memcontrol.c revision 1af8efe965676ab30d6c8a5b1fccc9229f339a3b
1/* memcontrol.c - Memory Controller
2 *
3 * Copyright IBM Corporation, 2007
4 * Author Balbir Singh <balbir@linux.vnet.ibm.com>
5 *
6 * Copyright 2007 OpenVZ SWsoft Inc
7 * Author: Pavel Emelianov <xemul@openvz.org>
8 *
9 * Memory thresholds
10 * Copyright (C) 2009 Nokia Corporation
11 * Author: Kirill A. Shutemov
12 *
13 * This program is free software; you can redistribute it and/or modify
14 * it under the terms of the GNU General Public License as published by
15 * the Free Software Foundation; either version 2 of the License, or
16 * (at your option) any later version.
17 *
18 * This program is distributed in the hope that it will be useful,
19 * but WITHOUT ANY WARRANTY; without even the implied warranty of
20 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
21 * GNU General Public License for more details.
22 */
23
24#include <linux/res_counter.h>
25#include <linux/memcontrol.h>
26#include <linux/cgroup.h>
27#include <linux/mm.h>
28#include <linux/hugetlb.h>
29#include <linux/pagemap.h>
30#include <linux/smp.h>
31#include <linux/page-flags.h>
32#include <linux/backing-dev.h>
33#include <linux/bit_spinlock.h>
34#include <linux/rcupdate.h>
35#include <linux/limits.h>
36#include <linux/mutex.h>
37#include <linux/rbtree.h>
38#include <linux/shmem_fs.h>
39#include <linux/slab.h>
40#include <linux/swap.h>
41#include <linux/swapops.h>
42#include <linux/spinlock.h>
43#include <linux/eventfd.h>
44#include <linux/sort.h>
45#include <linux/fs.h>
46#include <linux/seq_file.h>
47#include <linux/vmalloc.h>
48#include <linux/mm_inline.h>
49#include <linux/page_cgroup.h>
50#include <linux/cpu.h>
51#include <linux/oom.h>
52#include "internal.h"
53
54#include <asm/uaccess.h>
55
56#include <trace/events/vmscan.h>
57
58struct cgroup_subsys mem_cgroup_subsys __read_mostly;
59#define MEM_CGROUP_RECLAIM_RETRIES	5
60struct mem_cgroup *root_mem_cgroup __read_mostly;
61
62#ifdef CONFIG_CGROUP_MEM_RES_CTLR_SWAP
63/* Turned on only when memory cgroup is enabled && really_do_swap_account = 1 */
64int do_swap_account __read_mostly;
65
66/* for remember boot option*/
67#ifdef CONFIG_CGROUP_MEM_RES_CTLR_SWAP_ENABLED
68static int really_do_swap_account __initdata = 1;
69#else
70static int really_do_swap_account __initdata = 0;
71#endif
72
73#else
74#define do_swap_account		(0)
75#endif
76
77
78/*
79 * Statistics for memory cgroup.
80 */
81enum mem_cgroup_stat_index {
82	/*
83	 * For MEM_CONTAINER_TYPE_ALL, usage = pagecache + rss.
84	 */
85	MEM_CGROUP_STAT_CACHE, 	   /* # of pages charged as cache */
86	MEM_CGROUP_STAT_RSS,	   /* # of pages charged as anon rss */
87	MEM_CGROUP_STAT_FILE_MAPPED,  /* # of pages charged as file rss */
88	MEM_CGROUP_STAT_SWAPOUT, /* # of pages, swapped out */
89	MEM_CGROUP_STAT_DATA, /* end of data requires synchronization */
90	MEM_CGROUP_ON_MOVE,	/* someone is moving account between groups */
91	MEM_CGROUP_STAT_NSTATS,
92};
93
94enum mem_cgroup_events_index {
95	MEM_CGROUP_EVENTS_PGPGIN,	/* # of pages paged in */
96	MEM_CGROUP_EVENTS_PGPGOUT,	/* # of pages paged out */
97	MEM_CGROUP_EVENTS_COUNT,	/* # of pages paged in/out */
98	MEM_CGROUP_EVENTS_PGFAULT,	/* # of page-faults */
99	MEM_CGROUP_EVENTS_PGMAJFAULT,	/* # of major page-faults */
100	MEM_CGROUP_EVENTS_NSTATS,
101};
102/*
103 * Per memcg event counter is incremented at every pagein/pageout. With THP,
104 * it will be incremated by the number of pages. This counter is used for
105 * for trigger some periodic events. This is straightforward and better
106 * than using jiffies etc. to handle periodic memcg event.
107 */
108enum mem_cgroup_events_target {
109	MEM_CGROUP_TARGET_THRESH,
110	MEM_CGROUP_TARGET_SOFTLIMIT,
111	MEM_CGROUP_TARGET_NUMAINFO,
112	MEM_CGROUP_NTARGETS,
113};
114#define THRESHOLDS_EVENTS_TARGET (128)
115#define SOFTLIMIT_EVENTS_TARGET (1024)
116#define NUMAINFO_EVENTS_TARGET	(1024)
117
118struct mem_cgroup_stat_cpu {
119	long count[MEM_CGROUP_STAT_NSTATS];
120	unsigned long events[MEM_CGROUP_EVENTS_NSTATS];
121	unsigned long targets[MEM_CGROUP_NTARGETS];
122};
123
124/*
125 * per-zone information in memory controller.
126 */
127struct mem_cgroup_per_zone {
128	/*
129	 * spin_lock to protect the per cgroup LRU
130	 */
131	struct list_head	lists[NR_LRU_LISTS];
132	unsigned long		count[NR_LRU_LISTS];
133
134	struct zone_reclaim_stat reclaim_stat;
135	struct rb_node		tree_node;	/* RB tree node */
136	unsigned long long	usage_in_excess;/* Set to the value by which */
137						/* the soft limit is exceeded*/
138	bool			on_tree;
139	struct mem_cgroup	*mem;		/* Back pointer, we cannot */
140						/* use container_of	   */
141};
142/* Macro for accessing counter */
143#define MEM_CGROUP_ZSTAT(mz, idx)	((mz)->count[(idx)])
144
145struct mem_cgroup_per_node {
146	struct mem_cgroup_per_zone zoneinfo[MAX_NR_ZONES];
147};
148
149struct mem_cgroup_lru_info {
150	struct mem_cgroup_per_node *nodeinfo[MAX_NUMNODES];
151};
152
153/*
154 * Cgroups above their limits are maintained in a RB-Tree, independent of
155 * their hierarchy representation
156 */
157
158struct mem_cgroup_tree_per_zone {
159	struct rb_root rb_root;
160	spinlock_t lock;
161};
162
163struct mem_cgroup_tree_per_node {
164	struct mem_cgroup_tree_per_zone rb_tree_per_zone[MAX_NR_ZONES];
165};
166
167struct mem_cgroup_tree {
168	struct mem_cgroup_tree_per_node *rb_tree_per_node[MAX_NUMNODES];
169};
170
171static struct mem_cgroup_tree soft_limit_tree __read_mostly;
172
173struct mem_cgroup_threshold {
174	struct eventfd_ctx *eventfd;
175	u64 threshold;
176};
177
178/* For threshold */
179struct mem_cgroup_threshold_ary {
180	/* An array index points to threshold just below usage. */
181	int current_threshold;
182	/* Size of entries[] */
183	unsigned int size;
184	/* Array of thresholds */
185	struct mem_cgroup_threshold entries[0];
186};
187
188struct mem_cgroup_thresholds {
189	/* Primary thresholds array */
190	struct mem_cgroup_threshold_ary *primary;
191	/*
192	 * Spare threshold array.
