memcontrol.c revision 14fec79680f7cc4617d6ba69324e63d4a732986c
1/* memcontrol.c - Memory Controller
2 *
3 * Copyright IBM Corporation, 2007
4 * Author Balbir Singh <balbir@linux.vnet.ibm.com>
5 *
6 * Copyright 2007 OpenVZ SWsoft Inc
7 * Author: Pavel Emelianov <xemul@openvz.org>
8 *
9 * Memory thresholds
10 * Copyright (C) 2009 Nokia Corporation
11 * Author: Kirill A. Shutemov
12 *
13 * This program is free software; you can redistribute it and/or modify
14 * it under the terms of the GNU General Public License as published by
15 * the Free Software Foundation; either version 2 of the License, or
16 * (at your option) any later version.
17 *
18 * This program is distributed in the hope that it will be useful,
19 * but WITHOUT ANY WARRANTY; without even the implied warranty of
20 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
21 * GNU General Public License for more details.
22 */
23
24#include <linux/res_counter.h>
25#include <linux/memcontrol.h>
26#include <linux/cgroup.h>
27#include <linux/mm.h>
28#include <linux/hugetlb.h>
29#include <linux/pagemap.h>
30#include <linux/smp.h>
31#include <linux/page-flags.h>
32#include <linux/backing-dev.h>
33#include <linux/bit_spinlock.h>
34#include <linux/rcupdate.h>
35#include <linux/limits.h>
36#include <linux/mutex.h>
37#include <linux/rbtree.h>
38#include <linux/slab.h>
39#include <linux/swap.h>
40#include <linux/swapops.h>
41#include <linux/spinlock.h>
42#include <linux/eventfd.h>
43#include <linux/sort.h>
44#include <linux/fs.h>
45#include <linux/seq_file.h>
46#include <linux/vmalloc.h>
47#include <linux/mm_inline.h>
48#include <linux/page_cgroup.h>
49#include <linux/cpu.h>
50#include <linux/oom.h>
51#include "internal.h"
52
53#include <asm/uaccess.h>
54
55#include <trace/events/vmscan.h>
56
57struct cgroup_subsys mem_cgroup_subsys __read_mostly;
58#define MEM_CGROUP_RECLAIM_RETRIES	5
59struct mem_cgroup *root_mem_cgroup __read_mostly;
60
61#ifdef CONFIG_CGROUP_MEM_RES_CTLR_SWAP
62/* Turned on only when memory cgroup is enabled && really_do_swap_account = 1 */
63int do_swap_account __read_mostly;
64static int really_do_swap_account __initdata = 1; /* for remember boot option*/
65#else
66#define do_swap_account		(0)
67#endif
68
69/*
70 * Per memcg event counter is incremented at every pagein/pageout. This counter
71 * is used for trigger some periodic events. This is straightforward and better
72 * than using jiffies etc. to handle periodic memcg event.
73 *
74 * These values will be used as !((event) & ((1 <<(thresh)) - 1))
75 */
76#define THRESHOLDS_EVENTS_THRESH (7) /* once in 128 */
77#define SOFTLIMIT_EVENTS_THRESH (10) /* once in 1024 */
78
79/*
80 * Statistics for memory cgroup.
81 */
82enum mem_cgroup_stat_index {
83	/*
84	 * For MEM_CONTAINER_TYPE_ALL, usage = pagecache + rss.
85	 */
86	MEM_CGROUP_STAT_CACHE, 	   /* # of pages charged as cache */
87	MEM_CGROUP_STAT_RSS,	   /* # of pages charged as anon rss */
88	MEM_CGROUP_STAT_FILE_MAPPED,  /* # of pages charged as file rss */
89	MEM_CGROUP_STAT_PGPGIN_COUNT,	/* # of pages paged in */
90	MEM_CGROUP_STAT_PGPGOUT_COUNT,	/* # of pages paged out */
91	MEM_CGROUP_STAT_SWAPOUT, /* # of pages, swapped out */
92	MEM_CGROUP_EVENTS,	/* incremented at every  pagein/pageout */
93
94	MEM_CGROUP_STAT_NSTATS,
95};
96
97struct mem_cgroup_stat_cpu {
98	s64 count[MEM_CGROUP_STAT_NSTATS];
99};
100
101/*
102 * per-zone information in memory controller.
103 */
104struct mem_cgroup_per_zone {
105	/*
106	 * spin_lock to protect the per cgroup LRU
107	 */
108	struct list_head	lists[NR_LRU_LISTS];
109	unsigned long		count[NR_LRU_LISTS];
110
111	struct zone_reclaim_stat reclaim_stat;
112	struct rb_node		tree_node;	/* RB tree node */
113	unsigned long long	usage_in_excess;/* Set to the value by which */
114						/* the soft limit is exceeded*/
115	bool			on_tree;
116	struct mem_cgroup	*mem;		/* Back pointer, we cannot */
117						/* use container_of	   */
118};
119/* Macro for accessing counter */
120#define MEM_CGROUP_ZSTAT(mz, idx)	((mz)->count[(idx)])
121
122struct mem_cgroup_per_node {
123	struct mem_cgroup_per_zone zoneinfo[MAX_NR_ZONES];
124};
125
126struct mem_cgroup_lru_info {
127	struct mem_cgroup_per_node *nodeinfo[MAX_NUMNODES];
128};
129
130/*
131 * Cgroups above their limits are maintained in a RB-Tree, independent of
132 * their hierarchy representation
133 */
134
135struct mem_cgroup_tree_per_zone {
136	struct rb_root rb_root;
137	spinlock_t lock;
138};
139
140struct mem_cgroup_tree_per_node {
141	struct mem_cgroup_tree_per_zone rb_tree_per_zone[MAX_NR_ZONES];
142};
143
144struct mem_cgroup_tree {
145	struct mem_cgroup_tree_per_node *rb_tree_per_node[MAX_NUMNODES];
146};
147
148static struct mem_cgroup_tree soft_limit_tree __read_mostly;
149
150struct mem_cgroup_threshold {
151	struct eventfd_ctx *eventfd;
152	u64 threshold;
153};
154
155/* For threshold */
156struct mem_cgroup_threshold_ary {
157	/* An array index points to threshold just below usage. */
158	int current_threshold;
159	/* Size of entries[] */
160	unsigned int size;
161	/* Array of thresholds */
162	struct mem_cgroup_threshold entries[0];
163};
164
165struct mem_cgroup_thresholds {
166	/* Primary thresholds array */
167	struct mem_cgroup_threshold_ary *primary;
168	/*
169	 * Spare threshold array.
170	 * This is needed to make mem_cgroup_unregister_event() "never fail".
171	 * It must be able to store at least primary->size - 1 entries.
172	 */
173	struct mem_cgroup_threshold_ary *spare;
174};
175
176/* for OOM */
177struct mem_cgroup_eventfd_list {
178	struct list_head list;
179	struct eventfd_ctx *eventfd;
180};
181
182static void mem_cgroup_threshold(struct mem_cgroup *mem);
183static void mem_cgroup_oom_notify(struct mem_cgroup *mem);
184
185/*
186 * The memory controller data structure. The memory controller controls both
187 * page cache and RSS per cgroup. We would eventually like to provide
188 * statistics based on the statistics developed by Rik Van Riel for clock-pro,
189 * to help the administrator determine what knobs to tune.
190 *
191 * TODO: Add a water mark for the memory controller. Reclaim will begin when
192 * we hit the water mark. May be even add a low water mark, such that
193 * no reclaim occurs from a cgroup at it's low water mark, this is
194 * a feature that will be implemented much later in the future.
195 */
196struct mem_cgroup {
197	struct cgroup_subsys_state css;
198	/*
199	 * the counter to account for memory usage
200	 */
201	struct res_counter res;
202	/*
203	 * the counter to account for mem+swap usage.
204	 */
205	struct res_counter memsw;
206	/*
207	 * Per cgroup active and inactive list, similar to the
208	 * per zone LRU lists.
209	 */
210	struct mem_cgroup_lru_info info;
211
212	/*
213	  protect against reclaim related member.
214	*/
215	spinlock_t reclaim_param_lock;
216
217	/*
218	 * While reclaiming in a hierarchy, we cache the last child we
219	 * reclaimed from.
220	 */
221	int last_scanned_child;
222	/*
223	 * Should the accounting and control be hierarchical, per subtree?
224	 */
225	bool use_hierarchy;
226	atomic_t	oom_lock;
227	atomic_t	refcnt;
228
229	unsigned int	swappiness;
230	/* OOM-Killer disable */
231	int		oom_kill_disable;
232
233	/* set when res.limit == memsw.limit */
234	bool		memsw_is_minimum;
235
236	/* protect arrays of thresholds */
237	struct mutex thresholds_lock;
238
239	/* thresholds for memory usage. RCU-protected */
240	struct mem_cgroup_thresholds thresholds;
241
242	/* thresholds for mem+swap usage. RCU-protected */
243	struct mem_cgroup_thresholds memsw_thresholds;
244
245	/* For oom notifier event fd */
246	struct list_head oom_notify;
247
248	/*
249	 * Should we move charges of a task when a task is moved into this
250	 * mem_cgroup ? And what type of charges should we move ?
251	 */
252	unsigned long 	move_charge_at_immigrate;
253	/*
254	 * percpu counter.
255	 */
256	struct mem_cgroup_stat_cpu *stat;
257};
258
259/* Stuffs for move charges at task migration. */
260/*
261 * Types of charges to be moved. "move_charge_at_immitgrate" is treated as a
262 * left-shifted bitmap of these types.
263 */
264enum move_type {
265	MOVE_CHARGE_TYPE_ANON,	/* private anonymous page and swap of it */
266	MOVE_CHARGE_TYPE_FILE,	/* file page(including tmpfs) and swap of it */
267	NR_MOVE_TYPE,
268};
269
270/* "mc" and its members are protected by cgroup_mutex */
271static struct move_charge_struct {
272	spinlock_t	  lock; /* for from, to, moving_task */
273	struct mem_cgroup *from;
274	struct mem_cgroup *to;
275	unsigned long precharge;
276	unsigned long moved_charge;
277	unsigned long moved_swap;
278	struct task_struct *moving_task;	/* a task moving charges */
279	wait_queue_head_t waitq;		/* a waitq for other context */
280} mc = {
281	.lock = __SPIN_LOCK_UNLOCKED(mc.lock),
282	.waitq = __WAIT_QUEUE_HEAD_INITIALIZER(mc.waitq),
283};
284
285static bool move_anon(void)
286{
287	return test_bit(MOVE_CHARGE_TYPE_ANON,
288					&mc.to->move_charge_at_immigrate);
289}
290
291static bool move_file(void)
292{
293	return test_bit(MOVE_CHARGE_TYPE_FILE,
294					&mc.to->move_charge_at_immigrate);
295}
296
297/*
298 * Maximum loops in mem_cgroup_hierarchical_reclaim(), used for soft
299 * limit reclaim to prevent infinite loops, if they ever occur.
300 */
301#define	MEM_CGROUP_MAX_RECLAIM_LOOPS		(100)
302#define	MEM_CGROUP_MAX_SOFT_LIMIT_RECLAIM_LOOPS	(2)
303
304enum charge_type {
305	MEM_CGROUP_CHARGE_TYPE_CACHE = 0,
306	MEM_CGROUP_CHARGE_TYPE_MAPPED,
307	MEM_CGROUP_CHARGE_TYPE_SHMEM,	/* used by page migration of shmem */
308	MEM_CGROUP_CHARGE_TYPE_FORCE,	/* used by force_empty */
309	MEM_CGROUP_CHARGE_TYPE_SWAPOUT,	/* for accounting swapcache */
310	MEM_CGROUP_CHARGE_TYPE_DROP,	/* a page was unused swap cache */
311	NR_CHARGE_TYPE,
312};
313
314/* only for here (for easy reading.) */
315#define PCGF_CACHE	(1UL << PCG_CACHE)
316#define PCGF_USED	(1UL << PCG_USED)
317#define PCGF_LOCK	(1UL << PCG_LOCK)
318/* Not used, but added here for completeness */
319#define PCGF_ACCT	(1UL << PCG_ACCT)
320
321/* for encoding cft->private value on file */
322#define _MEM			(0)
323#define _MEMSWAP		(1)
324#define _OOM_TYPE		(2)
325#define MEMFILE_PRIVATE(x, val)	(((x) << 16) | (val))
326#define MEMFILE_TYPE(val)	(((val) >> 16) & 0xffff)
327#define MEMFILE_ATTR(val)	((val) & 0xffff)
328/* Used for OOM nofiier */
329#define OOM_CONTROL		(0)
330
331/*
332 * Reclaim flags for mem_cgroup_hierarchical_reclaim
333 */
334#define MEM_CGROUP_RECLAIM_NOSWAP_BIT	0x0
335#define MEM_CGROUP_RECLAIM_NOSWAP	(1 << MEM_CGROUP_RECLAIM_NOSWAP_BIT)
336#define MEM_CGROUP_RECLAIM_SHRINK_BIT	0x1
337#define MEM_CGROUP_RECLAIM_SHRINK	(1 << MEM_CGROUP_RECLAIM_SHRINK_BIT)
338#define MEM_CGROUP_RECLAIM_SOFT_BIT	0x2
339#define MEM_CGROUP_RECLAIM_SOFT		(1 << MEM_CGROUP_RECLAIM_SOFT_BIT)
340
341static void mem_cgroup_get(struct mem_cgroup *mem);
342static void mem_cgroup_put(struct mem_cgroup *mem);
343static struct mem_cgroup *parent_mem_cgroup(struct mem_cgroup *mem);
344static void drain_all_stock_async(void);
345
346static struct mem_cgroup_per_zone *
347mem_cgroup_zoneinfo(struct mem_cgroup *mem, int nid, int zid)
348{
349	return &mem->info.nodeinfo[nid]->zoneinfo[zid];
350}
351
352struct cgroup_subsys_state *mem_cgroup_css(struct mem_cgroup *mem)
353{
354	return &mem->css;
355}
356
357static struct mem_cgroup_per_zone *
358page_cgroup_zoneinfo(struct page_cgroup *pc)
359{
360	struct mem_cgroup *mem = pc->mem_cgroup;
361	int nid = page_cgroup_nid(pc);
362	int zid = page_cgroup_zid(pc);
363
364	if (!mem)
365		return NULL;
366
367	return mem_cgroup_zoneinfo(mem, nid, zid);
368}
369
370static struct mem_cgroup_tree_per_zone *
371soft_limit_tree_node_zone(int nid, int zid)
372{
373	return &soft_limit_tree.rb_tree_per_node[nid]->rb_tree_per_zone[zid];
374}
375
376static struct mem_cgroup_tree_per_zone *
377soft_limit_tree_from_page(struct page *page)
378{
379	int nid = page_to_nid(page);
380	int zid = page_zonenum(page);
381
382	return &soft_limit_tree.rb_tree_per_node[nid]->rb_tree_per_zone[zid];
383}
384
385static void
386__mem_cgroup_insert_exceeded(struct mem_cgroup *mem,
387				struct mem_cgroup_per_zone *mz,
388				struct mem_cgroup_tree_per_zone *mctz,
389				unsigned long long new_usage_in_excess)
390{
391	struct rb_node **p = &mctz->rb_root.rb_node;
392	struct rb_node *parent = NULL;
393	struct mem_cgroup_per_zone *mz_node;
394
395	if (mz->on_tree)
396		return;
397
398	mz->usage_in_excess = new_usage_in_excess;
399	if (!mz->usage_in_excess)
400		return;
401	while (*p) {
402		parent = *p;
403		mz_node = rb_entry(parent, struct mem_cgroup_per_zone,
404					tree_node);
405		if (mz->usage_in_excess < mz_node->usage_in_excess)
406			p = &(*p)->rb_left;
407		/*
408		 * We can't avoid mem cgroups that are over their soft
409		 * limit by the same amount
410		 */
411		else if (mz->usage_in_excess >= mz_node->usage_in_excess)
412			p = &(*p)->rb_right;
413	}
414	rb_link_node(&mz->tree_node, parent, p);
415	rb_insert_color(&mz->tree_node, &mctz->rb_root);
416	mz->on_tree = true;
417}
418
419static void
420__mem_cgroup_remove_exceeded(struct mem_cgroup *mem,
421				struct mem_cgroup_per_zone *mz,
422				struct mem_cgroup_tree_per_zone *mctz)
423{
424	if (!mz->on_tree)
425		return;
426	rb_erase(&mz->tree_node, &mctz->rb_root);
427	mz->on_tree = false;
428}
429
430static void
431mem_cgroup_remove_exceeded(struct mem_cgroup *mem,
432				struct mem_cgroup_per_zone *mz,
433				struct mem_cgroup_tree_per_zone *mctz)
434{
435	spin_lock(&mctz->lock);
436	__mem_cgroup_remove_exceeded(mem, mz, mctz);
437	spin_unlock(&mctz->lock);
438}
439
440
441static void mem_cgroup_update_tree(struct mem_cgroup *mem, struct page *page)
442{
443	unsigned long long excess;
444	struct mem_cgroup_per_zone *mz;
445	struct mem_cgroup_tree_per_zone *mctz;
446	int nid = page_to_nid(page);
447	int zid = page_zonenum(page);
448	mctz = soft_limit_tree_from_page(page);
449
450	/*
451	 * Necessary to update all ancestors when hierarchy is used.
452	 * because their event counter is not touched.
453	 */
454	for (; mem; mem = parent_mem_cgroup(mem)) {
455		mz = mem_cgroup_zoneinfo(mem, nid, zid);
456		excess = res_counter_soft_limit_excess(&mem->res);
457		/*
458		 * We have to update the tree if mz is on RB-tree or
459		 * mem is over its softlimit.
460		 */
461		if (excess || mz->on_tree) {
462			spin_lock(&mctz->lock);
463			/* if on-tree, remove it */
464			if (mz->on_tree)
465				__mem_cgroup_remove_exceeded(mem, mz, mctz);
466			/*
467			 * Insert again. mz->usage_in_excess will be updated.
468			 * If excess is 0, no tree ops.
469			 */
470			__mem_cgroup_insert_exceeded(mem, mz, mctz, excess);
471			spin_unlock(&mctz->lock);
472		}
473	}
474}
475
476static void mem_cgroup_remove_from_trees(struct mem_cgroup *mem)
477{
478	int node, zone;
479	struct mem_cgroup_per_zone *mz;
480	struct mem_cgroup_tree_per_zone *mctz;
481
482	for_each_node_state(node, N_POSSIBLE) {
483		for (zone = 0; zone < MAX_NR_ZONES; zone++) {
484			mz = mem_cgroup_zoneinfo(mem, node, zone);
485			mctz = soft_limit_tree_node_zone(node, zone);
486			mem_cgroup_remove_exceeded(mem, mz, mctz);
487		}
488	}
489}
490
491static inline unsigned long mem_cgroup_get_excess(struct mem_cgroup *mem)
492{
493	return res_counter_soft_limit_excess(&mem->res) >> PAGE_SHIFT;
494}
495
496static struct mem_cgroup_per_zone *
497__mem_cgroup_largest_soft_limit_node(struct mem_cgroup_tree_per_zone *mctz)
498{
499	struct rb_node *rightmost = NULL;
500	struct mem_cgroup_per_zone *mz;
501
502retry:
503	mz = NULL;
504	rightmost = rb_last(&mctz->rb_root);
505	if (!rightmost)
506		goto done;		/* Nothing to reclaim from */
507
508	mz = rb_entry(rightmost, struct mem_cgroup_per_zone, tree_node);
509	/*
510	 * Remove the node now but someone else can add it back,
511	 * we will to add it back at the end of reclaim to its correct
512	 * position in the tree.
513	 */
514	__mem_cgroup_remove_exceeded(mz->mem, mz, mctz);
515	if (!res_counter_soft_limit_excess(&mz->mem->res) ||
516		!css_tryget(&mz->mem->css))
517		goto retry;
518done:
519	return mz;
520}
521
522static struct mem_cgroup_per_zone *
523mem_cgroup_largest_soft_limit_node(struct mem_cgroup_tree_per_zone *mctz)
524{
525	struct mem_cgroup_per_zone *mz;
526
527	spin_lock(&mctz->lock);
528	mz = __mem_cgroup_largest_soft_limit_node(mctz);
529	spin_unlock(&mctz->lock);
530	return mz;
531}
532
533static s64 mem_cgroup_read_stat(struct mem_cgroup *mem,
534		enum mem_cgroup_stat_index idx)
535{
536	int cpu;
537	s64 val = 0;
538
539	for_each_possible_cpu(cpu)
540		val += per_cpu(mem->stat->count[idx], cpu);
541	return val;
542}
543
544static s64 mem_cgroup_local_usage(struct mem_cgroup *mem)
545{
546	s64 ret;
547
548	ret = mem_cgroup_read_stat(mem, MEM_CGROUP_STAT_RSS);
549	ret += mem_cgroup_read_stat(mem, MEM_CGROUP_STAT_CACHE);
550	return ret;
551}
552
553static void mem_cgroup_swap_statistics(struct mem_cgroup *mem,
554					 bool charge)
555{
556	int val = (charge) ? 1 : -1;
557	this_cpu_add(mem->stat->count[MEM_CGROUP_STAT_SWAPOUT], val);
558}
559
560static void mem_cgroup_charge_statistics(struct mem_cgroup *mem,
561					 struct page_cgroup *pc,
562					 bool charge)
563{
564	int val = (charge) ? 1 : -1;
565
566	preempt_disable();
567
568	if (PageCgroupCache(pc))
569		__this_cpu_add(mem->stat->count[MEM_CGROUP_STAT_CACHE], val);
570	else
571		__this_cpu_add(mem->stat->count[MEM_CGROUP_STAT_RSS], val);
572
573	if (charge)
574		__this_cpu_inc(mem->stat->count[MEM_CGROUP_STAT_PGPGIN_COUNT]);
575	else
576		__this_cpu_inc(mem->stat->count[MEM_CGROUP_STAT_PGPGOUT_COUNT]);
577	__this_cpu_inc(mem->stat->count[MEM_CGROUP_EVENTS]);
578
579	preempt_enable();
580}
581
582static unsigned long mem_cgroup_get_local_zonestat(struct mem_cgroup *mem,
583					enum lru_list idx)
584{
585	int nid, zid;
586	struct mem_cgroup_per_zone *mz;
587	u64 total = 0;
588
589	for_each_online_node(nid)
590		for (zid = 0; zid < MAX_NR_ZONES; zid++) {
591			mz = mem_cgroup_zoneinfo(mem, nid, zid);
592			total += MEM_CGROUP_ZSTAT(mz, idx);
593		}
594	return total;
595}
596
597static bool __memcg_event_check(struct mem_cgroup *mem, int event_mask_shift)
598{
599	s64 val;
600
601	val = this_cpu_read(mem->stat->count[MEM_CGROUP_EVENTS]);
602
603	return !(val & ((1 << event_mask_shift) - 1));
604}
605
606/*
607 * Check events in order.
