2179
2180	spin_lock(&memcg->pcp_counter_lock);
2181	per_cpu(memcg->stat->count[idx], cpu) = memcg->nocpu_base.count[idx];
2182	spin_unlock(&memcg->pcp_counter_lock);
2183}
2184
2185static int __cpuinit memcg_cpu_hotplug_callback(struct notifier_block *nb,
2186					unsigned long action,
2187					void *hcpu)
2188{
2189	int cpu = (unsigned long)hcpu;
2190	struct memcg_stock_pcp *stock;
2191	struct mem_cgroup *iter;
2192
2193	if ((action == CPU_ONLINE)) {
2194		for_each_mem_cgroup(iter)
2195			synchronize_mem_cgroup_on_move(iter, cpu);
2196		return NOTIFY_OK;
2197	}
2198
2199	if ((action != CPU_DEAD) || action != CPU_DEAD_FROZEN)
2200		return NOTIFY_OK;
2201
2202	for_each_mem_cgroup(iter)
2203		mem_cgroup_drain_pcp_counter(iter, cpu);
2204
2205	stock = &per_cpu(memcg_stock, cpu);
2206	drain_stock(stock);
2207	return NOTIFY_OK;
2208}
2209
2210
2211/* See __mem_cgroup_try_charge() for details */
2212enum {
2213	CHARGE_OK,		/* success */
2214	CHARGE_RETRY,		/* need to retry but retry is not bad */
2215	CHARGE_NOMEM,		/* we can't do more. return -ENOMEM */
2216	CHARGE_WOULDBLOCK,	/* GFP_WAIT wasn't set and no enough res. */
2217	CHARGE_OOM_DIE,		/* the current is killed because of OOM */
2218};
2219
2220static int mem_cgroup_do_charge(struct mem_cgroup *memcg, gfp_t gfp_mask,
2221				unsigned int nr_pages, bool oom_check)
2222{
2223	unsigned long csize = nr_pages * PAGE_SIZE;
2224	struct mem_cgroup *mem_over_limit;
2225	struct res_counter *fail_res;
2226	unsigned long flags = 0;
2227	int ret;
2228
2229	ret = res_counter_charge(&memcg->res, csize, &fail_res);
2230
2231	if (likely(!ret)) {
2232		if (!do_swap_account)
2233			return CHARGE_OK;
2234		ret = res_counter_charge(&memcg->memsw, csize, &fail_res);
2235		if (likely(!ret))
2236			return CHARGE_OK;
2237
2238		res_counter_uncharge(&memcg->res, csize);
2239		mem_over_limit = mem_cgroup_from_res_counter(fail_res, memsw);
2240		flags |= MEM_CGROUP_RECLAIM_NOSWAP;
2241	} else
2242		mem_over_limit = mem_cgroup_from_res_counter(fail_res, res);
2243	/*
2244	 * nr_pages can be either a huge page (HPAGE_PMD_NR), a batch
2245	 * of regular pages (CHARGE_BATCH), or a single regular page (1).
2246	 *
2247	 * Never reclaim on behalf of optional batching, retry with a
2248	 * single page instead.
2249	 */
2250	if (nr_pages == CHARGE_BATCH)
2251		return CHARGE_RETRY;
2252
2253	if (!(gfp_mask & __GFP_WAIT))
2254		return CHARGE_WOULDBLOCK;
2255
2256	ret = mem_cgroup_reclaim(mem_over_limit, gfp_mask, flags);
2257	if (mem_cgroup_margin(mem_over_limit) >= nr_pages)
2258		return CHARGE_RETRY;
2259	/*
2260	 * Even though the limit is exceeded at this point, reclaim
2261	 * may have been able to free some pages.  Retry the charge
2262	 * before killing the task.
2263	 *
2264	 * Only for regular pages, though: huge pages are rather
2265	 * unlikely to succeed so close to the limit, and we fall back
2266	 * to regular pages anyway in case of failure.
2267	 */
2268	if (nr_pages == 1 && ret)
2269		return CHARGE_RETRY;
2270
2271	/*
2272	 * At task move, charge accounts can be doubly counted. So, it's
2273	 * better to wait until the end of task_move if something is going on.
2274	 */
2275	if (mem_cgroup_wait_acct_move(mem_over_limit))
2276		return CHARGE_RETRY;
2277
2278	/* If we don't need to call oom-killer at el, return immediately */
2279	if (!oom_check)
2280		return CHARGE_NOMEM;
2281	/* check OOM */
2282	if (!mem_cgroup_handle_oom(mem_over_limit, gfp_mask))
2283		return CHARGE_OOM_DIE;
2284
2285	return CHARGE_RETRY;
2286}
2287
2288/*
2289 * Unlike exported interface, "oom" parameter is added. if oom==true,
2290 * oom-killer can be invoked.
2291 */
2292static int __mem_cgroup_try_charge(struct mm_struct *mm,
2293				   gfp_t gfp_mask,
2294				   unsigned int nr_pages,
2295				   struct mem_cgroup **ptr,
2296				   bool oom)
2297{
2298	unsigned int batch = max(CHARGE_BATCH, nr_pages);
2299	int nr_oom_retries = MEM_CGROUP_RECLAIM_RETRIES;
2300	struct mem_cgroup *memcg = NULL;
2301	int ret;
2302
2303	/*
2304	 * Unlike gloval-vm's OOM-kill, we're not in memory shortage
2305	 * in system level. So, allow to go ahead dying process in addition to
2306	 * MEMDIE process.
2307	 */
2308	if (unlikely(test_thread_flag(TIF_MEMDIE)
2309		     || fatal_signal_pending(current)))
2310		goto bypass;
2311
2312	/*
2313	 * We always charge the cgroup the mm_struct belongs to.
2314	 * The mm_struct's mem_cgroup changes on task migration if the
2315	 * thread group leader migrates. It's possible that mm is not
2316	 * set, if so charge the init_mm (happens for pagecache usage).
2317	 */
2318	if (!*ptr && !mm)
2319		goto bypass;
2320again:
2321	if (*ptr) { /* css should be a valid one */
2322		memcg = *ptr;
2323		VM_BUG_ON(css_is_removed(&memcg->css));
2324		if (mem_cgroup_is_root(memcg))
2325			goto done;
2326		if (nr_pages == 1 && consume_stock(memcg))
2327			goto done;
2328		css_get(&memcg->css);
2329	} else {
2330		struct task_struct *p;
2331
2332		rcu_read_lock();
2333		p = rcu_dereference(mm->owner);
2334		/*
2335		 * Because we don't have task_lock(), "p" can exit.
2336		 * In that case, "memcg" can point to root or p can be NULL with
2337		 * race with swapoff. Then, we have small risk of mis-accouning.
2338		 * But such kind of mis-account by race always happens because
2339		 * we don't have cgroup_mutex(). It's overkill and we allo that
2340		 * small race, here.
2341		 * (*) swapoff at el will charge against mm-struct not against
2342		 * task-struct. So, mm->owner can be NULL.
2343		 */
2344		memcg = mem_cgroup_from_task(p);
2345		if (!memcg || mem_cgroup_is_root(memcg)) {
2346			rcu_read_unlock();
2347			goto done;
2348		}
2349		if (nr_pages == 1 && consume_stock(memcg)) {
2350			/*
2351			 * It seems dagerous to access memcg without css_get().
2352			 * But considering how consume_stok works, it's not
2353			 * necessary. If consume_stock success, some charges
2354			 * from this memcg are cached on this cpu. So, we
2355			 * don't need to call css_get()/css_tryget() before
2356			 * calling consume_stock().
2357			 */
2358			rcu_read_unlock();
2359			goto done;
2360		}
2361		/* after here, we may be blocked. we need to get refcnt */
2362		if (!css_tryget(&memcg->css)) {
2363			rcu_read_unlock();
2364			goto again;
2365		}
2366		rcu_read_unlock();
2367	}
2368
2369	do {
2370		bool oom_check;
2371
2372		/* If killed, bypass charge */
2373		if (fatal_signal_pending(current)) {
2374			css_put(&memcg->css);
2375			goto bypass;
2376		}
2377
2378		oom_check = false;
2379		if (oom && !nr_oom_retries) {
2380			oom_check = true;
2381			nr_oom_retries = MEM_CGROUP_RECLAIM_RETRIES;
2382		}
2383
2384		ret = mem_cgroup_do_charge(memcg, gfp_mask, batch, oom_check);
2385		switch (ret) {
2386		case CHARGE_OK:
2387			break;
2388		case CHARGE_RETRY: /* not in OOM situation but retry */
2389			batch = nr_pages;
2390			css_put(&memcg->css);
2391			memcg = NULL;
2392			goto again;
2393		case CHARGE_WOULDBLOCK: /* !__GFP_WAIT */
2394			css_put(&memcg->css);
2395			goto nomem;
2396		case CHARGE_NOMEM: /* OOM routine works */
2397			if (!oom) {
2398				css_put(&memcg->css);
2399				goto nomem;
2400			}
2401			/* If oom, we never return -ENOMEM */
2402			nr_oom_retries--;
2403			break;
2404		case CHARGE_OOM_DIE: /* Killed by OOM Killer */
2405			css_put(&memcg->css);
2406			goto bypass;
2407		}
2408	} while (ret != CHARGE_OK);
2409
2410	if (batch > nr_pages)
2411		refill_stock(memcg, batch - nr_pages);
2412	css_put(&memcg->css);
2413done:
2414	*ptr = memcg;
2415	return 0;
2416nomem:
2417	*ptr = NULL;
2418	return -ENOMEM;
2419bypass:
2420	*ptr = NULL;
2421	return 0;
2422}
2423
2424/*
2425 * Somemtimes we have to undo a charge we got by try_charge().
2426 * This function is for that and do uncharge, put css's refcnt.
2427 * gotten by try_charge().
2428 */
2429static void __mem_cgroup_cancel_charge(struct mem_cgroup *memcg,
2430				       unsigned int nr_pages)
2431{
2432	if (!mem_cgroup_is_root(memcg)) {
2433		unsigned long bytes = nr_pages * PAGE_SIZE;
2434
2435		res_counter_uncharge(&memcg->res, bytes);
2436		if (do_swap_account)
2437			res_counter_uncharge(&memcg->memsw, bytes);
2438	}
2439}
2440
2441/*
2442 * A helper function to get mem_cgroup from ID. must be called under
2443 * rcu_read_lock(). The caller must check css_is_removed() or some if
2444 * it's concern. (dropping refcnt from swap can be called against removed
2445 * memcg.)
2446 */
2447static struct mem_cgroup *mem_cgroup_lookup(unsigned short id)
2448{
2449	struct cgroup_subsys_state *css;
2450
2451	/* ID 0 is unused ID */
2452	if (!id)
2453		return NULL;
2454	css = css_lookup(&mem_cgroup_subsys, id);
2455	if (!css)
2456		return NULL;
2457	return container_of(css, struct mem_cgroup, css);
2458}
2459
2460struct mem_cgroup *try_get_mem_cgroup_from_page(struct page *page)
2461{
2462	struct mem_cgroup *memcg = NULL;
2463	struct page_cgroup *pc;
2464	unsigned short id;
2465	swp_entry_t ent;
2466
2467	VM_BUG_ON(!PageLocked(page));
2468
2469	pc = lookup_page_cgroup(page);
2470	lock_page_cgroup(pc);
2471	if (PageCgroupUsed(pc)) {
2472		memcg = pc->mem_cgroup;
2473		if (memcg && !css_tryget(&memcg->css))
2474			memcg = NULL;
2475	} else if (PageSwapCache(page)) {
2476		ent.val = page_private(page);
2477		id = lookup_swap_cgroup(ent);
2478		rcu_read_lock();
2479		memcg = mem_cgroup_lookup(id);
2480		if (memcg && !css_tryget(&memcg->css))
2481			memcg = NULL;
2482		rcu_read_unlock();
2483	}
2484	unlock_page_cgroup(pc);
2485	return memcg;
2486}
2487
2488static void __mem_cgroup_commit_charge(struct mem_cgroup *memcg,
2489				       struct page *page,
2490				       unsigned int nr_pages,
2491				       struct page_cgroup *pc,
2492				       enum charge_type ctype)
2493{
2494	lock_page_cgroup(pc);
2495	if (unlikely(PageCgroupUsed(pc))) {
2496		unlock_page_cgroup(pc);
2497		__mem_cgroup_cancel_charge(memcg, nr_pages);
2498		return;
2499	}
2500	/*
2501	 * we don't need page_cgroup_lock about tail pages, becase they are not
2502	 * accessed by any other context at this point.
2503	 */
2504	pc->mem_cgroup = memcg;
2505	/*
2506	 * We access a page_cgroup asynchronously without lock_page_cgroup().
2507	 * Especially when a page_cgroup is taken from a page, pc->mem_cgroup
2508	 * is accessed after testing USED bit. To make pc->mem_cgroup visible
2509	 * before USED bit, we need memory barrier here.
2510	 * See mem_cgroup_add_lru_list(), etc.
2511 	 */
2512	smp_wmb();
2513	switch (ctype) {
2514	case MEM_CGROUP_CHARGE_TYPE_CACHE:
2515	case MEM_CGROUP_CHARGE_TYPE_SHMEM:
2516		SetPageCgroupCache(pc);
2517		SetPageCgroupUsed(pc);
2518		break;
2519	case MEM_CGROUP_CHARGE_TYPE_MAPPED:
2520		ClearPageCgroupCache(pc);
2521		SetPageCgroupUsed(pc);
2522		break;
2523	default:
2524		break;
2525	}
2526
2527	mem_cgroup_charge_statistics(memcg, PageCgroupCache(pc), nr_pages);
2528	unlock_page_cgroup(pc);
2529	/*
2530	 * "charge_statistics" updated event counter. Then, check it.
2531	 * Insert ancestor (and ancestor's ancestors), to softlimit RB-tree.
2532	 * if they exceeds softlimit.
2533	 */
2534	memcg_check_events(memcg, page);
2535}
2536
2537#ifdef CONFIG_TRANSPARENT_HUGEPAGE
2538
2539#define PCGF_NOCOPY_AT_SPLIT ((1 << PCG_LOCK) | (1 << PCG_MOVE_LOCK) |\
2540			(1 << PCG_ACCT_LRU) | (1 << PCG_MIGRATION))
2541/*
2542 * Because tail pages are not marked as "used", set it. We're under
2543 * zone->lru_lock, 'splitting on pmd' and compound_lock.
2544 * charge/uncharge will be never happen and move_account() is done under
2545 * compound_lock(), so we don't have to take care of races.
2546 */
2547void mem_cgroup_split_huge_fixup(struct page *head)
2548{
2549	struct page_cgroup *head_pc = lookup_page_cgroup(head);
2550	struct page_cgroup *pc;
2551	int i;
2552
2553	if (mem_cgroup_disabled())
2554		return;
2555	for (i = 1; i < HPAGE_PMD_NR; i++) {
2556		pc = head_pc + i;
2557		pc->mem_cgroup = head_pc->mem_cgroup;
2558		smp_wmb();/* see __commit_charge() */
2559		/*
2560		 * LRU flags cannot be copied because we need to add tail
2561		 * page to LRU by generic call and our hooks will be called.
2562		 */
2563		pc->flags = head_pc->flags & ~PCGF_NOCOPY_AT_SPLIT;
2564	}
2565
2566	if (PageCgroupAcctLRU(head_pc)) {
2567		enum lru_list lru;
2568		struct mem_cgroup_per_zone *mz;
2569		/*
2570		 * We hold lru_lock, then, reduce counter directly.
2571		 */
2572		lru = page_lru(head);
2573		mz = page_cgroup_zoneinfo(head_pc->mem_cgroup, head);
2574		MEM_CGROUP_ZSTAT(mz, lru) -= HPAGE_PMD_NR - 1;
2575	}
2576}
2577#endif
2578
2579/**
2580 * mem_cgroup_move_account - move account of the page
2581 * @page: the page
2582 * @nr_pages: number of regular pages (>1 for huge pages)
2583 * @pc:	page_cgroup of the page.
2584 * @from: mem_cgroup which the page is moved from.
2585 * @to:	mem_cgroup which the page is moved to. @from != @to.
2586 * @uncharge: whether we should call uncharge and css_put against @from.
2587 *
2588 * The caller must confirm following.
2589 * - page is not on LRU (isolate_page() is useful.)