193	 * This is needed to make mem_cgroup_unregister_event() "never fail".
194	 * It must be able to store at least primary->size - 1 entries.
195	 */
196	struct mem_cgroup_threshold_ary *spare;
197};
198
199/* for OOM */
200struct mem_cgroup_eventfd_list {
201	struct list_head list;
202	struct eventfd_ctx *eventfd;
203};
204
205static void mem_cgroup_threshold(struct mem_cgroup *mem);
206static void mem_cgroup_oom_notify(struct mem_cgroup *mem);
207
208/*
209 * The memory controller data structure. The memory controller controls both
210 * page cache and RSS per cgroup. We would eventually like to provide
211 * statistics based on the statistics developed by Rik Van Riel for clock-pro,
212 * to help the administrator determine what knobs to tune.
213 *
214 * TODO: Add a water mark for the memory controller. Reclaim will begin when
215 * we hit the water mark. May be even add a low water mark, such that
216 * no reclaim occurs from a cgroup at it's low water mark, this is
217 * a feature that will be implemented much later in the future.
218 */
219struct mem_cgroup {
220	struct cgroup_subsys_state css;
221	/*
222	 * the counter to account for memory usage
223	 */
224	struct res_counter res;
225	/*
226	 * the counter to account for mem+swap usage.
227	 */
228	struct res_counter memsw;
229	/*
230	 * Per cgroup active and inactive list, similar to the
231	 * per zone LRU lists.
232	 */
233	struct mem_cgroup_lru_info info;
234	/*
235	 * While reclaiming in a hierarchy, we cache the last child we
236	 * reclaimed from.
237	 */
238	int last_scanned_child;
239	int last_scanned_node;
240#if MAX_NUMNODES > 1
241	nodemask_t	scan_nodes;
242	atomic_t	numainfo_events;
243	atomic_t	numainfo_updating;
244#endif
245	/*
246	 * Should the accounting and control be hierarchical, per subtree?
247	 */
248	bool use_hierarchy;
249
250	bool		oom_lock;
251	atomic_t	under_oom;
252
253	atomic_t	refcnt;
254
255	int	swappiness;
256	/* OOM-Killer disable */
257	int		oom_kill_disable;
258
259	/* set when res.limit == memsw.limit */
260	bool		memsw_is_minimum;
261
262	/* protect arrays of thresholds */
263	struct mutex thresholds_lock;
264
265	/* thresholds for memory usage. RCU-protected */
266	struct mem_cgroup_thresholds thresholds;
267
268	/* thresholds for mem+swap usage. RCU-protected */
269	struct mem_cgroup_thresholds memsw_thresholds;
270
271	/* For oom notifier event fd */
272	struct list_head oom_notify;
273
274	/*
275	 * Should we move charges of a task when a task is moved into this
276	 * mem_cgroup ? And what type of charges should we move ?
277	 */
278	unsigned long 	move_charge_at_immigrate;
279	/*
280	 * percpu counter.
281	 */
282	struct mem_cgroup_stat_cpu *stat;
283	/*
284	 * used when a cpu is offlined or other synchronizations
285	 * See mem_cgroup_read_stat().
286	 */
287	struct mem_cgroup_stat_cpu nocpu_base;
288	spinlock_t pcp_counter_lock;
289};
290
291/* Stuffs for move charges at task migration. */
292/*
293 * Types of charges to be moved. "move_charge_at_immitgrate" is treated as a
294 * left-shifted bitmap of these types.
295 */
296enum move_type {
297	MOVE_CHARGE_TYPE_ANON,	/* private anonymous page and swap of it */
298	MOVE_CHARGE_TYPE_FILE,	/* file page(including tmpfs) and swap of it */
299	NR_MOVE_TYPE,
300};
301
302/* "mc" and its members are protected by cgroup_mutex */
303static struct move_charge_struct {
304	spinlock_t	  lock; /* for from, to */
305	struct mem_cgroup *from;
306	struct mem_cgroup *to;
307	unsigned long precharge;
308	unsigned long moved_charge;
309	unsigned long moved_swap;
310	struct task_struct *moving_task;	/* a task moving charges */
311	wait_queue_head_t waitq;		/* a waitq for other context */
312} mc = {
313	.lock = __SPIN_LOCK_UNLOCKED(mc.lock),
314	.waitq = __WAIT_QUEUE_HEAD_INITIALIZER(mc.waitq),
315};
316
317static bool move_anon(void)
318{
319	return test_bit(MOVE_CHARGE_TYPE_ANON,
320					&mc.to->move_charge_at_immigrate);
321}
322
323static bool move_file(void)
324{
325	return test_bit(MOVE_CHARGE_TYPE_FILE,
326					&mc.to->move_charge_at_immigrate);
327}
328
329/*
330 * Maximum loops in mem_cgroup_hierarchical_reclaim(), used for soft
331 * limit reclaim to prevent infinite loops, if they ever occur.
332 */
333#define	MEM_CGROUP_MAX_RECLAIM_LOOPS		(100)
334#define	MEM_CGROUP_MAX_SOFT_LIMIT_RECLAIM_LOOPS	(2)
335
336enum charge_type {
337	MEM_CGROUP_CHARGE_TYPE_CACHE = 0,
338	MEM_CGROUP_CHARGE_TYPE_MAPPED,
339	MEM_CGROUP_CHARGE_TYPE_SHMEM,	/* used by page migration of shmem */
340	MEM_CGROUP_CHARGE_TYPE_FORCE,	/* used by force_empty */
341	MEM_CGROUP_CHARGE_TYPE_SWAPOUT,	/* for accounting swapcache */
342	MEM_CGROUP_CHARGE_TYPE_DROP,	/* a page was unused swap cache */
343	NR_CHARGE_TYPE,
344};
345
346/* for encoding cft->private value on file */
347#define _MEM			(0)
348#define _MEMSWAP		(1)
349#define _OOM_TYPE		(2)
350#define MEMFILE_PRIVATE(x, val)	(((x) << 16) | (val))
351#define MEMFILE_TYPE(val)	(((val) >> 16) & 0xffff)
352#define MEMFILE_ATTR(val)	((val) & 0xffff)
353/* Used for OOM nofiier */
354#define OOM_CONTROL		(0)
355
356/*
357 * Reclaim flags for mem_cgroup_hierarchical_reclaim
358 */
359#define MEM_CGROUP_RECLAIM_NOSWAP_BIT	0x0
360#define MEM_CGROUP_RECLAIM_NOSWAP	(1 << MEM_CGROUP_RECLAIM_NOSWAP_BIT)
361#define MEM_CGROUP_RECLAIM_SHRINK_BIT	0x1
362#define MEM_CGROUP_RECLAIM_SHRINK	(1 << MEM_CGROUP_RECLAIM_SHRINK_BIT)
363#define MEM_CGROUP_RECLAIM_SOFT_BIT	0x2
364#define MEM_CGROUP_RECLAIM_SOFT		(1 << MEM_CGROUP_RECLAIM_SOFT_BIT)
365
366static void mem_cgroup_get(struct mem_cgroup *mem);
367static void mem_cgroup_put(struct mem_cgroup *mem);
368static struct mem_cgroup *parent_mem_cgroup(struct mem_cgroup *mem);
369static void drain_all_stock_async(struct mem_cgroup *mem);
370
371static struct mem_cgroup_per_zone *
372mem_cgroup_zoneinfo(struct mem_cgroup *mem, int nid, int zid)
373{
374	return &mem->info.nodeinfo[nid]->zoneinfo[zid];
375}
376