608 *
609 */
610static void memcg_check_events(struct mem_cgroup *mem, struct page *page)
611{
612	/* threshold event is triggered in finer grain than soft limit */
613	if (unlikely(__memcg_event_check(mem, THRESHOLDS_EVENTS_THRESH))) {
614		mem_cgroup_threshold(mem);
615		if (unlikely(__memcg_event_check(mem, SOFTLIMIT_EVENTS_THRESH)))
616			mem_cgroup_update_tree(mem, page);
617	}
618}
619
620static struct mem_cgroup *mem_cgroup_from_cont(struct cgroup *cont)
621{
622	return container_of(cgroup_subsys_state(cont,
623				mem_cgroup_subsys_id), struct mem_cgroup,
624				css);
625}
626
627struct mem_cgroup *mem_cgroup_from_task(struct task_struct *p)
628{
629	/*
630	 * mm_update_next_owner() may clear mm->owner to NULL
631	 * if it races with swapoff, page migration, etc.
632	 * So this can be called with p == NULL.
633	 */
634	if (unlikely(!p))
635		return NULL;
636
637	return container_of(task_subsys_state(p, mem_cgroup_subsys_id),
638				struct mem_cgroup, css);
639}
640
641static struct mem_cgroup *try_get_mem_cgroup_from_mm(struct mm_struct *mm)
642{
643	struct mem_cgroup *mem = NULL;
644
645	if (!mm)
646		return NULL;
647	/*
648	 * Because we have no locks, mm->owner's may be being moved to other
649	 * cgroup. We use css_tryget() here even if this looks
650	 * pessimistic (rather than adding locks here).
651	 */
652	rcu_read_lock();
653	do {
654		mem = mem_cgroup_from_task(rcu_dereference(mm->owner));
655		if (unlikely(!mem))
656			break;
657	} while (!css_tryget(&mem->css));
658	rcu_read_unlock();
659	return mem;
660}
661
662/*
663 * Call callback function against all cgroup under hierarchy tree.
664 */
665static int mem_cgroup_walk_tree(struct mem_cgroup *root, void *data,
666			  int (*func)(struct mem_cgroup *, void *))
667{
668	int found, ret, nextid;
669	struct cgroup_subsys_state *css;
670	struct mem_cgroup *mem;
671
672	if (!root->use_hierarchy)
673		return (*func)(root, data);
674
675	nextid = 1;
676	do {
677		ret = 0;
678		mem = NULL;
679
680		rcu_read_lock();
681		css = css_get_next(&mem_cgroup_subsys, nextid, &root->css,
682				   &found);
683		if (css && css_tryget(css))
684			mem = container_of(css, struct mem_cgroup, css);
685		rcu_read_unlock();
686
687		if (mem) {
688			ret = (*func)(mem, data);
689			css_put(&mem->css);
690		}
691		nextid = found + 1;
692	} while (!ret && css);
693
694	return ret;
695}
696
697static inline bool mem_cgroup_is_root(struct mem_cgroup *mem)
698{
699	return (mem == root_mem_cgroup);
700}
701
702/*
703 * Following LRU functions are allowed to be used without PCG_LOCK.
704 * Operations are called by routine of global LRU independently from memcg.
705 * What we have to take care of here is validness of pc->mem_cgroup.
706 *
707 * Changes to pc->mem_cgroup happens when
708 * 1. charge
709 * 2. moving account
710 * In typical case, "charge" is done before add-to-lru. Exception is SwapCache.
711 * It is added to LRU before charge.
712 * If PCG_USED bit is not set, page_cgroup is not added to this private LRU.
713 * When moving account, the page is not on LRU. It's isolated.
714 */
715
716void mem_cgroup_del_lru_list(struct page *page, enum lru_list lru)
717{
718	struct page_cgroup *pc;
719	struct mem_cgroup_per_zone *mz;
720
721	if (mem_cgroup_disabled())
722		return;
723	pc = lookup_page_cgroup(page);
724	/* can happen while we handle swapcache. */
725	if (!TestClearPageCgroupAcctLRU(pc))
726		return;
727	VM_BUG_ON(!pc->mem_cgroup);
728	/*
729	 * We don't check PCG_USED bit. It's cleared when the "page" is finally
730	 * removed from global LRU.
731	 */
732	mz = page_cgroup_zoneinfo(pc);
733	MEM_CGROUP_ZSTAT(mz, lru) -= 1;
734	if (mem_cgroup_is_root(pc->mem_cgroup))
735		return;
736	VM_BUG_ON(list_empty(&pc->lru));
737	list_del_init(&pc->lru);
738	return;
739}
740
741void mem_cgroup_del_lru(struct page *page)
742{
743	mem_cgroup_del_lru_list(page, page_lru(page));
744}
745
746void mem_cgroup_rotate_lru_list(struct page *page, enum lru_list lru)
747{
748	struct mem_cgroup_per_zone *mz;
749	struct page_cgroup *pc;
750
751	if (mem_cgroup_disabled())
752		return;
753
754	pc = lookup_page_cgroup(page);
755	/*
756	 * Used bit is set without atomic ops but after smp_wmb().
757	 * For making pc->mem_cgroup visible, insert smp_rmb() here.
758	 */
759	smp_rmb();
760	/* unused or root page is not rotated. */
761	if (!PageCgroupUsed(pc) || mem_cgroup_is_root(pc->mem_cgroup))
762		return;
763	mz = page_cgroup_zoneinfo(pc);
764	list_move(&pc->lru, &mz->lists[lru]);
765}
766
767void mem_cgroup_add_lru_list(struct page *page, enum lru_list lru)
768{
769	struct page_cgroup *pc;
770	struct mem_cgroup_per_zone *mz;
771
772	if (mem_cgroup_disabled())
773		return;
774	pc = lookup_page_cgroup(page);
775	VM_BUG_ON(PageCgroupAcctLRU(pc));
776	/*
777	 * Used bit is set without atomic ops but after smp_wmb().
778	 * For making pc->mem_cgroup visible, insert smp_rmb() here.
779	 */
780	smp_rmb();
781	if (!PageCgroupUsed(pc))
782		return;
783
784	mz = page_cgroup_zoneinfo(pc);
785	MEM_CGROUP_ZSTAT(mz, lru) += 1;
786	SetPageCgroupAcctLRU(pc);
787	if (mem_cgroup_is_root(pc->mem_cgroup))
788		return;
789	list_add(&pc->lru, &mz->lists[lru]);
790}
791
792/*
793 * At handling SwapCache, pc->mem_cgroup may be changed while it's linked to
794 * lru because the page may.be reused after it's fully uncharged (because of
795 * SwapCache behavior).To handle that, unlink page_cgroup from LRU when charge
796 * it again. This function is only used to charge SwapCache. It's done under
797 * lock_page and expected that zone->lru_lock is never held.
798 */
799static void mem_cgroup_lru_del_before_commit_swapcache(struct page *page)
800{
801	unsigned long flags;
802	struct zone *zone = page_zone(page);
803	struct page_cgroup *pc = lookup_page_cgroup(page);
804
805	spin_lock_irqsave(&zone->lru_lock, flags);
806	/*
807	 * Forget old LRU when this page_cgroup is *not* used. This Used bit
808	 * is guarded by lock_page() because the page is SwapCache.
809	 */
810	if (!PageCgroupUsed(pc))
811		mem_cgroup_del_lru_list(page, page_lru(page));
812	spin_unlock_irqrestore(&zone->lru_lock, flags);
813}
814
815static void mem_cgroup_lru_add_after_commit_swapcache(struct page *page)
816{
817	unsigned long flags;
818	struct zone *zone = page_zone(page);
819	struct page_cgroup *pc = lookup_page_cgroup(page);
820
821	spin_lock_irqsave(&zone->lru_lock, flags);
822	/* link when the page is linked to LRU but page_cgroup isn't */
823	if (PageLRU(page) && !PageCgroupAcctLRU(pc))
824		mem_cgroup_add_lru_list(page, page_lru(page));
825	spin_unlock_irqrestore(&zone->lru_lock, flags);
826}
827
828
829void mem_cgroup_move_lists(struct page *page,
830			   enum lru_list from, enum lru_list to)
831{
832	if (mem_cgroup_disabled())
833		return;
834	mem_cgroup_del_lru_list(page, from);
835	mem_cgroup_add_lru_list(page, to);
836}
837
838int task_in_mem_cgroup(struct task_struct *task, const struct mem_cgroup *mem)
839{
840	int ret;
841	struct mem_cgroup *curr = NULL;
842	struct task_struct *p;
843
844	p = find_lock_task_mm(task);
845	if (!p)
846		return 0;
847	curr = try_get_mem_cgroup_from_mm(p->mm);
848	task_unlock(p);
849	if (!curr)
850		return 0;
851	/*
852	 * We should check use_hierarchy of "mem" not "curr". Because checking
853	 * use_hierarchy of "curr" here make this function true if hierarchy is
854	 * enabled in "curr" and "curr" is a child of "mem" in *cgroup*
855	 * hierarchy(even if use_hierarchy is disabled in "mem").
856	 */
857	if (mem->use_hierarchy)
858		ret = css_is_ancestor(&curr->css, &mem->css);
859	else
860		ret = (curr == mem);
861	css_put(&curr->css);
862	return ret;
863}
864
865static int calc_inactive_ratio(struct mem_cgroup *memcg, unsigned long *present_pages)
866{
867	unsigned long active;
868	unsigned long inactive;
869	unsigned long gb;
870	unsigned long inactive_ratio;
871
872	inactive = mem_cgroup_get_local_zonestat(memcg, LRU_INACTIVE_ANON);
873	active = mem_cgroup_get_local_zonestat(memcg, LRU_ACTIVE_ANON);
874
875	gb = (inactive + active) >> (30 - PAGE_SHIFT);
876	if (gb)
877		inactive_ratio = int_sqrt(10 * gb);
878	else
879		inactive_ratio = 1;
880
881	if (present_pages) {
882		present_pages[0] = inactive;
883		present_pages[1] = active;
884	}
885
886	return inactive_ratio;
887}
888
889int mem_cgroup_inactive_anon_is_low(struct mem_cgroup *memcg)
890{
891	unsigned long active;
892	unsigned long inactive;
893	unsigned long present_pages[2];
894	unsigned long inactive_ratio;
895
896	inactive_ratio = calc_inactive_ratio(memcg, present_pages);
897
898	inactive = present_pages[0];
899	active = present_pages[1];
900
901	if (inactive * inactive_ratio < active)
902		return 1;
903
904	return 0;
905}
906
907int mem_cgroup_inactive_file_is_low(struct mem_cgroup *memcg)
908{
909	unsigned long active;
910	unsigned long inactive;
911
912	inactive = mem_cgroup_get_local_zonestat(memcg, LRU_INACTIVE_FILE);
913	active = mem_cgroup_get_local_zonestat(memcg, LRU_ACTIVE_FILE);
914
915	return (active > inactive);
916}
917
918unsigned long mem_cgroup_zone_nr_pages(struct mem_cgroup *memcg,
919				       struct zone *zone,
920				       enum lru_list lru)
921{
922	int nid = zone->zone_pgdat->node_id;
923	int zid = zone_idx(zone);
924	struct mem_cgroup_per_zone *mz = mem_cgroup_zoneinfo(memcg, nid, zid);
925
926	return MEM_CGROUP_ZSTAT(mz, lru);
927}
928
929struct zone_reclaim_stat *mem_cgroup_get_reclaim_stat(struct mem_cgroup *memcg,
930						      struct zone *zone)
931{
932	int nid = zone->zone_pgdat->node_id;
933	int zid = zone_idx(zone);
934	struct mem_cgroup_per_zone *mz = mem_cgroup_zoneinfo(memcg, nid, zid);
935
936	return &mz->reclaim_stat;
937}
938
939struct zone_reclaim_stat *
940mem_cgroup_get_reclaim_stat_from_page(struct page *page)
941{
942	struct page_cgroup *pc;
943	struct mem_cgroup_per_zone *mz;
944
945	if (mem_cgroup_disabled())
946		return NULL;
947
948	pc = lookup_page_cgroup(page);
949	/*
950	 * Used bit is set without atomic ops but after smp_wmb().
951	 * For making pc->mem_cgroup visible, insert smp_rmb() here.
952	 */
953	smp_rmb();
954	if (!PageCgroupUsed(pc))
955		return NULL;
956
957	mz = page_cgroup_zoneinfo(pc);
958	if (!mz)
959		return NULL;
960
961	return &mz->reclaim_stat;
962}
963
964unsigned long mem_cgroup_isolate_pages(unsigned long nr_to_scan,
965					struct list_head *dst,
966					unsigned long *scanned, int order,
967					int mode, struct zone *z,
968					struct mem_cgroup *mem_cont,
969					int active, int file)
970{
971	unsigned long nr_taken = 0;
972	struct page *page;
973	unsigned long scan;
974	LIST_HEAD(pc_list);
975	struct list_head *src;
976	struct page_cgroup *pc, *tmp;
977	int nid = z->zone_pgdat->node_id;
978	int zid = zone_idx(z);
979	struct mem_cgroup_per_zone *mz;
980	int lru = LRU_FILE * file + active;
981	int ret;
982
983	BUG_ON(!mem_cont);
984	mz = mem_cgroup_zoneinfo(mem_cont, nid, zid);
985	src = &mz->lists[lru];
986
987	scan = 0;
988	list_for_each_entry_safe_reverse(pc, tmp, src, lru) {
989		if (scan >= nr_to_scan)
990			break;
991
992		page = pc->page;
993		if (unlikely(!PageCgroupUsed(pc)))
994			continue;
995		if (unlikely(!PageLRU(page)))
996			continue;
997
998		scan++;
999		ret = __isolate_lru_page(page, mode, file);
1000		switch (ret) {
1001		case 0:
1002			list_move(&page->lru, dst);
1003			mem_cgroup_del_lru(page);
1004			nr_taken++;
1005			break;
1006		case -EBUSY:
1007			/* we don't affect global LRU but rotate in our LRU */
1008			mem_cgroup_rotate_lru_list(page, page_lru(page));
1009			break;
1010		default:
1011			break;
1012		}
1013	}
1014
1015	*scanned = scan;
1016
1017	trace_mm_vmscan_memcg_isolate(0, nr_to_scan, scan, nr_taken,
1018				      0, 0, 0, mode);
1019
1020	return nr_taken;
1021}
1022
1023#define mem_cgroup_from_res_counter(counter, member)	\
1024	container_of(counter, struct mem_cgroup, member)
1025
1026static bool mem_cgroup_check_under_limit(struct mem_cgroup *mem)
1027{
1028	if (do_swap_account) {
1029		if (res_counter_check_under_limit(&mem->res) &&
1030			res_counter_check_under_limit(&mem->memsw))
1031			return true;
1032	} else
1033		if (res_counter_check_under_limit(&mem->res))
1034			return true;
1035	return false;
1036}
1037
1038static unsigned int get_swappiness(struct mem_cgroup *memcg)
1039{
1040	struct cgroup *cgrp = memcg->css.cgroup;
1041	unsigned int swappiness;
1042
1043	/* root ? */
1044	if (cgrp->parent == NULL)
1045		return vm_swappiness;
1046
1047	spin_lock(&memcg->reclaim_param_lock);
1048	swappiness = memcg->swappiness;
1049	spin_unlock(&memcg->reclaim_param_lock);
1050
1051	return swappiness;
1052}
1053
1054/* A routine for testing mem is not under move_account */
1055
1056static bool mem_cgroup_under_move(struct mem_cgroup *mem)
1057{
1058	struct mem_cgroup *from;
1059	struct mem_cgroup *to;
1060	bool ret = false;
1061	/*
1062	 * Unlike task_move routines, we access mc.to, mc.from not under
1063	 * mutual exclusion by cgroup_mutex. Here, we take spinlock instead.
1064	 */
1065	spin_lock(&mc.lock);
1066	from = mc.from;
1067	to = mc.to;
1068	if (!from)
1069		goto unlock;
1070	if (from == mem || to == mem
1071	    || (mem->use_hierarchy && css_is_ancestor(&from->css, &mem->css))
1072	    || (mem->use_hierarchy && css_is_ancestor(&to->css,	&mem->css)))
1073		ret = true;
1074unlock:
1075	spin_unlock(&mc.lock);
1076	return ret;
1077}
1078
1079static bool mem_cgroup_wait_acct_move(struct mem_cgroup *mem)
1080{
1081	if (mc.moving_task && current != mc.moving_task) {
1082		if (mem_cgroup_under_move(mem)) {
1083			DEFINE_WAIT(wait);
1084			prepare_to_wait(&mc.waitq, &wait, TASK_INTERRUPTIBLE);
1085			/* moving charge context might have finished. */
1086			if (mc.moving_task)
1087				schedule();
1088			finish_wait(&mc.waitq, &wait);
1089			return true;
1090		}
1091	}
1092	return false;
1093}
1094
1095static int mem_cgroup_count_children_cb(struct mem_cgroup *mem, void *data)
1096{
1097	int *val = data;
1098	(*val)++;
1099	return 0;
1100}
1101
1102/**
1103 * mem_cgroup_print_oom_info: Called from OOM with tasklist_lock held in read mode.
1104 * @memcg: The memory cgroup that went over limit
1105 * @p: Task that is going to be killed
1106 *
1107 * NOTE: @memcg and @p's mem_cgroup can be different when hierarchy is
1108 * enabled
1109 */
1110void mem_cgroup_print_oom_info(struct mem_cgroup *memcg, struct task_struct *p)
1111{
1112	struct cgroup *task_cgrp;
1113	struct cgroup *mem_cgrp;
1114	/*
1115	 * Need a buffer in BSS, can't rely on allocations. The code relies
1116	 * on the assumption that OOM is serialized for memory controller.
1117	 * If this assumption is broken, revisit this code.
1118	 */
1119	static char memcg_name[PATH_MAX];
1120	int ret;
1121
1122	if (!memcg || !p)
1123		return;
1124
1125
1126	rcu_read_lock();
1127
1128	mem_cgrp = memcg->css.cgroup;
1129	task_cgrp = task_cgroup(p, mem_cgroup_subsys_id);
1130
1131	ret = cgroup_path(task_cgrp, memcg_name, PATH_MAX);
1132	if (ret < 0) {
1133		/*
1134		 * Unfortunately, we are unable to convert to a useful name
1135		 * But we'll still print out the usage information
1136		 */
1137		rcu_read_unlock();
1138		goto done;
1139	}
1140	rcu_read_unlock();
1141
1142	printk(KERN_INFO "Task in %s killed", memcg_name);
1143
1144	rcu_read_lock();
1145	ret = cgroup_path(mem_cgrp, memcg_name, PATH_MAX);
1146	if (ret < 0) {
1147		rcu_read_unlock();
1148		goto done;
1149	}
1150	rcu_read_unlock();
1151
1152	/*
1153	 * Continues from above, so we don't need an KERN_ level
1154	 */
1155	printk(KERN_CONT " as a result of limit of %s\n", memcg_name);
1156done:
1157
1158	printk(KERN_INFO "memory: usage %llukB, limit %llukB, failcnt %llu\n",
1159		res_counter_read_u64(&memcg->res, RES_USAGE) >> 10,
1160		res_counter_read_u64(&memcg->res, RES_LIMIT) >> 10,
1161		res_counter_read_u64(&memcg->res, RES_FAILCNT));
1162	printk(KERN_INFO "memory+swap: usage %llukB, limit %llukB, "
1163		"failcnt %llu\n",
1164		res_counter_read_u64(&memcg->memsw, RES_USAGE) >> 10,
1165		res_counter_read_u64(&memcg->memsw, RES_LIMIT) >> 10,
1166		res_counter_read_u64(&memcg->memsw, RES_FAILCNT));
1167}
1168
1169/*
1170 * This function returns the number of memcg under hierarchy tree. Returns
1171 * 1(self count) if no children.
1172 */
1173static int mem_cgroup_count_children(struct mem_cgroup *mem)
1174{
1175	int num = 0;
1176 	mem_cgroup_walk_tree(mem, &num, mem_cgroup_count_children_cb);
1177	return num;
1178}
1179
1180/*
1181 * Return the memory (and swap, if configured) limit for a memcg.
1182 */
1183u64 mem_cgroup_get_limit(struct mem_cgroup *memcg)
1184{
1185	u64 limit;
1186	u64 memsw;
1187
1188	limit = res_counter_read_u64(&memcg->res, RES_LIMIT) +
1189			total_swap_pages;
1190	memsw = res_counter_read_u64(&memcg->memsw, RES_LIMIT);
1191	/*
1192	 * If memsw is finite and limits the amount of swap space available
1193	 * to this memcg, return that limit.
1194	 */
1195	return min(limit, memsw);
1196}
1197
1198/*
1199 * Visit the first child (need not be the first child as per the ordering
1200 * of the cgroup list, since we track last_scanned_child) of @mem and use
1201 * that to reclaim free pages from.