2590 * - compound_lock is held when nr_pages > 1
2591 *
2592 * This function doesn't do "charge" nor css_get to new cgroup. It should be
2593 * done by a caller(__mem_cgroup_try_charge would be useful). If @uncharge is
2594 * true, this function does "uncharge" from old cgroup, but it doesn't if
2595 * @uncharge is false, so a caller should do "uncharge".
2596 */
2597static int mem_cgroup_move_account(struct page *page,
2598				   unsigned int nr_pages,
2599				   struct page_cgroup *pc,
2600				   struct mem_cgroup *from,
2601				   struct mem_cgroup *to,
2602				   bool uncharge)
2603{
2604	unsigned long flags;
2605	int ret;
2606
2607	VM_BUG_ON(from == to);
2608	VM_BUG_ON(PageLRU(page));
2609	/*
2610	 * The page is isolated from LRU. So, collapse function
2611	 * will not handle this page. But page splitting can happen.
2612	 * Do this check under compound_page_lock(). The caller should
2613	 * hold it.
2614	 */
2615	ret = -EBUSY;
2616	if (nr_pages > 1 && !PageTransHuge(page))
2617		goto out;
2618
2619	lock_page_cgroup(pc);
2620
2621	ret = -EINVAL;
2622	if (!PageCgroupUsed(pc) || pc->mem_cgroup != from)
2623		goto unlock;
2624
2625	move_lock_page_cgroup(pc, &flags);
2626
2627	if (PageCgroupFileMapped(pc)) {
2628		/* Update mapped_file data for mem_cgroup */
2629		preempt_disable();
2630		__this_cpu_dec(from->stat->count[MEM_CGROUP_STAT_FILE_MAPPED]);
2631		__this_cpu_inc(to->stat->count[MEM_CGROUP_STAT_FILE_MAPPED]);
2632		preempt_enable();
2633	}
2634	mem_cgroup_charge_statistics(from, PageCgroupCache(pc), -nr_pages);
2635	if (uncharge)
2636		/* This is not "cancel", but cancel_charge does all we need. */
2637		__mem_cgroup_cancel_charge(from, nr_pages);
2638
2639	/* caller should have done css_get */
2640	pc->mem_cgroup = to;
2641	mem_cgroup_charge_statistics(to, PageCgroupCache(pc), nr_pages);
2642	/*
2643	 * We charges against "to" which may not have any tasks. Then, "to"
2644	 * can be under rmdir(). But in current implementation, caller of
2645	 * this function is just force_empty() and move charge, so it's
2646	 * guaranteed that "to" is never removed. So, we don't check rmdir
2647	 * status here.
2648	 */
2649	move_unlock_page_cgroup(pc, &flags);
2650	ret = 0;
2651unlock:
2652	unlock_page_cgroup(pc);
2653	/*
2654	 * check events
2655	 */
2656	memcg_check_events(to, page);
2657	memcg_check_events(from, page);
2658out:
2659	return ret;
2660}
2661
2662/*
2663 * move charges to its parent.
2664 */
2665
2666static int mem_cgroup_move_parent(struct page *page,
2667				  struct page_cgroup *pc,
2668				  struct mem_cgroup *child,
2669				  gfp_t gfp_mask)
2670{
2671	struct cgroup *cg = child->css.cgroup;
2672	struct cgroup *pcg = cg->parent;
2673	struct mem_cgroup *parent;
2674	unsigned int nr_pages;
2675	unsigned long uninitialized_var(flags);
2676	int ret;
2677
2678	/* Is ROOT ? */
2679	if (!pcg)
2680		return -EINVAL;
2681
2682	ret = -EBUSY;
2683	if (!get_page_unless_zero(page))
2684		goto out;
2685	if (isolate_lru_page(page))
2686		goto put;
2687
2688	nr_pages = hpage_nr_pages(page);
2689
2690	parent = mem_cgroup_from_cont(pcg);
2691	ret = __mem_cgroup_try_charge(NULL, gfp_mask, nr_pages, &parent, false);
2692	if (ret || !parent)
2693		goto put_back;
2694
2695	if (nr_pages > 1)
2696		flags = compound_lock_irqsave(page);
2697
2698	ret = mem_cgroup_move_account(page, nr_pages, pc, child, parent, true);
2699	if (ret)
2700		__mem_cgroup_cancel_charge(parent, nr_pages);
2701
2702	if (nr_pages > 1)
2703		compound_unlock_irqrestore(page, flags);
2704put_back:
2705	putback_lru_page(page);
2706put:
2707	put_page(page);
2708out:
2709	return ret;
2710}
2711
2712/*
2713 * Charge the memory controller for page usage.
2714 * Return
2715 * 0 if the charge was successful
2716 * < 0 if the cgroup is over its limit
2717 */
2718static int mem_cgroup_charge_common(struct page *page, struct mm_struct *mm,
2719				gfp_t gfp_mask, enum charge_type ctype)
2720{
2721	struct mem_cgroup *memcg = NULL;
2722	unsigned int nr_pages = 1;
2723	struct page_cgroup *pc;
2724	bool oom = true;
2725	int ret;
2726
2727	if (PageTransHuge(page)) {
2728		nr_pages <<= compound_order(page);
2729		VM_BUG_ON(!PageTransHuge(page));
2730		/*
2731		 * Never OOM-kill a process for a huge page.  The
2732		 * fault handler will fall back to regular pages.
2733		 */
2734		oom = false;
2735	}
2736
2737	pc = lookup_page_cgroup(page);
2738	BUG_ON(!pc); /* XXX: remove this and move pc lookup into commit */
2739
2740	ret = __mem_cgroup_try_charge(mm, gfp_mask, nr_pages, &memcg, oom);
2741	if (ret || !memcg)
2742		return ret;
2743
2744	__mem_cgroup_commit_charge(memcg, page, nr_pages, pc, ctype);
2745	return 0;
2746}
2747
2748int mem_cgroup_newpage_charge(struct page *page,
2749			      struct mm_struct *mm, gfp_t gfp_mask)
2750{
2751	if (mem_cgroup_disabled())
2752		return 0;
2753	/*
2754	 * If already mapped, we don't have to account.
2755	 * If page cache, page->mapping has address_space.
2756	 * But page->mapping may have out-of-use anon_vma pointer,
2757	 * detecit it by PageAnon() check. newly-mapped-anon's page->mapping
2758	 * is NULL.
2759  	 */
2760	if (page_mapped(page) || (page->mapping && !PageAnon(page)))
2761		return 0;
2762	if (unlikely(!mm))
2763		mm = &init_mm;
2764	return mem_cgroup_charge_common(page, mm, gfp_mask,
2765				MEM_CGROUP_CHARGE_TYPE_MAPPED);
2766}
2767
2768static void
2769__mem_cgroup_commit_charge_swapin(struct page *page, struct mem_cgroup *ptr,
2770					enum charge_type ctype);
2771
2772static void
2773__mem_cgroup_commit_charge_lrucare(struct page *page, struct mem_cgroup *memcg,
2774					enum charge_type ctype)
2775{
2776	struct page_cgroup *pc = lookup_page_cgroup(page);
2777	/*
2778	 * In some case, SwapCache, FUSE(splice_buf->radixtree), the page
2779	 * is already on LRU. It means the page may on some other page_cgroup's
2780	 * LRU. Take care of it.
2781	 */
2782	mem_cgroup_lru_del_before_commit(page);
2783	__mem_cgroup_commit_charge(memcg, page, 1, pc, ctype);
2784	mem_cgroup_lru_add_after_commit(page);
2785	return;
2786}
2787
2788int mem_cgroup_cache_charge(struct page *page, struct mm_struct *mm,
2789				gfp_t gfp_mask)
2790{
2791	struct mem_cgroup *memcg = NULL;
2792	int ret;
2793
2794	if (mem_cgroup_disabled())
2795		return 0;
2796	if (PageCompound(page))
2797		return 0;
2798
2799	if (unlikely(!mm))
2800		mm = &init_mm;
2801
2802	if (page_is_file_cache(page)) {
2803		ret = __mem_cgroup_try_charge(mm, gfp_mask, 1, &memcg, true);
2804		if (ret || !memcg)
2805			return ret;
2806
2807		/*
2808		 * FUSE reuses pages without going through the final
2809		 * put that would remove them from the LRU list, make
2810		 * sure that they get relinked properly.
2811		 */
2812		__mem_cgroup_commit_charge_lrucare(page, memcg,
2813					MEM_CGROUP_CHARGE_TYPE_CACHE);
2814		return ret;
2815	}
2816	/* shmem */
2817	if (PageSwapCache(page)) {
2818		ret = mem_cgroup_try_charge_swapin(mm, page, gfp_mask, &memcg);
2819		if (!ret)
2820			__mem_cgroup_commit_charge_swapin(page, memcg,
2821					MEM_CGROUP_CHARGE_TYPE_SHMEM);
2822	} else
2823		ret = mem_cgroup_charge_common(page, mm, gfp_mask,
2824					MEM_CGROUP_CHARGE_TYPE_SHMEM);
2825
2826	return ret;
2827}
2828
2829/*
2830 * While swap-in, try_charge -> commit or cancel, the page is locked.
2831 * And when try_charge() successfully returns, one refcnt to memcg without
2832 * struct page_cgroup is acquired. This refcnt will be consumed by
2833 * "commit()" or removed by "cancel()"
2834 */
2835int mem_cgroup_try_charge_swapin(struct mm_struct *mm,
2836				 struct page *page,
2837				 gfp_t mask, struct mem_cgroup **memcgp)
2838{
2839	struct mem_cgroup *memcg;
2840	int ret;
2841
2842	*memcgp = NULL;
2843
2844	if (mem_cgroup_disabled())
2845		return 0;
2846
2847	if (!do_swap_account)
2848		goto charge_cur_mm;
2849	/*
2850	 * A racing thread's fault, or swapoff, may have already updated
2851	 * the pte, and even removed page from swap cache: in those cases
2852	 * do_swap_page()'s pte_same() test will fail; but there's also a
2853	 * KSM case which does need to charge the page.
2854	 */
2855	if (!PageSwapCache(page))
2856		goto charge_cur_mm;
2857	memcg = try_get_mem_cgroup_from_page(page);
2858	if (!memcg)
2859		goto charge_cur_mm;
2860	*memcgp = memcg;
2861	ret = __mem_cgroup_try_charge(NULL, mask, 1, memcgp, true);
2862	css_put(&memcg->css);
2863	return ret;
2864charge_cur_mm:
2865	if (unlikely(!mm))
2866		mm = &init_mm;
2867	return __mem_cgroup_try_charge(mm, mask, 1, memcgp, true);
2868}
2869
2870static void
2871__mem_cgroup_commit_charge_swapin(struct page *page, struct mem_cgroup *memcg,
2872					enum charge_type ctype)
2873{
2874	if (mem_cgroup_disabled())
2875		return;
2876	if (!memcg)
2877		return;
2878	cgroup_exclude_rmdir(&memcg->css);
2879
2880	__mem_cgroup_commit_charge_lrucare(page, memcg, ctype);
2881	/*
2882	 * Now swap is on-memory. This means this page may be
2883	 * counted both as mem and swap....double count.
2884	 * Fix it by uncharging from memsw. Basically, this SwapCache is stable
2885	 * under lock_page(). But in do_swap_page()::memory.c, reuse_swap_page()
2886	 * may call delete_from_swap_cache() before reach here.
2887	 */
2888	if (do_swap_account && PageSwapCache(page)) {
2889		swp_entry_t ent = {.val = page_private(page)};
2890		struct mem_cgroup *swap_memcg;
2891		unsigned short id;
2892
2893		id = swap_cgroup_record(ent, 0);
2894		rcu_read_lock();
2895		swap_memcg = mem_cgroup_lookup(id);
2896		if (swap_memcg) {
2897			/*
2898			 * This recorded memcg can be obsolete one. So, avoid
2899			 * calling css_tryget
2900			 */
2901			if (!mem_cgroup_is_root(swap_memcg))
2902				res_counter_uncharge(&swap_memcg->memsw,
2903						     PAGE_SIZE);
2904			mem_cgroup_swap_statistics(swap_memcg, false);
2905			mem_cgroup_put(swap_memcg);
2906		}
2907		rcu_read_unlock();
2908	}
2909	/*
2910	 * At swapin, we may charge account against cgroup which has no tasks.
2911	 * So, rmdir()->pre_destroy() can be called while we do this charge.
2912	 * In that case, we need to call pre_destroy() again. check it here.
2913	 */
2914	cgroup_release_and_wakeup_rmdir(&memcg->css);
2915}
2916
2917void mem_cgroup_commit_charge_swapin(struct page *page,
2918				     struct mem_cgroup *memcg)
2919{
2920	__mem_cgroup_commit_charge_swapin(page, memcg,
2921					  MEM_CGROUP_CHARGE_TYPE_MAPPED);
2922}
2923
2924void mem_cgroup_cancel_charge_swapin(struct mem_cgroup *memcg)
2925{
2926	if (mem_cgroup_disabled())
2927		return;
2928	if (!memcg)
2929		return;
2930	__mem_cgroup_cancel_charge(memcg, 1);
2931}
2932
2933static void mem_cgroup_do_uncharge(struct mem_cgroup *memcg,
2934				   unsigned int nr_pages,
2935				   const enum charge_type ctype)
2936{
2937	struct memcg_batch_info *batch = NULL;
2938	bool uncharge_memsw = true;
2939
2940	/* If swapout, usage of swap doesn't decrease */
2941	if (!do_swap_account || ctype == MEM_CGROUP_CHARGE_TYPE_SWAPOUT)
2942		uncharge_memsw = false;
2943
2944	batch = &current->memcg_batch;
2945	/*
2946	 * In usual, we do css_get() when we remember memcg pointer.
2947	 * But in this case, we keep res->usage until end of a series of
2948	 * uncharges. Then, it's ok to ignore memcg's refcnt.
2949	 */
2950	if (!batch->memcg)
2951		batch->memcg = memcg;
2952	/*
2953	 * do_batch > 0 when unmapping pages or inode invalidate/truncate.
2954	 * In those cases, all pages freed continuously can be expected to be in
2955	 * the same cgroup and we have chance to coalesce uncharges.
2956	 * But we do uncharge one by one if this is killed by OOM(TIF_MEMDIE)
2957	 * because we want to do uncharge as soon as possible.
2958	 */
2959
2960	if (!batch->do_batch || test_thread_flag(TIF_MEMDIE))
2961		goto direct_uncharge;
2962
2963	if (nr_pages > 1)
2964		goto direct_uncharge;
2965
2966	/*
2967	 * In typical case, batch->memcg == mem. This means we can
2968	 * merge a series of uncharges to an uncharge of res_counter.
2969	 * If not, we uncharge res_counter ony by one.
2970	 */
2971	if (batch->memcg != memcg)
2972		goto direct_uncharge;
2973	/* remember freed charge and uncharge it later */
2974	batch->nr_pages++;
2975	if (uncharge_memsw)
2976		batch->memsw_nr_pages++;
2977	return;
2978direct_uncharge:
2979	res_counter_uncharge(&memcg->res, nr_pages * PAGE_SIZE);
2980	if (uncharge_memsw)
2981		res_counter_uncharge(&memcg->memsw, nr_pages * PAGE_SIZE);
2982	if (unlikely(batch->memcg != memcg))
2983		memcg_oom_recover(memcg);
2984	return;
2985}
2986
2987/*
2988 * uncharge if !page_mapped(page)
2989 */
2990static struct mem_cgroup *
2991__mem_cgroup_uncharge_common(struct page *page, enum charge_type ctype)
2992{
2993	struct mem_cgroup *memcg = NULL;
2994	unsigned int nr_pages = 1;
2995	struct page_cgroup *pc;
2996
2997	if (mem_cgroup_disabled())
2998		return NULL;
2999
3000	if (PageSwapCache(page))
3001		return NULL;
3002
3003	if (PageTransHuge(page)) {
3004		nr_pages <<= compound_order(page);
3005		VM_BUG_ON(!PageTransHuge(page));
3006	}
3007	/*
3008	 * Check if our page_cgroup is valid
3009	 */
3010	pc = lookup_page_cgroup(page);
3011	if (unlikely(!pc || !PageCgroupUsed(pc)))
3012		return NULL;
3013
3014	lock_page_cgroup(pc);
3015
3016	memcg = pc->mem_cgroup;
3017
3018	if (!PageCgroupUsed(pc))
3019		goto unlock_out;
3020
3021	switch (ctype) {
3022	case MEM_CGROUP_CHARGE_TYPE_MAPPED:
3023	case MEM_CGROUP_CHARGE_TYPE_DROP:
3024		/* See mem_cgroup_prepare_migration() */
3025		if (page_mapped(page) || PageCgroupMigration(pc))
3026			goto unlock_out;
3027		break;
3028	case MEM_CGROUP_CHARGE_TYPE_SWAPOUT:
3029		if (!PageAnon(page)) {	/* Shared memory */
3030			if (page->mapping && !page_is_file_cache(page))
3031				goto unlock_out;
3032		} else if (page_mapped(page)) /* Anon */
3033				goto unlock_out;
3034		break;
3035	default:
3036		break;
3037	}
3038
3039	mem_cgroup_charge_statistics(memcg, PageCgroupCache(pc), -nr_pages);
3040
3041	ClearPageCgroupUsed(pc);
3042	/*
3043	 * pc->mem_cgroup is not cleared here. It will be accessed when it's
3044	 * freed from LRU. This is safe because uncharged page is expected not
3045	 * to be reused (freed soon). Exception is SwapCache, it's handled by
3046	 * special functions.