377struct cgroup_subsys_state *mem_cgroup_css(struct mem_cgroup *mem)
378{
379	return &mem->css;
380}
381
382static struct mem_cgroup_per_zone *
383page_cgroup_zoneinfo(struct mem_cgroup *mem, struct page *page)
384{
385	int nid = page_to_nid(page);
386	int zid = page_zonenum(page);
387
388	return mem_cgroup_zoneinfo(mem, nid, zid);
389}
390
391static struct mem_cgroup_tree_per_zone *
392soft_limit_tree_node_zone(int nid, int zid)
393{
394	return &soft_limit_tree.rb_tree_per_node[nid]->rb_tree_per_zone[zid];
395}
396
397static struct mem_cgroup_tree_per_zone *
398soft_limit_tree_from_page(struct page *page)
399{
400	int nid = page_to_nid(page);
401	int zid = page_zonenum(page);
402
403	return &soft_limit_tree.rb_tree_per_node[nid]->rb_tree_per_zone[zid];
404}
405
406static void
407__mem_cgroup_insert_exceeded(struct mem_cgroup *mem,
408				struct mem_cgroup_per_zone *mz,
409				struct mem_cgroup_tree_per_zone *mctz,
410				unsigned long long new_usage_in_excess)
411{
412	struct rb_node **p = &mctz->rb_root.rb_node;
413	struct rb_node *parent = NULL;
414	struct mem_cgroup_per_zone *mz_node;
415
416	if (mz->on_tree)
417		return;
418
419	mz->usage_in_excess = new_usage_in_excess;
420	if (!mz->usage_in_excess)
421		return;
422	while (*p) {
423		parent = *p;
424		mz_node = rb_entry(parent, struct mem_cgroup_per_zone,
425					tree_node);
426		if (mz->usage_in_excess < mz_node->usage_in_excess)
427			p = &(*p)->rb_left;
428		/*
429		 * We can't avoid mem cgroups that are over their soft
430		 * limit by the same amount
431		 */
432		else if (mz->usage_in_excess >= mz_node->usage_in_excess)
433			p = &(*p)->rb_right;
434	}
435	rb_link_node(&mz->tree_node, parent, p);
436	rb_insert_color(&mz->tree_node, &mctz->rb_root);
437	mz->on_tree = true;
438}
439
440static void
441__mem_cgroup_remove_exceeded(struct mem_cgroup *mem,
442				struct mem_cgroup_per_zone *mz,
443				struct mem_cgroup_tree_per_zone *mctz)
444{
445	if (!mz->on_tree)
446		return;
447	rb_erase(&mz->tree_node, &mctz->rb_root);
448	mz->on_tree = false;
449}
450
451static void
452mem_cgroup_remove_exceeded(struct mem_cgroup *mem,
453				struct mem_cgroup_per_zone *mz,
454				struct mem_cgroup_tree_per_zone *mctz)
455{
456	spin_lock(&mctz->lock);
457	__mem_cgroup_remove_exceeded(mem, mz, mctz);
458	spin_unlock(&mctz->lock);
459}
460
461
462static void mem_cgroup_update_tree(struct mem_cgroup *mem, struct page *page)
463{
464	unsigned long long excess;
465	struct mem_cgroup_per_zone *mz;
466	struct mem_cgroup_tree_per_zone *mctz;
467	int nid = page_to_nid(page);
468	int zid = page_zonenum(page);
469	mctz = soft_limit_tree_from_page(page);
470
471	/*
472	 * Necessary to update all ancestors when hierarchy is used.
473	 * because their event counter is not touched.
474	 */
475	for (; mem; mem = parent_mem_cgroup(mem)) {
476		mz = mem_cgroup_zoneinfo(mem, nid, zid);
477		excess = res_counter_soft_limit_excess(&mem->res);
478		/*
479		 * We have to update the tree if mz is on RB-tree or
480		 * mem is over its softlimit.
481		 */
482		if (excess || mz->on_tree) {
483			spin_lock(&mctz->lock);
484			/* if on-tree, remove it */
485			if (mz->on_tree)
486				__mem_cgroup_remove_exceeded(mem, mz, mctz);
487			/*
488			 * Insert again. mz->usage_in_excess will be updated.
489			 * If excess is 0, no tree ops.
490			 */
491			__mem_cgroup_insert_exceeded(mem, mz, mctz, excess);
492			spin_unlock(&mctz->lock);
493		}
494	}
495}
496
497static void mem_cgroup_remove_from_trees(struct mem_cgroup *mem)
498{
499	int node, zone;
500	struct mem_cgroup_per_zone *mz;
501	struct mem_cgroup_tree_per_zone *mctz;
502
503	for_each_node_state(node, N_POSSIBLE) {
504		for (zone = 0; zone < MAX_NR_ZONES; zone++) {
505			mz = mem_cgroup_zoneinfo(mem, node, zone);
506			mctz = soft_limit_tree_node_zone(node, zone);
507			mem_cgroup_remove_exceeded(mem, mz, mctz);
508		}
509	}
510}
511
512static struct mem_cgroup_per_zone *
513__mem_cgroup_largest_soft_limit_node(struct mem_cgroup_tree_per_zone *mctz)
514{
515	struct rb_node *rightmost = NULL;
516	struct mem_cgroup_per_zone *mz;
517
518retry:
519	mz = NULL;
520	rightmost = rb_last(&mctz->rb_root);
521	if (!rightmost)
522		goto done;		/* Nothing to reclaim from */
523
524	mz = rb_entry(rightmost, struct mem_cgroup_per_zone, tree_node);
525	/*
526	 * Remove the node now but someone else can add it back,
527	 * we will to add it back at the end of reclaim to its correct
528	 * position in the tree.
529	 */
530	__mem_cgroup_remove_exceeded(mz->mem, mz, mctz);
531	if (!res_counter_soft_limit_excess(&mz->mem->res) ||
532		!css_tryget(&mz->mem->css))
533		goto retry;
534done:
535	return mz;
536}
537
538static struct mem_cgroup_per_zone *
539mem_cgroup_largest_soft_limit_node(struct mem_cgroup_tree_per_zone *mctz)
540{
541	struct mem_cgroup_per_zone *mz;
542
543	spin_lock(&mctz->lock);
544	mz = __mem_cgroup_largest_soft_limit_node(mctz);
545	spin_unlock(&mctz->lock);
546	return mz;
547}
548
549/*
550 * Implementation Note: reading percpu statistics for memcg.
551 *
552 * Both of vmstat[] and percpu_counter has threshold and do periodic
553 * synchronization to implement "quick" read. There are trade-off between
554 * reading cost and precision of value. Then, we may have a chance to implement
555 * a periodic synchronizion of counter in memcg's counter.
556 *
557 * But this _read() function is used for user interface now. The user accounts
558 * memory usage by memory cgroup and he _always_ requires exact value because
559 * he accounts memory. Even if we provide quick-and-fuzzy read, we always
560 * have to visit all online cpus and make sum. So, for now, unnecessary
561 * synchronization is not implemented. (just implemented for cpu hotplug)
562 *
563 * If there are kernel internal actions which can make use of some not-exact
564 * value, and reading all cpu value can be performance bottleneck in some
565 * common workload, threashold and synchonization as vmstat[] should be
566 * implemented.