1202 */
1203static struct mem_cgroup *
1204mem_cgroup_select_victim(struct mem_cgroup *root_mem)
1205{
1206	struct mem_cgroup *ret = NULL;
1207	struct cgroup_subsys_state *css;
1208	int nextid, found;
1209
1210	if (!root_mem->use_hierarchy) {
1211		css_get(&root_mem->css);
1212		ret = root_mem;
1213	}
1214
1215	while (!ret) {
1216		rcu_read_lock();
1217		nextid = root_mem->last_scanned_child + 1;
1218		css = css_get_next(&mem_cgroup_subsys, nextid, &root_mem->css,
1219				   &found);
1220		if (css && css_tryget(css))
1221			ret = container_of(css, struct mem_cgroup, css);
1222
1223		rcu_read_unlock();
1224		/* Updates scanning parameter */
1225		spin_lock(&root_mem->reclaim_param_lock);
1226		if (!css) {
1227			/* this means start scan from ID:1 */
1228			root_mem->last_scanned_child = 0;
1229		} else
1230			root_mem->last_scanned_child = found;
1231		spin_unlock(&root_mem->reclaim_param_lock);
1232	}
1233
1234	return ret;
1235}
1236
1237/*
1238 * Scan the hierarchy if needed to reclaim memory. We remember the last child
1239 * we reclaimed from, so that we don't end up penalizing one child extensively
1240 * based on its position in the children list.
1241 *
1242 * root_mem is the original ancestor that we've been reclaim from.
1243 *
1244 * We give up and return to the caller when we visit root_mem twice.
1245 * (other groups can be removed while we're walking....)
1246 *
1247 * If shrink==true, for avoiding to free too much, this returns immedieately.
1248 */
1249static int mem_cgroup_hierarchical_reclaim(struct mem_cgroup *root_mem,
1250						struct zone *zone,
1251						gfp_t gfp_mask,
1252						unsigned long reclaim_options)
1253{
1254	struct mem_cgroup *victim;
1255	int ret, total = 0;
1256	int loop = 0;
1257	bool noswap = reclaim_options & MEM_CGROUP_RECLAIM_NOSWAP;
1258	bool shrink = reclaim_options & MEM_CGROUP_RECLAIM_SHRINK;
1259	bool check_soft = reclaim_options & MEM_CGROUP_RECLAIM_SOFT;
1260	unsigned long excess = mem_cgroup_get_excess(root_mem);
1261
1262	/* If memsw_is_minimum==1, swap-out is of-no-use. */
1263	if (root_mem->memsw_is_minimum)
1264		noswap = true;
1265
1266	while (1) {
1267		victim = mem_cgroup_select_victim(root_mem);
1268		if (victim == root_mem) {
1269			loop++;
1270			if (loop >= 1)
1271				drain_all_stock_async();
1272			if (loop >= 2) {
1273				/*
1274				 * If we have not been able to reclaim
1275				 * anything, it might because there are
1276				 * no reclaimable pages under this hierarchy
1277				 */
1278				if (!check_soft || !total) {
1279					css_put(&victim->css);
1280					break;
1281				}
1282				/*
1283				 * We want to do more targetted reclaim.
1284				 * excess >> 2 is not to excessive so as to
1285				 * reclaim too much, nor too less that we keep
1286				 * coming back to reclaim from this cgroup
1287				 */
1288				if (total >= (excess >> 2) ||
1289					(loop > MEM_CGROUP_MAX_RECLAIM_LOOPS)) {
1290					css_put(&victim->css);
1291					break;
1292				}
1293			}
1294		}
1295		if (!mem_cgroup_local_usage(victim)) {
1296			/* this cgroup's local usage == 0 */
1297			css_put(&victim->css);
1298			continue;
1299		}
1300		/* we use swappiness of local cgroup */
1301		if (check_soft)
1302			ret = mem_cgroup_shrink_node_zone(victim, gfp_mask,
1303				noswap, get_swappiness(victim), zone);
1304		else
1305			ret = try_to_free_mem_cgroup_pages(victim, gfp_mask,
1306						noswap, get_swappiness(victim));
1307		css_put(&victim->css);
1308		/*
1309		 * At shrinking usage, we can't check we should stop here or
1310		 * reclaim more. It's depends on callers. last_scanned_child
1311		 * will work enough for keeping fairness under tree.
1312		 */
1313		if (shrink)
1314			return ret;
1315		total += ret;
1316		if (check_soft) {
1317			if (res_counter_check_under_soft_limit(&root_mem->res))
1318				return total;
1319		} else if (mem_cgroup_check_under_limit(root_mem))
1320			return 1 + total;
1321	}
1322	return total;
1323}
1324
1325static int mem_cgroup_oom_lock_cb(struct mem_cgroup *mem, void *data)
1326{
1327	int *val = (int *)data;
1328	int x;
1329	/*
1330	 * Logically, we can stop scanning immediately when we find
1331	 * a memcg is already locked. But condidering unlock ops and
1332	 * creation/removal of memcg, scan-all is simple operation.
1333	 */
1334	x = atomic_inc_return(&mem->oom_lock);
1335	*val = max(x, *val);
1336	return 0;
1337}
1338/*
1339 * Check OOM-Killer is already running under our hierarchy.
1340 * If someone is running, return false.
1341 */
1342static bool mem_cgroup_oom_lock(struct mem_cgroup *mem)
1343{
1344	int lock_count = 0;
1345
1346	mem_cgroup_walk_tree(mem, &lock_count, mem_cgroup_oom_lock_cb);
1347
1348	if (lock_count == 1)
1349		return true;
1350	return false;
1351}
1352
1353static int mem_cgroup_oom_unlock_cb(struct mem_cgroup *mem, void *data)
1354{
1355	/*
1356	 * When a new child is created while the hierarchy is under oom,
1357	 * mem_cgroup_oom_lock() may not be called. We have to use
1358	 * atomic_add_unless() here.
1359	 */
1360	atomic_add_unless(&mem->oom_lock, -1, 0);
1361	return 0;
1362}
1363
1364static void mem_cgroup_oom_unlock(struct mem_cgroup *mem)
1365{
1366	mem_cgroup_walk_tree(mem, NULL,	mem_cgroup_oom_unlock_cb);
1367}
1368
1369static DEFINE_MUTEX(memcg_oom_mutex);
1370static DECLARE_WAIT_QUEUE_HEAD(memcg_oom_waitq);
1371
1372struct oom_wait_info {
1373	struct mem_cgroup *mem;
1374	wait_queue_t	wait;
1375};
1376
1377static int memcg_oom_wake_function(wait_queue_t *wait,
1378	unsigned mode, int sync, void *arg)
1379{
1380	struct mem_cgroup *wake_mem = (struct mem_cgroup *)arg;
1381	struct oom_wait_info *oom_wait_info;
1382
1383	oom_wait_info = container_of(wait, struct oom_wait_info, wait);
1384
1385	if (oom_wait_info->mem == wake_mem)
1386		goto wakeup;
1387	/* if no hierarchy, no match */
1388	if (!oom_wait_info->mem->use_hierarchy || !wake_mem->use_hierarchy)
1389		return 0;
1390	/*
1391	 * Both of oom_wait_info->mem and wake_mem are stable under us.
1392	 * Then we can use css_is_ancestor without taking care of RCU.
1393	 */
1394	if (!css_is_ancestor(&oom_wait_info->mem->css, &wake_mem->css) &&
1395	    !css_is_ancestor(&wake_mem->css, &oom_wait_info->mem->css))
1396		return 0;
1397
1398wakeup:
1399	return autoremove_wake_function(wait, mode, sync, arg);
1400}
1401
1402static void memcg_wakeup_oom(struct mem_cgroup *mem)
1403{
1404	/* for filtering, pass "mem" as argument. */
1405	__wake_up(&memcg_oom_waitq, TASK_NORMAL, 0, mem);
1406}
1407
1408static void memcg_oom_recover(struct mem_cgroup *mem)
1409{
1410	if (mem && atomic_read(&mem->oom_lock))
1411		memcg_wakeup_oom(mem);
1412}
1413
1414/*
1415 * try to call OOM killer. returns false if we should exit memory-reclaim loop.
1416 */
1417bool mem_cgroup_handle_oom(struct mem_cgroup *mem, gfp_t mask)
1418{
1419	struct oom_wait_info owait;
1420	bool locked, need_to_kill;
1421
1422	owait.mem = mem;
1423	owait.wait.flags = 0;
1424	owait.wait.func = memcg_oom_wake_function;
1425	owait.wait.private = current;
1426	INIT_LIST_HEAD(&owait.wait.task_list);
1427	need_to_kill = true;
1428	/* At first, try to OOM lock hierarchy under mem.*/
1429	mutex_lock(&memcg_oom_mutex);
1430	locked = mem_cgroup_oom_lock(mem);
1431	/*
1432	 * Even if signal_pending(), we can't quit charge() loop without
1433	 * accounting. So, UNINTERRUPTIBLE is appropriate. But SIGKILL
1434	 * under OOM is always welcomed, use TASK_KILLABLE here.
1435	 */
1436	prepare_to_wait(&memcg_oom_waitq, &owait.wait, TASK_KILLABLE);
1437	if (!locked || mem->oom_kill_disable)
1438		need_to_kill = false;
1439	if (locked)
1440		mem_cgroup_oom_notify(mem);
1441	mutex_unlock(&memcg_oom_mutex);
1442
1443	if (need_to_kill) {
1444		finish_wait(&memcg_oom_waitq, &owait.wait);
1445		mem_cgroup_out_of_memory(mem, mask);
1446	} else {
1447		schedule();
1448		finish_wait(&memcg_oom_waitq, &owait.wait);
1449	}
1450	mutex_lock(&memcg_oom_mutex);
1451	mem_cgroup_oom_unlock(mem);
1452	memcg_wakeup_oom(mem);
1453	mutex_unlock(&memcg_oom_mutex);
1454
1455	if (test_thread_flag(TIF_MEMDIE) || fatal_signal_pending(current))
1456		return false;
1457	/* Give chance to dying process */
1458	schedule_timeout(1);
1459	return true;
1460}
1461
1462/*
1463 * Currently used to update mapped file statistics, but the routine can be
1464 * generalized to update other statistics as well.
1465 */
1466void mem_cgroup_update_file_mapped(struct page *page, int val)
1467{
1468	struct mem_cgroup *mem;
1469	struct page_cgroup *pc;
1470
1471	pc = lookup_page_cgroup(page);
1472	if (unlikely(!pc))
1473		return;
1474
1475	lock_page_cgroup(pc);
1476	mem = pc->mem_cgroup;
1477	if (!mem || !PageCgroupUsed(pc))
1478		goto done;
1479
1480	/*
1481	 * Preemption is already disabled. We can use __this_cpu_xxx
1482	 */
1483	if (val > 0) {
1484		__this_cpu_inc(mem->stat->count[MEM_CGROUP_STAT_FILE_MAPPED]);
1485		SetPageCgroupFileMapped(pc);
1486	} else {
1487		__this_cpu_dec(mem->stat->count[MEM_CGROUP_STAT_FILE_MAPPED]);
1488		ClearPageCgroupFileMapped(pc);
1489	}
1490
1491done:
1492	unlock_page_cgroup(pc);
1493}
1494
1495/*
1496 * size of first charge trial. "32" comes from vmscan.c's magic value.
1497 * TODO: maybe necessary to use big numbers in big irons.
1498 */
1499#define CHARGE_SIZE	(32 * PAGE_SIZE)
1500struct memcg_stock_pcp {
1501	struct mem_cgroup *cached; /* this never be root cgroup */
1502	int charge;
1503	struct work_struct work;
1504};
1505static DEFINE_PER_CPU(struct memcg_stock_pcp, memcg_stock);
1506static atomic_t memcg_drain_count;
1507
1508/*
1509 * Try to consume stocked charge on this cpu. If success, PAGE_SIZE is consumed
1510 * from local stock and true is returned. If the stock is 0 or charges from a
1511 * cgroup which is not current target, returns false. This stock will be
1512 * refilled.
1513 */
1514static bool consume_stock(struct mem_cgroup *mem)
1515{
1516	struct memcg_stock_pcp *stock;
1517	bool ret = true;
1518
1519	stock = &get_cpu_var(memcg_stock);
1520	if (mem == stock->cached && stock->charge)
1521		stock->charge -= PAGE_SIZE;
1522	else /* need to call res_counter_charge */
1523		ret = false;
1524	put_cpu_var(memcg_stock);
1525	return ret;
1526}
1527
1528/*
1529 * Returns stocks cached in percpu to res_counter and reset cached information.
1530 */
1531static void drain_stock(struct memcg_stock_pcp *stock)
1532{
1533	struct mem_cgroup *old = stock->cached;
1534
1535	if (stock->charge) {
1536		res_counter_uncharge(&old->res, stock->charge);
1537		if (do_swap_account)
1538			res_counter_uncharge(&old->memsw, stock->charge);
1539	}
1540	stock->cached = NULL;
1541	stock->charge = 0;
1542}
1543
1544/*
1545 * This must be called under preempt disabled or must be called by
1546 * a thread which is pinned to local cpu.
1547 */
1548static void drain_local_stock(struct work_struct *dummy)
1549{
1550	struct memcg_stock_pcp *stock = &__get_cpu_var(memcg_stock);
1551	drain_stock(stock);
1552}
1553
1554/*
1555 * Cache charges(val) which is from res_counter, to local per_cpu area.
1556 * This will be consumed by consume_stock() function, later.
1557 */
1558static void refill_stock(struct mem_cgroup *mem, int val)
1559{
1560	struct memcg_stock_pcp *stock = &get_cpu_var(memcg_stock);
1561
1562	if (stock->cached != mem) { /* reset if necessary */
1563		drain_stock(stock);
1564		stock->cached = mem;
1565	}
1566	stock->charge += val;
1567	put_cpu_var(memcg_stock);
1568}
1569
1570/*
1571 * Tries to drain stocked charges in other cpus. This function is asynchronous
1572 * and just put a work per cpu for draining localy on each cpu. Caller can
1573 * expects some charges will be back to res_counter later but cannot wait for
1574 * it.
1575 */
1576static void drain_all_stock_async(void)
1577{
1578	int cpu;
1579	/* This function is for scheduling "drain" in asynchronous way.
1580	 * The result of "drain" is not directly handled by callers. Then,
1581	 * if someone is calling drain, we don't have to call drain more.
1582	 * Anyway, WORK_STRUCT_PENDING check in queue_work_on() will catch if
1583	 * there is a race. We just do loose check here.
1584	 */
1585	if (atomic_read(&memcg_drain_count))
1586		return;
1587	/* Notify other cpus that system-wide "drain" is running */
1588	atomic_inc(&memcg_drain_count);
1589	get_online_cpus();
1590	for_each_online_cpu(cpu) {
1591		struct memcg_stock_pcp *stock = &per_cpu(memcg_stock, cpu);
1592		schedule_work_on(cpu, &stock->work);
1593	}
1594 	put_online_cpus();
1595	atomic_dec(&memcg_drain_count);
1596	/* We don't wait for flush_work */
1597}
1598
1599/* This is a synchronous drain interface. */
1600static void drain_all_stock_sync(void)
1601{
1602	/* called when force_empty is called */
1603	atomic_inc(&memcg_drain_count);
1604	schedule_on_each_cpu(drain_local_stock);
1605	atomic_dec(&memcg_drain_count);
1606}
1607
1608static int __cpuinit memcg_stock_cpu_callback(struct notifier_block *nb,
1609					unsigned long action,
1610					void *hcpu)
1611{
1612	int cpu = (unsigned long)hcpu;
1613	struct memcg_stock_pcp *stock;
1614
1615	if (action != CPU_DEAD)
1616		return NOTIFY_OK;
1617	stock = &per_cpu(memcg_stock, cpu);
1618	drain_stock(stock);
1619	return NOTIFY_OK;
1620}
1621
1622
1623/* See __mem_cgroup_try_charge() for details */
1624enum {
1625	CHARGE_OK,		/* success */
1626	CHARGE_RETRY,		/* need to retry but retry is not bad */
1627	CHARGE_NOMEM,		/* we can't do more. return -ENOMEM */
1628	CHARGE_WOULDBLOCK,	/* GFP_WAIT wasn't set and no enough res. */
1629	CHARGE_OOM_DIE,		/* the current is killed because of OOM */
1630};
1631
1632static int __mem_cgroup_do_charge(struct mem_cgroup *mem, gfp_t gfp_mask,
1633				int csize, bool oom_check)
1634{
1635	struct mem_cgroup *mem_over_limit;
1636	struct res_counter *fail_res;
1637	unsigned long flags = 0;
1638	int ret;
1639
1640	ret = res_counter_charge(&mem->res, csize, &fail_res);
1641
1642	if (likely(!ret)) {
1643		if (!do_swap_account)
1644			return CHARGE_OK;
1645		ret = res_counter_charge(&mem->memsw, csize, &fail_res);
1646		if (likely(!ret))
1647			return CHARGE_OK;
1648
1649		mem_over_limit = mem_cgroup_from_res_counter(fail_res, memsw);
1650		flags |= MEM_CGROUP_RECLAIM_NOSWAP;
1651	} else
1652		mem_over_limit = mem_cgroup_from_res_counter(fail_res, res);
1653
1654	if (csize > PAGE_SIZE) /* change csize and retry */
1655		return CHARGE_RETRY;
1656
1657	if (!(gfp_mask & __GFP_WAIT))
1658		return CHARGE_WOULDBLOCK;
1659
1660	ret = mem_cgroup_hierarchical_reclaim(mem_over_limit, NULL,
1661					gfp_mask, flags);
1662	/*
1663	 * try_to_free_mem_cgroup_pages() might not give us a full
1664	 * picture of reclaim. Some pages are reclaimed and might be
1665	 * moved to swap cache or just unmapped from the cgroup.
1666	 * Check the limit again to see if the reclaim reduced the
1667	 * current usage of the cgroup before giving up
1668	 */
1669	if (ret || mem_cgroup_check_under_limit(mem_over_limit))
1670		return CHARGE_RETRY;
1671
1672	/*
1673	 * At task move, charge accounts can be doubly counted. So, it's
1674	 * better to wait until the end of task_move if something is going on.
1675	 */
1676	if (mem_cgroup_wait_acct_move(mem_over_limit))
1677		return CHARGE_RETRY;
1678
1679	/* If we don't need to call oom-killer at el, return immediately */
1680	if (!oom_check)
1681		return CHARGE_NOMEM;
1682	/* check OOM */
1683	if (!mem_cgroup_handle_oom(mem_over_limit, gfp_mask))
1684		return CHARGE_OOM_DIE;
1685
1686	return CHARGE_RETRY;
1687}
1688
1689/*
1690 * Unlike exported interface, "oom" parameter is added. if oom==true,
1691 * oom-killer can be invoked.
1692 */
1693static int __mem_cgroup_try_charge(struct mm_struct *mm,
1694		gfp_t gfp_mask, struct mem_cgroup **memcg, bool oom)
1695{
1696	int nr_oom_retries = MEM_CGROUP_RECLAIM_RETRIES;
1697	struct mem_cgroup *mem = NULL;
1698	int ret;
1699	int csize = CHARGE_SIZE;
1700
1701	/*
1702	 * Unlike gloval-vm's OOM-kill, we're not in memory shortage
1703	 * in system level. So, allow to go ahead dying process in addition to
1704	 * MEMDIE process.
1705	 */
1706	if (unlikely(test_thread_flag(TIF_MEMDIE)
1707		     || fatal_signal_pending(current)))
1708		goto bypass;
1709
1710	/*
1711	 * We always charge the cgroup the mm_struct belongs to.
1712	 * The mm_struct's mem_cgroup changes on task migration if the
1713	 * thread group leader migrates. It's possible that mm is not
1714	 * set, if so charge the init_mm (happens for pagecache usage).
1715	 */
1716	if (!*memcg && !mm)
1717		goto bypass;
1718again:
1719	if (*memcg) { /* css should be a valid one */
1720		mem = *memcg;
1721		VM_BUG_ON(css_is_removed(&mem->css));
1722		if (mem_cgroup_is_root(mem))
1723			goto done;
1724		if (consume_stock(mem))
1725			goto done;
1726		css_get(&mem->css);
1727	} else {
1728		struct task_struct *p;
1729
1730		rcu_read_lock();
1731		p = rcu_dereference(mm->owner);
1732		VM_BUG_ON(!p);
1733		/*
1734		 * because we don't have task_lock(), "p" can exit while
1735		 * we're here. In that case, "mem" can point to root
1736		 * cgroup but never be NULL. (and task_struct itself is freed
1737		 * by RCU, cgroup itself is RCU safe.) Then, we have small
1738		 * risk here to get wrong cgroup. But such kind of mis-account
1739		 * by race always happens because we don't have cgroup_mutex().
1740		 * It's overkill and we allow that small race, here.
1741		 */
1742		mem = mem_cgroup_from_task(p);
1743		VM_BUG_ON(!mem);
1744		if (mem_cgroup_is_root(mem)) {
1745			rcu_read_unlock();
1746			goto done;
1747		}
1748		if (consume_stock(mem)) {
1749			/*
1750			 * It seems dagerous to access memcg without css_get().
1751			 * But considering how consume_stok works, it's not
1752			 * necessary. If consume_stock success, some charges
1753			 * from this memcg are cached on this cpu. So, we
1754			 * don't need to call css_get()/css_tryget() before
1755			 * calling consume_stock().