3047	 */
3048
3049	unlock_page_cgroup(pc);
3050	/*
3051	 * even after unlock, we have memcg->res.usage here and this memcg
3052	 * will never be freed.
3053	 */
3054	memcg_check_events(memcg, page);
3055	if (do_swap_account && ctype == MEM_CGROUP_CHARGE_TYPE_SWAPOUT) {
3056		mem_cgroup_swap_statistics(memcg, true);
3057		mem_cgroup_get(memcg);
3058	}
3059	if (!mem_cgroup_is_root(memcg))
3060		mem_cgroup_do_uncharge(memcg, nr_pages, ctype);
3061
3062	return memcg;
3063
3064unlock_out:
3065	unlock_page_cgroup(pc);
3066	return NULL;
3067}
3068
3069void mem_cgroup_uncharge_page(struct page *page)
3070{
3071	/* early check. */
3072	if (page_mapped(page))
3073		return;
3074	if (page->mapping && !PageAnon(page))
3075		return;
3076	__mem_cgroup_uncharge_common(page, MEM_CGROUP_CHARGE_TYPE_MAPPED);
3077}
3078
3079void mem_cgroup_uncharge_cache_page(struct page *page)
3080{
3081	VM_BUG_ON(page_mapped(page));
3082	VM_BUG_ON(page->mapping);
3083	__mem_cgroup_uncharge_common(page, MEM_CGROUP_CHARGE_TYPE_CACHE);
3084}
3085
3086/*
3087 * Batch_start/batch_end is called in unmap_page_range/invlidate/trucate.
3088 * In that cases, pages are freed continuously and we can expect pages
3089 * are in the same memcg. All these calls itself limits the number of
3090 * pages freed at once, then uncharge_start/end() is called properly.
3091 * This may be called prural(2) times in a context,
3092 */
3093
3094void mem_cgroup_uncharge_start(void)
3095{
3096	current->memcg_batch.do_batch++;
3097	/* We can do nest. */
3098	if (current->memcg_batch.do_batch == 1) {
3099		current->memcg_batch.memcg = NULL;
3100		current->memcg_batch.nr_pages = 0;
3101		current->memcg_batch.memsw_nr_pages = 0;
3102	}
3103}
3104
3105void mem_cgroup_uncharge_end(void)
3106{
3107	struct memcg_batch_info *batch = &current->memcg_batch;
3108
3109	if (!batch->do_batch)
3110		return;
3111
3112	batch->do_batch--;
3113	if (batch->do_batch) /* If stacked, do nothing. */
3114		return;
3115
3116	if (!batch->memcg)
3117		return;
3118	/*
3119	 * This "batch->memcg" is valid without any css_get/put etc...
3120	 * bacause we hide charges behind us.
3121	 */
3122	if (batch->nr_pages)
3123		res_counter_uncharge(&batch->memcg->res,
3124				     batch->nr_pages * PAGE_SIZE);
3125	if (batch->memsw_nr_pages)
3126		res_counter_uncharge(&batch->memcg->memsw,
3127				     batch->memsw_nr_pages * PAGE_SIZE);
3128	memcg_oom_recover(batch->memcg);
3129	/* forget this pointer (for sanity check) */
3130	batch->memcg = NULL;
3131}
3132
3133#ifdef CONFIG_SWAP
3134/*
3135 * called after __delete_from_swap_cache() and drop "page" account.
3136 * memcg information is recorded to swap_cgroup of "ent"
3137 */
3138void
3139mem_cgroup_uncharge_swapcache(struct page *page, swp_entry_t ent, bool swapout)
3140{
3141	struct mem_cgroup *memcg;
3142	int ctype = MEM_CGROUP_CHARGE_TYPE_SWAPOUT;
3143
3144	if (!swapout) /* this was a swap cache but the swap is unused ! */
3145		ctype = MEM_CGROUP_CHARGE_TYPE_DROP;
3146
3147	memcg = __mem_cgroup_uncharge_common(page, ctype);
3148
3149	/*
3150	 * record memcg information,  if swapout && memcg != NULL,
3151	 * mem_cgroup_get() was called in uncharge().
3152	 */
3153	if (do_swap_account && swapout && memcg)
3154		swap_cgroup_record(ent, css_id(&memcg->css));
3155}
3156#endif
3157
3158#ifdef CONFIG_CGROUP_MEM_RES_CTLR_SWAP
3159/*
3160 * called from swap_entry_free(). remove record in swap_cgroup and
3161 * uncharge "memsw" account.
3162 */
3163void mem_cgroup_uncharge_swap(swp_entry_t ent)
3164{
3165	struct mem_cgroup *memcg;
3166	unsigned short id;
3167
3168	if (!do_swap_account)
3169		return;
3170
3171	id = swap_cgroup_record(ent, 0);
3172	rcu_read_lock();
3173	memcg = mem_cgroup_lookup(id);
3174	if (memcg) {
3175		/*
3176		 * We uncharge this because swap is freed.
3177		 * This memcg can be obsolete one. We avoid calling css_tryget
3178		 */
3179		if (!mem_cgroup_is_root(memcg))
3180			res_counter_uncharge(&memcg->memsw, PAGE_SIZE);
3181		mem_cgroup_swap_statistics(memcg, false);
3182		mem_cgroup_put(memcg);
3183	}
3184	rcu_read_unlock();
3185}
3186
3187/**
3188 * mem_cgroup_move_swap_account - move swap charge and swap_cgroup's record.
3189 * @entry: swap entry to be moved
3190 * @from:  mem_cgroup which the entry is moved from
3191 * @to:  mem_cgroup which the entry is moved to
3192 * @need_fixup: whether we should fixup res_counters and refcounts.
3193 *
3194 * It succeeds only when the swap_cgroup's record for this entry is the same
3195 * as the mem_cgroup's id of @from.
3196 *
3197 * Returns 0 on success, -EINVAL on failure.
3198 *
3199 * The caller must have charged to @to, IOW, called res_counter_charge() about
3200 * both res and memsw, and called css_get().
3201 */
3202static int mem_cgroup_move_swap_account(swp_entry_t entry,
3203		struct mem_cgroup *from, struct mem_cgroup *to, bool need_fixup)
3204{
3205	unsigned short old_id, new_id;
3206
3207	old_id = css_id(&from->css);
3208	new_id = css_id(&to->css);
3209
3210	if (swap_cgroup_cmpxchg(entry, old_id, new_id) == old_id) {
3211		mem_cgroup_swap_statistics(from, false);
3212		mem_cgroup_swap_statistics(to, true);
3213		/*
3214		 * This function is only called from task migration context now.
3215		 * It postpones res_counter and refcount handling till the end
3216		 * of task migration(mem_cgroup_clear_mc()) for performance
3217		 * improvement. But we cannot postpone mem_cgroup_get(to)
3218		 * because if the process that has been moved to @to does
3219		 * swap-in, the refcount of @to might be decreased to 0.
3220		 */
3221		mem_cgroup_get(to);
3222		if (need_fixup) {
3223			if (!mem_cgroup_is_root(from))
3224				res_counter_uncharge(&from->memsw, PAGE_SIZE);
3225			mem_cgroup_put(from);
3226			/*
3227			 * we charged both to->res and to->memsw, so we should
3228			 * uncharge to->res.
3229			 */
3230			if (!mem_cgroup_is_root(to))
3231				res_counter_uncharge(&to->res, PAGE_SIZE);
3232		}
3233		return 0;
3234	}
3235	return -EINVAL;
3236}
3237#else
3238static inline int mem_cgroup_move_swap_account(swp_entry_t entry,
3239		struct mem_cgroup *from, struct mem_cgroup *to, bool need_fixup)
3240{
3241	return -EINVAL;
3242}
3243#endif
3244
3245/*
3246 * Before starting migration, account PAGE_SIZE to mem_cgroup that the old
3247 * page belongs to.
3248 */
3249int mem_cgroup_prepare_migration(struct page *page,
3250	struct page *newpage, struct mem_cgroup **memcgp, gfp_t gfp_mask)
3251{
3252	struct mem_cgroup *memcg = NULL;
3253	struct page_cgroup *pc;
3254	enum charge_type ctype;
3255	int ret = 0;
3256
3257	*memcgp = NULL;
3258
3259	VM_BUG_ON(PageTransHuge(page));
3260	if (mem_cgroup_disabled())
3261		return 0;
3262
3263	pc = lookup_page_cgroup(page);
3264	lock_page_cgroup(pc);
3265	if (PageCgroupUsed(pc)) {
3266		memcg = pc->mem_cgroup;
3267		css_get(&memcg->css);
3268		/*
3269		 * At migrating an anonymous page, its mapcount goes down
3270		 * to 0 and uncharge() will be called. But, even if it's fully
3271		 * unmapped, migration may fail and this page has to be
3272		 * charged again. We set MIGRATION flag here and delay uncharge
3273		 * until end_migration() is called
3274		 *
3275		 * Corner Case Thinking
3276		 * A)
3277		 * When the old page was mapped as Anon and it's unmap-and-freed
3278		 * while migration was ongoing.
3279		 * If unmap finds the old page, uncharge() of it will be delayed
3280		 * until end_migration(). If unmap finds a new page, it's
3281		 * uncharged when it make mapcount to be 1->0. If unmap code
3282		 * finds swap_migration_entry, the new page will not be mapped
3283		 * and end_migration() will find it(mapcount==0).
3284		 *
3285		 * B)
3286		 * When the old page was mapped but migraion fails, the kernel
3287		 * remaps it. A charge for it is kept by MIGRATION flag even
3288		 * if mapcount goes down to 0. We can do remap successfully
3289		 * without charging it again.
3290		 *
3291		 * C)
3292		 * The "old" page is under lock_page() until the end of
3293		 * migration, so, the old page itself will not be swapped-out.
3294		 * If the new page is swapped out before end_migraton, our
3295		 * hook to usual swap-out path will catch the event.
3296		 */
3297		if (PageAnon(page))
3298			SetPageCgroupMigration(pc);
3299	}
3300	unlock_page_cgroup(pc);
3301	/*
3302	 * If the page is not charged at this point,
3303	 * we return here.
3304	 */
3305	if (!memcg)
3306		return 0;
3307
3308	*memcgp = memcg;
3309	ret = __mem_cgroup_try_charge(NULL, gfp_mask, 1, memcgp, false);
3310	css_put(&memcg->css);/* drop extra refcnt */
3311	if (ret || *memcgp == NULL) {
3312		if (PageAnon(page)) {
3313			lock_page_cgroup(pc);
3314			ClearPageCgroupMigration(pc);
3315			unlock_page_cgroup(pc);
3316			/*
3317			 * The old page may be fully unmapped while we kept it.
3318			 */
3319			mem_cgroup_uncharge_page(page);
3320		}
3321		return -ENOMEM;
3322	}
3323	/*
3324	 * We charge new page before it's used/mapped. So, even if unlock_page()
3325	 * is called before end_migration, we can catch all events on this new
3326	 * page. In the case new page is migrated but not remapped, new page's
3327	 * mapcount will be finally 0 and we call uncharge in end_migration().
3328	 */
3329	pc = lookup_page_cgroup(newpage);
3330	if (PageAnon(page))
3331		ctype = MEM_CGROUP_CHARGE_TYPE_MAPPED;
3332	else if (page_is_file_cache(page))
3333		ctype = MEM_CGROUP_CHARGE_TYPE_CACHE;
3334	else
3335		ctype = MEM_CGROUP_CHARGE_TYPE_SHMEM;
3336	__mem_cgroup_commit_charge(memcg, page, 1, pc, ctype);
3337	return ret;
3338}
3339
3340/* remove redundant charge if migration failed*/
3341void mem_cgroup_end_migration(struct mem_cgroup *memcg,
3342	struct page *oldpage, struct page *newpage, bool migration_ok)
3343{
3344	struct page *used, *unused;
3345	struct page_cgroup *pc;
3346
3347	if (!memcg)
3348		return;
3349	/* blocks rmdir() */
3350	cgroup_exclude_rmdir(&memcg->css);
3351	if (!migration_ok) {
3352		used = oldpage;
3353		unused = newpage;
3354	} else {
3355		used = newpage;
3356		unused = oldpage;
3357	}
3358	/*
3359	 * We disallowed uncharge of pages under migration because mapcount
3360	 * of the page goes down to zero, temporarly.
3361	 * Clear the flag and check the page should be charged.
3362	 */
3363	pc = lookup_page_cgroup(oldpage);
3364	lock_page_cgroup(pc);
3365	ClearPageCgroupMigration(pc);
3366	unlock_page_cgroup(pc);
3367
3368	__mem_cgroup_uncharge_common(unused, MEM_CGROUP_CHARGE_TYPE_FORCE);
3369
3370	/*
3371	 * If a page is a file cache, radix-tree replacement is very atomic
3372	 * and we can skip this check. When it was an Anon page, its mapcount
3373	 * goes down to 0. But because we added MIGRATION flage, it's not
3374	 * uncharged yet. There are several case but page->mapcount check
3375	 * and USED bit check in mem_cgroup_uncharge_page() will do enough
3376	 * check. (see prepare_charge() also)
3377	 */
3378	if (PageAnon(used))
3379		mem_cgroup_uncharge_page(used);
3380	/*
3381	 * At migration, we may charge account against cgroup which has no
3382	 * tasks.
3383	 * So, rmdir()->pre_destroy() can be called while we do this charge.
3384	 * In that case, we need to call pre_destroy() again. check it here.
3385	 */
3386	cgroup_release_and_wakeup_rmdir(&memcg->css);
3387}
3388
3389/*
3390 * At replace page cache, newpage is not under any memcg but it's on
3391 * LRU. So, this function doesn't touch res_counter but handles LRU
3392 * in correct way. Both pages are locked so we cannot race with uncharge.
3393 */
3394void mem_cgroup_replace_page_cache(struct page *oldpage,
3395				  struct page *newpage)
3396{
3397	struct mem_cgroup *memcg;
3398	struct page_cgroup *pc;
3399	struct zone *zone;
3400	enum charge_type type = MEM_CGROUP_CHARGE_TYPE_CACHE;
3401	unsigned long flags;
3402
3403	if (mem_cgroup_disabled())
3404		return;
3405
3406	pc = lookup_page_cgroup(oldpage);
3407	/* fix accounting on old pages */
3408	lock_page_cgroup(pc);
3409	memcg = pc->mem_cgroup;
3410	mem_cgroup_charge_statistics(memcg, PageCgroupCache(pc), -1);
3411	ClearPageCgroupUsed(pc);
3412	unlock_page_cgroup(pc);
3413
3414	if (PageSwapBacked(oldpage))
3415		type = MEM_CGROUP_CHARGE_TYPE_SHMEM;
3416
3417	zone = page_zone(newpage);
3418	pc = lookup_page_cgroup(newpage);
3419	/*
3420	 * Even if newpage->mapping was NULL before starting replacement,
3421	 * the newpage may be on LRU(or pagevec for LRU) already. We lock
3422	 * LRU while we overwrite pc->mem_cgroup.