567 */
568static long mem_cgroup_read_stat(struct mem_cgroup *mem,
569				 enum mem_cgroup_stat_index idx)
570{
571	long val = 0;
572	int cpu;
573
574	get_online_cpus();
575	for_each_online_cpu(cpu)
576		val += per_cpu(mem->stat->count[idx], cpu);
577#ifdef CONFIG_HOTPLUG_CPU
578	spin_lock(&mem->pcp_counter_lock);
579	val += mem->nocpu_base.count[idx];
580	spin_unlock(&mem->pcp_counter_lock);
581#endif
582	put_online_cpus();
583	return val;
584}
585
586static void mem_cgroup_swap_statistics(struct mem_cgroup *mem,
587					 bool charge)
588{
589	int val = (charge) ? 1 : -1;
590	this_cpu_add(mem->stat->count[MEM_CGROUP_STAT_SWAPOUT], val);
591}
592
593void mem_cgroup_pgfault(struct mem_cgroup *mem, int val)
594{
595	this_cpu_add(mem->stat->events[MEM_CGROUP_EVENTS_PGFAULT], val);
596}
597
598void mem_cgroup_pgmajfault(struct mem_cgroup *mem, int val)
599{
600	this_cpu_add(mem->stat->events[MEM_CGROUP_EVENTS_PGMAJFAULT], val);
601}
602
603static unsigned long mem_cgroup_read_events(struct mem_cgroup *mem,
604					    enum mem_cgroup_events_index idx)
605{
606	unsigned long val = 0;
607	int cpu;
608
609	for_each_online_cpu(cpu)
610		val += per_cpu(mem->stat->events[idx], cpu);
611#ifdef CONFIG_HOTPLUG_CPU
612	spin_lock(&mem->pcp_counter_lock);
613	val += mem->nocpu_base.events[idx];
614	spin_unlock(&mem->pcp_counter_lock);
615#endif
616	return val;
617}
618
619static void mem_cgroup_charge_statistics(struct mem_cgroup *mem,
620					 bool file, int nr_pages)
621{
622	preempt_disable();
623
624	if (file)
625		__this_cpu_add(mem->stat->count[MEM_CGROUP_STAT_CACHE], nr_pages);
626	else
627		__this_cpu_add(mem->stat->count[MEM_CGROUP_STAT_RSS], nr_pages);
628
629	/* pagein of a big page is an event. So, ignore page size */
630	if (nr_pages > 0)
631		__this_cpu_inc(mem->stat->events[MEM_CGROUP_EVENTS_PGPGIN]);
632	else {
633		__this_cpu_inc(mem->stat->events[MEM_CGROUP_EVENTS_PGPGOUT]);
634		nr_pages = -nr_pages; /* for event */
635	}
636
637	__this_cpu_add(mem->stat->events[MEM_CGROUP_EVENTS_COUNT], nr_pages);
638
639	preempt_enable();
640}
641
642unsigned long
643mem_cgroup_zone_nr_lru_pages(struct mem_cgroup *mem, int nid, int zid,
644			unsigned int lru_mask)
645{
646	struct mem_cgroup_per_zone *mz;
647	enum lru_list l;
648	unsigned long ret = 0;
649
650	mz = mem_cgroup_zoneinfo(mem, nid, zid);
651
652	for_each_lru(l) {
653		if (BIT(l) & lru_mask)
654			ret += MEM_CGROUP_ZSTAT(mz, l);
655	}
656	return ret;
657}
658
659static unsigned long
660mem_cgroup_node_nr_lru_pages(struct mem_cgroup *mem,
661			int nid, unsigned int lru_mask)
662{
663	u64 total = 0;
664	int zid;
665
666	for (zid = 0; zid < MAX_NR_ZONES; zid++)
667		total += mem_cgroup_zone_nr_lru_pages(mem, nid, zid, lru_mask);
668
669	return total;
670}
671
672static unsigned long mem_cgroup_nr_lru_pages(struct mem_cgroup *mem,
673			unsigned int lru_mask)
674{
675	int nid;
676	u64 total = 0;
677
678	for_each_node_state(nid, N_HIGH_MEMORY)
679		total += mem_cgroup_node_nr_lru_pages(mem, nid, lru_mask);
680	return total;
681}
682
683static bool __memcg_event_check(struct mem_cgroup *mem, int target)
684{
685	unsigned long val, next;
686
687	val = this_cpu_read(mem->stat->events[MEM_CGROUP_EVENTS_COUNT]);
688	next = this_cpu_read(mem->stat->targets[target]);
689	/* from time_after() in jiffies.h */
690	return ((long)next - (long)val < 0);
691}
692
693static void __mem_cgroup_target_update(struct mem_cgroup *mem, int target)
694{
695	unsigned long val, next;
696
697	val = this_cpu_read(mem->stat->events[MEM_CGROUP_EVENTS_COUNT]);
698
699	switch (target) {
700	case MEM_CGROUP_TARGET_THRESH:
701		next = val + THRESHOLDS_EVENTS_TARGET;
702		break;
703	case MEM_CGROUP_TARGET_SOFTLIMIT:
704		next = val + SOFTLIMIT_EVENTS_TARGET;
705		break;
706	case MEM_CGROUP_TARGET_NUMAINFO:
707		next = val + NUMAINFO_EVENTS_TARGET;
708		break;
709	default:
710		return;
711	}
712
713	this_cpu_write(mem->stat->targets[target], next);
714}
715
716/*
717 * Check events in order.
718 *
719 */
720static void memcg_check_events(struct mem_cgroup *mem, struct page *page)
721{
722	/* threshold event is triggered in finer grain than soft limit */
723	if (unlikely(__memcg_event_check(mem, MEM_CGROUP_TARGET_THRESH))) {
724		mem_cgroup_threshold(mem);
725		__mem_cgroup_target_update(mem, MEM_CGROUP_TARGET_THRESH);
726		if (unlikely(__memcg_event_check(mem,
727			     MEM_CGROUP_TARGET_SOFTLIMIT))) {
728			mem_cgroup_update_tree(mem, page);
729			__mem_cgroup_target_update(mem,
730						   MEM_CGROUP_TARGET_SOFTLIMIT);
731		}
732#if MAX_NUMNODES > 1
733		if (unlikely(__memcg_event_check(mem,
734			MEM_CGROUP_TARGET_NUMAINFO))) {
735			atomic_inc(&mem->numainfo_events);
736			__mem_cgroup_target_update(mem,
737				MEM_CGROUP_TARGET_NUMAINFO);
738		}
739#endif
740	}
741}
742
743static struct mem_cgroup *mem_cgroup_from_cont(struct cgroup *cont)
744{
745	return container_of(cgroup_subsys_state(cont,
746				mem_cgroup_subsys_id), struct mem_cgroup,
747				css);
748}
749
750struct mem_cgroup *mem_cgroup_from_task(struct task_struct *p)
751{
752	/*
753	 * mm_update_next_owner() may clear mm->owner to NULL
754	 * if it races with swapoff, page migration, etc.
755	 * So this can be called with p == NULL.
756	 */
757	if (unlikely(!p))
758		return NULL;
759
760	return container_of(task_subsys_state(p, mem_cgroup_subsys_id),
761				struct mem_cgroup, css);
762}
763
764struct mem_cgroup *try_get_mem_cgroup_from_mm(struct mm_struct *mm)
765{
766	struct mem_cgroup *mem = NULL;
767
768	if (!mm)
769		return NULL;
770	/*
771	 * Because we have no locks, mm->owner's may be being moved to other
772	 * cgroup. We use css_tryget() here even if this looks
773	 * pessimistic (rather than adding locks here).