1756			 */
1757			rcu_read_unlock();
1758			goto done;
1759		}
1760		/* after here, we may be blocked. we need to get refcnt */
1761		if (!css_tryget(&mem->css)) {
1762			rcu_read_unlock();
1763			goto again;
1764		}
1765		rcu_read_unlock();
1766	}
1767
1768	do {
1769		bool oom_check;
1770
1771		/* If killed, bypass charge */
1772		if (fatal_signal_pending(current)) {
1773			css_put(&mem->css);
1774			goto bypass;
1775		}
1776
1777		oom_check = false;
1778		if (oom && !nr_oom_retries) {
1779			oom_check = true;
1780			nr_oom_retries = MEM_CGROUP_RECLAIM_RETRIES;
1781		}
1782
1783		ret = __mem_cgroup_do_charge(mem, gfp_mask, csize, oom_check);
1784
1785		switch (ret) {
1786		case CHARGE_OK:
1787			break;
1788		case CHARGE_RETRY: /* not in OOM situation but retry */
1789			csize = PAGE_SIZE;
1790			css_put(&mem->css);
1791			mem = NULL;
1792			goto again;
1793		case CHARGE_WOULDBLOCK: /* !__GFP_WAIT */
1794			css_put(&mem->css);
1795			goto nomem;
1796		case CHARGE_NOMEM: /* OOM routine works */
1797			if (!oom) {
1798				css_put(&mem->css);
1799				goto nomem;
1800			}
1801			/* If oom, we never return -ENOMEM */
1802			nr_oom_retries--;
1803			break;
1804		case CHARGE_OOM_DIE: /* Killed by OOM Killer */
1805			css_put(&mem->css);
1806			goto bypass;
1807		}
1808	} while (ret != CHARGE_OK);
1809
1810	if (csize > PAGE_SIZE)
1811		refill_stock(mem, csize - PAGE_SIZE);
1812	css_put(&mem->css);
1813done:
1814	*memcg = mem;
1815	return 0;
1816nomem:
1817	*memcg = NULL;
1818	return -ENOMEM;
1819bypass:
1820	*memcg = NULL;
1821	return 0;
1822}
1823
1824/*
1825 * Somemtimes we have to undo a charge we got by try_charge().
1826 * This function is for that and do uncharge, put css's refcnt.
1827 * gotten by try_charge().
1828 */
1829static void __mem_cgroup_cancel_charge(struct mem_cgroup *mem,
1830							unsigned long count)
1831{
1832	if (!mem_cgroup_is_root(mem)) {
1833		res_counter_uncharge(&mem->res, PAGE_SIZE * count);
1834		if (do_swap_account)
1835			res_counter_uncharge(&mem->memsw, PAGE_SIZE * count);
1836	}
1837}
1838
1839static void mem_cgroup_cancel_charge(struct mem_cgroup *mem)
1840{
1841	__mem_cgroup_cancel_charge(mem, 1);
1842}
1843
1844/*
1845 * A helper function to get mem_cgroup from ID. must be called under
1846 * rcu_read_lock(). The caller must check css_is_removed() or some if
1847 * it's concern. (dropping refcnt from swap can be called against removed
1848 * memcg.)
1849 */
1850static struct mem_cgroup *mem_cgroup_lookup(unsigned short id)
1851{
1852	struct cgroup_subsys_state *css;
1853
1854	/* ID 0 is unused ID */
1855	if (!id)
1856		return NULL;
1857	css = css_lookup(&mem_cgroup_subsys, id);
1858	if (!css)
1859		return NULL;
1860	return container_of(css, struct mem_cgroup, css);
1861}
1862
1863struct mem_cgroup *try_get_mem_cgroup_from_page(struct page *page)
1864{
1865	struct mem_cgroup *mem = NULL;
1866	struct page_cgroup *pc;
1867	unsigned short id;
1868	swp_entry_t ent;
1869
1870	VM_BUG_ON(!PageLocked(page));
1871
1872	pc = lookup_page_cgroup(page);
1873	lock_page_cgroup(pc);
1874	if (PageCgroupUsed(pc)) {
1875		mem = pc->mem_cgroup;
1876		if (mem && !css_tryget(&mem->css))
1877			mem = NULL;
1878	} else if (PageSwapCache(page)) {
1879		ent.val = page_private(page);
1880		id = lookup_swap_cgroup(ent);
1881		rcu_read_lock();
1882		mem = mem_cgroup_lookup(id);
1883		if (mem && !css_tryget(&mem->css))
1884			mem = NULL;
1885		rcu_read_unlock();
1886	}
1887	unlock_page_cgroup(pc);
1888	return mem;
1889}
1890
1891/*
1892 * commit a charge got by __mem_cgroup_try_charge() and makes page_cgroup to be
1893 * USED state. If already USED, uncharge and return.
1894 */
1895
1896static void __mem_cgroup_commit_charge(struct mem_cgroup *mem,
1897				     struct page_cgroup *pc,
1898				     enum charge_type ctype)
1899{
1900	/* try_charge() can return NULL to *memcg, taking care of it. */
1901	if (!mem)
1902		return;
1903
1904	lock_page_cgroup(pc);
1905	if (unlikely(PageCgroupUsed(pc))) {
1906		unlock_page_cgroup(pc);
1907		mem_cgroup_cancel_charge(mem);
1908		return;
1909	}
1910
1911	pc->mem_cgroup = mem;
1912	/*
1913	 * We access a page_cgroup asynchronously without lock_page_cgroup().
1914	 * Especially when a page_cgroup is taken from a page, pc->mem_cgroup
1915	 * is accessed after testing USED bit. To make pc->mem_cgroup visible
1916	 * before USED bit, we need memory barrier here.
1917	 * See mem_cgroup_add_lru_list(), etc.
1918 	 */
1919	smp_wmb();
1920	switch (ctype) {
1921	case MEM_CGROUP_CHARGE_TYPE_CACHE:
1922	case MEM_CGROUP_CHARGE_TYPE_SHMEM:
1923		SetPageCgroupCache(pc);
1924		SetPageCgroupUsed(pc);
1925		break;
1926	case MEM_CGROUP_CHARGE_TYPE_MAPPED:
1927		ClearPageCgroupCache(pc);
1928		SetPageCgroupUsed(pc);
1929		break;
1930	default:
1931		break;
1932	}
1933
1934	mem_cgroup_charge_statistics(mem, pc, true);
1935
1936	unlock_page_cgroup(pc);
1937	/*
1938	 * "charge_statistics" updated event counter. Then, check it.
1939	 * Insert ancestor (and ancestor's ancestors), to softlimit RB-tree.
1940	 * if they exceeds softlimit.
1941	 */
1942	memcg_check_events(mem, pc->page);
1943}
1944
1945/**
1946 * __mem_cgroup_move_account - move account of the page
1947 * @pc:	page_cgroup of the page.
1948 * @from: mem_cgroup which the page is moved from.
1949 * @to:	mem_cgroup which the page is moved to. @from != @to.
1950 * @uncharge: whether we should call uncharge and css_put against @from.
1951 *
1952 * The caller must confirm following.
1953 * - page is not on LRU (isolate_page() is useful.)
1954 * - the pc is locked, used, and ->mem_cgroup points to @from.
1955 *
1956 * This function doesn't do "charge" nor css_get to new cgroup. It should be
1957 * done by a caller(__mem_cgroup_try_charge would be usefull). If @uncharge is
1958 * true, this function does "uncharge" from old cgroup, but it doesn't if
1959 * @uncharge is false, so a caller should do "uncharge".
1960 */
1961
1962static void __mem_cgroup_move_account(struct page_cgroup *pc,
1963	struct mem_cgroup *from, struct mem_cgroup *to, bool uncharge)
1964{
1965	VM_BUG_ON(from == to);
1966	VM_BUG_ON(PageLRU(pc->page));
1967	VM_BUG_ON(!PageCgroupLocked(pc));
1968	VM_BUG_ON(!PageCgroupUsed(pc));
1969	VM_BUG_ON(pc->mem_cgroup != from);
1970
1971	if (PageCgroupFileMapped(pc)) {
1972		/* Update mapped_file data for mem_cgroup */
1973		preempt_disable();
1974		__this_cpu_dec(from->stat->count[MEM_CGROUP_STAT_FILE_MAPPED]);
1975		__this_cpu_inc(to->stat->count[MEM_CGROUP_STAT_FILE_MAPPED]);
1976		preempt_enable();
1977	}
1978	mem_cgroup_charge_statistics(from, pc, false);
1979	if (uncharge)
1980		/* This is not "cancel", but cancel_charge does all we need. */
1981		mem_cgroup_cancel_charge(from);
1982
1983	/* caller should have done css_get */
1984	pc->mem_cgroup = to;
1985	mem_cgroup_charge_statistics(to, pc, true);
1986	/*
1987	 * We charges against "to" which may not have any tasks. Then, "to"
1988	 * can be under rmdir(). But in current implementation, caller of
1989	 * this function is just force_empty() and move charge, so it's
1990	 * garanteed that "to" is never removed. So, we don't check rmdir
1991	 * status here.
1992	 */
1993}
1994
1995/*
1996 * check whether the @pc is valid for moving account and call
1997 * __mem_cgroup_move_account()
1998 */
1999static int mem_cgroup_move_account(struct page_cgroup *pc,
2000		struct mem_cgroup *from, struct mem_cgroup *to, bool uncharge)
2001{
2002	int ret = -EINVAL;
2003	lock_page_cgroup(pc);
2004	if (PageCgroupUsed(pc) && pc->mem_cgroup == from) {
2005		__mem_cgroup_move_account(pc, from, to, uncharge);
2006		ret = 0;
2007	}
2008	unlock_page_cgroup(pc);
2009	/*
2010	 * check events
2011	 */
2012	memcg_check_events(to, pc->page);
2013	memcg_check_events(from, pc->page);
2014	return ret;
2015}
2016
2017/*
2018 * move charges to its parent.
2019 */
2020
2021static int mem_cgroup_move_parent(struct page_cgroup *pc,
2022				  struct mem_cgroup *child,
2023				  gfp_t gfp_mask)
2024{
2025	struct page *page = pc->page;
2026	struct cgroup *cg = child->css.cgroup;
2027	struct cgroup *pcg = cg->parent;
2028	struct mem_cgroup *parent;
2029	int ret;
2030
2031	/* Is ROOT ? */
2032	if (!pcg)
2033		return -EINVAL;
2034
2035	ret = -EBUSY;
2036	if (!get_page_unless_zero(page))
2037		goto out;
2038	if (isolate_lru_page(page))
2039		goto put;
2040
2041	parent = mem_cgroup_from_cont(pcg);
2042	ret = __mem_cgroup_try_charge(NULL, gfp_mask, &parent, false);
2043	if (ret || !parent)
2044		goto put_back;
2045
2046	ret = mem_cgroup_move_account(pc, child, parent, true);
2047	if (ret)
2048		mem_cgroup_cancel_charge(parent);
2049put_back:
2050	putback_lru_page(page);
2051put:
2052	put_page(page);
2053out:
2054	return ret;
2055}
2056
2057/*
2058 * Charge the memory controller for page usage.
2059 * Return
2060 * 0 if the charge was successful
2061 * < 0 if the cgroup is over its limit
2062 */
2063static int mem_cgroup_charge_common(struct page *page, struct mm_struct *mm,
2064				gfp_t gfp_mask, enum charge_type ctype)
2065{
2066	struct mem_cgroup *mem = NULL;
2067	struct page_cgroup *pc;
2068	int ret;
2069
2070	pc = lookup_page_cgroup(page);
2071	/* can happen at boot */
2072	if (unlikely(!pc))
2073		return 0;
2074	prefetchw(pc);
2075
2076	ret = __mem_cgroup_try_charge(mm, gfp_mask, &mem, true);
2077	if (ret || !mem)
2078		return ret;
2079
2080	__mem_cgroup_commit_charge(mem, pc, ctype);
2081	return 0;
2082}
2083
2084int mem_cgroup_newpage_charge(struct page *page,
2085			      struct mm_struct *mm, gfp_t gfp_mask)
2086{
2087	if (mem_cgroup_disabled())
2088		return 0;
2089	if (PageCompound(page))
2090		return 0;
2091	/*
2092	 * If already mapped, we don't have to account.
2093	 * If page cache, page->mapping has address_space.
2094	 * But page->mapping may have out-of-use anon_vma pointer,
2095	 * detecit it by PageAnon() check. newly-mapped-anon's page->mapping
2096	 * is NULL.
2097  	 */
2098	if (page_mapped(page) || (page->mapping && !PageAnon(page)))
2099		return 0;
2100	if (unlikely(!mm))
2101		mm = &init_mm;
2102	return mem_cgroup_charge_common(page, mm, gfp_mask,
2103				MEM_CGROUP_CHARGE_TYPE_MAPPED);
2104}
2105
2106static void
2107__mem_cgroup_commit_charge_swapin(struct page *page, struct mem_cgroup *ptr,
2108					enum charge_type ctype);
2109
2110int mem_cgroup_cache_charge(struct page *page, struct mm_struct *mm,
2111				gfp_t gfp_mask)
2112{
2113	int ret;
2114
2115	if (mem_cgroup_disabled())
2116		return 0;
2117	if (PageCompound(page))
2118		return 0;
2119	/*
2120	 * Corner case handling. This is called from add_to_page_cache()
2121	 * in usual. But some FS (shmem) precharges this page before calling it
2122	 * and call add_to_page_cache() with GFP_NOWAIT.
2123	 *
2124	 * For GFP_NOWAIT case, the page may be pre-charged before calling
2125	 * add_to_page_cache(). (See shmem.c) check it here and avoid to call
2126	 * charge twice. (It works but has to pay a bit larger cost.)
2127	 * And when the page is SwapCache, it should take swap information
2128	 * into account. This is under lock_page() now.
2129	 */
2130	if (!(gfp_mask & __GFP_WAIT)) {
2131		struct page_cgroup *pc;
2132
2133		pc = lookup_page_cgroup(page);
2134		if (!pc)
2135			return 0;
2136		lock_page_cgroup(pc);
2137		if (PageCgroupUsed(pc)) {
2138			unlock_page_cgroup(pc);
2139			return 0;
2140		}
2141		unlock_page_cgroup(pc);
2142	}
2143
2144	if (unlikely(!mm))
2145		mm = &init_mm;
2146
2147	if (page_is_file_cache(page))
2148		return mem_cgroup_charge_common(page, mm, gfp_mask,
2149				MEM_CGROUP_CHARGE_TYPE_CACHE);
2150
2151	/* shmem */
2152	if (PageSwapCache(page)) {
2153		struct mem_cgroup *mem = NULL;
2154
2155		ret = mem_cgroup_try_charge_swapin(mm, page, gfp_mask, &mem);
2156		if (!ret)
2157			__mem_cgroup_commit_charge_swapin(page, mem,
2158					MEM_CGROUP_CHARGE_TYPE_SHMEM);
2159	} else
2160		ret = mem_cgroup_charge_common(page, mm, gfp_mask,
2161					MEM_CGROUP_CHARGE_TYPE_SHMEM);
2162
2163	return ret;
2164}
2165
2166/*
2167 * While swap-in, try_charge -> commit or cancel, the page is locked.
2168 * And when try_charge() successfully returns, one refcnt to memcg without
2169 * struct page_cgroup is acquired. This refcnt will be consumed by
2170 * "commit()" or removed by "cancel()"
2171 */
2172int mem_cgroup_try_charge_swapin(struct mm_struct *mm,
2173				 struct page *page,
2174				 gfp_t mask, struct mem_cgroup **ptr)
2175{
2176	struct mem_cgroup *mem;
2177	int ret;
2178
2179	if (mem_cgroup_disabled())
2180		return 0;
2181
2182	if (!do_swap_account)
2183		goto charge_cur_mm;
2184	/*
2185	 * A racing thread's fault, or swapoff, may have already updated
2186	 * the pte, and even removed page from swap cache: in those cases
2187	 * do_swap_page()'s pte_same() test will fail; but there's also a
2188	 * KSM case which does need to charge the page.
2189	 */
2190	if (!PageSwapCache(page))
2191		goto charge_cur_mm;
2192	mem = try_get_mem_cgroup_from_page(page);
2193	if (!mem)
2194		goto charge_cur_mm;
2195	*ptr = mem;
2196	ret = __mem_cgroup_try_charge(NULL, mask, ptr, true);
2197	css_put(&mem->css);
2198	return ret;
2199charge_cur_mm:
2200	if (unlikely(!mm))
2201		mm = &init_mm;
2202	return __mem_cgroup_try_charge(mm, mask, ptr, true);
2203}
2204
2205static void
2206__mem_cgroup_commit_charge_swapin(struct page *page, struct mem_cgroup *ptr,
2207					enum charge_type ctype)
2208{
2209	struct page_cgroup *pc;
2210
2211	if (mem_cgroup_disabled())
2212		return;
2213	if (!ptr)
2214		return;
2215	cgroup_exclude_rmdir(&ptr->css);
2216	pc = lookup_page_cgroup(page);
2217	mem_cgroup_lru_del_before_commit_swapcache(page);
2218	__mem_cgroup_commit_charge(ptr, pc, ctype);
2219	mem_cgroup_lru_add_after_commit_swapcache(page);
2220	/*
2221	 * Now swap is on-memory. This means this page may be
2222	 * counted both as mem and swap....double count.
2223	 * Fix it by uncharging from memsw. Basically, this SwapCache is stable
2224	 * under lock_page(). But in do_swap_page()::memory.c, reuse_swap_page()
2225	 * may call delete_from_swap_cache() before reach here.
2226	 */
2227	if (do_swap_account && PageSwapCache(page)) {
2228		swp_entry_t ent = {.val = page_private(page)};
2229		unsigned short id;
2230		struct mem_cgroup *memcg;
2231
2232		id = swap_cgroup_record(ent, 0);
2233		rcu_read_lock();
2234		memcg = mem_cgroup_lookup(id);
2235		if (memcg) {
2236			/*
2237			 * This recorded memcg can be obsolete one. So, avoid
2238			 * calling css_tryget
2239			 */
2240			if (!mem_cgroup_is_root(memcg))
2241				res_counter_uncharge(&memcg->memsw, PAGE_SIZE);
2242			mem_cgroup_swap_statistics(memcg, false);
2243			mem_cgroup_put(memcg);
2244		}
2245		rcu_read_unlock();
2246	}
2247	/*
2248	 * At swapin, we may charge account against cgroup which has no tasks.
2249	 * So, rmdir()->pre_destroy() can be called while we do this charge.
2250	 * In that case, we need to call pre_destroy() again. check it here.
2251	 */
2252	cgroup_release_and_wakeup_rmdir(&ptr->css);
2253}
2254
2255void mem_cgroup_commit_charge_swapin(struct page *page, struct mem_cgroup *ptr)
2256{
2257	__mem_cgroup_commit_charge_swapin(page, ptr,
2258					MEM_CGROUP_CHARGE_TYPE_MAPPED);
2259}
2260
2261void mem_cgroup_cancel_charge_swapin(struct mem_cgroup *mem)
2262{
2263	if (mem_cgroup_disabled())
2264		return;
2265	if (!mem)
2266		return;
2267	mem_cgroup_cancel_charge(mem);
2268}
2269
2270static void
2271__do_uncharge(struct mem_cgroup *mem, const enum charge_type ctype)
2272{
2273	struct memcg_batch_info *batch = NULL;
2274	bool uncharge_memsw = true;
2275	/* If swapout, usage of swap doesn't decrease */
2276	if (!do_swap_account || ctype == MEM_CGROUP_CHARGE_TYPE_SWAPOUT)
2277		uncharge_memsw = false;
2278
2279	batch = &current->memcg_batch;
2280	/*
2281	 * In usual, we do css_get() when we remember memcg pointer.
2282	 * But in this case, we keep res->usage until end of a series of
2283	 * uncharges. Then, it's ok to ignore memcg's refcnt.
2284	 */
2285	if (!batch->memcg)
2286		batch->memcg = mem;
2287	/*
2288	 * do_batch > 0 when unmapping pages or inode invalidate/truncate.
2289	 * In those cases, all pages freed continously can be expected to be in
2290	 * the same cgroup and we have chance to coalesce uncharges.
2291	 * But we do uncharge one by one if this is killed by OOM(TIF_MEMDIE)
2292	 * because we want to do uncharge as soon as possible.
2293	 */
2294
2295	if (!batch->do_batch || test_thread_flag(TIF_MEMDIE))
2296		goto direct_uncharge;
2297
2298	/*
2299	 * In typical case, batch->memcg == mem. This means we can
2300	 * merge a series of uncharges to an uncharge of res_counter.
2301	 * If not, we uncharge res_counter ony by one.
2302	 */
2303	if (batch->memcg != mem)
2304		goto direct_uncharge;
2305	/* remember freed charge and uncharge it later */
2306	batch->bytes += PAGE_SIZE;
2307	if (uncharge_memsw)
2308		batch->memsw_bytes += PAGE_SIZE;
2309	return;
2310direct_uncharge:
2311	res_counter_uncharge(&mem->res, PAGE_SIZE);
2312	if (uncharge_memsw)
2313		res_counter_uncharge(&mem->memsw, PAGE_SIZE);
2314	if (unlikely(batch->memcg != mem))
2315		memcg_oom_recover(mem);
2316	return;
2317}
2318
2319/*
2320 * uncharge if !page_mapped(page)
2321 */
2322static struct mem_cgroup *
2323__mem_cgroup_uncharge_common(struct page *page, enum charge_type ctype)
2324{
2325	struct page_cgroup *pc;
2326	struct mem_cgroup *mem = NULL;
2327
2328	if (mem_cgroup_disabled())
2329		return NULL;
2330
2331	if (PageSwapCache(page))
2332		return NULL;
2333
2334	/*
2335	 * Check if our page_cgroup is valid
2336	 */
2337	pc = lookup_page_cgroup(page);
2338	if (unlikely(!pc || !PageCgroupUsed(pc)))
2339		return NULL;
2340
2341	lock_page_cgroup(pc);
2342
2343	mem = pc->mem_cgroup;
2344
2345	if (!PageCgroupUsed(pc))
2346		goto unlock_out;
2347
2348	switch (ctype) {
2349	case MEM_CGROUP_CHARGE_TYPE_MAPPED:
2350	case MEM_CGROUP_CHARGE_TYPE_DROP:
2351		/* See mem_cgroup_prepare_migration() */
2352		if (page_mapped(page) || PageCgroupMigration(pc))
2353			goto unlock_out;
2354		break;
2355	case MEM_CGROUP_CHARGE_TYPE_SWAPOUT:
2356		if (!PageAnon(page)) {	/* Shared memory */
2357			if (page->mapping && !page_is_file_cache(page))
2358				goto unlock_out;
2359		} else if (page_mapped(page)) /* Anon */
2360				goto unlock_out;
2361		break;
2362	default:
2363		break;
2364	}
2365
2366	mem_cgroup_charge_statistics(mem, pc, false);
2367
2368	ClearPageCgroupUsed(pc);
2369	/*
2370	 * pc->mem_cgroup is not cleared here. It will be accessed when it's
2371	 * freed from LRU. This is safe because uncharged page is expected not
2372	 * to be reused (freed soon). Exception is SwapCache, it's handled by
2373	 * special functions.