3423	 */
3424	spin_lock_irqsave(&zone->lru_lock, flags);
3425	if (PageLRU(newpage))
3426		del_page_from_lru_list(zone, newpage, page_lru(newpage));
3427	__mem_cgroup_commit_charge(memcg, newpage, 1, pc, type);
3428	if (PageLRU(newpage))
3429		add_page_to_lru_list(zone, newpage, page_lru(newpage));
3430	spin_unlock_irqrestore(&zone->lru_lock, flags);
3431}
3432
3433#ifdef CONFIG_DEBUG_VM
3434static struct page_cgroup *lookup_page_cgroup_used(struct page *page)
3435{
3436	struct page_cgroup *pc;
3437
3438	pc = lookup_page_cgroup(page);
3439	if (likely(pc) && PageCgroupUsed(pc))
3440		return pc;
3441	return NULL;
3442}
3443
3444bool mem_cgroup_bad_page_check(struct page *page)
3445{
3446	if (mem_cgroup_disabled())
3447		return false;
3448
3449	return lookup_page_cgroup_used(page) != NULL;
3450}
3451
3452void mem_cgroup_print_bad_page(struct page *page)
3453{
3454	struct page_cgroup *pc;
3455
3456	pc = lookup_page_cgroup_used(page);
3457	if (pc) {
3458		int ret = -1;
3459		char *path;
3460
3461		printk(KERN_ALERT "pc:%p pc->flags:%lx pc->mem_cgroup:%p",
3462		       pc, pc->flags, pc->mem_cgroup);
3463
3464		path = kmalloc(PATH_MAX, GFP_KERNEL);
3465		if (path) {
3466			rcu_read_lock();
3467			ret = cgroup_path(pc->mem_cgroup->css.cgroup,
3468							path, PATH_MAX);
3469			rcu_read_unlock();
3470		}
3471
3472		printk(KERN_CONT "(%s)\n",
3473				(ret < 0) ? "cannot get the path" : path);
3474		kfree(path);
3475	}
3476}
3477#endif
3478
3479static DEFINE_MUTEX(set_limit_mutex);
3480
3481static int mem_cgroup_resize_limit(struct mem_cgroup *memcg,
3482				unsigned long long val)
3483{
3484	int retry_count;
3485	u64 memswlimit, memlimit;
3486	int ret = 0;
3487	int children = mem_cgroup_count_children(memcg);
3488	u64 curusage, oldusage;
3489	int enlarge;
3490
3491	/*
3492	 * For keeping hierarchical_reclaim simple, how long we should retry
3493	 * is depends on callers. We set our retry-count to be function
3494	 * of # of children which we should visit in this loop.
3495	 */
3496	retry_count = MEM_CGROUP_RECLAIM_RETRIES * children;
3497
3498	oldusage = res_counter_read_u64(&memcg->res, RES_USAGE);
3499
3500	enlarge = 0;
3501	while (retry_count) {
3502		if (signal_pending(current)) {
3503			ret = -EINTR;
3504			break;
3505		}
3506		/*
3507		 * Rather than hide all in some function, I do this in
3508		 * open coded manner. You see what this really does.
3509		 * We have to guarantee memcg->res.limit < memcg->memsw.limit.
3510		 */
3511		mutex_lock(&set_limit_mutex);
3512		memswlimit = res_counter_read_u64(&memcg->memsw, RES_LIMIT);
3513		if (memswlimit < val) {
3514			ret = -EINVAL;
3515			mutex_unlock(&set_limit_mutex);
3516			break;
3517		}
3518
3519		memlimit = res_counter_read_u64(&memcg->res, RES_LIMIT);
3520		if (memlimit < val)
3521			enlarge = 1;
3522
3523		ret = res_counter_set_limit(&memcg->res, val);
3524		if (!ret) {
3525			if (memswlimit == val)
3526				memcg->memsw_is_minimum = true;
3527			else
3528				memcg->memsw_is_minimum = false;
3529		}
3530		mutex_unlock(&set_limit_mutex);
3531
3532		if (!ret)
3533			break;
3534
3535		mem_cgroup_reclaim(memcg, GFP_KERNEL,
3536				   MEM_CGROUP_RECLAIM_SHRINK);
3537		curusage = res_counter_read_u64(&memcg->res, RES_USAGE);
3538		/* Usage is reduced ? */
3539  		if (curusage >= oldusage)
3540			retry_count--;
3541		else
3542			oldusage = curusage;
3543	}
3544	if (!ret && enlarge)
3545		memcg_oom_recover(memcg);
3546
3547	return ret;
3548}
3549
3550static int mem_cgroup_resize_memsw_limit(struct mem_cgroup *memcg,
3551					unsigned long long val)
3552{
3553	int retry_count;
3554	u64 memlimit, memswlimit, oldusage, curusage;
3555	int children = mem_cgroup_count_children(memcg);
3556	int ret = -EBUSY;
3557	int enlarge = 0;
3558
3559	/* see mem_cgroup_resize_res_limit */
3560 	retry_count = children * MEM_CGROUP_RECLAIM_RETRIES;
3561	oldusage = res_counter_read_u64(&memcg->memsw, RES_USAGE);
3562	while (retry_count) {
3563		if (signal_pending(current)) {
3564			ret = -EINTR;
3565			break;
3566		}
3567		/*
3568		 * Rather than hide all in some function, I do this in
3569		 * open coded manner. You see what this really does.
3570		 * We have to guarantee memcg->res.limit < memcg->memsw.limit.
3571		 */
3572		mutex_lock(&set_limit_mutex);
3573		memlimit = res_counter_read_u64(&memcg->res, RES_LIMIT);
3574		if (memlimit > val) {
3575			ret = -EINVAL;
3576			mutex_unlock(&set_limit_mutex);
3577			break;
3578		}
3579		memswlimit = res_counter_read_u64(&memcg->memsw, RES_LIMIT);
3580		if (memswlimit < val)
3581			enlarge = 1;
3582		ret = res_counter_set_limit(&memcg->memsw, val);
3583		if (!ret) {
3584			if (memlimit == val)
3585				memcg->memsw_is_minimum = true;
3586			else
3587				memcg->memsw_is_minimum = false;
3588		}
3589		mutex_unlock(&set_limit_mutex);
3590
3591		if (!ret)
3592			break;
3593
3594		mem_cgroup_reclaim(memcg, GFP_KERNEL,
3595				   MEM_CGROUP_RECLAIM_NOSWAP |
3596				   MEM_CGROUP_RECLAIM_SHRINK);
3597		curusage = res_counter_read_u64(&memcg->memsw, RES_USAGE);
3598		/* Usage is reduced ? */
3599		if (curusage >= oldusage)
3600			retry_count--;
3601		else
3602			oldusage = curusage;
3603	}
3604	if (!ret && enlarge)
3605		memcg_oom_recover(memcg);
3606	return ret;
3607}
3608
3609unsigned long mem_cgroup_soft_limit_reclaim(struct zone *zone, int order,
3610					    gfp_t gfp_mask,
3611					    unsigned long *total_scanned)
3612{
3613	unsigned long nr_reclaimed = 0;
3614	struct mem_cgroup_per_zone *mz, *next_mz = NULL;
3615	unsigned long reclaimed;
3616	int loop = 0;
3617	struct mem_cgroup_tree_per_zone *mctz;
3618	unsigned long long excess;
3619	unsigned long nr_scanned;
3620
3621	if (order > 0)
3622		return 0;
3623
3624	mctz = soft_limit_tree_node_zone(zone_to_nid(zone), zone_idx(zone));
3625	/*
3626	 * This loop can run a while, specially if mem_cgroup's continuously
3627	 * keep exceeding their soft limit and putting the system under
3628	 * pressure
3629	 */
3630	do {
3631		if (next_mz)
3632			mz = next_mz;
3633		else
3634			mz = mem_cgroup_largest_soft_limit_node(mctz);
3635		if (!mz)
3636			break;
3637
3638		nr_scanned = 0;
3639		reclaimed = mem_cgroup_soft_reclaim(mz->mem, zone,
3640						    gfp_mask, &nr_scanned);
3641		nr_reclaimed += reclaimed;
3642		*total_scanned += nr_scanned;
3643		spin_lock(&mctz->lock);
3644
3645		/*
3646		 * If we failed to reclaim anything from this memory cgroup
3647		 * it is time to move on to the next cgroup
3648		 */
3649		next_mz = NULL;
3650		if (!reclaimed) {
3651			do {
3652				/*
3653				 * Loop until we find yet another one.
3654				 *
3655				 * By the time we get the soft_limit lock
3656				 * again, someone might have aded the
3657				 * group back on the RB tree. Iterate to
3658				 * make sure we get a different mem.
3659				 * mem_cgroup_largest_soft_limit_node returns
3660				 * NULL if no other cgroup is present on
3661				 * the tree
3662				 */
3663				next_mz =
3664				__mem_cgroup_largest_soft_limit_node(mctz);
3665				if (next_mz == mz)
3666					css_put(&next_mz->mem->css);
3667				else /* next_mz == NULL or other memcg */
3668					break;
3669			} while (1);
3670		}
3671		__mem_cgroup_remove_exceeded(mz->mem, mz, mctz);
3672		excess = res_counter_soft_limit_excess(&mz->mem->res);
3673		/*
3674		 * One school of thought says that we should not add
3675		 * back the node to the tree if reclaim returns 0.
3676		 * But our reclaim could return 0, simply because due
3677		 * to priority we are exposing a smaller subset of
3678		 * memory to reclaim from. Consider this as a longer
3679		 * term TODO.
3680		 */
3681		/* If excess == 0, no tree ops */
3682		__mem_cgroup_insert_exceeded(mz->mem, mz, mctz, excess);
3683		spin_unlock(&mctz->lock);
3684		css_put(&mz->mem->css);
3685		loop++;
3686		/*
3687		 * Could not reclaim anything and there are no more
3688		 * mem cgroups to try or we seem to be looping without
3689		 * reclaiming anything.
3690		 */
3691		if (!nr_reclaimed &&
3692			(next_mz == NULL ||
3693			loop > MEM_CGROUP_MAX_SOFT_LIMIT_RECLAIM_LOOPS))
3694			break;
3695	} while (!nr_reclaimed);
3696	if (next_mz)
3697		css_put(&next_mz->mem->css);
3698	return nr_reclaimed;
3699}
3700
3701/*
3702 * This routine traverse page_cgroup in given list and drop them all.
3703 * *And* this routine doesn't reclaim page itself, just removes page_cgroup.
3704 */
3705static int mem_cgroup_force_empty_list(struct mem_cgroup *memcg,
3706				int node, int zid, enum lru_list lru)
3707{
3708	struct mem_cgroup_per_zone *mz;
3709	unsigned long flags, loop;
3710	struct list_head *list;
3711	struct page *busy;
3712	struct zone *zone;
3713	int ret = 0;
3714
3715	zone = &NODE_DATA(node)->node_zones[zid];
3716	mz = mem_cgroup_zoneinfo(memcg, node, zid);
3717	list = &mz->lruvec.lists[lru];
3718
3719	loop = MEM_CGROUP_ZSTAT(mz, lru);
3720	/* give some margin against EBUSY etc...*/
3721	loop += 256;
3722	busy = NULL;
3723	while (loop--) {
3724		struct page_cgroup *pc;
3725		struct page *page;
3726
3727		ret = 0;
3728		spin_lock_irqsave(&zone->lru_lock, flags);
3729		if (list_empty(list)) {
3730			spin_unlock_irqrestore(&zone->lru_lock, flags);
3731			break;
3732		}
3733		page = list_entry(list->prev, struct page, lru);
3734		if (busy == page) {
3735			list_move(&page->lru, list);
3736			busy = NULL;
3737			spin_unlock_irqrestore(&zone->lru_lock, flags);
3738			continue;
3739		}
3740		spin_unlock_irqrestore(&zone->lru_lock, flags);
3741
3742		pc = lookup_page_cgroup(page);
3743
3744		ret = mem_cgroup_move_parent(page, pc, memcg, GFP_KERNEL);
3745		if (ret == -ENOMEM)
3746			break;
3747
3748		if (ret == -EBUSY || ret == -EINVAL) {
3749			/* found lock contention or "pc" is obsolete. */
3750			busy = page;
3751			cond_resched();
3752		} else
3753			busy = NULL;
3754	}
3755
3756	if (!ret && !list_empty(list))
3757		return -EBUSY;
3758	return ret;
3759}
3760
3761/*
3762 * make mem_cgroup's charge to be 0 if there is no task.
3763 * This enables deleting this mem_cgroup.
3764 */
3765static int mem_cgroup_force_empty(struct mem_cgroup *memcg, bool free_all)
3766{
3767	int ret;
3768	int node, zid, shrink;
3769	int nr_retries = MEM_CGROUP_RECLAIM_RETRIES;
3770	struct cgroup *cgrp = memcg->css.cgroup;
3771
3772	css_get(&memcg->css);
3773
3774	shrink = 0;
3775	/* should free all ? */
3776	if (free_all)
3777		goto try_to_free;
3778move_account:
3779	do {
3780		ret = -EBUSY;
3781		if (cgroup_task_count(cgrp) || !list_empty(&cgrp->children))
3782			goto out;
3783		ret = -EINTR;
3784		if (signal_pending(current))
3785			goto out;
3786		/* This is for making all *used* pages to be on LRU. */
3787		lru_add_drain_all();
3788		drain_all_stock_sync(memcg);
3789		ret = 0;
3790		mem_cgroup_start_move(memcg);
3791		for_each_node_state(node, N_HIGH_MEMORY) {
3792			for (zid = 0; !ret && zid < MAX_NR_ZONES; zid++) {
3793				enum lru_list l;
3794				for_each_lru(l) {
3795					ret = mem_cgroup_force_empty_list(memcg,
3796							node, zid, l);
3797					if (ret)
3798						break;
3799				}
3800			}
3801			if (ret)
3802				break;
3803		}
3804		mem_cgroup_end_move(memcg);
3805		memcg_oom_recover(memcg);
3806		/* it seems parent cgroup doesn't have enough mem */
3807		if (ret == -ENOMEM)
3808			goto try_to_free;
3809		cond_resched();
3810	/* "ret" should also be checked to ensure all lists are empty. */
3811	} while (memcg->res.usage > 0 || ret);
3812out:
3813	css_put(&memcg->css);
3814	return ret;
3815
3816try_to_free:
3817	/* returns EBUSY if there is a task or if we come here twice. */
3818	if (cgroup_task_count(cgrp) || !list_empty(&cgrp->children) || shrink) {
3819		ret = -EBUSY;
3820		goto out;
3821	}
3822	/* we call try-to-free pages for make this cgroup empty */
3823	lru_add_drain_all();
3824	/* try to free all pages in this cgroup */
3825	shrink = 1;
3826	while (nr_retries && memcg->res.usage > 0) {
3827		int progress;
3828
3829		if (signal_pending(current)) {
3830			ret = -EINTR;
3831			goto out;
3832		}
3833		progress = try_to_free_mem_cgroup_pages(memcg, GFP_KERNEL,
3834						false);
3835		if (!progress) {
3836			nr_retries--;
3837			/* maybe some writeback is necessary */
3838			congestion_wait(BLK_RW_ASYNC, HZ/10);
3839		}
3840
3841	}
3842	lru_add_drain();
3843	/* try move_account...there may be some *locked* pages. */
3844	goto move_account;
3845}
3846
3847int mem_cgroup_force_empty_write(struct cgroup *cont, unsigned int event)
3848{
3849	return mem_cgroup_force_empty(mem_cgroup_from_cont(cont), true);
3850}
3851
3852
3853static u64 mem_cgroup_hierarchy_read(struct cgroup *cont, struct cftype *cft)
3854{
3855	return mem_cgroup_from_cont(cont)->use_hierarchy;
3856}
3857
3858static int mem_cgroup_hierarchy_write(struct cgroup *cont, struct cftype *cft,
3859					u64 val)
3860{
3861	int retval = 0;
3862	struct mem_cgroup *memcg = mem_cgroup_from_cont(cont);
3863	struct cgroup *parent = cont->parent;
3864	struct mem_cgroup *parent_memcg = NULL;
3865
3866	if (parent)
3867		parent_memcg = mem_cgroup_from_cont(parent);
3868
3869	cgroup_lock();
3870	/*
3871	 * If parent's use_hierarchy is set, we can't make any modifications
3872	 * in the child subtrees. If it is unset, then the change can
3873	 * occur, provided the current cgroup has no children.
3874	 *
3875	 * For the root cgroup, parent_mem is NULL, we allow value to be
3876	 * set if there are no children.