774	 */
775	rcu_read_lock();
776	do {
777		mem = mem_cgroup_from_task(rcu_dereference(mm->owner));
778		if (unlikely(!mem))
779			break;
780	} while (!css_tryget(&mem->css));
781	rcu_read_unlock();
782	return mem;
783}
784
785/* The caller has to guarantee "mem" exists before calling this */
786static struct mem_cgroup *mem_cgroup_start_loop(struct mem_cgroup *mem)
787{
788	struct cgroup_subsys_state *css;
789	int found;
790
791	if (!mem) /* ROOT cgroup has the smallest ID */
792		return root_mem_cgroup; /*css_put/get against root is ignored*/
793	if (!mem->use_hierarchy) {
794		if (css_tryget(&mem->css))
795			return mem;
796		return NULL;
797	}
798	rcu_read_lock();
799	/*
800	 * searching a memory cgroup which has the smallest ID under given
801	 * ROOT cgroup. (ID >= 1)
802	 */
803	css = css_get_next(&mem_cgroup_subsys, 1, &mem->css, &found);
804	if (css && css_tryget(css))
805		mem = container_of(css, struct mem_cgroup, css);
806	else
807		mem = NULL;
808	rcu_read_unlock();
809	return mem;
810}
811
812static struct mem_cgroup *mem_cgroup_get_next(struct mem_cgroup *iter,
813					struct mem_cgroup *root,
814					bool cond)
815{
816	int nextid = css_id(&iter->css) + 1;
817	int found;
818	int hierarchy_used;
819	struct cgroup_subsys_state *css;
820
821	hierarchy_used = iter->use_hierarchy;
822
823	css_put(&iter->css);
824	/* If no ROOT, walk all, ignore hierarchy */
825	if (!cond || (root && !hierarchy_used))
826		return NULL;
827
828	if (!root)
829		root = root_mem_cgroup;
830
831	do {
832		iter = NULL;
833		rcu_read_lock();
834
835		css = css_get_next(&mem_cgroup_subsys, nextid,
836				&root->css, &found);
837		if (css && css_tryget(css))
838			iter = container_of(css, struct mem_cgroup, css);
839		rcu_read_unlock();
840		/* If css is NULL, no more cgroups will be found */
841		nextid = found + 1;
842	} while (css && !iter);
843
844	return iter;
845}
846/*
847 * for_eacn_mem_cgroup_tree() for visiting all cgroup under tree. Please
848 * be careful that "break" loop is not allowed. We have reference count.
849 * Instead of that modify "cond" to be false and "continue" to exit the loop.
850 */
851#define for_each_mem_cgroup_tree_cond(iter, root, cond)	\
852	for (iter = mem_cgroup_start_loop(root);\
853	     iter != NULL;\
854	     iter = mem_cgroup_get_next(iter, root, cond))
855
856#define for_each_mem_cgroup_tree(iter, root) \
857	for_each_mem_cgroup_tree_cond(iter, root, true)
858
859#define for_each_mem_cgroup_all(iter) \
860	for_each_mem_cgroup_tree_cond(iter, NULL, true)
861
862
863static inline bool mem_cgroup_is_root(struct mem_cgroup *mem)
864{
865	return (mem == root_mem_cgroup);
866}
867
868void mem_cgroup_count_vm_event(struct mm_struct *mm, enum vm_event_item idx)
869{
870	struct mem_cgroup *mem;
871
872	if (!mm)
873		return;
874
875	rcu_read_lock();
876	mem = mem_cgroup_from_task(rcu_dereference(mm->owner));
877	if (unlikely(!mem))
878		goto out;
879
880	switch (idx) {
881	case PGMAJFAULT:
882		mem_cgroup_pgmajfault(mem, 1);
883		break;
884	case PGFAULT:
885		mem_cgroup_pgfault(mem, 1);
886		break;
887	default:
888		BUG();
889	}
890out:
891	rcu_read_unlock();
892}
893EXPORT_SYMBOL(mem_cgroup_count_vm_event);
894
895/*
896 * Following LRU functions are allowed to be used without PCG_LOCK.
897 * Operations are called by routine of global LRU independently from memcg.
898 * What we have to take care of here is validness of pc->mem_cgroup.
899 *
900 * Changes to pc->mem_cgroup happens when
901 * 1. charge
902 * 2. moving account
903 * In typical case, "charge" is done before add-to-lru. Exception is SwapCache.
904 * It is added to LRU before charge.
905 * If PCG_USED bit is not set, page_cgroup is not added to this private LRU.
906 * When moving account, the page is not on LRU. It's isolated.
907 */
908
909void mem_cgroup_del_lru_list(struct page *page, enum lru_list lru)
910{
911	struct page_cgroup *pc;
912	struct mem_cgroup_per_zone *mz;
913
914	if (mem_cgroup_disabled())
915		return;
916	pc = lookup_page_cgroup(page);
917	/* can happen while we handle swapcache. */
918	if (!TestClearPageCgroupAcctLRU(pc))
919		return;
920	VM_BUG_ON(!pc->mem_cgroup);
921	/*
922	 * We don't check PCG_USED bit. It's cleared when the "page" is finally
923	 * removed from global LRU.
924	 */
925	mz = page_cgroup_zoneinfo(pc->mem_cgroup, page);
926	/* huge page split is done under lru_lock. so, we have no races. */
927	MEM_CGROUP_ZSTAT(mz, lru) -= 1 << compound_order(page);
928	if (mem_cgroup_is_root(pc->mem_cgroup))
929		return;
930	VM_BUG_ON(list_empty(&pc->lru));
931	list_del_init(&pc->lru);
932}
933
934void mem_cgroup_del_lru(struct page *page)
935{
936	mem_cgroup_del_lru_list(page, page_lru(page));
937}
938
939/*
940 * Writeback is about to end against a page which has been marked for immediate
941 * reclaim.  If it still appears to be reclaimable, move it to the tail of the
942 * inactive list.
943 */
944void mem_cgroup_rotate_reclaimable_page(struct page *page)
945{
946	struct mem_cgroup_per_zone *mz;
947	struct page_cgroup *pc;
948	enum lru_list lru = page_lru(page);
949
950	if (mem_cgroup_disabled())
951		return;
952
953	pc = lookup_page_cgroup(page);
954	/* unused or root page is not rotated. */
955	if (!PageCgroupUsed(pc))
956		return;
957	/* Ensure pc->mem_cgroup is visible after reading PCG_USED. */
958	smp_rmb();
959	if (mem_cgroup_is_root(pc->mem_cgroup))
960		return;
961	mz = page_cgroup_zoneinfo(pc->mem_cgroup, page);
962	list_move_tail(&pc->lru, &mz->lists[lru]);
963}
964
965void mem_cgroup_rotate_lru_list(struct page *page, enum lru_list lru)
966{
967	struct mem_cgroup_per_zone *mz;
968	struct page_cgroup *pc;
969
970	if (mem_cgroup_disabled())
971		return;
972
973	pc = lookup_page_cgroup(page);
974	/* unused or root page is not rotated. */
975	if (!PageCgroupUsed(pc))
976		return;
977	/* Ensure pc->mem_cgroup is visible after reading PCG_USED. */
978	smp_rmb();
979	if (mem_cgroup_is_root(pc->mem_cgroup))
980		return;
981	mz = page_cgroup_zoneinfo(pc->mem_cgroup, page);
982	list_move(&pc->lru, &mz->lists[lru]);
983}
984
985void mem_cgroup_add_lru_list(struct page *page, enum lru_list lru)
986{
987	struct page_cgroup *pc;
988	struct mem_cgroup_per_zone *mz;
989
990	if (mem_cgroup_disabled())
991		return;
992	pc = lookup_page_cgroup(page);
993	VM_BUG_ON(PageCgroupAcctLRU(pc));
994	if (!PageCgroupUsed(pc))
995		return;
996	/* Ensure pc->mem_cgroup is visible after reading PCG_USED. */
997	smp_rmb();
998	mz = page_cgroup_zoneinfo(pc->mem_cgroup, page);
999	/* huge page split is done under lru_lock. so, we have no races. */
1000	MEM_CGROUP_ZSTAT(mz, lru) += 1 << compound_order(page);
1001	SetPageCgroupAcctLRU(pc);
1002	if (mem_cgroup_is_root(pc->mem_cgroup))
1003		return;
1004	list_add(&pc->lru, &mz->lists[lru]);
1005}
1006
1007/*
1008 * At handling SwapCache and other FUSE stuff, pc->mem_cgroup may be changed
1009 * while it's linked to lru because the page may be reused after it's fully
1010 * uncharged. To handle that, unlink page_cgroup from LRU when charge it again.