2374	 */
2375
2376	unlock_page_cgroup(pc);
2377	/*
2378	 * even after unlock, we have mem->res.usage here and this memcg
2379	 * will never be freed.
2380	 */
2381	memcg_check_events(mem, page);
2382	if (do_swap_account && ctype == MEM_CGROUP_CHARGE_TYPE_SWAPOUT) {
2383		mem_cgroup_swap_statistics(mem, true);
2384		mem_cgroup_get(mem);
2385	}
2386	if (!mem_cgroup_is_root(mem))
2387		__do_uncharge(mem, ctype);
2388
2389	return mem;
2390
2391unlock_out:
2392	unlock_page_cgroup(pc);
2393	return NULL;
2394}
2395
2396void mem_cgroup_uncharge_page(struct page *page)
2397{
2398	/* early check. */
2399	if (page_mapped(page))
2400		return;
2401	if (page->mapping && !PageAnon(page))
2402		return;
2403	__mem_cgroup_uncharge_common(page, MEM_CGROUP_CHARGE_TYPE_MAPPED);
2404}
2405
2406void mem_cgroup_uncharge_cache_page(struct page *page)
2407{
2408	VM_BUG_ON(page_mapped(page));
2409	VM_BUG_ON(page->mapping);
2410	__mem_cgroup_uncharge_common(page, MEM_CGROUP_CHARGE_TYPE_CACHE);
2411}
2412
2413/*
2414 * Batch_start/batch_end is called in unmap_page_range/invlidate/trucate.
2415 * In that cases, pages are freed continuously and we can expect pages
2416 * are in the same memcg. All these calls itself limits the number of
2417 * pages freed at once, then uncharge_start/end() is called properly.
2418 * This may be called prural(2) times in a context,
2419 */
2420
2421void mem_cgroup_uncharge_start(void)
2422{
2423	current->memcg_batch.do_batch++;
2424	/* We can do nest. */
2425	if (current->memcg_batch.do_batch == 1) {
2426		current->memcg_batch.memcg = NULL;
2427		current->memcg_batch.bytes = 0;
2428		current->memcg_batch.memsw_bytes = 0;
2429	}
2430}
2431
2432void mem_cgroup_uncharge_end(void)
2433{
2434	struct memcg_batch_info *batch = &current->memcg_batch;
2435
2436	if (!batch->do_batch)
2437		return;
2438
2439	batch->do_batch--;
2440	if (batch->do_batch) /* If stacked, do nothing. */
2441		return;
2442
2443	if (!batch->memcg)
2444		return;
2445	/*
2446	 * This "batch->memcg" is valid without any css_get/put etc...
2447	 * bacause we hide charges behind us.
2448	 */
2449	if (batch->bytes)
2450		res_counter_uncharge(&batch->memcg->res, batch->bytes);
2451	if (batch->memsw_bytes)
2452		res_counter_uncharge(&batch->memcg->memsw, batch->memsw_bytes);
2453	memcg_oom_recover(batch->memcg);
2454	/* forget this pointer (for sanity check) */
2455	batch->memcg = NULL;
2456}
2457
2458#ifdef CONFIG_SWAP
2459/*
2460 * called after __delete_from_swap_cache() and drop "page" account.
2461 * memcg information is recorded to swap_cgroup of "ent"
2462 */
2463void
2464mem_cgroup_uncharge_swapcache(struct page *page, swp_entry_t ent, bool swapout)
2465{
2466	struct mem_cgroup *memcg;
2467	int ctype = MEM_CGROUP_CHARGE_TYPE_SWAPOUT;
2468
2469	if (!swapout) /* this was a swap cache but the swap is unused ! */
2470		ctype = MEM_CGROUP_CHARGE_TYPE_DROP;
2471
2472	memcg = __mem_cgroup_uncharge_common(page, ctype);
2473
2474	/*
2475	 * record memcg information,  if swapout && memcg != NULL,
2476	 * mem_cgroup_get() was called in uncharge().
2477	 */
2478	if (do_swap_account && swapout && memcg)
2479		swap_cgroup_record(ent, css_id(&memcg->css));
2480}
2481#endif
2482
2483#ifdef CONFIG_CGROUP_MEM_RES_CTLR_SWAP
2484/*
2485 * called from swap_entry_free(). remove record in swap_cgroup and
2486 * uncharge "memsw" account.
2487 */
2488void mem_cgroup_uncharge_swap(swp_entry_t ent)
2489{
2490	struct mem_cgroup *memcg;
2491	unsigned short id;
2492
2493	if (!do_swap_account)
2494		return;
2495
2496	id = swap_cgroup_record(ent, 0);
2497	rcu_read_lock();
2498	memcg = mem_cgroup_lookup(id);
2499	if (memcg) {
2500		/*
2501		 * We uncharge this because swap is freed.
2502		 * This memcg can be obsolete one. We avoid calling css_tryget
2503		 */
2504		if (!mem_cgroup_is_root(memcg))
2505			res_counter_uncharge(&memcg->memsw, PAGE_SIZE);
2506		mem_cgroup_swap_statistics(memcg, false);
2507		mem_cgroup_put(memcg);
2508	}
2509	rcu_read_unlock();
2510}
2511
2512/**
2513 * mem_cgroup_move_swap_account - move swap charge and swap_cgroup's record.
2514 * @entry: swap entry to be moved
2515 * @from:  mem_cgroup which the entry is moved from
2516 * @to:  mem_cgroup which the entry is moved to
2517 * @need_fixup: whether we should fixup res_counters and refcounts.
2518 *
2519 * It succeeds only when the swap_cgroup's record for this entry is the same
2520 * as the mem_cgroup's id of @from.
2521 *
2522 * Returns 0 on success, -EINVAL on failure.
2523 *
2524 * The caller must have charged to @to, IOW, called res_counter_charge() about
2525 * both res and memsw, and called css_get().
2526 */
2527static int mem_cgroup_move_swap_account(swp_entry_t entry,
2528		struct mem_cgroup *from, struct mem_cgroup *to, bool need_fixup)
2529{
2530	unsigned short old_id, new_id;
2531
2532	old_id = css_id(&from->css);
2533	new_id = css_id(&to->css);
2534
2535	if (swap_cgroup_cmpxchg(entry, old_id, new_id) == old_id) {
2536		mem_cgroup_swap_statistics(from, false);
2537		mem_cgroup_swap_statistics(to, true);
2538		/*
2539		 * This function is only called from task migration context now.
2540		 * It postpones res_counter and refcount handling till the end
2541		 * of task migration(mem_cgroup_clear_mc()) for performance
2542		 * improvement. But we cannot postpone mem_cgroup_get(to)
2543		 * because if the process that has been moved to @to does
2544		 * swap-in, the refcount of @to might be decreased to 0.
2545		 */
2546		mem_cgroup_get(to);
2547		if (need_fixup) {
2548			if (!mem_cgroup_is_root(from))
2549				res_counter_uncharge(&from->memsw, PAGE_SIZE);
2550			mem_cgroup_put(from);
2551			/*
2552			 * we charged both to->res and to->memsw, so we should
2553			 * uncharge to->res.
2554			 */
2555			if (!mem_cgroup_is_root(to))
2556				res_counter_uncharge(&to->res, PAGE_SIZE);
2557		}
2558		return 0;
2559	}
2560	return -EINVAL;
2561}
2562#else
2563static inline int mem_cgroup_move_swap_account(swp_entry_t entry,
2564		struct mem_cgroup *from, struct mem_cgroup *to, bool need_fixup)
2565{
2566	return -EINVAL;
2567}
2568#endif
2569
2570/*
2571 * Before starting migration, account PAGE_SIZE to mem_cgroup that the old
2572 * page belongs to.
2573 */
2574int mem_cgroup_prepare_migration(struct page *page,
2575	struct page *newpage, struct mem_cgroup **ptr)
2576{
2577	struct page_cgroup *pc;
2578	struct mem_cgroup *mem = NULL;
2579	enum charge_type ctype;
2580	int ret = 0;
2581
2582	if (mem_cgroup_disabled())
2583		return 0;
2584
2585	pc = lookup_page_cgroup(page);
2586	lock_page_cgroup(pc);
2587	if (PageCgroupUsed(pc)) {
2588		mem = pc->mem_cgroup;
2589		css_get(&mem->css);
2590		/*
2591		 * At migrating an anonymous page, its mapcount goes down
2592		 * to 0 and uncharge() will be called. But, even if it's fully
2593		 * unmapped, migration may fail and this page has to be
2594		 * charged again. We set MIGRATION flag here and delay uncharge
2595		 * until end_migration() is called
2596		 *
2597		 * Corner Case Thinking
2598		 * A)
2599		 * When the old page was mapped as Anon and it's unmap-and-freed
2600		 * while migration was ongoing.
2601		 * If unmap finds the old page, uncharge() of it will be delayed
2602		 * until end_migration(). If unmap finds a new page, it's
2603		 * uncharged when it make mapcount to be 1->0. If unmap code
2604		 * finds swap_migration_entry, the new page will not be mapped
2605		 * and end_migration() will find it(mapcount==0).
2606		 *
2607		 * B)
2608		 * When the old page was mapped but migraion fails, the kernel
2609		 * remaps it. A charge for it is kept by MIGRATION flag even
2610		 * if mapcount goes down to 0. We can do remap successfully
2611		 * without charging it again.
2612		 *
2613		 * C)
2614		 * The "old" page is under lock_page() until the end of
2615		 * migration, so, the old page itself will not be swapped-out.
2616		 * If the new page is swapped out before end_migraton, our
2617		 * hook to usual swap-out path will catch the event.
2618		 */
2619		if (PageAnon(page))
2620			SetPageCgroupMigration(pc);
2621	}
2622	unlock_page_cgroup(pc);
2623	/*
2624	 * If the page is not charged at this point,
2625	 * we return here.
2626	 */
2627	if (!mem)
2628		return 0;
2629
2630	*ptr = mem;
2631	ret = __mem_cgroup_try_charge(NULL, GFP_KERNEL, ptr, false);
2632	css_put(&mem->css);/* drop extra refcnt */
2633	if (ret || *ptr == NULL) {
2634		if (PageAnon(page)) {
2635			lock_page_cgroup(pc);
2636			ClearPageCgroupMigration(pc);
2637			unlock_page_cgroup(pc);
2638			/*
2639			 * The old page may be fully unmapped while we kept it.
2640			 */
2641			mem_cgroup_uncharge_page(page);
2642		}
2643		return -ENOMEM;
2644	}
2645	/*
2646	 * We charge new page before it's used/mapped. So, even if unlock_page()
2647	 * is called before end_migration, we can catch all events on this new
2648	 * page. In the case new page is migrated but not remapped, new page's
2649	 * mapcount will be finally 0 and we call uncharge in end_migration().
2650	 */
2651	pc = lookup_page_cgroup(newpage);
2652	if (PageAnon(page))
2653		ctype = MEM_CGROUP_CHARGE_TYPE_MAPPED;
2654	else if (page_is_file_cache(page))
2655		ctype = MEM_CGROUP_CHARGE_TYPE_CACHE;
2656	else
2657		ctype = MEM_CGROUP_CHARGE_TYPE_SHMEM;
2658	__mem_cgroup_commit_charge(mem, pc, ctype);
2659	return ret;
2660}
2661
2662/* remove redundant charge if migration failed*/
2663void mem_cgroup_end_migration(struct mem_cgroup *mem,
2664	struct page *oldpage, struct page *newpage)
2665{
2666	struct page *used, *unused;
2667	struct page_cgroup *pc;
2668
2669	if (!mem)
2670		return;
2671	/* blocks rmdir() */
2672	cgroup_exclude_rmdir(&mem->css);
2673	/* at migration success, oldpage->mapping is NULL. */
2674	if (oldpage->mapping) {
2675		used = oldpage;
2676		unused = newpage;
2677	} else {
2678		used = newpage;
2679		unused = oldpage;
2680	}
2681	/*
2682	 * We disallowed uncharge of pages under migration because mapcount
2683	 * of the page goes down to zero, temporarly.
2684	 * Clear the flag and check the page should be charged.
2685	 */
2686	pc = lookup_page_cgroup(oldpage);
2687	lock_page_cgroup(pc);
2688	ClearPageCgroupMigration(pc);
2689	unlock_page_cgroup(pc);
2690
2691	__mem_cgroup_uncharge_common(unused, MEM_CGROUP_CHARGE_TYPE_FORCE);
2692
2693	/*
2694	 * If a page is a file cache, radix-tree replacement is very atomic
2695	 * and we can skip this check. When it was an Anon page, its mapcount
2696	 * goes down to 0. But because we added MIGRATION flage, it's not
2697	 * uncharged yet. There are several case but page->mapcount check
2698	 * and USED bit check in mem_cgroup_uncharge_page() will do enough
2699	 * check. (see prepare_charge() also)
2700	 */
2701	if (PageAnon(used))
2702		mem_cgroup_uncharge_page(used);
2703	/*
2704	 * At migration, we may charge account against cgroup which has no
2705	 * tasks.
2706	 * So, rmdir()->pre_destroy() can be called while we do this charge.
2707	 * In that case, we need to call pre_destroy() again. check it here.
2708	 */
2709	cgroup_release_and_wakeup_rmdir(&mem->css);
2710}
2711
2712/*
2713 * A call to try to shrink memory usage on charge failure at shmem's swapin.
2714 * Calling hierarchical_reclaim is not enough because we should update
2715 * last_oom_jiffies to prevent pagefault_out_of_memory from invoking global OOM.
2716 * Moreover considering hierarchy, we should reclaim from the mem_over_limit,
2717 * not from the memcg which this page would be charged to.
2718 * try_charge_swapin does all of these works properly.
2719 */
2720int mem_cgroup_shmem_charge_fallback(struct page *page,
2721			    struct mm_struct *mm,
2722			    gfp_t gfp_mask)
2723{
2724	struct mem_cgroup *mem = NULL;
2725	int ret;
2726
2727	if (mem_cgroup_disabled())
2728		return 0;
2729
2730	ret = mem_cgroup_try_charge_swapin(mm, page, gfp_mask, &mem);
2731	if (!ret)
2732		mem_cgroup_cancel_charge_swapin(mem); /* it does !mem check */
2733
2734	return ret;
2735}
2736
2737static DEFINE_MUTEX(set_limit_mutex);
2738
2739static int mem_cgroup_resize_limit(struct mem_cgroup *memcg,
2740				unsigned long long val)
2741{
2742	int retry_count;
2743	u64 memswlimit, memlimit;
2744	int ret = 0;
2745	int children = mem_cgroup_count_children(memcg);
2746	u64 curusage, oldusage;
2747	int enlarge;
2748
2749	/*
2750	 * For keeping hierarchical_reclaim simple, how long we should retry
2751	 * is depends on callers. We set our retry-count to be function
2752	 * of # of children which we should visit in this loop.
2753	 */
2754	retry_count = MEM_CGROUP_RECLAIM_RETRIES * children;
2755
2756	oldusage = res_counter_read_u64(&memcg->res, RES_USAGE);
2757
2758	enlarge = 0;
2759	while (retry_count) {
2760		if (signal_pending(current)) {
2761			ret = -EINTR;
2762			break;
2763		}
2764		/*
2765		 * Rather than hide all in some function, I do this in
2766		 * open coded manner. You see what this really does.
2767		 * We have to guarantee mem->res.limit < mem->memsw.limit.
2768		 */
2769		mutex_lock(&set_limit_mutex);
2770		memswlimit = res_counter_read_u64(&memcg->memsw, RES_LIMIT);
2771		if (memswlimit < val) {
2772			ret = -EINVAL;
2773			mutex_unlock(&set_limit_mutex);
2774			break;
2775		}
2776
2777		memlimit = res_counter_read_u64(&memcg->res, RES_LIMIT);
2778		if (memlimit < val)
2779			enlarge = 1;
2780
2781		ret = res_counter_set_limit(&memcg->res, val);
2782		if (!ret) {
2783			if (memswlimit == val)
2784				memcg->memsw_is_minimum = true;
2785			else
2786				memcg->memsw_is_minimum = false;
2787		}
2788		mutex_unlock(&set_limit_mutex);
2789
2790		if (!ret)
2791			break;
2792
2793		mem_cgroup_hierarchical_reclaim(memcg, NULL, GFP_KERNEL,
2794						MEM_CGROUP_RECLAIM_SHRINK);
2795		curusage = res_counter_read_u64(&memcg->res, RES_USAGE);
2796		/* Usage is reduced ? */
2797  		if (curusage >= oldusage)
2798			retry_count--;
2799		else
2800			oldusage = curusage;
2801	}
2802	if (!ret && enlarge)
2803		memcg_oom_recover(memcg);
2804
2805	return ret;
2806}
2807
2808static int mem_cgroup_resize_memsw_limit(struct mem_cgroup *memcg,
2809					unsigned long long val)
2810{
2811	int retry_count;
2812	u64 memlimit, memswlimit, oldusage, curusage;
2813	int children = mem_cgroup_count_children(memcg);
2814	int ret = -EBUSY;
2815	int enlarge = 0;
2816
2817	/* see mem_cgroup_resize_res_limit */
2818 	retry_count = children * MEM_CGROUP_RECLAIM_RETRIES;
2819	oldusage = res_counter_read_u64(&memcg->memsw, RES_USAGE);
2820	while (retry_count) {
2821		if (signal_pending(current)) {
2822			ret = -EINTR;
2823			break;
2824		}
2825		/*
2826		 * Rather than hide all in some function, I do this in
2827		 * open coded manner. You see what this really does.
2828		 * We have to guarantee mem->res.limit < mem->memsw.limit.
2829		 */
2830		mutex_lock(&set_limit_mutex);
2831		memlimit = res_counter_read_u64(&memcg->res, RES_LIMIT);
2832		if (memlimit > val) {
2833			ret = -EINVAL;
2834			mutex_unlock(&set_limit_mutex);
2835			break;
2836		}
2837		memswlimit = res_counter_read_u64(&memcg->memsw, RES_LIMIT);
2838		if (memswlimit < val)
2839			enlarge = 1;
2840		ret = res_counter_set_limit(&memcg->memsw, val);
2841		if (!ret) {
2842			if (memlimit == val)
2843				memcg->memsw_is_minimum = true;
2844			else
2845				memcg->memsw_is_minimum = false;
2846		}
2847		mutex_unlock(&set_limit_mutex);
2848
2849		if (!ret)
2850			break;
2851
2852		mem_cgroup_hierarchical_reclaim(memcg, NULL, GFP_KERNEL,
2853						MEM_CGROUP_RECLAIM_NOSWAP |
2854						MEM_CGROUP_RECLAIM_SHRINK);
2855		curusage = res_counter_read_u64(&memcg->memsw, RES_USAGE);
2856		/* Usage is reduced ? */
2857		if (curusage >= oldusage)
2858			retry_count--;
2859		else
2860			oldusage = curusage;
2861	}
2862	if (!ret && enlarge)
2863		memcg_oom_recover(memcg);
2864	return ret;
2865}
2866
2867unsigned long mem_cgroup_soft_limit_reclaim(struct zone *zone, int order,
2868						gfp_t gfp_mask, int nid,
2869						int zid)
2870{
2871	unsigned long nr_reclaimed = 0;
2872	struct mem_cgroup_per_zone *mz, *next_mz = NULL;
2873	unsigned long reclaimed;
2874	int loop = 0;
2875	struct mem_cgroup_tree_per_zone *mctz;
2876	unsigned long long excess;
2877
2878	if (order > 0)
2879		return 0;
2880
2881	mctz = soft_limit_tree_node_zone(nid, zid);
2882	/*
2883	 * This loop can run a while, specially if mem_cgroup's continuously
2884	 * keep exceeding their soft limit and putting the system under
2885	 * pressure
2886	 */
2887	do {
2888		if (next_mz)
2889			mz = next_mz;
2890		else
2891			mz = mem_cgroup_largest_soft_limit_node(mctz);
2892		if (!mz)
2893			break;
2894
2895		reclaimed = mem_cgroup_hierarchical_reclaim(mz->mem, zone,
2896						gfp_mask,
2897						MEM_CGROUP_RECLAIM_SOFT);
2898		nr_reclaimed += reclaimed;
2899		spin_lock(&mctz->lock);
2900
2901		/*
2902		 * If we failed to reclaim anything from this memory cgroup
2903		 * it is time to move on to the next cgroup
2904		 */
2905		next_mz = NULL;
2906		if (!reclaimed) {
2907			do {
2908				/*
2909				 * Loop until we find yet another one.
2910				 *
2911				 * By the time we get the soft_limit lock
2912				 * again, someone might have aded the
2913				 * group back on the RB tree. Iterate to
2914				 * make sure we get a different mem.
2915				 * mem_cgroup_largest_soft_limit_node returns
2916				 * NULL if no other cgroup is present on
2917				 * the tree
2918				 */
2919				next_mz =
2920				__mem_cgroup_largest_soft_limit_node(mctz);
2921				if (next_mz == mz) {
2922					css_put(&next_mz->mem->css);
2923					next_mz = NULL;
2924				} else /* next_mz == NULL or other memcg */
2925					break;
2926			} while (1);
2927		}
2928		__mem_cgroup_remove_exceeded(mz->mem, mz, mctz);
2929		excess = res_counter_soft_limit_excess(&mz->mem->res);
2930		/*
2931		 * One school of thought says that we should not add
2932		 * back the node to the tree if reclaim returns 0.
2933		 * But our reclaim could return 0, simply because due
2934		 * to priority we are exposing a smaller subset of
2935		 * memory to reclaim from. Consider this as a longer
2936		 * term TODO.