3877	 */
3878	if ((!parent_memcg || !parent_memcg->use_hierarchy) &&
3879				(val == 1 || val == 0)) {
3880		if (list_empty(&cont->children))
3881			memcg->use_hierarchy = val;
3882		else
3883			retval = -EBUSY;
3884	} else
3885		retval = -EINVAL;
3886	cgroup_unlock();
3887
3888	return retval;
3889}
3890
3891
3892static unsigned long mem_cgroup_recursive_stat(struct mem_cgroup *memcg,
3893					       enum mem_cgroup_stat_index idx)
3894{
3895	struct mem_cgroup *iter;
3896	long val = 0;
3897
3898	/* Per-cpu values can be negative, use a signed accumulator */
3899	for_each_mem_cgroup_tree(iter, memcg)
3900		val += mem_cgroup_read_stat(iter, idx);
3901
3902	if (val < 0) /* race ? */
3903		val = 0;
3904	return val;
3905}
3906
3907static inline u64 mem_cgroup_usage(struct mem_cgroup *memcg, bool swap)
3908{
3909	u64 val;
3910
3911	if (!mem_cgroup_is_root(memcg)) {
3912		if (!swap)
3913			return res_counter_read_u64(&memcg->res, RES_USAGE);
3914		else
3915			return res_counter_read_u64(&memcg->memsw, RES_USAGE);
3916	}
3917
3918	val = mem_cgroup_recursive_stat(memcg, MEM_CGROUP_STAT_CACHE);
3919	val += mem_cgroup_recursive_stat(memcg, MEM_CGROUP_STAT_RSS);
3920
3921	if (swap)
3922		val += mem_cgroup_recursive_stat(memcg, MEM_CGROUP_STAT_SWAPOUT);
3923
3924	return val << PAGE_SHIFT;
3925}
3926
3927static u64 mem_cgroup_read(struct cgroup *cont, struct cftype *cft)
3928{
3929	struct mem_cgroup *memcg = mem_cgroup_from_cont(cont);
3930	u64 val;
3931	int type, name;
3932
3933	type = MEMFILE_TYPE(cft->private);
3934	name = MEMFILE_ATTR(cft->private);
3935	switch (type) {
3936	case _MEM:
3937		if (name == RES_USAGE)
3938			val = mem_cgroup_usage(memcg, false);
3939		else
3940			val = res_counter_read_u64(&memcg->res, name);
3941		break;
3942	case _MEMSWAP:
3943		if (name == RES_USAGE)
3944			val = mem_cgroup_usage(memcg, true);
3945		else
3946			val = res_counter_read_u64(&memcg->memsw, name);
3947		break;
3948	default:
3949		BUG();
3950		break;
3951	}
3952	return val;
3953}
3954/*
3955 * The user of this function is...
3956 * RES_LIMIT.
3957 */
3958static int mem_cgroup_write(struct cgroup *cont, struct cftype *cft,
3959			    const char *buffer)
3960{
3961	struct mem_cgroup *memcg = mem_cgroup_from_cont(cont);
3962	int type, name;
3963	unsigned long long val;
3964	int ret;
3965
3966	type = MEMFILE_TYPE(cft->private);
3967	name = MEMFILE_ATTR(cft->private);
3968	switch (name) {
3969	case RES_LIMIT:
3970		if (mem_cgroup_is_root(memcg)) { /* Can't set limit on root */
3971			ret = -EINVAL;
3972			break;
3973		}
3974		/* This function does all necessary parse...reuse it */
3975		ret = res_counter_memparse_write_strategy(buffer, &val);
3976		if (ret)
3977			break;
3978		if (type == _MEM)
3979			ret = mem_cgroup_resize_limit(memcg, val);
3980		else
3981			ret = mem_cgroup_resize_memsw_limit(memcg, val);
3982		break;
3983	case RES_SOFT_LIMIT:
3984		ret = res_counter_memparse_write_strategy(buffer, &val);
3985		if (ret)
3986			break;
3987		/*
3988		 * For memsw, soft limits are hard to implement in terms
3989		 * of semantics, for now, we support soft limits for
3990		 * control without swap
3991		 */
3992		if (type == _MEM)
3993			ret = res_counter_set_soft_limit(&memcg->res, val);
3994		else
3995			ret = -EINVAL;
3996		break;
3997	default:
3998		ret = -EINVAL; /* should be BUG() ? */
3999		break;
4000	}
4001	return ret;
4002}
4003
4004static void memcg_get_hierarchical_limit(struct mem_cgroup *memcg,
4005		unsigned long long *mem_limit, unsigned long long *memsw_limit)
4006{
4007	struct cgroup *cgroup;
4008	unsigned long long min_limit, min_memsw_limit, tmp;
4009
4010	min_limit = res_counter_read_u64(&memcg->res, RES_LIMIT);
4011	min_memsw_limit = res_counter_read_u64(&memcg->memsw, RES_LIMIT);
4012	cgroup = memcg->css.cgroup;
4013	if (!memcg->use_hierarchy)
4014		goto out;
4015
4016	while (cgroup->parent) {
4017		cgroup = cgroup->parent;
4018		memcg = mem_cgroup_from_cont(cgroup);
4019		if (!memcg->use_hierarchy)
4020			break;
4021		tmp = res_counter_read_u64(&memcg->res, RES_LIMIT);
4022		min_limit = min(min_limit, tmp);
4023		tmp = res_counter_read_u64(&memcg->memsw, RES_LIMIT);
4024		min_memsw_limit = min(min_memsw_limit, tmp);
4025	}
4026out:
4027	*mem_limit = min_limit;
4028	*memsw_limit = min_memsw_limit;
4029	return;
4030}
4031
4032static int mem_cgroup_reset(struct cgroup *cont, unsigned int event)
4033{
4034	struct mem_cgroup *memcg;
4035	int type, name;
4036
4037	memcg = mem_cgroup_from_cont(cont);
4038	type = MEMFILE_TYPE(event);
4039	name = MEMFILE_ATTR(event);
4040	switch (name) {
4041	case RES_MAX_USAGE:
4042		if (type == _MEM)
4043			res_counter_reset_max(&memcg->res);
4044		else
4045			res_counter_reset_max(&memcg->memsw);
4046		break;
4047	case RES_FAILCNT:
4048		if (type == _MEM)
4049			res_counter_reset_failcnt(&memcg->res);
4050		else
4051			res_counter_reset_failcnt(&memcg->memsw);
4052		break;
4053	}
4054
4055	return 0;
4056}
4057
4058static u64 mem_cgroup_move_charge_read(struct cgroup *cgrp,
4059					struct cftype *cft)
4060{
4061	return mem_cgroup_from_cont(cgrp)->move_charge_at_immigrate;
4062}
4063
4064#ifdef CONFIG_MMU
4065static int mem_cgroup_move_charge_write(struct cgroup *cgrp,
4066					struct cftype *cft, u64 val)
4067{
4068	struct mem_cgroup *memcg = mem_cgroup_from_cont(cgrp);
4069
4070	if (val >= (1 << NR_MOVE_TYPE))
4071		return -EINVAL;
4072	/*
4073	 * We check this value several times in both in can_attach() and
4074	 * attach(), so we need cgroup lock to prevent this value from being
4075	 * inconsistent.
4076	 */
4077	cgroup_lock();
4078	memcg->move_charge_at_immigrate = val;
4079	cgroup_unlock();
4080
4081	return 0;
4082}
4083#else
4084static int mem_cgroup_move_charge_write(struct cgroup *cgrp,
4085					struct cftype *cft, u64 val)
4086{
4087	return -ENOSYS;
4088}
4089#endif
4090
4091
4092/* For read statistics */
4093enum {
4094	MCS_CACHE,
4095	MCS_RSS,
4096	MCS_FILE_MAPPED,
4097	MCS_PGPGIN,
4098	MCS_PGPGOUT,
4099	MCS_SWAP,
4100	MCS_PGFAULT,
4101	MCS_PGMAJFAULT,
4102	MCS_INACTIVE_ANON,
4103	MCS_ACTIVE_ANON,
4104	MCS_INACTIVE_FILE,
4105	MCS_ACTIVE_FILE,
4106	MCS_UNEVICTABLE,
4107	NR_MCS_STAT,
4108};
4109
4110struct mcs_total_stat {
4111	s64 stat[NR_MCS_STAT];
4112};
4113
4114struct {
4115	char *local_name;
4116	char *total_name;
4117} memcg_stat_strings[NR_MCS_STAT] = {
4118	{"cache", "total_cache"},
4119	{"rss", "total_rss"},
4120	{"mapped_file", "total_mapped_file"},
4121	{"pgpgin", "total_pgpgin"},
4122	{"pgpgout", "total_pgpgout"},
4123	{"swap", "total_swap"},
4124	{"pgfault", "total_pgfault"},
4125	{"pgmajfault", "total_pgmajfault"},
4126	{"inactive_anon", "total_inactive_anon"},
4127	{"active_anon", "total_active_anon"},
4128	{"inactive_file", "total_inactive_file"},
4129	{"active_file", "total_active_file"},
4130	{"unevictable", "total_unevictable"}
4131};
4132
4133
4134static void
4135mem_cgroup_get_local_stat(struct mem_cgroup *memcg, struct mcs_total_stat *s)
4136{
4137	s64 val;
4138
4139	/* per cpu stat */
4140	val = mem_cgroup_read_stat(memcg, MEM_CGROUP_STAT_CACHE);
4141	s->stat[MCS_CACHE] += val * PAGE_SIZE;
4142	val = mem_cgroup_read_stat(memcg, MEM_CGROUP_STAT_RSS);
4143	s->stat[MCS_RSS] += val * PAGE_SIZE;
4144	val = mem_cgroup_read_stat(memcg, MEM_CGROUP_STAT_FILE_MAPPED);
4145	s->stat[MCS_FILE_MAPPED] += val * PAGE_SIZE;
4146	val = mem_cgroup_read_events(memcg, MEM_CGROUP_EVENTS_PGPGIN);
4147	s->stat[MCS_PGPGIN] += val;
4148	val = mem_cgroup_read_events(memcg, MEM_CGROUP_EVENTS_PGPGOUT);
4149	s->stat[MCS_PGPGOUT] += val;
4150	if (do_swap_account) {
4151		val = mem_cgroup_read_stat(memcg, MEM_CGROUP_STAT_SWAPOUT);
4152		s->stat[MCS_SWAP] += val * PAGE_SIZE;
4153	}
4154	val = mem_cgroup_read_events(memcg, MEM_CGROUP_EVENTS_PGFAULT);
4155	s->stat[MCS_PGFAULT] += val;
4156	val = mem_cgroup_read_events(memcg, MEM_CGROUP_EVENTS_PGMAJFAULT);
4157	s->stat[MCS_PGMAJFAULT] += val;
4158
4159	/* per zone stat */
4160	val = mem_cgroup_nr_lru_pages(memcg, BIT(LRU_INACTIVE_ANON));
4161	s->stat[MCS_INACTIVE_ANON] += val * PAGE_SIZE;
4162	val = mem_cgroup_nr_lru_pages(memcg, BIT(LRU_ACTIVE_ANON));
4163	s->stat[MCS_ACTIVE_ANON] += val * PAGE_SIZE;
4164	val = mem_cgroup_nr_lru_pages(memcg, BIT(LRU_INACTIVE_FILE));
4165	s->stat[MCS_INACTIVE_FILE] += val * PAGE_SIZE;
4166	val = mem_cgroup_nr_lru_pages(memcg, BIT(LRU_ACTIVE_FILE));
4167	s->stat[MCS_ACTIVE_FILE] += val * PAGE_SIZE;
4168	val = mem_cgroup_nr_lru_pages(memcg, BIT(LRU_UNEVICTABLE));
4169	s->stat[MCS_UNEVICTABLE] += val * PAGE_SIZE;
4170}
4171
4172static void
4173mem_cgroup_get_total_stat(struct mem_cgroup *memcg, struct mcs_total_stat *s)
4174{
4175	struct mem_cgroup *iter;
4176
4177	for_each_mem_cgroup_tree(iter, memcg)
4178		mem_cgroup_get_local_stat(iter, s);
4179}
4180
4181#ifdef CONFIG_NUMA
4182static int mem_control_numa_stat_show(struct seq_file *m, void *arg)
4183{
4184	int nid;
4185	unsigned long total_nr, file_nr, anon_nr, unevictable_nr;
4186	unsigned long node_nr;
4187	struct cgroup *cont = m->private;
4188	struct mem_cgroup *mem_cont = mem_cgroup_from_cont(cont);
4189
4190	total_nr = mem_cgroup_nr_lru_pages(mem_cont, LRU_ALL);
4191	seq_printf(m, "total=%lu", total_nr);
4192	for_each_node_state(nid, N_HIGH_MEMORY) {
4193		node_nr = mem_cgroup_node_nr_lru_pages(mem_cont, nid, LRU_ALL);
4194		seq_printf(m, " N%d=%lu", nid, node_nr);
4195	}
4196	seq_putc(m, '\n');
4197
4198	file_nr = mem_cgroup_nr_lru_pages(mem_cont, LRU_ALL_FILE);
4199	seq_printf(m, "file=%lu", file_nr);
4200	for_each_node_state(nid, N_HIGH_MEMORY) {
4201		node_nr = mem_cgroup_node_nr_lru_pages(mem_cont, nid,
4202				LRU_ALL_FILE);
4203		seq_printf(m, " N%d=%lu", nid, node_nr);
4204	}
4205	seq_putc(m, '\n');
4206
4207	anon_nr = mem_cgroup_nr_lru_pages(mem_cont, LRU_ALL_ANON);
4208	seq_printf(m, "anon=%lu", anon_nr);
4209	for_each_node_state(nid, N_HIGH_MEMORY) {
4210		node_nr = mem_cgroup_node_nr_lru_pages(mem_cont, nid,
4211				LRU_ALL_ANON);
4212		seq_printf(m, " N%d=%lu", nid, node_nr);
4213	}
4214	seq_putc(m, '\n');
4215
4216	unevictable_nr = mem_cgroup_nr_lru_pages(mem_cont, BIT(LRU_UNEVICTABLE));
4217	seq_printf(m, "unevictable=%lu", unevictable_nr);
4218	for_each_node_state(nid, N_HIGH_MEMORY) {
4219		node_nr = mem_cgroup_node_nr_lru_pages(mem_cont, nid,
4220				BIT(LRU_UNEVICTABLE));
4221		seq_printf(m, " N%d=%lu", nid, node_nr);
4222	}
4223	seq_putc(m, '\n');
4224	return 0;
4225}
4226#endif /* CONFIG_NUMA */
4227
4228static int mem_control_stat_show(struct cgroup *cont, struct cftype *cft,
4229				 struct cgroup_map_cb *cb)
4230{
4231	struct mem_cgroup *mem_cont = mem_cgroup_from_cont(cont);
4232	struct mcs_total_stat mystat;
4233	int i;
4234
4235	memset(&mystat, 0, sizeof(mystat));
4236	mem_cgroup_get_local_stat(mem_cont, &mystat);
4237
4238
4239	for (i = 0; i < NR_MCS_STAT; i++) {
4240		if (i == MCS_SWAP && !do_swap_account)
4241			continue;
4242		cb->fill(cb, memcg_stat_strings[i].local_name, mystat.stat[i]);
4243	}
4244
4245	/* Hierarchical information */
4246	{
4247		unsigned long long limit, memsw_limit;
4248		memcg_get_hierarchical_limit(mem_cont, &limit, &memsw_limit);
4249		cb->fill(cb, "hierarchical_memory_limit", limit);
4250		if (do_swap_account)
4251			cb->fill(cb, "hierarchical_memsw_limit", memsw_limit);
4252	}
4253
4254	memset(&mystat, 0, sizeof(mystat));
4255	mem_cgroup_get_total_stat(mem_cont, &mystat);
4256	for (i = 0; i < NR_MCS_STAT; i++) {
4257		if (i == MCS_SWAP && !do_swap_account)
4258			continue;
4259		cb->fill(cb, memcg_stat_strings[i].total_name, mystat.stat[i]);
4260	}
4261
4262#ifdef CONFIG_DEBUG_VM
4263	{
4264		int nid, zid;
4265		struct mem_cgroup_per_zone *mz;
4266		unsigned long recent_rotated[2] = {0, 0};
4267		unsigned long recent_scanned[2] = {0, 0};
4268
4269		for_each_online_node(nid)
4270			for (zid = 0; zid < MAX_NR_ZONES; zid++) {
4271				mz = mem_cgroup_zoneinfo(mem_cont, nid, zid);
4272
4273				recent_rotated[0] +=
4274					mz->reclaim_stat.recent_rotated[0];
4275				recent_rotated[1] +=
4276					mz->reclaim_stat.recent_rotated[1];
4277				recent_scanned[0] +=
4278					mz->reclaim_stat.recent_scanned[0];
4279				recent_scanned[1] +=
4280					mz->reclaim_stat.recent_scanned[1];
4281			}
4282		cb->fill(cb, "recent_rotated_anon", recent_rotated[0]);
4283		cb->fill(cb, "recent_rotated_file", recent_rotated[1]);
4284		cb->fill(cb, "recent_scanned_anon", recent_scanned[0]);
4285		cb->fill(cb, "recent_scanned_file", recent_scanned[1]);
4286	}
4287#endif
4288
4289	return 0;
4290}
4291
4292static u64 mem_cgroup_swappiness_read(struct cgroup *cgrp, struct cftype *cft)
4293{
4294	struct mem_cgroup *memcg = mem_cgroup_from_cont(cgrp);
4295
4296	return mem_cgroup_swappiness(memcg);
4297}
4298
4299static int mem_cgroup_swappiness_write(struct cgroup *cgrp, struct cftype *cft,
4300				       u64 val)
4301{
4302	struct mem_cgroup *memcg = mem_cgroup_from_cont(cgrp);
4303	struct mem_cgroup *parent;
4304
4305	if (val > 100)
4306		return -EINVAL;
4307
4308	if (cgrp->parent == NULL)
4309		return -EINVAL;
4310
4311	parent = mem_cgroup_from_cont(cgrp->parent);
4312
4313	cgroup_lock();
4314
4315	/* If under hierarchy, only empty-root can set this value */
4316	if ((parent->use_hierarchy) ||
4317	    (memcg->use_hierarchy && !list_empty(&cgrp->children))) {
4318		cgroup_unlock();
4319		return -EINVAL;
4320	}
4321
4322	memcg->swappiness = val;
4323
4324	cgroup_unlock();
4325
4326	return 0;
4327}
4328
4329static void __mem_cgroup_threshold(struct mem_cgroup *memcg, bool swap)
4330{
4331	struct mem_cgroup_threshold_ary *t;
4332	u64 usage;
4333	int i;
4334
4335	rcu_read_lock();
4336	if (!swap)
4337		t = rcu_dereference(memcg->thresholds.primary);
4338	else
4339		t = rcu_dereference(memcg->memsw_thresholds.primary);
4340
4341	if (!t)
4342		goto unlock;
4343
4344	usage = mem_cgroup_usage(memcg, swap);
4345
4346	/*
4347	 * current_threshold points to threshold just below usage.