1011 * It's done under lock_page and expected that zone->lru_lock isnever held.
1012 */
1013static void mem_cgroup_lru_del_before_commit(struct page *page)
1014{
1015	unsigned long flags;
1016	struct zone *zone = page_zone(page);
1017	struct page_cgroup *pc = lookup_page_cgroup(page);
1018
1019	/*
1020	 * Doing this check without taking ->lru_lock seems wrong but this
1021	 * is safe. Because if page_cgroup's USED bit is unset, the page
1022	 * will not be added to any memcg's LRU. If page_cgroup's USED bit is
1023	 * set, the commit after this will fail, anyway.
1024	 * This all charge/uncharge is done under some mutual execustion.
1025	 * So, we don't need to taking care of changes in USED bit.
1026	 */
1027	if (likely(!PageLRU(page)))
1028		return;
1029
1030	spin_lock_irqsave(&zone->lru_lock, flags);
1031	/*
1032	 * Forget old LRU when this page_cgroup is *not* used. This Used bit
1033	 * is guarded by lock_page() because the page is SwapCache.
1034	 */
1035	if (!PageCgroupUsed(pc))
1036		mem_cgroup_del_lru_list(page, page_lru(page));
1037	spin_unlock_irqrestore(&zone->lru_lock, flags);
1038}
1039
1040static void mem_cgroup_lru_add_after_commit(struct page *page)
1041{
1042	unsigned long flags;
1043	struct zone *zone = page_zone(page);
1044	struct page_cgroup *pc = lookup_page_cgroup(page);
1045
1046	/* taking care of that the page is added to LRU while we commit it */
1047	if (likely(!PageLRU(page)))
1048		return;
1049	spin_lock_irqsave(&zone->lru_lock, flags);
1050	/* link when the page is linked to LRU but page_cgroup isn't */
1051	if (PageLRU(page) && !PageCgroupAcctLRU(pc))
1052		mem_cgroup_add_lru_list(page, page_lru(page));
1053	spin_unlock_irqrestore(&zone->lru_lock, flags);
1054}
1055
1056
1057void mem_cgroup_move_lists(struct page *page,
1058			   enum lru_list from, enum lru_list to)
1059{
1060	if (mem_cgroup_disabled())
1061		return;
1062	mem_cgroup_del_lru_list(page, from);
1063	mem_cgroup_add_lru_list(page, to);
1064}
1065
1066int task_in_mem_cgroup(struct task_struct *task, const struct mem_cgroup *mem)
1067{
1068	int ret;
1069	struct mem_cgroup *curr = NULL;
1070	struct task_struct *p;
1071
1072	p = find_lock_task_mm(task);
1073	if (!p)
1074		return 0;
1075	curr = try_get_mem_cgroup_from_mm(p->mm);
1076	task_unlock(p);
1077	if (!curr)
1078		return 0;
1079	/*
1080	 * We should check use_hierarchy of "mem" not "curr". Because checking
1081	 * use_hierarchy of "curr" here make this function true if hierarchy is
1082	 * enabled in "curr" and "curr" is a child of "mem" in *cgroup*
1083	 * hierarchy(even if use_hierarchy is disabled in "mem").
1084	 */
1085	if (mem->use_hierarchy)
1086		ret = css_is_ancestor(&curr->css, &mem->css);
1087	else
1088		ret = (curr == mem);
1089	css_put(&curr->css);
1090	return ret;
1091}
1092
1093static int calc_inactive_ratio(struct mem_cgroup *memcg, unsigned long *present_pages)
1094{
1095	unsigned long active;
1096	unsigned long inactive;
1097	unsigned long gb;
1098	unsigned long inactive_ratio;
1099
1100	inactive = mem_cgroup_nr_lru_pages(memcg, BIT(LRU_INACTIVE_ANON));
1101	active = mem_cgroup_nr_lru_pages(memcg, BIT(LRU_ACTIVE_ANON));
1102
1103	gb = (inactive + active) >> (30 - PAGE_SHIFT);
1104	if (gb)
1105		inactive_ratio = int_sqrt(10 * gb);
1106	else
1107		inactive_ratio = 1;
1108
1109	if (present_pages) {
1110		present_pages[0] = inactive;
1111		present_pages[1] = active;
1112	}
1113
1114	return inactive_ratio;
1115}
1116
1117int mem_cgroup_inactive_anon_is_low(struct mem_cgroup *memcg)
1118{
1119	unsigned long active;
1120	unsigned long inactive;
1121	unsigned long present_pages[2];
1122	unsigned long inactive_ratio;
1123
1124	inactive_ratio = calc_inactive_ratio(memcg, present_pages);
1125
1126	inactive = present_pages[0];
1127	active = present_pages[1];
1128
1129	if (inactive * inactive_ratio < active)
1130		return 1;
1131
1132	return 0;
1133}
1134
1135int mem_cgroup_inactive_file_is_low(struct mem_cgroup *memcg)
1136{
1137	unsigned long active;
1138	unsigned long inactive;
1139
1140	inactive = mem_cgroup_nr_lru_pages(memcg, BIT(LRU_INACTIVE_FILE));
1141	active = mem_cgroup_nr_lru_pages(memcg, BIT(LRU_ACTIVE_FILE));
1142
1143	return (active > inactive);
1144}
1145
1146struct zone_reclaim_stat *mem_cgroup_get_reclaim_stat(struct mem_cgroup *memcg,
1147						      struct zone *zone)
1148{
1149	int nid = zone_to_nid(zone);
1150	int zid = zone_idx(zone);
1151	struct mem_cgroup_per_zone *mz = mem_cgroup_zoneinfo(memcg, nid, zid);
1152
1153	return &mz->reclaim_stat;
1154}
1155
1156struct zone_reclaim_stat *
1157mem_cgroup_get_reclaim_stat_from_page(struct page *page)
1158{
1159	struct page_cgroup *pc;
1160	struct mem_cgroup_per_zone *mz;
1161
1162	if (mem_cgroup_disabled())
1163		return NULL;
1164
1165	pc = lookup_page_cgroup(page);
1166	if (!PageCgroupUsed(pc))
1167		return NULL;
1168	/* Ensure pc->mem_cgroup is visible after reading PCG_USED. */
1169	smp_rmb();
1170	mz = page_cgroup_zoneinfo(pc->mem_cgroup, page);
1171	return &mz->reclaim_stat;
1172}
1173
1174unsigned long mem_cgroup_isolate_pages(unsigned long nr_to_scan,
1175					struct list_head *dst,
1176					unsigned long *scanned, int order,
1177					int mode, struct zone *z,
1178					struct mem_cgroup *mem_cont,
1179					int active, int file)
1180{
1181	unsigned long nr_taken = 0;
1182	struct page *page;
1183	unsigned long scan;