2937		 */
2938		/* If excess == 0, no tree ops */
2939		__mem_cgroup_insert_exceeded(mz->mem, mz, mctz, excess);
2940		spin_unlock(&mctz->lock);
2941		css_put(&mz->mem->css);
2942		loop++;
2943		/*
2944		 * Could not reclaim anything and there are no more
2945		 * mem cgroups to try or we seem to be looping without
2946		 * reclaiming anything.
2947		 */
2948		if (!nr_reclaimed &&
2949			(next_mz == NULL ||
2950			loop > MEM_CGROUP_MAX_SOFT_LIMIT_RECLAIM_LOOPS))
2951			break;
2952	} while (!nr_reclaimed);
2953	if (next_mz)
2954		css_put(&next_mz->mem->css);
2955	return nr_reclaimed;
2956}
2957
2958/*
2959 * This routine traverse page_cgroup in given list and drop them all.
2960 * *And* this routine doesn't reclaim page itself, just removes page_cgroup.
2961 */
2962static int mem_cgroup_force_empty_list(struct mem_cgroup *mem,
2963				int node, int zid, enum lru_list lru)
2964{
2965	struct zone *zone;
2966	struct mem_cgroup_per_zone *mz;
2967	struct page_cgroup *pc, *busy;
2968	unsigned long flags, loop;
2969	struct list_head *list;
2970	int ret = 0;
2971
2972	zone = &NODE_DATA(node)->node_zones[zid];
2973	mz = mem_cgroup_zoneinfo(mem, node, zid);
2974	list = &mz->lists[lru];
2975
2976	loop = MEM_CGROUP_ZSTAT(mz, lru);
2977	/* give some margin against EBUSY etc...*/
2978	loop += 256;
2979	busy = NULL;
2980	while (loop--) {
2981		ret = 0;
2982		spin_lock_irqsave(&zone->lru_lock, flags);
2983		if (list_empty(list)) {
2984			spin_unlock_irqrestore(&zone->lru_lock, flags);
2985			break;
2986		}
2987		pc = list_entry(list->prev, struct page_cgroup, lru);
2988		if (busy == pc) {
2989			list_move(&pc->lru, list);
2990			busy = NULL;
2991			spin_unlock_irqrestore(&zone->lru_lock, flags);
2992			continue;
2993		}
2994		spin_unlock_irqrestore(&zone->lru_lock, flags);
2995
2996		ret = mem_cgroup_move_parent(pc, mem, GFP_KERNEL);
2997		if (ret == -ENOMEM)
2998			break;
2999
3000		if (ret == -EBUSY || ret == -EINVAL) {
3001			/* found lock contention or "pc" is obsolete. */
3002			busy = pc;
3003			cond_resched();
3004		} else
3005			busy = NULL;
3006	}
3007
3008	if (!ret && !list_empty(list))
3009		return -EBUSY;
3010	return ret;
3011}
3012
3013/*
3014 * make mem_cgroup's charge to be 0 if there is no task.
3015 * This enables deleting this mem_cgroup.
3016 */
3017static int mem_cgroup_force_empty(struct mem_cgroup *mem, bool free_all)
3018{
3019	int ret;
3020	int node, zid, shrink;
3021	int nr_retries = MEM_CGROUP_RECLAIM_RETRIES;
3022	struct cgroup *cgrp = mem->css.cgroup;
3023
3024	css_get(&mem->css);
3025
3026	shrink = 0;
3027	/* should free all ? */
3028	if (free_all)
3029		goto try_to_free;
3030move_account:
3031	do {
3032		ret = -EBUSY;
3033		if (cgroup_task_count(cgrp) || !list_empty(&cgrp->children))
3034			goto out;
3035		ret = -EINTR;
3036		if (signal_pending(current))
3037			goto out;
3038		/* This is for making all *used* pages to be on LRU. */
3039		lru_add_drain_all();
3040		drain_all_stock_sync();
3041		ret = 0;
3042		for_each_node_state(node, N_HIGH_MEMORY) {
3043			for (zid = 0; !ret && zid < MAX_NR_ZONES; zid++) {
3044				enum lru_list l;
3045				for_each_lru(l) {
3046					ret = mem_cgroup_force_empty_list(mem,
3047							node, zid, l);
3048					if (ret)
3049						break;
3050				}
3051			}
3052			if (ret)
3053				break;
3054		}
3055		memcg_oom_recover(mem);
3056		/* it seems parent cgroup doesn't have enough mem */
3057		if (ret == -ENOMEM)
3058			goto try_to_free;
3059		cond_resched();
3060	/* "ret" should also be checked to ensure all lists are empty. */
3061	} while (mem->res.usage > 0 || ret);
3062out:
3063	css_put(&mem->css);
3064	return ret;
3065
3066try_to_free:
3067	/* returns EBUSY if there is a task or if we come here twice. */
3068	if (cgroup_task_count(cgrp) || !list_empty(&cgrp->children) || shrink) {
3069		ret = -EBUSY;
3070		goto out;
3071	}
3072	/* we call try-to-free pages for make this cgroup empty */
3073	lru_add_drain_all();
3074	/* try to free all pages in this cgroup */
3075	shrink = 1;
3076	while (nr_retries && mem->res.usage > 0) {
3077		int progress;
3078
3079		if (signal_pending(current)) {
3080			ret = -EINTR;
3081			goto out;
3082		}
3083		progress = try_to_free_mem_cgroup_pages(mem, GFP_KERNEL,
3084						false, get_swappiness(mem));
3085		if (!progress) {
3086			nr_retries--;
3087			/* maybe some writeback is necessary */
3088			congestion_wait(BLK_RW_ASYNC, HZ/10);
3089		}
3090
3091	}
3092	lru_add_drain();
3093	/* try move_account...there may be some *locked* pages. */
3094	goto move_account;
3095}
3096
3097int mem_cgroup_force_empty_write(struct cgroup *cont, unsigned int event)
3098{
3099	return mem_cgroup_force_empty(mem_cgroup_from_cont(cont), true);
3100}
3101
3102
3103static u64 mem_cgroup_hierarchy_read(struct cgroup *cont, struct cftype *cft)
3104{
3105	return mem_cgroup_from_cont(cont)->use_hierarchy;
3106}
3107
3108static int mem_cgroup_hierarchy_write(struct cgroup *cont, struct cftype *cft,
3109					u64 val)
3110{
3111	int retval = 0;
3112	struct mem_cgroup *mem = mem_cgroup_from_cont(cont);
3113	struct cgroup *parent = cont->parent;
3114	struct mem_cgroup *parent_mem = NULL;
3115
3116	if (parent)
3117		parent_mem = mem_cgroup_from_cont(parent);
3118
3119	cgroup_lock();
3120	/*
3121	 * If parent's use_hierarchy is set, we can't make any modifications
3122	 * in the child subtrees. If it is unset, then the change can
3123	 * occur, provided the current cgroup has no children.
3124	 *
3125	 * For the root cgroup, parent_mem is NULL, we allow value to be
3126	 * set if there are no children.
3127	 */
3128	if ((!parent_mem || !parent_mem->use_hierarchy) &&
3129				(val == 1 || val == 0)) {
3130		if (list_empty(&cont->children))
3131			mem->use_hierarchy = val;
3132		else
3133			retval = -EBUSY;
3134	} else
3135		retval = -EINVAL;
3136	cgroup_unlock();
3137
3138	return retval;
3139}
3140
3141struct mem_cgroup_idx_data {
3142	s64 val;
3143	enum mem_cgroup_stat_index idx;
3144};
3145
3146static int
3147mem_cgroup_get_idx_stat(struct mem_cgroup *mem, void *data)
3148{
3149	struct mem_cgroup_idx_data *d = data;
3150	d->val += mem_cgroup_read_stat(mem, d->idx);
3151	return 0;
3152}
3153
3154static void
3155mem_cgroup_get_recursive_idx_stat(struct mem_cgroup *mem,
3156				enum mem_cgroup_stat_index idx, s64 *val)
3157{
3158	struct mem_cgroup_idx_data d;
3159	d.idx = idx;
3160	d.val = 0;
3161	mem_cgroup_walk_tree(mem, &d, mem_cgroup_get_idx_stat);
3162	*val = d.val;
3163}
3164
3165static inline u64 mem_cgroup_usage(struct mem_cgroup *mem, bool swap)
3166{
3167	u64 idx_val, val;
3168
3169	if (!mem_cgroup_is_root(mem)) {
3170		if (!swap)
3171			return res_counter_read_u64(&mem->res, RES_USAGE);
3172		else
3173			return res_counter_read_u64(&mem->memsw, RES_USAGE);
3174	}
3175
3176	mem_cgroup_get_recursive_idx_stat(mem, MEM_CGROUP_STAT_CACHE, &idx_val);
3177	val = idx_val;
3178	mem_cgroup_get_recursive_idx_stat(mem, MEM_CGROUP_STAT_RSS, &idx_val);
3179	val += idx_val;
3180
3181	if (swap) {
3182		mem_cgroup_get_recursive_idx_stat(mem,
3183				MEM_CGROUP_STAT_SWAPOUT, &idx_val);
3184		val += idx_val;
3185	}
3186
3187	return val << PAGE_SHIFT;
3188}
3189
3190static u64 mem_cgroup_read(struct cgroup *cont, struct cftype *cft)
3191{
3192	struct mem_cgroup *mem = mem_cgroup_from_cont(cont);
3193	u64 val;
3194	int type, name;
3195
3196	type = MEMFILE_TYPE(cft->private);
3197	name = MEMFILE_ATTR(cft->private);
3198	switch (type) {
3199	case _MEM:
3200		if (name == RES_USAGE)
3201			val = mem_cgroup_usage(mem, false);
3202		else
3203			val = res_counter_read_u64(&mem->res, name);
3204		break;
3205	case _MEMSWAP:
3206		if (name == RES_USAGE)
3207			val = mem_cgroup_usage(mem, true);
3208		else
3209			val = res_counter_read_u64(&mem->memsw, name);
3210		break;
3211	default:
3212		BUG();
3213		break;
3214	}
3215	return val;
3216}
3217/*
3218 * The user of this function is...
3219 * RES_LIMIT.
3220 */
3221static int mem_cgroup_write(struct cgroup *cont, struct cftype *cft,
3222			    const char *buffer)
3223{
3224	struct mem_cgroup *memcg = mem_cgroup_from_cont(cont);
3225	int type, name;
3226	unsigned long long val;
3227	int ret;
3228
3229	type = MEMFILE_TYPE(cft->private);
3230	name = MEMFILE_ATTR(cft->private);
3231	switch (name) {
3232	case RES_LIMIT:
3233		if (mem_cgroup_is_root(memcg)) { /* Can't set limit on root */
3234			ret = -EINVAL;
3235			break;
3236		}
3237		/* This function does all necessary parse...reuse it */
3238		ret = res_counter_memparse_write_strategy(buffer, &val);
3239		if (ret)
3240			break;
3241		if (type == _MEM)
3242			ret = mem_cgroup_resize_limit(memcg, val);
3243		else
3244			ret = mem_cgroup_resize_memsw_limit(memcg, val);
3245		break;
3246	case RES_SOFT_LIMIT:
3247		ret = res_counter_memparse_write_strategy(buffer, &val);
3248		if (ret)
3249			break;
3250		/*
3251		 * For memsw, soft limits are hard to implement in terms
3252		 * of semantics, for now, we support soft limits for
3253		 * control without swap
3254		 */
3255		if (type == _MEM)
3256			ret = res_counter_set_soft_limit(&memcg->res, val);
3257		else
3258			ret = -EINVAL;
3259		break;
3260	default:
3261		ret = -EINVAL; /* should be BUG() ? */
3262		break;
3263	}
3264	return ret;
3265}
3266
3267static void memcg_get_hierarchical_limit(struct mem_cgroup *memcg,
3268		unsigned long long *mem_limit, unsigned long long *memsw_limit)
3269{
3270	struct cgroup *cgroup;
3271	unsigned long long min_limit, min_memsw_limit, tmp;
3272
3273	min_limit = res_counter_read_u64(&memcg->res, RES_LIMIT);
3274	min_memsw_limit = res_counter_read_u64(&memcg->memsw, RES_LIMIT);
3275	cgroup = memcg->css.cgroup;
3276	if (!memcg->use_hierarchy)
3277		goto out;
3278
3279	while (cgroup->parent) {
3280		cgroup = cgroup->parent;
3281		memcg = mem_cgroup_from_cont(cgroup);
3282		if (!memcg->use_hierarchy)
3283			break;
3284		tmp = res_counter_read_u64(&memcg->res, RES_LIMIT);
3285		min_limit = min(min_limit, tmp);
3286		tmp = res_counter_read_u64(&memcg->memsw, RES_LIMIT);
3287		min_memsw_limit = min(min_memsw_limit, tmp);
3288	}
3289out:
3290	*mem_limit = min_limit;
3291	*memsw_limit = min_memsw_limit;
3292	return;
3293}
3294
3295static int mem_cgroup_reset(struct cgroup *cont, unsigned int event)
3296{
3297	struct mem_cgroup *mem;
3298	int type, name;
3299
3300	mem = mem_cgroup_from_cont(cont);
3301	type = MEMFILE_TYPE(event);
3302	name = MEMFILE_ATTR(event);
3303	switch (name) {
3304	case RES_MAX_USAGE:
3305		if (type == _MEM)
3306			res_counter_reset_max(&mem->res);
3307		else
3308			res_counter_reset_max(&mem->memsw);
3309		break;
3310	case RES_FAILCNT:
3311		if (type == _MEM)
3312			res_counter_reset_failcnt(&mem->res);
3313		else
3314			res_counter_reset_failcnt(&mem->memsw);
3315		break;
3316	}
3317
3318	return 0;
3319}
3320
3321static u64 mem_cgroup_move_charge_read(struct cgroup *cgrp,
3322					struct cftype *cft)
3323{
3324	return mem_cgroup_from_cont(cgrp)->move_charge_at_immigrate;
3325}
3326
3327#ifdef CONFIG_MMU
3328static int mem_cgroup_move_charge_write(struct cgroup *cgrp,
3329					struct cftype *cft, u64 val)
3330{
3331	struct mem_cgroup *mem = mem_cgroup_from_cont(cgrp);
3332
3333	if (val >= (1 << NR_MOVE_TYPE))
3334		return -EINVAL;
3335	/*
3336	 * We check this value several times in both in can_attach() and
3337	 * attach(), so we need cgroup lock to prevent this value from being
3338	 * inconsistent.
3339	 */
3340	cgroup_lock();
3341	mem->move_charge_at_immigrate = val;
3342	cgroup_unlock();
3343
3344	return 0;
3345}
3346#else
3347static int mem_cgroup_move_charge_write(struct cgroup *cgrp,
3348					struct cftype *cft, u64 val)
3349{
3350	return -ENOSYS;
3351}
3352#endif
3353
3354
3355/* For read statistics */
3356enum {
3357	MCS_CACHE,
3358	MCS_RSS,
3359	MCS_FILE_MAPPED,
3360	MCS_PGPGIN,
3361	MCS_PGPGOUT,
3362	MCS_SWAP,
3363	MCS_INACTIVE_ANON,
3364	MCS_ACTIVE_ANON,
3365	MCS_INACTIVE_FILE,
3366	MCS_ACTIVE_FILE,
3367	MCS_UNEVICTABLE,
3368	NR_MCS_STAT,
3369};
3370
3371struct mcs_total_stat {
3372	s64 stat[NR_MCS_STAT];
3373};
3374
3375struct {
3376	char *local_name;
3377	char *total_name;
3378} memcg_stat_strings[NR_MCS_STAT] = {
3379	{"cache", "total_cache"},
3380	{"rss", "total_rss"},
3381	{"mapped_file", "total_mapped_file"},
3382	{"pgpgin", "total_pgpgin"},
3383	{"pgpgout", "total_pgpgout"},
3384	{"swap", "total_swap"},
3385	{"inactive_anon", "total_inactive_anon"},
3386	{"active_anon", "total_active_anon"},
3387	{"inactive_file", "total_inactive_file"},
3388	{"active_file", "total_active_file"},
3389	{"unevictable", "total_unevictable"}
3390};
3391
3392
3393static int mem_cgroup_get_local_stat(struct mem_cgroup *mem, void *data)
3394{
3395	struct mcs_total_stat *s = data;
3396	s64 val;
3397
3398	/* per cpu stat */
3399	val = mem_cgroup_read_stat(mem, MEM_CGROUP_STAT_CACHE);
3400	s->stat[MCS_CACHE] += val * PAGE_SIZE;
3401	val = mem_cgroup_read_stat(mem, MEM_CGROUP_STAT_RSS);
3402	s->stat[MCS_RSS] += val * PAGE_SIZE;
3403	val = mem_cgroup_read_stat(mem, MEM_CGROUP_STAT_FILE_MAPPED);
3404	s->stat[MCS_FILE_MAPPED] += val * PAGE_SIZE;
3405	val = mem_cgroup_read_stat(mem, MEM_CGROUP_STAT_PGPGIN_COUNT);
3406	s->stat[MCS_PGPGIN] += val;
3407	val = mem_cgroup_read_stat(mem, MEM_CGROUP_STAT_PGPGOUT_COUNT);
3408	s->stat[MCS_PGPGOUT] += val;
3409	if (do_swap_account) {
3410		val = mem_cgroup_read_stat(mem, MEM_CGROUP_STAT_SWAPOUT);
3411		s->stat[MCS_SWAP] += val * PAGE_SIZE;
3412	}
3413
3414	/* per zone stat */
3415	val = mem_cgroup_get_local_zonestat(mem, LRU_INACTIVE_ANON);
3416	s->stat[MCS_INACTIVE_ANON] += val * PAGE_SIZE;
3417	val = mem_cgroup_get_local_zonestat(mem, LRU_ACTIVE_ANON);
3418	s->stat[MCS_ACTIVE_ANON] += val * PAGE_SIZE;
3419	val = mem_cgroup_get_local_zonestat(mem, LRU_INACTIVE_FILE);
3420	s->stat[MCS_INACTIVE_FILE] += val * PAGE_SIZE;
3421	val = mem_cgroup_get_local_zonestat(mem, LRU_ACTIVE_FILE);
3422	s->stat[MCS_ACTIVE_FILE] += val * PAGE_SIZE;
3423	val = mem_cgroup_get_local_zonestat(mem, LRU_UNEVICTABLE);
3424	s->stat[MCS_UNEVICTABLE] += val * PAGE_SIZE;
3425	return 0;
3426}
3427
3428static void
3429mem_cgroup_get_total_stat(struct mem_cgroup *mem, struct mcs_total_stat *s)
3430{
3431	mem_cgroup_walk_tree(mem, s, mem_cgroup_get_local_stat);
3432}
3433
3434static int mem_control_stat_show(struct cgroup *cont, struct cftype *cft,
3435				 struct cgroup_map_cb *cb)
3436{
3437	struct mem_cgroup *mem_cont = mem_cgroup_from_cont(cont);
3438	struct mcs_total_stat mystat;
3439	int i;
3440
3441	memset(&mystat, 0, sizeof(mystat));
3442	mem_cgroup_get_local_stat(mem_cont, &mystat);
3443
3444	for (i = 0; i < NR_MCS_STAT; i++) {
3445		if (i == MCS_SWAP && !do_swap_account)
3446			continue;
3447		cb->fill(cb, memcg_stat_strings[i].local_name, mystat.stat[i]);
3448	}
3449
3450	/* Hierarchical information */
3451	{
3452		unsigned long long limit, memsw_limit;
3453		memcg_get_hierarchical_limit(mem_cont, &limit, &memsw_limit);
3454		cb->fill(cb, "hierarchical_memory_limit", limit);
3455		if (do_swap_account)
3456			cb->fill(cb, "hierarchical_memsw_limit", memsw_limit);
3457	}
3458
3459	memset(&mystat, 0, sizeof(mystat));
3460	mem_cgroup_get_total_stat(mem_cont, &mystat);
3461	for (i = 0; i < NR_MCS_STAT; i++) {
3462		if (i == MCS_SWAP && !do_swap_account)
3463			continue;
3464		cb->fill(cb, memcg_stat_strings[i].total_name, mystat.stat[i]);
3465	}
3466
3467#ifdef CONFIG_DEBUG_VM
3468	cb->fill(cb, "inactive_ratio", calc_inactive_ratio(mem_cont, NULL));
3469
3470	{
3471		int nid, zid;
3472		struct mem_cgroup_per_zone *mz;
3473		unsigned long recent_rotated[2] = {0, 0};
3474		unsigned long recent_scanned[2] = {0, 0};
3475
3476		for_each_online_node(nid)
3477			for (zid = 0; zid < MAX_NR_ZONES; zid++) {
3478				mz = mem_cgroup_zoneinfo(mem_cont, nid, zid);
3479
3480				recent_rotated[0] +=
3481					mz->reclaim_stat.recent_rotated[0];
3482				recent_rotated[1] +=
3483					mz->reclaim_stat.recent_rotated[1];
3484				recent_scanned[0] +=
3485					mz->reclaim_stat.recent_scanned[0];
3486				recent_scanned[1] +=
3487					mz->reclaim_stat.recent_scanned[1];
3488			}
3489		cb->fill(cb, "recent_rotated_anon", recent_rotated[0]);
3490		cb->fill(cb, "recent_rotated_file", recent_rotated[1]);
3491		cb->fill(cb, "recent_scanned_anon", recent_scanned[0]);
3492		cb->fill(cb, "recent_scanned_file", recent_scanned[1]);
3493	}
3494#endif
3495
3496	return 0;
3497}
3498
3499static u64 mem_cgroup_swappiness_read(struct cgroup *cgrp, struct cftype *cft)
3500{
3501	struct mem_cgroup *memcg = mem_cgroup_from_cont(cgrp);
3502
3503	return get_swappiness(memcg);
3504}
3505
3506static int mem_cgroup_swappiness_write(struct cgroup *cgrp, struct cftype *cft,
3507				       u64 val)
3508{
3509	struct mem_cgroup *memcg = mem_cgroup_from_cont(cgrp);
3510	struct mem_cgroup *parent;
3511
3512	if (val > 100)
3513		return -EINVAL;
3514
3515	if (cgrp->parent == NULL)
3516		return -EINVAL;
3517
3518	parent = mem_cgroup_from_cont(cgrp->parent);
3519
3520	cgroup_lock();
3521
3522	/* If under hierarchy, only empty-root can set this value */
3523	if ((parent->use_hierarchy) ||
3524	    (memcg->use_hierarchy && !list_empty(&cgrp->children))) {
3525		cgroup_unlock();
3526		return -EINVAL;
3527	}
3528
3529	spin_lock(&memcg->reclaim_param_lock);
3530	memcg->swappiness = val;
3531	spin_unlock(&memcg->reclaim_param_lock);
3532
3533	cgroup_unlock();
3534
3535	return 0;
3536}
3537
3538static void __mem_cgroup_threshold(struct mem_cgroup *memcg, bool swap)
3539{
3540	struct mem_cgroup_threshold_ary *t;
3541	u64 usage;
3542	int i;
3543
3544	rcu_read_lock();
3545	if (!swap)
3546		t = rcu_dereference(memcg->thresholds.primary);
3547	else
3548		t = rcu_dereference(memcg->memsw_thresholds.primary);
3549
3550	if (!t)
3551		goto unlock;
3552
3553	usage = mem_cgroup_usage(memcg, swap);
3554
3555	/*
3556	 * current_threshold points to threshold just below usage.