4348	 * If it's not true, a threshold was crossed after last
4349	 * call of __mem_cgroup_threshold().
4350	 */
4351	i = t->current_threshold;
4352
4353	/*
4354	 * Iterate backward over array of thresholds starting from
4355	 * current_threshold and check if a threshold is crossed.
4356	 * If none of thresholds below usage is crossed, we read
4357	 * only one element of the array here.
4358	 */
4359	for (; i >= 0 && unlikely(t->entries[i].threshold > usage); i--)
4360		eventfd_signal(t->entries[i].eventfd, 1);
4361
4362	/* i = current_threshold + 1 */
4363	i++;
4364
4365	/*
4366	 * Iterate forward over array of thresholds starting from
4367	 * current_threshold+1 and check if a threshold is crossed.
4368	 * If none of thresholds above usage is crossed, we read
4369	 * only one element of the array here.
4370	 */
4371	for (; i < t->size && unlikely(t->entries[i].threshold <= usage); i++)
4372		eventfd_signal(t->entries[i].eventfd, 1);
4373
4374	/* Update current_threshold */
4375	t->current_threshold = i - 1;
4376unlock:
4377	rcu_read_unlock();
4378}
4379
4380static void mem_cgroup_threshold(struct mem_cgroup *memcg)
4381{
4382	while (memcg) {
4383		__mem_cgroup_threshold(memcg, false);
4384		if (do_swap_account)
4385			__mem_cgroup_threshold(memcg, true);
4386
4387		memcg = parent_mem_cgroup(memcg);
4388	}
4389}
4390
4391static int compare_thresholds(const void *a, const void *b)
4392{
4393	const struct mem_cgroup_threshold *_a = a;
4394	const struct mem_cgroup_threshold *_b = b;
4395
4396	return _a->threshold - _b->threshold;
4397}
4398
4399static int mem_cgroup_oom_notify_cb(struct mem_cgroup *memcg)
4400{
4401	struct mem_cgroup_eventfd_list *ev;
4402
4403	list_for_each_entry(ev, &memcg->oom_notify, list)
4404		eventfd_signal(ev->eventfd, 1);
4405	return 0;
4406}
4407
4408static void mem_cgroup_oom_notify(struct mem_cgroup *memcg)
4409{
4410	struct mem_cgroup *iter;
4411
4412	for_each_mem_cgroup_tree(iter, memcg)
4413		mem_cgroup_oom_notify_cb(iter);
4414}
4415
4416static int mem_cgroup_usage_register_event(struct cgroup *cgrp,
4417	struct cftype *cft, struct eventfd_ctx *eventfd, const char *args)
4418{
4419	struct mem_cgroup *memcg = mem_cgroup_from_cont(cgrp);
4420	struct mem_cgroup_thresholds *thresholds;
4421	struct mem_cgroup_threshold_ary *new;
4422	int type = MEMFILE_TYPE(cft->private);
4423	u64 threshold, usage;
4424	int i, size, ret;
4425
4426	ret = res_counter_memparse_write_strategy(args, &threshold);
4427	if (ret)
4428		return ret;
4429
4430	mutex_lock(&memcg->thresholds_lock);
4431
4432	if (type == _MEM)
4433		thresholds = &memcg->thresholds;
4434	else if (type == _MEMSWAP)
4435		thresholds = &memcg->memsw_thresholds;
4436	else
4437		BUG();
4438
4439	usage = mem_cgroup_usage(memcg, type == _MEMSWAP);
4440
4441	/* Check if a threshold crossed before adding a new one */
4442	if (thresholds->primary)
4443		__mem_cgroup_threshold(memcg, type == _MEMSWAP);
4444
4445	size = thresholds->primary ? thresholds->primary->size + 1 : 1;
4446
4447	/* Allocate memory for new array of thresholds */
4448	new = kmalloc(sizeof(*new) + size * sizeof(struct mem_cgroup_threshold),
4449			GFP_KERNEL);
4450	if (!new) {
4451		ret = -ENOMEM;
4452		goto unlock;
4453	}
4454	new->size = size;
4455
4456	/* Copy thresholds (if any) to new array */
4457	if (thresholds->primary) {
4458		memcpy(new->entries, thresholds->primary->entries, (size - 1) *
4459				sizeof(struct mem_cgroup_threshold));
4460	}
4461
4462	/* Add new threshold */
4463	new->entries[size - 1].eventfd = eventfd;
4464	new->entries[size - 1].threshold = threshold;
4465
4466	/* Sort thresholds. Registering of new threshold isn't time-critical */
4467	sort(new->entries, size, sizeof(struct mem_cgroup_threshold),
4468			compare_thresholds, NULL);
4469
4470	/* Find current threshold */
4471	new->current_threshold = -1;
4472	for (i = 0; i < size; i++) {
4473		if (new->entries[i].threshold < usage) {
4474			/*
4475			 * new->current_threshold will not be used until
4476			 * rcu_assign_pointer(), so it's safe to increment
4477			 * it here.
4478			 */
4479			++new->current_threshold;
4480		}
4481	}
4482
4483	/* Free old spare buffer and save old primary buffer as spare */
4484	kfree(thresholds->spare);
4485	thresholds->spare = thresholds->primary;
4486
4487	rcu_assign_pointer(thresholds->primary, new);
4488
4489	/* To be sure that nobody uses thresholds */
4490	synchronize_rcu();
4491
4492unlock:
4493	mutex_unlock(&memcg->thresholds_lock);
4494
4495	return ret;
4496}
4497
4498static void mem_cgroup_usage_unregister_event(struct cgroup *cgrp,
4499	struct cftype *cft, struct eventfd_ctx *eventfd)
4500{
4501	struct mem_cgroup *memcg = mem_cgroup_from_cont(cgrp);
4502	struct mem_cgroup_thresholds *thresholds;
4503	struct mem_cgroup_threshold_ary *new;
4504	int type = MEMFILE_TYPE(cft->private);
4505	u64 usage;
4506	int i, j, size;
4507
4508	mutex_lock(&memcg->thresholds_lock);
4509	if (type == _MEM)
4510		thresholds = &memcg->thresholds;
4511	else if (type == _MEMSWAP)
4512		thresholds = &memcg->memsw_thresholds;
4513	else
4514		BUG();
4515
4516	/*
4517	 * Something went wrong if we trying to unregister a threshold
4518	 * if we don't have thresholds
4519	 */
4520	BUG_ON(!thresholds);
4521
4522	usage = mem_cgroup_usage(memcg, type == _MEMSWAP);
4523
4524	/* Check if a threshold crossed before removing */
4525	__mem_cgroup_threshold(memcg, type == _MEMSWAP);
4526
4527	/* Calculate new number of threshold */
4528	size = 0;
4529	for (i = 0; i < thresholds->primary->size; i++) {
4530		if (thresholds->primary->entries[i].eventfd != eventfd)
4531			size++;
4532	}
4533
4534	new = thresholds->spare;
4535
4536	/* Set thresholds array to NULL if we don't have thresholds */
4537	if (!size) {
4538		kfree(new);
4539		new = NULL;
4540		goto swap_buffers;
4541	}
4542
4543	new->size = size;
4544
4545	/* Copy thresholds and find current threshold */
4546	new->current_threshold = -1;
4547	for (i = 0, j = 0; i < thresholds->primary->size; i++) {
4548		if (thresholds->primary->entries[i].eventfd == eventfd)
4549			continue;
4550
4551		new->entries[j] = thresholds->primary->entries[i];
4552		if (new->entries[j].threshold < usage) {
4553			/*
4554			 * new->current_threshold will not be used
4555			 * until rcu_assign_pointer(), so it's safe to increment
4556			 * it here.
4557			 */
4558			++new->current_threshold;
4559		}
4560		j++;
4561	}
4562
4563swap_buffers:
4564	/* Swap primary and spare array */
4565	thresholds->spare = thresholds->primary;
4566	rcu_assign_pointer(thresholds->primary, new);
4567
4568	/* To be sure that nobody uses thresholds */
4569	synchronize_rcu();
4570
4571	mutex_unlock(&memcg->thresholds_lock);
4572}
4573
4574static int mem_cgroup_oom_register_event(struct cgroup *cgrp,
4575	struct cftype *cft, struct eventfd_ctx *eventfd, const char *args)
4576{
4577	struct mem_cgroup *memcg = mem_cgroup_from_cont(cgrp);
4578	struct mem_cgroup_eventfd_list *event;
4579	int type = MEMFILE_TYPE(cft->private);
4580
4581	BUG_ON(type != _OOM_TYPE);
4582	event = kmalloc(sizeof(*event),	GFP_KERNEL);
4583	if (!event)
4584		return -ENOMEM;
4585
4586	spin_lock(&memcg_oom_lock);
4587
4588	event->eventfd = eventfd;
4589	list_add(&event->list, &memcg->oom_notify);
4590
4591	/* already in OOM ? */
4592	if (atomic_read(&memcg->under_oom))
4593		eventfd_signal(eventfd, 1);
4594	spin_unlock(&memcg_oom_lock);
4595
4596	return 0;
4597}
4598
4599static void mem_cgroup_oom_unregister_event(struct cgroup *cgrp,
4600	struct cftype *cft, struct eventfd_ctx *eventfd)
4601{
4602	struct mem_cgroup *memcg = mem_cgroup_from_cont(cgrp);
4603	struct mem_cgroup_eventfd_list *ev, *tmp;
4604	int type = MEMFILE_TYPE(cft->private);
4605
4606	BUG_ON(type != _OOM_TYPE);
4607
4608	spin_lock(&memcg_oom_lock);
4609
4610	list_for_each_entry_safe(ev, tmp, &memcg->oom_notify, list) {
4611		if (ev->eventfd == eventfd) {
4612			list_del(&ev->list);
4613			kfree(ev);
4614		}
4615	}
4616
4617	spin_unlock(&memcg_oom_lock);
4618}
4619
4620static int mem_cgroup_oom_control_read(struct cgroup *cgrp,
4621	struct cftype *cft,  struct cgroup_map_cb *cb)
4622{
4623	struct mem_cgroup *memcg = mem_cgroup_from_cont(cgrp);
4624
4625	cb->fill(cb, "oom_kill_disable", memcg->oom_kill_disable);
4626
4627	if (atomic_read(&memcg->under_oom))
4628		cb->fill(cb, "under_oom", 1);
4629	else
4630		cb->fill(cb, "under_oom", 0);
4631	return 0;
4632}
4633
4634static int mem_cgroup_oom_control_write(struct cgroup *cgrp,
4635	struct cftype *cft, u64 val)
4636{
4637	struct mem_cgroup *memcg = mem_cgroup_from_cont(cgrp);
4638	struct mem_cgroup *parent;
4639
4640	/* cannot set to root cgroup and only 0 and 1 are allowed */
4641	if (!cgrp->parent || !((val == 0) || (val == 1)))
4642		return -EINVAL;
4643
4644	parent = mem_cgroup_from_cont(cgrp->parent);
4645
4646	cgroup_lock();
4647	/* oom-kill-disable is a flag for subhierarchy. */
4648	if ((parent->use_hierarchy) ||
4649	    (memcg->use_hierarchy && !list_empty(&cgrp->children))) {
4650		cgroup_unlock();
4651		return -EINVAL;
4652	}
4653	memcg->oom_kill_disable = val;
4654	if (!val)
4655		memcg_oom_recover(memcg);
4656	cgroup_unlock();
4657	return 0;
4658}
4659
4660#ifdef CONFIG_NUMA
4661static const struct file_operations mem_control_numa_stat_file_operations = {
4662	.read = seq_read,
4663	.llseek = seq_lseek,
4664	.release = single_release,
4665};
4666
4667static int mem_control_numa_stat_open(struct inode *unused, struct file *file)
4668{
4669	struct cgroup *cont = file->f_dentry->d_parent->d_fsdata;
4670
4671	file->f_op = &mem_control_numa_stat_file_operations;
4672	return single_open(file, mem_control_numa_stat_show, cont);
4673}
4674#endif /* CONFIG_NUMA */
4675
4676#ifdef CONFIG_CGROUP_MEM_RES_CTLR_KMEM
4677static int register_kmem_files(struct cgroup *cont, struct cgroup_subsys *ss)
4678{
4679	/*
4680	 * Part of this would be better living in a separate allocation
4681	 * function, leaving us with just the cgroup tree population work.