1184	LIST_HEAD(pc_list);
1185	struct list_head *src;
1186	struct page_cgroup *pc, *tmp;
1187	int nid = zone_to_nid(z);
1188	int zid = zone_idx(z);
1189	struct mem_cgroup_per_zone *mz;
1190	int lru = LRU_FILE * file + active;
1191	int ret;
1192
1193	BUG_ON(!mem_cont);
1194	mz = mem_cgroup_zoneinfo(mem_cont, nid, zid);
1195	src = &mz->lists[lru];
1196
1197	scan = 0;
1198	list_for_each_entry_safe_reverse(pc, tmp, src, lru) {
1199		if (scan >= nr_to_scan)
1200			break;
1201
1202		if (unlikely(!PageCgroupUsed(pc)))
1203			continue;
1204
1205		page = lookup_cgroup_page(pc);
1206
1207		if (unlikely(!PageLRU(page)))
1208			continue;
1209
1210		scan++;
1211		ret = __isolate_lru_page(page, mode, file);
1212		switch (ret) {
1213		case 0:
1214			list_move(&page->lru, dst);
1215			mem_cgroup_del_lru(page);
1216			nr_taken += hpage_nr_pages(page);
1217			break;
1218		case -EBUSY:
1219			/* we don't affect global LRU but rotate in our LRU */
1220			mem_cgroup_rotate_lru_list(page, page_lru(page));
1221			break;
1222		default:
1223			break;
1224		}
1225	}
1226
1227	*scanned = scan;
1228
1229	trace_mm_vmscan_memcg_isolate(0, nr_to_scan, scan, nr_taken,
1230				      0, 0, 0, mode);
1231
1232	return nr_taken;
1233}
1234
1235#define mem_cgroup_from_res_counter(counter, member)	\
1236	container_of(counter, struct mem_cgroup, member)
1237
1238/**
1239 * mem_cgroup_margin - calculate chargeable space of a memory cgroup
1240 * @mem: the memory cgroup
1241 *
1242 * Returns the maximum amount of memory @mem can be charged with, in
1243 * pages.
1244 */
1245static unsigned long mem_cgroup_margin(struct mem_cgroup *mem)
1246{
1247	unsigned long long margin;
1248
1249	margin = res_counter_margin(&mem->res);
1250	if (do_swap_account)
1251		margin = min(margin, res_counter_margin(&mem->memsw));
1252	return margin >> PAGE_SHIFT;
1253}
1254
1255int mem_cgroup_swappiness(struct mem_cgroup *memcg)
1256{
1257	struct cgroup *cgrp = memcg->css.cgroup;
1258
1259	/* root ? */
1260	if (cgrp->parent == NULL)
1261		return vm_swappiness;
1262
1263	return memcg->swappiness;
1264}
1265
1266static void mem_cgroup_start_move(struct mem_cgroup *mem)
1267{
1268	int cpu;
1269
1270	get_online_cpus();
1271	spin_lock(&mem->pcp_counter_lock);
1272	for_each_online_cpu(cpu)
1273		per_cpu(mem->stat->count[MEM_CGROUP_ON_MOVE], cpu) += 1;
1274	mem->nocpu_base.count[MEM_CGROUP_ON_MOVE] += 1;
1275	spin_unlock(&mem->pcp_counter_lock);
1276	put_online_cpus();
1277
1278	synchronize_rcu();
1279}
1280
1281static void mem_cgroup_end_move(struct mem_cgroup *mem)
1282{
1283	int cpu;
1284
1285	if (!mem)
1286		return;
1287	get_online_cpus();
1288	spin_lock(&mem->pcp_counter_lock);
1289	for_each_online_cpu(cpu)
1290		per_cpu(mem->stat->count[MEM_CGROUP_ON_MOVE], cpu) -= 1;
1291	mem->nocpu_base.count[MEM_CGROUP_ON_MOVE] -= 1;
1292	spin_unlock(&mem->pcp_counter_lock);
1293	put_online_cpus();
1294}
1295/*
1296 * 2 routines for checking "mem" is under move_account() or not.
1297 *
1298 * mem_cgroup_stealed() - checking a cgroup is mc.from or not. This is used
1299 *			  for avoiding race in accounting. If true,
1300 *			  pc->mem_cgroup may be overwritten.
1301 *
1302 * mem_cgroup_under_move() - checking a cgroup is mc.from or mc.to or
1303 *			  under hierarchy of moving cgroups. This is for
1304 *			  waiting at hith-memory prressure caused by "move".
1305 */
1306
1307static bool mem_cgroup_stealed(struct mem_cgroup *mem)
1308{
1309	VM_BUG_ON(!rcu_read_lock_held());
1310	return this_cpu_read(mem->stat->count[MEM_CGROUP_ON_MOVE]) > 0;
1311}
1312
1313static bool mem_cgroup_under_move(struct mem_cgroup *mem)
1314{
1315	struct mem_cgroup *from;
1316	struct mem_cgroup *to;
1317	bool ret = false;
1318	/*
1319	 * Unlike task_move routines, we access mc.to, mc.from not under
1320	 * mutual exclusion by cgroup_mutex. Here, we take spinlock instead.
1321	 */
1322	spin_lock(&mc.lock);
1323	from = mc.from;
1324	to = mc.to;
1325	if (!from)
1326		goto unlock;
1327	if (from == mem || to == mem
1328	    || (mem->use_hierarchy && css_is_ancestor(&from->css, &mem->css))
1329	    || (mem->use_hierarchy && css_is_ancestor(&to->css,	&mem->css)))
1330		ret = true;
1331unlock:
1332	spin_unlock(&mc.lock);
1333	return ret;
1334}
1335
1336static bool mem_cgroup_wait_acct_move(struct mem_cgroup *mem)
1337{
1338	if (mc.moving_task && current != mc.moving_task) {
1339		if (mem_cgroup_under_move(mem)) {
1340			DEFINE_WAIT(wait);
1341			prepare_to_wait(&mc.waitq, &wait, TASK_INTERRUPTIBLE);
1342			/* moving charge context might have finished. */
1343			if (mc.moving_task)
1344				schedule();
1345			finish_wait(&mc.waitq, &wait);
1346			return true;
1347		}
1348	}
1349	return false;
1350}
1351
1352/**
1353 * mem_cgroup_print_oom_info: Called from OOM with tasklist_lock held in read mode.
1354 * @memcg: The memory cgroup that went over limit
1355 * @p: Task that is going to be killed
1356 *
1357 * NOTE: @memcg and @p's mem_cgroup can be different when hierarchy is
1358 * enabled
1359 */
1360void mem_cgroup_print_oom_info(struct mem_cgroup *memcg, struct task_struct *p)
1361{
1362	struct cgroup *task_cgrp;
1363	struct cgroup *mem_cgrp;
1364	/*
1365	 * Need a buffer in BSS, can't rely on allocations. The code relies
1366	 * on the assumption that OOM is serialized for memory controller.
1367	 * If this assumption is broken, revisit this code.