3557	 * If it's not true, a threshold was crossed after last
3558	 * call of __mem_cgroup_threshold().
3559	 */
3560	i = t->current_threshold;
3561
3562	/*
3563	 * Iterate backward over array of thresholds starting from
3564	 * current_threshold and check if a threshold is crossed.
3565	 * If none of thresholds below usage is crossed, we read
3566	 * only one element of the array here.
3567	 */
3568	for (; i >= 0 && unlikely(t->entries[i].threshold > usage); i--)
3569		eventfd_signal(t->entries[i].eventfd, 1);
3570
3571	/* i = current_threshold + 1 */
3572	i++;
3573
3574	/*
3575	 * Iterate forward over array of thresholds starting from
3576	 * current_threshold+1 and check if a threshold is crossed.
3577	 * If none of thresholds above usage is crossed, we read
3578	 * only one element of the array here.
3579	 */
3580	for (; i < t->size && unlikely(t->entries[i].threshold <= usage); i++)
3581		eventfd_signal(t->entries[i].eventfd, 1);
3582
3583	/* Update current_threshold */
3584	t->current_threshold = i - 1;
3585unlock:
3586	rcu_read_unlock();
3587}
3588
3589static void mem_cgroup_threshold(struct mem_cgroup *memcg)
3590{
3591	__mem_cgroup_threshold(memcg, false);
3592	if (do_swap_account)
3593		__mem_cgroup_threshold(memcg, true);
3594}
3595
3596static int compare_thresholds(const void *a, const void *b)
3597{
3598	const struct mem_cgroup_threshold *_a = a;
3599	const struct mem_cgroup_threshold *_b = b;
3600
3601	return _a->threshold - _b->threshold;
3602}
3603
3604static int mem_cgroup_oom_notify_cb(struct mem_cgroup *mem, void *data)
3605{
3606	struct mem_cgroup_eventfd_list *ev;
3607
3608	list_for_each_entry(ev, &mem->oom_notify, list)
3609		eventfd_signal(ev->eventfd, 1);
3610	return 0;
3611}
3612
3613static void mem_cgroup_oom_notify(struct mem_cgroup *mem)
3614{
3615	mem_cgroup_walk_tree(mem, NULL, mem_cgroup_oom_notify_cb);
3616}
3617
3618static int mem_cgroup_usage_register_event(struct cgroup *cgrp,
3619	struct cftype *cft, struct eventfd_ctx *eventfd, const char *args)
3620{
3621	struct mem_cgroup *memcg = mem_cgroup_from_cont(cgrp);
3622	struct mem_cgroup_thresholds *thresholds;
3623	struct mem_cgroup_threshold_ary *new;
3624	int type = MEMFILE_TYPE(cft->private);
3625	u64 threshold, usage;
3626	int i, size, ret;
3627
3628	ret = res_counter_memparse_write_strategy(args, &threshold);
3629	if (ret)
3630		return ret;
3631
3632	mutex_lock(&memcg->thresholds_lock);
3633
3634	if (type == _MEM)
3635		thresholds = &memcg->thresholds;
3636	else if (type == _MEMSWAP)
3637		thresholds = &memcg->memsw_thresholds;
3638	else
3639		BUG();
3640
3641	usage = mem_cgroup_usage(memcg, type == _MEMSWAP);
3642
3643	/* Check if a threshold crossed before adding a new one */
3644	if (thresholds->primary)
3645		__mem_cgroup_threshold(memcg, type == _MEMSWAP);
3646
3647	size = thresholds->primary ? thresholds->primary->size + 1 : 1;
3648
3649	/* Allocate memory for new array of thresholds */
3650	new = kmalloc(sizeof(*new) + size * sizeof(struct mem_cgroup_threshold),
3651			GFP_KERNEL);
3652	if (!new) {
3653		ret = -ENOMEM;
3654		goto unlock;
3655	}
3656	new->size = size;
3657
3658	/* Copy thresholds (if any) to new array */
3659	if (thresholds->primary) {
3660		memcpy(new->entries, thresholds->primary->entries, (size - 1) *
3661				sizeof(struct mem_cgroup_threshold));
3662	}
3663
3664	/* Add new threshold */
3665	new->entries[size - 1].eventfd = eventfd;
3666	new->entries[size - 1].threshold = threshold;
3667
3668	/* Sort thresholds. Registering of new threshold isn't time-critical */
3669	sort(new->entries, size, sizeof(struct mem_cgroup_threshold),
3670			compare_thresholds, NULL);
3671
3672	/* Find current threshold */
3673	new->current_threshold = -1;
3674	for (i = 0; i < size; i++) {
3675		if (new->entries[i].threshold < usage) {
3676			/*
3677			 * new->current_threshold will not be used until
3678			 * rcu_assign_pointer(), so it's safe to increment
3679			 * it here.
3680			 */
3681			++new->current_threshold;
3682		}
3683	}
3684
3685	/* Free old spare buffer and save old primary buffer as spare */
3686	kfree(thresholds->spare);
3687	thresholds->spare = thresholds->primary;
3688
3689	rcu_assign_pointer(thresholds->primary, new);
3690
3691	/* To be sure that nobody uses thresholds */
3692	synchronize_rcu();
3693
3694unlock:
3695	mutex_unlock(&memcg->thresholds_lock);
3696
3697	return ret;
3698}
3699
3700static void mem_cgroup_usage_unregister_event(struct cgroup *cgrp,
3701	struct cftype *cft, struct eventfd_ctx *eventfd)
3702{
3703	struct mem_cgroup *memcg = mem_cgroup_from_cont(cgrp);
3704	struct mem_cgroup_thresholds *thresholds;
3705	struct mem_cgroup_threshold_ary *new;
3706	int type = MEMFILE_TYPE(cft->private);
3707	u64 usage;
3708	int i, j, size;
3709
3710	mutex_lock(&memcg->thresholds_lock);
3711	if (type == _MEM)
3712		thresholds = &memcg->thresholds;
3713	else if (type == _MEMSWAP)
3714		thresholds = &memcg->memsw_thresholds;
3715	else
3716		BUG();
3717
3718	/*
3719	 * Something went wrong if we trying to unregister a threshold
3720	 * if we don't have thresholds
3721	 */
3722	BUG_ON(!thresholds);
3723
3724	usage = mem_cgroup_usage(memcg, type == _MEMSWAP);
3725
3726	/* Check if a threshold crossed before removing */
3727	__mem_cgroup_threshold(memcg, type == _MEMSWAP);
3728
3729	/* Calculate new number of threshold */
3730	size = 0;
3731	for (i = 0; i < thresholds->primary->size; i++) {
3732		if (thresholds->primary->entries[i].eventfd != eventfd)
3733			size++;
3734	}
3735
3736	new = thresholds->spare;
3737
3738	/* Set thresholds array to NULL if we don't have thresholds */
3739	if (!size) {
3740		kfree(new);
3741		new = NULL;
3742		goto swap_buffers;
3743	}
3744
3745	new->size = size;
3746
3747	/* Copy thresholds and find current threshold */
3748	new->current_threshold = -1;
3749	for (i = 0, j = 0; i < thresholds->primary->size; i++) {
3750		if (thresholds->primary->entries[i].eventfd == eventfd)
3751			continue;
3752
3753		new->entries[j] = thresholds->primary->entries[i];
3754		if (new->entries[j].threshold < usage) {
3755			/*
3756			 * new->current_threshold will not be used
3757			 * until rcu_assign_pointer(), so it's safe to increment
3758			 * it here.
3759			 */
3760			++new->current_threshold;
3761		}
3762		j++;
3763	}
3764
3765swap_buffers:
3766	/* Swap primary and spare array */
3767	thresholds->spare = thresholds->primary;
3768	rcu_assign_pointer(thresholds->primary, new);
3769
3770	/* To be sure that nobody uses thresholds */
3771	synchronize_rcu();
3772
3773	mutex_unlock(&memcg->thresholds_lock);
3774}
3775
3776static int mem_cgroup_oom_register_event(struct cgroup *cgrp,
3777	struct cftype *cft, struct eventfd_ctx *eventfd, const char *args)
3778{
3779	struct mem_cgroup *memcg = mem_cgroup_from_cont(cgrp);
3780	struct mem_cgroup_eventfd_list *event;
3781	int type = MEMFILE_TYPE(cft->private);
3782
3783	BUG_ON(type != _OOM_TYPE);
3784	event = kmalloc(sizeof(*event),	GFP_KERNEL);
3785	if (!event)
3786		return -ENOMEM;
3787
3788	mutex_lock(&memcg_oom_mutex);
3789
3790	event->eventfd = eventfd;
3791	list_add(&event->list, &memcg->oom_notify);
3792
3793	/* already in OOM ? */
3794	if (atomic_read(&memcg->oom_lock))
3795		eventfd_signal(eventfd, 1);
3796	mutex_unlock(&memcg_oom_mutex);
3797
3798	return 0;
3799}
3800
3801static void mem_cgroup_oom_unregister_event(struct cgroup *cgrp,
3802	struct cftype *cft, struct eventfd_ctx *eventfd)
3803{
3804	struct mem_cgroup *mem = mem_cgroup_from_cont(cgrp);
3805	struct mem_cgroup_eventfd_list *ev, *tmp;
3806	int type = MEMFILE_TYPE(cft->private);
3807
3808	BUG_ON(type != _OOM_TYPE);
3809
3810	mutex_lock(&memcg_oom_mutex);
3811
3812	list_for_each_entry_safe(ev, tmp, &mem->oom_notify, list) {
3813		if (ev->eventfd == eventfd) {
3814			list_del(&ev->list);
3815			kfree(ev);
3816		}
3817	}
3818
3819	mutex_unlock(&memcg_oom_mutex);
3820}
3821
3822static int mem_cgroup_oom_control_read(struct cgroup *cgrp,
3823	struct cftype *cft,  struct cgroup_map_cb *cb)
3824{
3825	struct mem_cgroup *mem = mem_cgroup_from_cont(cgrp);
3826
3827	cb->fill(cb, "oom_kill_disable", mem->oom_kill_disable);
3828
3829	if (atomic_read(&mem->oom_lock))
3830		cb->fill(cb, "under_oom", 1);
3831	else
3832		cb->fill(cb, "under_oom", 0);
3833	return 0;
3834}
3835
3836static int mem_cgroup_oom_control_write(struct cgroup *cgrp,
3837	struct cftype *cft, u64 val)
3838{
3839	struct mem_cgroup *mem = mem_cgroup_from_cont(cgrp);
3840	struct mem_cgroup *parent;
3841
3842	/* cannot set to root cgroup and only 0 and 1 are allowed */
3843	if (!cgrp->parent || !((val == 0) || (val == 1)))
3844		return -EINVAL;
3845
3846	parent = mem_cgroup_from_cont(cgrp->parent);
3847
3848	cgroup_lock();
3849	/* oom-kill-disable is a flag for subhierarchy. */
3850	if ((parent->use_hierarchy) ||
3851	    (mem->use_hierarchy && !list_empty(&cgrp->children))) {
3852		cgroup_unlock();
3853		return -EINVAL;
3854	}
3855	mem->oom_kill_disable = val;
3856	if (!val)
3857		memcg_oom_recover(mem);
3858	cgroup_unlock();
3859	return 0;
3860}
3861
3862static struct cftype mem_cgroup_files[] = {
3863	{
3864		.name = "usage_in_bytes",
3865		.private = MEMFILE_PRIVATE(_MEM, RES_USAGE),
3866		.read_u64 = mem_cgroup_read,
3867		.register_event = mem_cgroup_usage_register_event,
3868		.unregister_event = mem_cgroup_usage_unregister_event,
3869	},
3870	{
3871		.name = "max_usage_in_bytes",
3872		.private = MEMFILE_PRIVATE(_MEM, RES_MAX_USAGE),
3873		.trigger = mem_cgroup_reset,
3874		.read_u64 = mem_cgroup_read,
3875	},
3876	{
3877		.name = "limit_in_bytes",
3878		.private = MEMFILE_PRIVATE(_MEM, RES_LIMIT),
3879		.write_string = mem_cgroup_write,
3880		.read_u64 = mem_cgroup_read,
3881	},
3882	{
3883		.name = "soft_limit_in_bytes",
3884		.private = MEMFILE_PRIVATE(_MEM, RES_SOFT_LIMIT),
3885		.write_string = mem_cgroup_write,
3886		.read_u64 = mem_cgroup_read,
3887	},
3888	{
3889		.name = "failcnt",
3890		.private = MEMFILE_PRIVATE(_MEM, RES_FAILCNT),
3891		.trigger = mem_cgroup_reset,
3892		.read_u64 = mem_cgroup_read,
3893	},
3894	{
3895		.name = "stat",
3896		.read_map = mem_control_stat_show,
3897	},
3898	{
3899		.name = "force_empty",
3900		.trigger = mem_cgroup_force_empty_write,
3901	},
3902	{
3903		.name = "use_hierarchy",
3904		.write_u64 = mem_cgroup_hierarchy_write,
3905		.read_u64 = mem_cgroup_hierarchy_read,
3906	},
3907	{
3908		.name = "swappiness",
3909		.read_u64 = mem_cgroup_swappiness_read,
3910		.write_u64 = mem_cgroup_swappiness_write,
3911	},
3912	{
3913		.name = "move_charge_at_immigrate",
3914		.read_u64 = mem_cgroup_move_charge_read,
3915		.write_u64 = mem_cgroup_move_charge_write,
3916	},
3917	{
3918		.name = "oom_control",
3919		.read_map = mem_cgroup_oom_control_read,
3920		.write_u64 = mem_cgroup_oom_control_write,
3921		.register_event = mem_cgroup_oom_register_event,
3922		.unregister_event = mem_cgroup_oom_unregister_event,
3923		.private = MEMFILE_PRIVATE(_OOM_TYPE, OOM_CONTROL),
3924	},
3925};
3926
3927#ifdef CONFIG_CGROUP_MEM_RES_CTLR_SWAP
3928static struct cftype memsw_cgroup_files[] = {
3929	{
3930		.name = "memsw.usage_in_bytes",
3931		.private = MEMFILE_PRIVATE(_MEMSWAP, RES_USAGE),
3932		.read_u64 = mem_cgroup_read,
3933		.register_event = mem_cgroup_usage_register_event,
3934		.unregister_event = mem_cgroup_usage_unregister_event,
3935	},
3936	{
3937		.name = "memsw.max_usage_in_bytes",
3938		.private = MEMFILE_PRIVATE(_MEMSWAP, RES_MAX_USAGE),
3939		.trigger = mem_cgroup_reset,
3940		.read_u64 = mem_cgroup_read,
3941	},
3942	{
3943		.name = "memsw.limit_in_bytes",
3944		.private = MEMFILE_PRIVATE(_MEMSWAP, RES_LIMIT),
3945		.write_string = mem_cgroup_write,
3946		.read_u64 = mem_cgroup_read,
3947	},
3948	{
3949		.name = "memsw.failcnt",
3950		.private = MEMFILE_PRIVATE(_MEMSWAP, RES_FAILCNT),
3951		.trigger = mem_cgroup_reset,
3952		.read_u64 = mem_cgroup_read,
3953	},
3954};
3955
3956static int register_memsw_files(struct cgroup *cont, struct cgroup_subsys *ss)
3957{
3958	if (!do_swap_account)
3959		return 0;
3960	return cgroup_add_files(cont, ss, memsw_cgroup_files,
3961				ARRAY_SIZE(memsw_cgroup_files));
3962};
3963#else
3964static int register_memsw_files(struct cgroup *cont, struct cgroup_subsys *ss)
3965{
3966	return 0;
3967}
3968#endif
3969
3970static int alloc_mem_cgroup_per_zone_info(struct mem_cgroup *mem, int node)
3971{
3972	struct mem_cgroup_per_node *pn;
3973	struct mem_cgroup_per_zone *mz;
3974	enum lru_list l;
3975	int zone, tmp = node;
3976	/*
3977	 * This routine is called against possible nodes.
3978	 * But it's BUG to call kmalloc() against offline node.
3979	 *
3980	 * TODO: this routine can waste much memory for nodes which will
3981	 *       never be onlined. It's better to use memory hotplug callback
3982	 *       function.
3983	 */
3984	if (!node_state(node, N_NORMAL_MEMORY))
3985		tmp = -1;
3986	pn = kmalloc_node(sizeof(*pn), GFP_KERNEL, tmp);
3987	if (!pn)
3988		return 1;
3989
3990	mem->info.nodeinfo[node] = pn;
3991	memset(pn, 0, sizeof(*pn));
3992
3993	for (zone = 0; zone < MAX_NR_ZONES; zone++) {
3994		mz = &pn->zoneinfo[zone];
3995		for_each_lru(l)
3996			INIT_LIST_HEAD(&mz->lists[l]);
3997		mz->usage_in_excess = 0;
3998		mz->on_tree = false;
3999		mz->mem = mem;
4000	}
4001	return 0;
4002}
4003
4004static void free_mem_cgroup_per_zone_info(struct mem_cgroup *mem, int node)
4005{
4006	kfree(mem->info.nodeinfo[node]);
4007}
4008
4009static struct mem_cgroup *mem_cgroup_alloc(void)
4010{
4011	struct mem_cgroup *mem;
4012	int size = sizeof(struct mem_cgroup);
4013
4014	/* Can be very big if MAX_NUMNODES is very big */
4015	if (size < PAGE_SIZE)
4016		mem = kmalloc(size, GFP_KERNEL);
4017	else
4018		mem = vmalloc(size);
4019
4020	if (!mem)
4021		return NULL;
4022
4023	memset(mem, 0, size);
4024	mem->stat = alloc_percpu(struct mem_cgroup_stat_cpu);
4025	if (!mem->stat) {
4026		if (size < PAGE_SIZE)
4027			kfree(mem);
4028		else
4029			vfree(mem);
4030		mem = NULL;
4031	}
4032	return mem;
4033}
4034
4035/*
4036 * At destroying mem_cgroup, references from swap_cgroup can remain.
4037 * (scanning all at force_empty is too costly...)
4038 *
4039 * Instead of clearing all references at force_empty, we remember
4040 * the number of reference from swap_cgroup and free mem_cgroup when
4041 * it goes down to 0.
4042 *
4043 * Removal of cgroup itself succeeds regardless of refs from swap.
4044 */
4045
4046static void __mem_cgroup_free(struct mem_cgroup *mem)
4047{
4048	int node;
4049
4050	mem_cgroup_remove_from_trees(mem);
4051	free_css_id(&mem_cgroup_subsys, &mem->css);
4052
4053	for_each_node_state(node, N_POSSIBLE)
4054		free_mem_cgroup_per_zone_info(mem, node);
4055
4056	free_percpu(mem->stat);
4057	if (sizeof(struct mem_cgroup) < PAGE_SIZE)
4058		kfree(mem);
4059	else
4060		vfree(mem);
4061}
4062
4063static void mem_cgroup_get(struct mem_cgroup *mem)
4064{
4065	atomic_inc(&mem->refcnt);
4066}
4067
4068static void __mem_cgroup_put(struct mem_cgroup *mem, int count)
4069{
4070	if (atomic_sub_and_test(count, &mem->refcnt)) {
4071		struct mem_cgroup *parent = parent_mem_cgroup(mem);
4072		__mem_cgroup_free(mem);
4073		if (parent)
4074			mem_cgroup_put(parent);
4075	}
4076}
4077
4078static void mem_cgroup_put(struct mem_cgroup *mem)
4079{
4080	__mem_cgroup_put(mem, 1);
4081}
4082
4083/*
4084 * Returns the parent mem_cgroup in memcgroup hierarchy with hierarchy enabled.