4682	 * We, however, depend on state such as network's proto_list that
4683	 * is only initialized after cgroup creation. I found the less
4684	 * cumbersome way to deal with it to defer it all to populate time
4685	 */
4686	return mem_cgroup_sockets_init(cont, ss);
4687};
4688
4689static void kmem_cgroup_destroy(struct cgroup_subsys *ss,
4690				struct cgroup *cont)
4691{
4692	mem_cgroup_sockets_destroy(cont, ss);
4693}
4694#else
4695static int register_kmem_files(struct cgroup *cont, struct cgroup_subsys *ss)
4696{
4697	return 0;
4698}
4699
4700static void kmem_cgroup_destroy(struct cgroup_subsys *ss,
4701				struct cgroup *cont)
4702{
4703}
4704#endif
4705
4706static struct cftype mem_cgroup_files[] = {
4707	{
4708		.name = "usage_in_bytes",
4709		.private = MEMFILE_PRIVATE(_MEM, RES_USAGE),
4710		.read_u64 = mem_cgroup_read,
4711		.register_event = mem_cgroup_usage_register_event,
4712		.unregister_event = mem_cgroup_usage_unregister_event,
4713	},
4714	{
4715		.name = "max_usage_in_bytes",
4716		.private = MEMFILE_PRIVATE(_MEM, RES_MAX_USAGE),
4717		.trigger = mem_cgroup_reset,
4718		.read_u64 = mem_cgroup_read,
4719	},
4720	{
4721		.name = "limit_in_bytes",
4722		.private = MEMFILE_PRIVATE(_MEM, RES_LIMIT),
4723		.write_string = mem_cgroup_write,
4724		.read_u64 = mem_cgroup_read,
4725	},
4726	{
4727		.name = "soft_limit_in_bytes",
4728		.private = MEMFILE_PRIVATE(_MEM, RES_SOFT_LIMIT),
4729		.write_string = mem_cgroup_write,
4730		.read_u64 = mem_cgroup_read,
4731	},
4732	{
4733		.name = "failcnt",
4734		.private = MEMFILE_PRIVATE(_MEM, RES_FAILCNT),
4735		.trigger = mem_cgroup_reset,
4736		.read_u64 = mem_cgroup_read,
4737	},
4738	{
4739		.name = "stat",
4740		.read_map = mem_control_stat_show,
4741	},
4742	{
4743		.name = "force_empty",
4744		.trigger = mem_cgroup_force_empty_write,
4745	},
4746	{
4747		.name = "use_hierarchy",
4748		.write_u64 = mem_cgroup_hierarchy_write,
4749		.read_u64 = mem_cgroup_hierarchy_read,
4750	},
4751	{
4752		.name = "swappiness",
4753		.read_u64 = mem_cgroup_swappiness_read,
4754		.write_u64 = mem_cgroup_swappiness_write,
4755	},
4756	{
4757		.name = "move_charge_at_immigrate",
4758		.read_u64 = mem_cgroup_move_charge_read,
4759		.write_u64 = mem_cgroup_move_charge_write,
4760	},
4761	{
4762		.name = "oom_control",
4763		.read_map = mem_cgroup_oom_control_read,
4764		.write_u64 = mem_cgroup_oom_control_write,
4765		.register_event = mem_cgroup_oom_register_event,
4766		.unregister_event = mem_cgroup_oom_unregister_event,
4767		.private = MEMFILE_PRIVATE(_OOM_TYPE, OOM_CONTROL),
4768	},
4769#ifdef CONFIG_NUMA
4770	{
4771		.name = "numa_stat",
4772		.open = mem_control_numa_stat_open,
4773		.mode = S_IRUGO,
4774	},
4775#endif
4776};
4777
4778#ifdef CONFIG_CGROUP_MEM_RES_CTLR_SWAP
4779static struct cftype memsw_cgroup_files[] = {
4780	{
4781		.name = "memsw.usage_in_bytes",
4782		.private = MEMFILE_PRIVATE(_MEMSWAP, RES_USAGE),
4783		.read_u64 = mem_cgroup_read,
4784		.register_event = mem_cgroup_usage_register_event,
4785		.unregister_event = mem_cgroup_usage_unregister_event,
4786	},
4787	{
4788		.name = "memsw.max_usage_in_bytes",
4789		.private = MEMFILE_PRIVATE(_MEMSWAP, RES_MAX_USAGE),
4790		.trigger = mem_cgroup_reset,
4791		.read_u64 = mem_cgroup_read,
4792	},
4793	{
4794		.name = "memsw.limit_in_bytes",
4795		.private = MEMFILE_PRIVATE(_MEMSWAP, RES_LIMIT),
4796		.write_string = mem_cgroup_write,
4797		.read_u64 = mem_cgroup_read,
4798	},
4799	{
4800		.name = "memsw.failcnt",
4801		.private = MEMFILE_PRIVATE(_MEMSWAP, RES_FAILCNT),
4802		.trigger = mem_cgroup_reset,
4803		.read_u64 = mem_cgroup_read,
4804	},
4805};
4806
4807static int register_memsw_files(struct cgroup *cont, struct cgroup_subsys *ss)
4808{
4809	if (!do_swap_account)
4810		return 0;
4811	return cgroup_add_files(cont, ss, memsw_cgroup_files,
4812				ARRAY_SIZE(memsw_cgroup_files));
4813};
4814#else
4815static int register_memsw_files(struct cgroup *cont, struct cgroup_subsys *ss)
4816{
4817	return 0;
4818}
4819#endif
4820
4821static int alloc_mem_cgroup_per_zone_info(struct mem_cgroup *memcg, int node)
4822{
4823	struct mem_cgroup_per_node *pn;
4824	struct mem_cgroup_per_zone *mz;
4825	enum lru_list l;
4826	int zone, tmp = node;
4827	/*
4828	 * This routine is called against possible nodes.
4829	 * But it's BUG to call kmalloc() against offline node.
4830	 *
4831	 * TODO: this routine can waste much memory for nodes which will
4832	 *       never be onlined. It's better to use memory hotplug callback
4833	 *       function.
4834	 */
4835	if (!node_state(node, N_NORMAL_MEMORY))
4836		tmp = -1;
4837	pn = kzalloc_node(sizeof(*pn), GFP_KERNEL, tmp);
4838	if (!pn)
4839		return 1;
4840
4841	for (zone = 0; zone < MAX_NR_ZONES; zone++) {
4842		mz = &pn->zoneinfo[zone];
4843		for_each_lru(l)
4844			INIT_LIST_HEAD(&mz->lruvec.lists[l]);
4845		mz->usage_in_excess = 0;
4846		mz->on_tree = false;
4847		mz->mem = memcg;
4848	}
4849	memcg->info.nodeinfo[node] = pn;
4850	return 0;
4851}
4852
4853static void free_mem_cgroup_per_zone_info(struct mem_cgroup *memcg, int node)
4854{
4855	kfree(memcg->info.nodeinfo[node]);
4856}
4857
4858static struct mem_cgroup *mem_cgroup_alloc(void)
4859{
4860	struct mem_cgroup *mem;
4861	int size = sizeof(struct mem_cgroup);
4862
4863	/* Can be very big if MAX_NUMNODES is very big */
4864	if (size < PAGE_SIZE)
4865		mem = kzalloc(size, GFP_KERNEL);
4866	else
4867		mem = vzalloc(size);
4868
4869	if (!mem)
4870		return NULL;
4871
4872	mem->stat = alloc_percpu(struct mem_cgroup_stat_cpu);
4873	if (!mem->stat)
4874		goto out_free;
4875	spin_lock_init(&mem->pcp_counter_lock);
4876	return mem;
4877
4878out_free:
4879	if (size < PAGE_SIZE)
4880		kfree(mem);
4881	else
4882		vfree(mem);
4883	return NULL;
4884}
4885
4886/*
4887 * At destroying mem_cgroup, references from swap_cgroup can remain.
4888 * (scanning all at force_empty is too costly...)
4889 *
4890 * Instead of clearing all references at force_empty, we remember
4891 * the number of reference from swap_cgroup and free mem_cgroup when
4892 * it goes down to 0.
4893 *
4894 * Removal of cgroup itself succeeds regardless of refs from swap.
4895 */
4896
4897static void __mem_cgroup_free(struct mem_cgroup *memcg)
4898{
4899	int node;
4900
4901	mem_cgroup_remove_from_trees(memcg);
4902	free_css_id(&mem_cgroup_subsys, &memcg->css);
4903
4904	for_each_node_state(node, N_POSSIBLE)
4905		free_mem_cgroup_per_zone_info(memcg, node);
4906
4907	free_percpu(memcg->stat);
4908	if (sizeof(struct mem_cgroup) < PAGE_SIZE)
4909		kfree(memcg);
4910	else
4911		vfree(memcg);
4912}
4913
4914static void mem_cgroup_get(struct mem_cgroup *memcg)
4915{
4916	atomic_inc(&memcg->refcnt);
4917}
4918
4919static void __mem_cgroup_put(struct mem_cgroup *memcg, int count)
4920{
4921	if (atomic_sub_and_test(count, &memcg->refcnt)) {
4922		struct mem_cgroup *parent = parent_mem_cgroup(memcg);
4923		__mem_cgroup_free(memcg);
4924		if (parent)
4925			mem_cgroup_put(parent);
4926	}
4927}
4928
4929static void mem_cgroup_put(struct mem_cgroup *memcg)
4930{
4931	__mem_cgroup_put(memcg, 1);
4932}
4933
4934/*
4935 * Returns the parent mem_cgroup in memcgroup hierarchy with hierarchy enabled.
4936 */
4937struct mem_cgroup *parent_mem_cgroup(struct mem_cgroup *memcg)
4938{
4939	if (!memcg->res.parent)
4940		return NULL;
4941	return mem_cgroup_from_res_counter(memcg->res.parent, res);
4942}
4943EXPORT_SYMBOL(parent_mem_cgroup);
4944
4945#ifdef CONFIG_CGROUP_MEM_RES_CTLR_SWAP
4946static void __init enable_swap_cgroup(void)
4947{
4948	if (!mem_cgroup_disabled() && really_do_swap_account)
4949		do_swap_account = 1;
4950}
4951#else
4952static void __init enable_swap_cgroup(void)
4953{
4954}
4955#endif
4956
4957static int mem_cgroup_soft_limit_tree_init(void)
4958{
4959	struct mem_cgroup_tree_per_node *rtpn;
4960	struct mem_cgroup_tree_per_zone *rtpz;
4961	int tmp, node, zone;
4962
4963	for_each_node_state(node, N_POSSIBLE) {
4964		tmp = node;
4965		if (!node_state(node, N_NORMAL_MEMORY))
4966			tmp = -1;
4967		rtpn = kzalloc_node(sizeof(*rtpn), GFP_KERNEL, tmp);
4968		if (!rtpn)
4969			return 1;
4970
4971		soft_limit_tree.rb_tree_per_node[node] = rtpn;
4972
4973		for (zone = 0; zone < MAX_NR_ZONES; zone++) {
4974			rtpz = &rtpn->rb_tree_per_zone[zone];
4975			rtpz->rb_root = RB_ROOT;
4976			spin_lock_init(&rtpz->lock);
4977		}
4978	}
4979	return 0;
4980}
4981
4982static struct cgroup_subsys_state * __ref
4983mem_cgroup_create(struct cgroup_subsys *ss, struct cgroup *cont)
4984{
4985	struct mem_cgroup *memcg, *parent;
4986	long error = -ENOMEM;
4987	int node;
4988
4989	memcg = mem_cgroup_alloc();
4990	if (!memcg)
4991		return ERR_PTR(error);
4992
4993	for_each_node_state(node, N_POSSIBLE)
4994		if (alloc_mem_cgroup_per_zone_info(memcg, node))
4995			goto free_out;
4996
4997	/* root ? */
4998	if (cont->parent == NULL) {
4999		int cpu;
5000		enable_swap_cgroup();
5001		parent = NULL;
5002		if (mem_cgroup_soft_limit_tree_init())
5003			goto free_out;
5004		root_mem_cgroup = memcg;
5005		for_each_possible_cpu(cpu) {
5006			struct memcg_stock_pcp *stock =
5007						&per_cpu(memcg_stock, cpu);
5008			INIT_WORK(&stock->work, drain_local_stock);
5009		}
5010		hotcpu_notifier(memcg_cpu_hotplug_callback, 0);
5011	} else {
5012		parent = mem_cgroup_from_cont(cont->parent);
5013		memcg->use_hierarchy = parent->use_hierarchy;
5014		memcg->oom_kill_disable = parent->oom_kill_disable;
5015	}
5016
5017	if (parent && parent->use_hierarchy) {
5018		res_counter_init(&memcg->res, &parent->res);
5019		res_counter_init(&memcg->memsw, &parent->memsw);
5020		/*
5021		 * We increment refcnt of the parent to ensure that we can
5022		 * safely access it on res_counter_charge/uncharge.
5023		 * This refcnt will be decremented when freeing this
5024		 * mem_cgroup(see mem_cgroup_put).
5025		 */
5026		mem_cgroup_get(parent);
5027	} else {
5028		res_counter_init(&memcg->res, NULL);
5029		res_counter_init(&memcg->memsw, NULL);
5030	}
5031	memcg->last_scanned_node = MAX_NUMNODES;
5032	INIT_LIST_HEAD(&memcg->oom_notify);
5033
5034	if (parent)
5035		memcg->swappiness = mem_cgroup_swappiness(parent);
5036	atomic_set(&memcg->refcnt, 1);
5037	memcg->move_charge_at_immigrate = 0;
5038	mutex_init(&memcg->thresholds_lock);
5039	return &memcg->css;
5040free_out:
5041	__mem_cgroup_free(memcg);
5042	return ERR_PTR(error);
5043}
5044
5045static int mem_cgroup_pre_destroy(struct cgroup_subsys *ss,
5046					struct cgroup *cont)
5047{
5048	struct mem_cgroup *memcg = mem_cgroup_from_cont(cont);
5049
5050	return mem_cgroup_force_empty(memcg, false);
5051}
5052
5053static void mem_cgroup_destroy(struct cgroup_subsys *ss,
5054				struct cgroup *cont)
5055{
5056	struct mem_cgroup *memcg = mem_cgroup_from_cont(cont);
5057
5058	kmem_cgroup_destroy(ss, cont);
5059
5060	mem_cgroup_put(memcg);
5061}
5062
5063static int mem_cgroup_populate(struct cgroup_subsys *ss,
5064				struct cgroup *cont)
5065{
5066	int ret;
5067
5068	ret = cgroup_add_files(cont, ss, mem_cgroup_files,
5069				ARRAY_SIZE(mem_cgroup_files));
5070
5071	if (!ret)
5072		ret = register_memsw_files(cont, ss);
5073
5074	if (!ret)
5075		ret = register_kmem_files(cont, ss);
5076
5077	return ret;
5078}
5079
5080#ifdef CONFIG_MMU
5081/* Handlers for move charge at task migration. */
5082#define PRECHARGE_COUNT_AT_ONCE	256
5083static int mem_cgroup_do_precharge(unsigned long count)
5084{
5085	int ret = 0;
5086	int batch_count = PRECHARGE_COUNT_AT_ONCE;
5087	struct mem_cgroup *memcg = mc.to;
5088
5089	if (mem_cgroup_is_root(memcg)) {
5090		mc.precharge += count;
5091		/* we don't need css_get for root */
5092		return ret;
5093	}
5094	/* try to charge at once */
5095	if (count > 1) {
5096		struct res_counter *dummy;
5097		/*
5098		 * "memcg" cannot be under rmdir() because we've already checked
5099		 * by cgroup_lock_live_cgroup() that it is not removed and we
5100		 * are still under the same cgroup_mutex. So we can postpone
5101		 * css_get().
5102		 */
5103		if (res_counter_charge(&memcg->res, PAGE_SIZE * count, &dummy))
5104			goto one_by_one;
5105		if (do_swap_account && res_counter_charge(&memcg->memsw,
5106						PAGE_SIZE * count, &dummy)) {
5107			res_counter_uncharge(&memcg->res, PAGE_SIZE * count);
5108			goto one_by_one;
5109		}
5110		mc.precharge += count;
5111		return ret;
5112	}
5113one_by_one:
5114	/* fall back to one by one charge */
5115	while (count--) {
5116		if (signal_pending(current)) {
5117			ret = -EINTR;
5118			break;
5119		}
5120		if (!batch_count--) {
5121			batch_count = PRECHARGE_COUNT_AT_ONCE;
5122			cond_resched();
5123		}
5124		ret = __mem_cgroup_try_charge(NULL,
5125					GFP_KERNEL, 1, &memcg, false);
5126		if (ret || !memcg)
5127			/* mem_cgroup_clear_mc() will do uncharge later */
5128			return -ENOMEM;
5129		mc.precharge++;
5130	}
5131	return ret;
5132}
5133
5134/**
5135 * is_target_pte_for_mc - check a pte whether it is valid for move charge
5136 * @vma: the vma the pte to be checked belongs
5137 * @addr: the address corresponding to the pte to be checked
5138 * @ptent: the pte to be checked
5139 * @target: the pointer the target page or swap ent will be stored(can be NULL)
5140 *
5141 * Returns
5142 *   0(MC_TARGET_NONE): if the pte is not a target for move charge.
5143 *   1(MC_TARGET_PAGE): if the page corresponding to this pte is a target for
5144 *     move charge. if @target is not NULL, the page is stored in target->page
5145 *     with extra refcnt got(Callers should handle it).
5146 *   2(MC_TARGET_SWAP): if the swap entry corresponding to this pte is a
5147 *     target for charge migration. if @target is not NULL, the entry is stored
5148 *     in target->ent.
5149 *
5150 * Called with pte lock held.
5151 */
5152union mc_target {
5153	struct page	*page;
5154	swp_entry_t	ent;
5155};
5156
5157enum mc_target_type {
5158	MC_TARGET_NONE,	/* not used */
5159	MC_TARGET_PAGE,
5160	MC_TARGET_SWAP,
5161};
5162
5163static struct page *mc_handle_present_pte(struct vm_area_struct *vma,
5164						unsigned long addr, pte_t ptent)
5165{
5166	struct page *page = vm_normal_page(vma, addr, ptent);
5167
5168	if (!page || !page_mapped(page))
5169		return NULL;
5170	if (PageAnon(page)) {
5171		/* we don't move shared anon */
5172		if (!move_anon() || page_mapcount(page) > 2)
5173			return NULL;
5174	} else if (!move_file())
5175		/* we ignore mapcount for file pages */
5176		return NULL;
5177	if (!get_page_unless_zero(page))
5178		return NULL;
5179
5180	return page;
5181}
5182
5183static struct page *mc_handle_swap_pte(struct vm_area_struct *vma,
5184			unsigned long addr, pte_t ptent, swp_entry_t *entry)
5185{
5186	int usage_count;
5187	struct page *page = NULL;
5188	swp_entry_t ent = pte_to_swp_entry(ptent);
5189
5190	if (!move_anon() || non_swap_entry(ent))
5191		return NULL;
5192	usage_count = mem_cgroup_count_swap_user(ent, &page);
5193	if (usage_count > 1) { /* we don't move shared anon */
5194		if (page)
5195			put_page(page);
5196		return NULL;
5197	}
5198	if (do_swap_account)
5199		entry->val = ent.val;
5200
5201	return page;
5202}
5203
5204static struct page *mc_handle_file_pte(struct vm_area_struct *vma,
5205			unsigned long addr, pte_t ptent, swp_entry_t *entry)
5206{
5207	struct page *page = NULL;
5208	struct inode *inode;
5209	struct address_space *mapping;
5210	pgoff_t pgoff;
5211
5212	if (!vma->vm_file) /* anonymous vma */
5213		return NULL;
5214	if (!move_file())
5215		return NULL;
5216
5217	inode = vma->vm_file->f_path.dentry->d_inode;
5218	mapping = vma->vm_file->f_mapping;
5219	if (pte_none(ptent))
5220		pgoff = linear_page_index(vma, addr);
5221	else /* pte_file(ptent) is true */
5222		pgoff = pte_to_pgoff(ptent);
5223
5224	/* page is moved even if it's not RSS of this task(page-faulted). */
5225	page = find_get_page(mapping, pgoff);
5226
5227#ifdef CONFIG_SWAP
5228	/* shmem/tmpfs may report page out on swap: account for that too. */
5229	if (radix_tree_exceptional_entry(page)) {
5230		swp_entry_t swap = radix_to_swp_entry(page);
5231		if (do_swap_account)
5232			*entry = swap;
5233		page = find_get_page(&swapper_space, swap.val);
5234	}
5235#endif
5236	return page;
5237}
5238
5239static int is_target_pte_for_mc(struct vm_area_struct *vma,
5240		unsigned long addr, pte_t ptent, union mc_target *target)
5241{
5242	struct page *page = NULL;
5243	struct page_cgroup *pc;
5244	int ret = 0;
5245	swp_entry_t ent = { .val = 0 };
5246
5247	if (pte_present(ptent))
5248		page = mc_handle_present_pte(vma, addr, ptent);
5249	else if (is_swap_pte(ptent))
5250		page = mc_handle_swap_pte(vma, addr, ptent, &ent);
5251	else if (pte_none(ptent) || pte_file(ptent))
5252		page = mc_handle_file_pte(vma, addr, ptent, &ent);
5253
5254	if (!page && !ent.val)
5255		return 0;
5256	if (page) {
5257		pc = lookup_page_cgroup(page);
5258		/*
5259		 * Do only loose check w/o page_cgroup lock.
5260		 * mem_cgroup_move_account() checks the pc is valid or not under
5261		 * the lock.
5262		 */
5263		if (PageCgroupUsed(pc) && pc->mem_cgroup == mc.from) {
5264			ret = MC_TARGET_PAGE;
5265			if (target)
5266				target->page = page;
5267		}
5268		if (!ret || !target)
5269			put_page(page);
5270	}
5271	/* There is a swap entry and a page doesn't exist or isn't charged */
5272	if (ent.val && !ret &&
5273			css_id(&mc.from->css) == lookup_swap_cgroup(ent)) {
5274		ret = MC_TARGET_SWAP;
5275		if (target)
5276			target->ent = ent;
5277	}
5278	return ret;
5279}
5280
5281static int mem_cgroup_count_precharge_pte_range(pmd_t *pmd,
5282					unsigned long addr, unsigned long end,
5283					struct mm_walk *walk)
5284{
5285	struct vm_area_struct *vma = walk->private;
5286	pte_t *pte;
5287	spinlock_t *ptl;
5288
5289	split_huge_page_pmd(walk->mm, pmd);
5290
5291	pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl);
5292	for (; addr != end; pte++, addr += PAGE_SIZE)
5293		if (is_target_pte_for_mc(vma, addr, *pte, NULL))
5294			mc.precharge++;	/* increment precharge temporarily */
5295	pte_unmap_unlock(pte - 1, ptl);
5296	cond_resched();
5297
5298	return 0;
5299}
5300
5301static unsigned long mem_cgroup_count_precharge(struct mm_struct *mm)
5302{
5303	unsigned long precharge;
5304	struct vm_area_struct *vma;
5305
5306	down_read(&mm->mmap_sem);
5307	for (vma = mm->mmap; vma; vma = vma->vm_next) {
5308		struct mm_walk mem_cgroup_count_precharge_walk = {
5309			.pmd_entry = mem_cgroup_count_precharge_pte_range,
5310			.mm = mm,
5311			.private = vma,
5312		};
5313		if (is_vm_hugetlb_page(vma))
5314			continue;
5315		walk_page_range(vma->vm_start, vma->vm_end,
5316					&mem_cgroup_count_precharge_walk);
5317	}
5318	up_read(&mm->mmap_sem);
5319
5320	precharge = mc.precharge;
5321	mc.precharge = 0;
5322
5323	return precharge;
5324}
5325
5326static int mem_cgroup_precharge_mc(struct mm_struct *mm)
5327{
5328	unsigned long precharge = mem_cgroup_count_precharge(mm);
5329
5330	VM_BUG_ON(mc.moving_task);
5331	mc.moving_task = current;
5332	return mem_cgroup_do_precharge(precharge);
5333}
5334
5335/* cancels all extra charges on mc.from and mc.to, and wakes up all waiters. */
5336static void __mem_cgroup_clear_mc(void)
5337{
5338	struct mem_cgroup *from = mc.from;
5339	struct mem_cgroup *to = mc.to;
5340
5341	/* we must uncharge all the leftover precharges from mc.to */
5342	if (mc.precharge) {
5343		__mem_cgroup_cancel_charge(mc.to, mc.precharge);
5344		mc.precharge = 0;
5345	}
5346	/*
5347	 * we didn't uncharge from mc.from at mem_cgroup_move_account(), so
5348	 * we must uncharge here.
5349	 */
5350	if (mc.moved_charge) {
5351		__mem_cgroup_cancel_charge(mc.from, mc.moved_charge);
5352		mc.moved_charge = 0;
5353	}
5354	/* we must fixup refcnts and charges */
5355	if (mc.moved_swap) {
5356		/* uncharge swap account from the old cgroup */
5357		if (!mem_cgroup_is_root(mc.from))
5358			res_counter_uncharge(&mc.from->memsw,
5359						PAGE_SIZE * mc.moved_swap);
5360		__mem_cgroup_put(mc.from, mc.moved_swap);
5361
5362		if (!mem_cgroup_is_root(mc.to)) {
5363			/*
5364			 * we charged both to->res and to->memsw, so we should
5365			 * uncharge to->res.
5366			 */
5367			res_counter_uncharge(&mc.to->res,
5368						PAGE_SIZE * mc.moved_swap);
5369		}
5370		/* we've already done mem_cgroup_get(mc.to) */
5371		mc.moved_swap = 0;
5372	}
5373	memcg_oom_recover(from);
5374	memcg_oom_recover(to);
5375	wake_up_all(&mc.waitq);
5376}
5377
5378static void mem_cgroup_clear_mc(void)
5379{
5380	struct mem_cgroup *from = mc.from;
5381
5382	/*
5383	 * we must clear moving_task before waking up waiters at the end of
5384	 * task migration.
5385	 */
5386	mc.moving_task = NULL;
5387	__mem_cgroup_clear_mc();
5388	spin_lock(&mc.lock);
5389	mc.from = NULL;
5390	mc.to = NULL;
5391	spin_unlock(&mc.lock);
5392	mem_cgroup_end_move(from);
5393}
5394
5395static int mem_cgroup_can_attach(struct cgroup_subsys *ss,
5396				struct cgroup *cgroup,
5397				struct cgroup_taskset *tset)
5398{
5399	struct task_struct *p = cgroup_taskset_first(tset);
5400	int ret = 0;
5401	struct mem_cgroup *memcg = mem_cgroup_from_cont(cgroup);
5402
5403	if (memcg->move_charge_at_immigrate) {
5404		struct mm_struct *mm;
5405		struct mem_cgroup *from = mem_cgroup_from_task(p);
5406
5407		VM_BUG_ON(from == memcg);
5408
5409		mm = get_task_mm(p);
5410		if (!mm)
5411			return 0;
5412		/* We move charges only when we move a owner of the mm */
5413		if (mm->owner == p) {
5414			VM_BUG_ON(mc.from);
5415			VM_BUG_ON(mc.to);
5416			VM_BUG_ON(mc.precharge);
5417			VM_BUG_ON(mc.moved_charge);
5418			VM_BUG_ON(mc.moved_swap);
5419			mem_cgroup_start_move(from);
5420			spin_lock(&mc.lock);
5421			mc.from = from;
5422			mc.to = memcg;
5423			spin_unlock(&mc.lock);
5424			/* We set mc.moving_task later */
5425
5426			ret = mem_cgroup_precharge_mc(mm);
5427			if (ret)
5428				mem_cgroup_clear_mc();
5429		}
5430		mmput(mm);
5431	}
5432	return ret;
5433}
5434
5435static void mem_cgroup_cancel_attach(struct cgroup_subsys *ss,
5436				struct cgroup *cgroup,
5437				struct cgroup_taskset *tset)
5438{
5439	mem_cgroup_clear_mc();
5440}
5441
5442static int mem_cgroup_move_charge_pte_range(pmd_t *pmd,
5443				unsigned long addr, unsigned long end,
5444				struct mm_walk *walk)
5445{
5446	int ret = 0;
5447	struct vm_area_struct *vma = walk->private;
5448	pte_t *pte;
5449	spinlock_t *ptl;
5450
5451	split_huge_page_pmd(walk->mm, pmd);
5452retry:
5453	pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl);
5454	for (; addr != end; addr += PAGE_SIZE) {
5455		pte_t ptent = *(pte++);
5456		union mc_target target;
5457		int type;
5458		struct page *page;
5459		struct page_cgroup *pc;
5460		swp_entry_t ent;
5461
5462		if (!mc.precharge)
5463			break;
5464
5465		type = is_target_pte_for_mc(vma, addr, ptent, &target);
5466		switch (type) {
5467		case MC_TARGET_PAGE:
5468			page = target.page;
5469			if (isolate_lru_page(page))
5470				goto put;
5471			pc = lookup_page_cgroup(page);
5472			if (!mem_cgroup_move_account(page, 1, pc,
5473						     mc.from, mc.to, false)) {
5474				mc.precharge--;
5475				/* we uncharge from mc.from later. */
5476				mc.moved_charge++;
5477			}
5478			putback_lru_page(page);
5479put:			/* is_target_pte_for_mc() gets the page */
5480			put_page(page);
5481			break;
5482		case MC_TARGET_SWAP:
5483			ent = target.ent;
5484			if (!mem_cgroup_move_swap_account(ent,
5485						mc.from, mc.to, false)) {
5486				mc.precharge--;
5487				/* we fixup refcnts and charges later. */
5488				mc.moved_swap++;
5489			}
5490			break;
5491		default:
5492			break;
5493		}
5494	}
5495	pte_unmap_unlock(pte - 1, ptl);
5496	cond_resched();
5497
5498	if (addr != end) {
5499		/*
5500		 * We have consumed all precharges we got in can_attach().
5501		 * We try charge one by one, but don't do any additional
5502		 * charges to mc.to if we have failed in charge once in attach()
5503		 * phase.
5504		 */
5505		ret = mem_cgroup_do_precharge(1);
5506		if (!ret)
5507			goto retry;
5508	}
5509
5510	return ret;
5511}
5512
5513static void mem_cgroup_move_charge(struct mm_struct *mm)
5514{
5515	struct vm_area_struct *vma;
5516
5517	lru_add_drain_all();
5518retry:
5519	if (unlikely(!down_read_trylock(&mm->mmap_sem))) {
5520		/*
5521		 * Someone who are holding the mmap_sem might be waiting in
5522		 * waitq. So we cancel all extra charges, wake up all waiters,
5523		 * and retry. Because we cancel precharges, we might not be able
5524		 * to move enough charges, but moving charge is a best-effort
5525		 * feature anyway, so it wouldn't be a big problem.
5526		 */
5527		__mem_cgroup_clear_mc();
5528		cond_resched();
5529		goto retry;
5530	}
5531	for (vma = mm->mmap; vma; vma = vma->vm_next) {
5532		int ret;
5533		struct mm_walk mem_cgroup_move_charge_walk = {
5534			.pmd_entry = mem_cgroup_move_charge_pte_range,
5535			.mm = mm,
5536			.private = vma,
5537		};
5538		if (is_vm_hugetlb_page(vma))
5539			continue;
5540		ret = walk_page_range(vma->vm_start, vma->vm_end,
5541						&mem_cgroup_move_charge_walk);
5542		if (ret)
5543			/*
5544			 * means we have consumed all precharges and failed in
5545			 * doing additional charge. Just abandon here.
5546			 */
5547			break;
5548	}
5549	up_read(&mm->mmap_sem);
5550}
5551
5552static void mem_cgroup_move_task(struct cgroup_subsys *ss,
5553				struct cgroup *cont,
5554				struct cgroup_taskset *tset)
5555{
5556	struct task_struct *p = cgroup_taskset_first(tset);
5557	struct mm_struct *mm = get_task_mm(p);
5558
5559	if (mm) {
5560		if (mc.to)
5561			mem_cgroup_move_charge(mm);
5562		put_swap_token(mm);
5563		mmput(mm);
5564	}
5565	if (mc.to)
5566		mem_cgroup_clear_mc();
5567}
5568#else	/* !CONFIG_MMU */
5569static int mem_cgroup_can_attach(struct cgroup_subsys *ss,
5570				struct cgroup *cgroup,
5571				struct cgroup_taskset *tset)
5572{
5573	return 0;
5574}
5575static void mem_cgroup_cancel_attach(struct cgroup_subsys *ss,
5576				struct cgroup *cgroup,
5577				struct cgroup_taskset *tset)
5578{
5579}
5580static void mem_cgroup_move_task(struct cgroup_subsys *ss,
5581				struct cgroup *cont,
5582				struct cgroup_taskset *tset)
5583{
5584}
5585#endif
5586
5587struct cgroup_subsys mem_cgroup_subsys = {
5588	.name = "memory",
5589	.subsys_id = mem_cgroup_subsys_id,
5590	.create = mem_cgroup_create,
5591	.pre_destroy = mem_cgroup_pre_destroy,
5592	.destroy = mem_cgroup_destroy,
5593	.populate = mem_cgroup_populate,
5594	.can_attach = mem_cgroup_can_attach,
5595	.cancel_attach = mem_cgroup_cancel_attach,
5596	.attach = mem_cgroup_move_task,
5597	.early_init = 0,
5598	.use_id = 1,
5599};
5600
5601#ifdef CONFIG_CGROUP_MEM_RES_CTLR_SWAP
5602static int __init enable_swap_account(char *s)
5603{
5604	/* consider enabled if no parameter or 1 is given */
5605	if (!strcmp(s, "1"))
5606		really_do_swap_account = 1;
5607	else if (!strcmp(s, "0"))
5608		really_do_swap_account = 0;
5609	return 1;
5610}
5611__setup("swapaccount=", enable_swap_account);
5612
5613#endif
5614