4085 */
4086static struct mem_cgroup *parent_mem_cgroup(struct mem_cgroup *mem)
4087{
4088	if (!mem->res.parent)
4089		return NULL;
4090	return mem_cgroup_from_res_counter(mem->res.parent, res);
4091}
4092
4093#ifdef CONFIG_CGROUP_MEM_RES_CTLR_SWAP
4094static void __init enable_swap_cgroup(void)
4095{
4096	if (!mem_cgroup_disabled() && really_do_swap_account)
4097		do_swap_account = 1;
4098}
4099#else
4100static void __init enable_swap_cgroup(void)
4101{
4102}
4103#endif
4104
4105static int mem_cgroup_soft_limit_tree_init(void)
4106{
4107	struct mem_cgroup_tree_per_node *rtpn;
4108	struct mem_cgroup_tree_per_zone *rtpz;
4109	int tmp, node, zone;
4110
4111	for_each_node_state(node, N_POSSIBLE) {
4112		tmp = node;
4113		if (!node_state(node, N_NORMAL_MEMORY))
4114			tmp = -1;
4115		rtpn = kzalloc_node(sizeof(*rtpn), GFP_KERNEL, tmp);
4116		if (!rtpn)
4117			return 1;
4118
4119		soft_limit_tree.rb_tree_per_node[node] = rtpn;
4120
4121		for (zone = 0; zone < MAX_NR_ZONES; zone++) {
4122			rtpz = &rtpn->rb_tree_per_zone[zone];
4123			rtpz->rb_root = RB_ROOT;
4124			spin_lock_init(&rtpz->lock);
4125		}
4126	}
4127	return 0;
4128}
4129
4130static struct cgroup_subsys_state * __ref
4131mem_cgroup_create(struct cgroup_subsys *ss, struct cgroup *cont)
4132{
4133	struct mem_cgroup *mem, *parent;
4134	long error = -ENOMEM;
4135	int node;
4136
4137	mem = mem_cgroup_alloc();
4138	if (!mem)
4139		return ERR_PTR(error);
4140
4141	for_each_node_state(node, N_POSSIBLE)
4142		if (alloc_mem_cgroup_per_zone_info(mem, node))
4143			goto free_out;
4144
4145	/* root ? */
4146	if (cont->parent == NULL) {
4147		int cpu;
4148		enable_swap_cgroup();
4149		parent = NULL;
4150		root_mem_cgroup = mem;
4151		if (mem_cgroup_soft_limit_tree_init())
4152			goto free_out;
4153		for_each_possible_cpu(cpu) {
4154			struct memcg_stock_pcp *stock =
4155						&per_cpu(memcg_stock, cpu);
4156			INIT_WORK(&stock->work, drain_local_stock);
4157		}
4158		hotcpu_notifier(memcg_stock_cpu_callback, 0);
4159	} else {
4160		parent = mem_cgroup_from_cont(cont->parent);
4161		mem->use_hierarchy = parent->use_hierarchy;
4162		mem->oom_kill_disable = parent->oom_kill_disable;
4163	}
4164
4165	if (parent && parent->use_hierarchy) {
4166		res_counter_init(&mem->res, &parent->res);
4167		res_counter_init(&mem->memsw, &parent->memsw);
4168		/*
4169		 * We increment refcnt of the parent to ensure that we can
4170		 * safely access it on res_counter_charge/uncharge.
4171		 * This refcnt will be decremented when freeing this
4172		 * mem_cgroup(see mem_cgroup_put).
4173		 */
4174		mem_cgroup_get(parent);
4175	} else {
4176		res_counter_init(&mem->res, NULL);
4177		res_counter_init(&mem->memsw, NULL);
4178	}
4179	mem->last_scanned_child = 0;
4180	spin_lock_init(&mem->reclaim_param_lock);
4181	INIT_LIST_HEAD(&mem->oom_notify);
4182
4183	if (parent)
4184		mem->swappiness = get_swappiness(parent);
4185	atomic_set(&mem->refcnt, 1);
4186	mem->move_charge_at_immigrate = 0;
4187	mutex_init(&mem->thresholds_lock);
4188	return &mem->css;
4189free_out:
4190	__mem_cgroup_free(mem);
4191	root_mem_cgroup = NULL;
4192	return ERR_PTR(error);
4193}
4194
4195static int mem_cgroup_pre_destroy(struct cgroup_subsys *ss,
4196					struct cgroup *cont)
4197{
4198	struct mem_cgroup *mem = mem_cgroup_from_cont(cont);
4199
4200	return mem_cgroup_force_empty(mem, false);
4201}
4202
4203static void mem_cgroup_destroy(struct cgroup_subsys *ss,
4204				struct cgroup *cont)
4205{
4206	struct mem_cgroup *mem = mem_cgroup_from_cont(cont);
4207
4208	mem_cgroup_put(mem);
4209}
4210
4211static int mem_cgroup_populate(struct cgroup_subsys *ss,
4212				struct cgroup *cont)
4213{
4214	int ret;
4215
4216	ret = cgroup_add_files(cont, ss, mem_cgroup_files,
4217				ARRAY_SIZE(mem_cgroup_files));
4218
4219	if (!ret)
4220		ret = register_memsw_files(cont, ss);
4221	return ret;
4222}
4223
4224#ifdef CONFIG_MMU
4225/* Handlers for move charge at task migration. */
4226#define PRECHARGE_COUNT_AT_ONCE	256
4227static int mem_cgroup_do_precharge(unsigned long count)
4228{
4229	int ret = 0;
4230	int batch_count = PRECHARGE_COUNT_AT_ONCE;
4231	struct mem_cgroup *mem = mc.to;
4232
4233	if (mem_cgroup_is_root(mem)) {
4234		mc.precharge += count;
4235		/* we don't need css_get for root */
4236		return ret;
4237	}
4238	/* try to charge at once */
4239	if (count > 1) {
4240		struct res_counter *dummy;
4241		/*
4242		 * "mem" cannot be under rmdir() because we've already checked
4243		 * by cgroup_lock_live_cgroup() that it is not removed and we
4244		 * are still under the same cgroup_mutex. So we can postpone
4245		 * css_get().
4246		 */
4247		if (res_counter_charge(&mem->res, PAGE_SIZE * count, &dummy))
4248			goto one_by_one;
4249		if (do_swap_account && res_counter_charge(&mem->memsw,
4250						PAGE_SIZE * count, &dummy)) {
4251			res_counter_uncharge(&mem->res, PAGE_SIZE * count);
4252			goto one_by_one;
4253		}
4254		mc.precharge += count;
4255		return ret;
4256	}
4257one_by_one:
4258	/* fall back to one by one charge */
4259	while (count--) {
4260		if (signal_pending(current)) {
4261			ret = -EINTR;
4262			break;
4263		}
4264		if (!batch_count--) {
4265			batch_count = PRECHARGE_COUNT_AT_ONCE;
4266			cond_resched();
4267		}
4268		ret = __mem_cgroup_try_charge(NULL, GFP_KERNEL, &mem, false);
4269		if (ret || !mem)
4270			/* mem_cgroup_clear_mc() will do uncharge later */
4271			return -ENOMEM;
4272		mc.precharge++;
4273	}
4274	return ret;
4275}
4276
4277/**
4278 * is_target_pte_for_mc - check a pte whether it is valid for move charge
4279 * @vma: the vma the pte to be checked belongs
4280 * @addr: the address corresponding to the pte to be checked
4281 * @ptent: the pte to be checked
4282 * @target: the pointer the target page or swap ent will be stored(can be NULL)
4283 *
4284 * Returns
4285 *   0(MC_TARGET_NONE): if the pte is not a target for move charge.
4286 *   1(MC_TARGET_PAGE): if the page corresponding to this pte is a target for
4287 *     move charge. if @target is not NULL, the page is stored in target->page
4288 *     with extra refcnt got(Callers should handle it).
4289 *   2(MC_TARGET_SWAP): if the swap entry corresponding to this pte is a
4290 *     target for charge migration. if @target is not NULL, the entry is stored
4291 *     in target->ent.
4292 *
4293 * Called with pte lock held.
4294 */
4295union mc_target {
4296	struct page	*page;
4297	swp_entry_t	ent;
4298};
4299
4300enum mc_target_type {
4301	MC_TARGET_NONE,	/* not used */
4302	MC_TARGET_PAGE,
4303	MC_TARGET_SWAP,
4304};
4305
4306static struct page *mc_handle_present_pte(struct vm_area_struct *vma,
4307						unsigned long addr, pte_t ptent)
4308{
4309	struct page *page = vm_normal_page(vma, addr, ptent);
4310
4311	if (!page || !page_mapped(page))
4312		return NULL;
4313	if (PageAnon(page)) {
4314		/* we don't move shared anon */
4315		if (!move_anon() || page_mapcount(page) > 2)
4316			return NULL;
4317	} else if (!move_file())
4318		/* we ignore mapcount for file pages */
4319		return NULL;
4320	if (!get_page_unless_zero(page))
4321		return NULL;
4322
4323	return page;
4324}
4325
4326static struct page *mc_handle_swap_pte(struct vm_area_struct *vma,
4327			unsigned long addr, pte_t ptent, swp_entry_t *entry)
4328{
4329	int usage_count;
4330	struct page *page = NULL;
4331	swp_entry_t ent = pte_to_swp_entry(ptent);
4332
4333	if (!move_anon() || non_swap_entry(ent))
4334		return NULL;
4335	usage_count = mem_cgroup_count_swap_user(ent, &page);
4336	if (usage_count > 1) { /* we don't move shared anon */
4337		if (page)
4338			put_page(page);
4339		return NULL;
4340	}
4341	if (do_swap_account)
4342		entry->val = ent.val;
4343
4344	return page;
4345}
4346
4347static struct page *mc_handle_file_pte(struct vm_area_struct *vma,
4348			unsigned long addr, pte_t ptent, swp_entry_t *entry)
4349{
4350	struct page *page = NULL;
4351	struct inode *inode;
4352	struct address_space *mapping;
4353	pgoff_t pgoff;
4354
4355	if (!vma->vm_file) /* anonymous vma */
4356		return NULL;
4357	if (!move_file())
4358		return NULL;
4359
4360	inode = vma->vm_file->f_path.dentry->d_inode;
4361	mapping = vma->vm_file->f_mapping;
4362	if (pte_none(ptent))
4363		pgoff = linear_page_index(vma, addr);
4364	else /* pte_file(ptent) is true */
4365		pgoff = pte_to_pgoff(ptent);
4366
4367	/* page is moved even if it's not RSS of this task(page-faulted). */
4368	if (!mapping_cap_swap_backed(mapping)) { /* normal file */
4369		page = find_get_page(mapping, pgoff);
4370	} else { /* shmem/tmpfs file. we should take account of swap too. */
4371		swp_entry_t ent;
4372		mem_cgroup_get_shmem_target(inode, pgoff, &page, &ent);
4373		if (do_swap_account)
4374			entry->val = ent.val;
4375	}
4376
4377	return page;
4378}
4379
4380static int is_target_pte_for_mc(struct vm_area_struct *vma,
4381		unsigned long addr, pte_t ptent, union mc_target *target)
4382{
4383	struct page *page = NULL;
4384	struct page_cgroup *pc;
4385	int ret = 0;
4386	swp_entry_t ent = { .val = 0 };
4387
4388	if (pte_present(ptent))
4389		page = mc_handle_present_pte(vma, addr, ptent);
4390	else if (is_swap_pte(ptent))
4391		page = mc_handle_swap_pte(vma, addr, ptent, &ent);
4392	else if (pte_none(ptent) || pte_file(ptent))
4393		page = mc_handle_file_pte(vma, addr, ptent, &ent);
4394
4395	if (!page && !ent.val)
4396		return 0;
4397	if (page) {
4398		pc = lookup_page_cgroup(page);
4399		/*
4400		 * Do only loose check w/o page_cgroup lock.
4401		 * mem_cgroup_move_account() checks the pc is valid or not under
4402		 * the lock.
4403		 */
4404		if (PageCgroupUsed(pc) && pc->mem_cgroup == mc.from) {
4405			ret = MC_TARGET_PAGE;
4406			if (target)
4407				target->page = page;
4408		}
4409		if (!ret || !target)
4410			put_page(page);
4411	}
4412	/* There is a swap entry and a page doesn't exist or isn't charged */
4413	if (ent.val && !ret &&
4414			css_id(&mc.from->css) == lookup_swap_cgroup(ent)) {
4415		ret = MC_TARGET_SWAP;
4416		if (target)
4417			target->ent = ent;
4418	}
4419	return ret;
4420}
4421
4422static int mem_cgroup_count_precharge_pte_range(pmd_t *pmd,
4423					unsigned long addr, unsigned long end,
4424					struct mm_walk *walk)
4425{
4426	struct vm_area_struct *vma = walk->private;
4427	pte_t *pte;
4428	spinlock_t *ptl;
4429
4430	pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl);
4431	for (; addr != end; pte++, addr += PAGE_SIZE)
4432		if (is_target_pte_for_mc(vma, addr, *pte, NULL))
4433			mc.precharge++;	/* increment precharge temporarily */
4434	pte_unmap_unlock(pte - 1, ptl);
4435	cond_resched();
4436
4437	return 0;
4438}
4439
4440static unsigned long mem_cgroup_count_precharge(struct mm_struct *mm)
4441{
4442	unsigned long precharge;
4443	struct vm_area_struct *vma;
4444
4445	down_read(&mm->mmap_sem);
4446	for (vma = mm->mmap; vma; vma = vma->vm_next) {
4447		struct mm_walk mem_cgroup_count_precharge_walk = {
4448			.pmd_entry = mem_cgroup_count_precharge_pte_range,
4449			.mm = mm,
4450			.private = vma,
4451		};
4452		if (is_vm_hugetlb_page(vma))
4453			continue;
4454		walk_page_range(vma->vm_start, vma->vm_end,
4455					&mem_cgroup_count_precharge_walk);
4456	}
4457	up_read(&mm->mmap_sem);
4458
4459	precharge = mc.precharge;
4460	mc.precharge = 0;
4461
4462	return precharge;
4463}
4464
4465static int mem_cgroup_precharge_mc(struct mm_struct *mm)
4466{
4467	return mem_cgroup_do_precharge(mem_cgroup_count_precharge(mm));
4468}
4469
4470static void mem_cgroup_clear_mc(void)
4471{
4472	struct mem_cgroup *from = mc.from;
4473	struct mem_cgroup *to = mc.to;
4474
4475	/* we must uncharge all the leftover precharges from mc.to */
4476	if (mc.precharge) {
4477		__mem_cgroup_cancel_charge(mc.to, mc.precharge);
4478		mc.precharge = 0;
4479	}
4480	/*
4481	 * we didn't uncharge from mc.from at mem_cgroup_move_account(), so
4482	 * we must uncharge here.
4483	 */
4484	if (mc.moved_charge) {
4485		__mem_cgroup_cancel_charge(mc.from, mc.moved_charge);
4486		mc.moved_charge = 0;
4487	}
4488	/* we must fixup refcnts and charges */
4489	if (mc.moved_swap) {
4490		/* uncharge swap account from the old cgroup */
4491		if (!mem_cgroup_is_root(mc.from))
4492			res_counter_uncharge(&mc.from->memsw,
4493						PAGE_SIZE * mc.moved_swap);
4494		__mem_cgroup_put(mc.from, mc.moved_swap);
4495
4496		if (!mem_cgroup_is_root(mc.to)) {
4497			/*
4498			 * we charged both to->res and to->memsw, so we should
4499			 * uncharge to->res.
4500			 */
4501			res_counter_uncharge(&mc.to->res,
4502						PAGE_SIZE * mc.moved_swap);
4503		}
4504		/* we've already done mem_cgroup_get(mc.to) */
4505
4506		mc.moved_swap = 0;
4507	}
4508	spin_lock(&mc.lock);
4509	mc.from = NULL;
4510	mc.to = NULL;
4511	mc.moving_task = NULL;
4512	spin_unlock(&mc.lock);
4513	memcg_oom_recover(from);
4514	memcg_oom_recover(to);
4515	wake_up_all(&mc.waitq);
4516}
4517
4518static int mem_cgroup_can_attach(struct cgroup_subsys *ss,
4519				struct cgroup *cgroup,
4520				struct task_struct *p,
4521				bool threadgroup)
4522{
4523	int ret = 0;
4524	struct mem_cgroup *mem = mem_cgroup_from_cont(cgroup);
4525
4526	if (mem->move_charge_at_immigrate) {
4527		struct mm_struct *mm;
4528		struct mem_cgroup *from = mem_cgroup_from_task(p);
4529
4530		VM_BUG_ON(from == mem);
4531
4532		mm = get_task_mm(p);
4533		if (!mm)
4534			return 0;
4535		/* We move charges only when we move a owner of the mm */
4536		if (mm->owner == p) {
4537			VM_BUG_ON(mc.from);
4538			VM_BUG_ON(mc.to);
4539			VM_BUG_ON(mc.precharge);
4540			VM_BUG_ON(mc.moved_charge);
4541			VM_BUG_ON(mc.moved_swap);
4542			VM_BUG_ON(mc.moving_task);
4543			spin_lock(&mc.lock);
4544			mc.from = from;
4545			mc.to = mem;
4546			mc.precharge = 0;
4547			mc.moved_charge = 0;
4548			mc.moved_swap = 0;
4549			mc.moving_task = current;
4550			spin_unlock(&mc.lock);
4551
4552			ret = mem_cgroup_precharge_mc(mm);
4553			if (ret)
4554				mem_cgroup_clear_mc();
4555		}
4556		mmput(mm);
4557	}
4558	return ret;
4559}
4560
4561static void mem_cgroup_cancel_attach(struct cgroup_subsys *ss,
4562				struct cgroup *cgroup,
4563				struct task_struct *p,
4564				bool threadgroup)
4565{
4566	mem_cgroup_clear_mc();
4567}
4568
4569static int mem_cgroup_move_charge_pte_range(pmd_t *pmd,
4570				unsigned long addr, unsigned long end,
4571				struct mm_walk *walk)
4572{
4573	int ret = 0;
4574	struct vm_area_struct *vma = walk->private;
4575	pte_t *pte;
4576	spinlock_t *ptl;
4577
4578retry:
4579	pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl);
4580	for (; addr != end; addr += PAGE_SIZE) {
4581		pte_t ptent = *(pte++);
4582		union mc_target target;
4583		int type;
4584		struct page *page;
4585		struct page_cgroup *pc;
4586		swp_entry_t ent;
4587
4588		if (!mc.precharge)
4589			break;
4590
4591		type = is_target_pte_for_mc(vma, addr, ptent, &target);
4592		switch (type) {
4593		case MC_TARGET_PAGE:
4594			page = target.page;
4595			if (isolate_lru_page(page))
4596				goto put;
4597			pc = lookup_page_cgroup(page);
4598			if (!mem_cgroup_move_account(pc,
4599						mc.from, mc.to, false)) {
4600				mc.precharge--;
4601				/* we uncharge from mc.from later. */
4602				mc.moved_charge++;
4603			}
4604			putback_lru_page(page);
4605put:			/* is_target_pte_for_mc() gets the page */
4606			put_page(page);
4607			break;
4608		case MC_TARGET_SWAP:
4609			ent = target.ent;
4610			if (!mem_cgroup_move_swap_account(ent,
4611						mc.from, mc.to, false)) {
4612				mc.precharge--;
4613				/* we fixup refcnts and charges later. */
4614				mc.moved_swap++;
4615			}
4616			break;
4617		default:
4618			break;
4619		}
4620	}
4621	pte_unmap_unlock(pte - 1, ptl);
4622	cond_resched();
4623
4624	if (addr != end) {
4625		/*
4626		 * We have consumed all precharges we got in can_attach().
4627		 * We try charge one by one, but don't do any additional
4628		 * charges to mc.to if we have failed in charge once in attach()
4629		 * phase.
4630		 */
4631		ret = mem_cgroup_do_precharge(1);
4632		if (!ret)
4633			goto retry;
4634	}
4635
4636	return ret;
4637}
4638
4639static void mem_cgroup_move_charge(struct mm_struct *mm)
4640{
4641	struct vm_area_struct *vma;
4642
4643	lru_add_drain_all();
4644	down_read(&mm->mmap_sem);
4645	for (vma = mm->mmap; vma; vma = vma->vm_next) {
4646		int ret;
4647		struct mm_walk mem_cgroup_move_charge_walk = {
4648			.pmd_entry = mem_cgroup_move_charge_pte_range,
4649			.mm = mm,
4650			.private = vma,
4651		};
4652		if (is_vm_hugetlb_page(vma))
4653			continue;
4654		ret = walk_page_range(vma->vm_start, vma->vm_end,
4655						&mem_cgroup_move_charge_walk);
4656		if (ret)
4657			/*
4658			 * means we have consumed all precharges and failed in
4659			 * doing additional charge. Just abandon here.
4660			 */
4661			break;
4662	}
4663	up_read(&mm->mmap_sem);
4664}
4665
4666static void mem_cgroup_move_task(struct cgroup_subsys *ss,
4667				struct cgroup *cont,
4668				struct cgroup *old_cont,
4669				struct task_struct *p,
4670				bool threadgroup)
4671{
4672	struct mm_struct *mm;
4673
4674	if (!mc.to)
4675		/* no need to move charge */
4676		return;
4677
4678	mm = get_task_mm(p);
4679	if (mm) {
4680		mem_cgroup_move_charge(mm);
4681		mmput(mm);
4682	}
4683	mem_cgroup_clear_mc();
4684}
4685#else	/* !CONFIG_MMU */
4686static int mem_cgroup_can_attach(struct cgroup_subsys *ss,
4687				struct cgroup *cgroup,
4688				struct task_struct *p,
4689				bool threadgroup)
4690{
4691	return 0;
4692}
4693static void mem_cgroup_cancel_attach(struct cgroup_subsys *ss,
4694				struct cgroup *cgroup,
4695				struct task_struct *p,
4696				bool threadgroup)
4697{
4698}
4699static void mem_cgroup_move_task(struct cgroup_subsys *ss,
4700				struct cgroup *cont,
4701				struct cgroup *old_cont,
4702				struct task_struct *p,
4703				bool threadgroup)
4704{
4705}
4706#endif
4707
4708struct cgroup_subsys mem_cgroup_subsys = {
4709	.name = "memory",
4710	.subsys_id = mem_cgroup_subsys_id,
4711	.create = mem_cgroup_create,
4712	.pre_destroy = mem_cgroup_pre_destroy,
4713	.destroy = mem_cgroup_destroy,
4714	.populate = mem_cgroup_populate,
4715	.can_attach = mem_cgroup_can_attach,
4716	.cancel_attach = mem_cgroup_cancel_attach,
4717	.attach = mem_cgroup_move_task,
4718	.early_init = 0,
4719	.use_id = 1,
4720};
4721
4722#ifdef CONFIG_CGROUP_MEM_RES_CTLR_SWAP
4723
4724static int __init disable_swap_account(char *s)
4725{
4726	really_do_swap_account = 0;
4727	return 1;
4728}
4729__setup("noswapaccount", disable_swap_account);
4730#endif
4731