1368	 */
1369	static char memcg_name[PATH_MAX];
1370	int ret;
1371
1372	if (!memcg || !p)
1373		return;
1374
1375
1376	rcu_read_lock();
1377
1378	mem_cgrp = memcg->css.cgroup;
1379	task_cgrp = task_cgroup(p, mem_cgroup_subsys_id);
1380
1381	ret = cgroup_path(task_cgrp, memcg_name, PATH_MAX);
1382	if (ret < 0) {
1383		/*
1384		 * Unfortunately, we are unable to convert to a useful name
1385		 * But we'll still print out the usage information
1386		 */
1387		rcu_read_unlock();
1388		goto done;
1389	}
1390	rcu_read_unlock();
1391
1392	printk(KERN_INFO "Task in %s killed", memcg_name);
1393
1394	rcu_read_lock();
1395	ret = cgroup_path(mem_cgrp, memcg_name, PATH_MAX);
1396	if (ret < 0) {
1397		rcu_read_unlock();
1398		goto done;
1399	}
1400	rcu_read_unlock();
1401
1402	/*
1403	 * Continues from above, so we don't need an KERN_ level
1404	 */
1405	printk(KERN_CONT " as a result of limit of %s\n", memcg_name);
1406done:
1407
1408	printk(KERN_INFO "memory: usage %llukB, limit %llukB, failcnt %llu\n",
1409		res_counter_read_u64(&memcg->res, RES_USAGE) >> 10,
1410		res_counter_read_u64(&memcg->res, RES_LIMIT) >> 10,
1411		res_counter_read_u64(&memcg->res, RES_FAILCNT));
1412	printk(KERN_INFO "memory+swap: usage %llukB, limit %llukB, "
1413		"failcnt %llu\n",
1414		res_counter_read_u64(&memcg->memsw, RES_USAGE) >> 10,
1415		res_counter_read_u64(&memcg->memsw, RES_LIMIT) >> 10,
1416		res_counter_read_u64(&memcg->memsw, RES_FAILCNT));
1417}
1418
1419/*
1420 * This function returns the number of memcg under hierarchy tree. Returns
1421 * 1(self count) if no children.
1422 */
1423static int mem_cgroup_count_children(struct mem_cgroup *mem)
1424{
1425	int num = 0;
1426	struct mem_cgroup *iter;
1427
1428	for_each_mem_cgroup_tree(iter, mem)
1429		num++;
1430	return num;
1431}
1432
1433/*
1434 * Return the memory (and swap, if configured) limit for a memcg.
1435 */
1436u64 mem_cgroup_get_limit(struct mem_cgroup *memcg)
1437{
1438	u64 limit;
1439	u64 memsw;
1440
1441	limit = res_counter_read_u64(&memcg->res, RES_LIMIT);
1442	limit += total_swap_pages << PAGE_SHIFT;
1443
1444	memsw = res_counter_read_u64(&memcg->memsw, RES_LIMIT);
1445	/*
1446	 * If memsw is finite and limits the amount of swap space available
1447	 * to this memcg, return that limit.
1448	 */
1449	return min(limit, memsw);
1450}
1451
1452/*
1453 * Visit the first child (need not be the first child as per the ordering
1454 * of the cgroup list, since we track last_scanned_child) of @mem and use
1455 * that to reclaim free pages from.
1456 */
1457static struct mem_cgroup *
1458mem_cgroup_select_victim(struct mem_cgroup *root_mem)
1459{
1460	struct mem_cgroup *ret = NULL;
1461	struct cgroup_subsys_state *css;
1462	int nextid, found;
1463
1464	if (!root_mem->use_hierarchy) {
1465		css_get(&root_mem->css);
1466		ret = root_mem;
1467	}
1468
1469	while (!ret) {
1470		rcu_read_lock();
1471		nextid = root_mem->last_scanned_child + 1;
1472		css = css_get_next(&mem_cgroup_subsys, nextid, &root_mem->css,
1473				   &found);
1474		if (css && css_tryget(css))
1475			ret = container_of(css, struct mem_cgroup, css);
1476
1477		rcu_read_unlock();
1478		/* Updates scanning parameter */
1479		if (!css) {
1480			/* this means start scan from ID:1 */
1481			root_mem->last_scanned_child = 0;
1482		} else
1483			root_mem->last_scanned_child = found;
1484	}
1485
1486	return ret;
1487}
1488
1489/**
1490 * test_mem_cgroup_node_reclaimable
1491 * @mem: the target memcg
1492 * @nid: the node ID to be checked.
1493 * @noswap : specify true here if the user wants flle only information.
1494 *
1495 * This function returns whether the specified memcg contains any
1496 * reclaimable pages on a node. Returns true if there are any reclaimable
1497 * pages in the node.
1498 */
1499static bool test_mem_cgroup_node_reclaimable(struct mem_cgroup *mem,
1500		int nid, bool noswap)
1501{
1502	if (mem_cgroup_node_nr_lru_pages(mem, nid, LRU_ALL_FILE))
1503		return true;
1504	if (noswap || !total_swap_pages)
1505		return false;
1506	if (mem_cgroup_node_nr_lru_pages(mem, nid, LRU_ALL_ANON))
1507		return true;
1508	return false;
1509
1510}
1511#if MAX_NUMNODES > 1
1512
1513/*
1514 * Always updating the nodemask is not very good - even if we have an empty
1515 * list or the wrong list here, we can start from some node and traverse all
1516 * nodes based on the zonelist. So update the list loosely once per 10 secs.
1517 *
1518 */
1519static void mem_cgroup_may_update_nodemask(struct mem_cgroup *mem)
1520{
1521	int nid;
1522	/*
1523	 * numainfo_events > 0 means there was at least NUMAINFO_EVENTS_TARGET
1524	 * pagein/pageout changes since the last update.
1525	 */
1526	if (!atomic_read(&mem->numainfo_events))
1527		return;
1528	if (atomic_inc_return(&mem->numainfo_updating) > 1)
1529		return;
1530
1531	/* make a nodemask where this memcg uses memory from */
1532	mem->scan_nodes = node_states[N_HIGH_MEMORY];
1533
1534	for_each_node_mask(nid, node_states[N_HIGH_MEMORY]) {
1535
1536		if (!test_mem_cgroup_node_reclaimable(mem, nid, false))
1537			node_clear(nid, mem->scan_nodes);
1538	}
1539
1540	atomic_set(&mem->numainfo_events, 0);
1541	atomic_set(&mem->numainfo_updating, 0);
1542}
1543
1544/*
1545 * Selecting a node where we start reclaim from. Because what we need is just
1546 * reducing usage counter, start from anywhere is O,K. Considering
1547 * memory reclaim from current node, there are pros. and cons.
1548 *
1549 * Freeing memory from current node means freeing memory from a node which
1550 * we'll use or we've used. So, it may make LRU bad. And if several threads
1551 * hit limits, it will see a contention on a node. But freeing from remote
1552 * node means more costs for memory reclaim because of memory latency.
1553 *
1554 * Now, we use round-robin. Better algorithm is welcomed.
1555 */
1556int mem_cgroup_select_victim_node(struct mem_cgroup *mem)
1557{
1558	int node;
1559
1560	mem_cgroup_may_update_nodemask(mem);
1561	node = mem->last_scanned_node;
1562
1563	node = next_node(node, mem->scan_nodes);
1564	if (node == MAX_NUMNODES)
1565		node = first_node(mem->scan_nodes);
1566	/*
1567	 * We call this when we hit limit, not when pages are added to LRU.
1568	 * No LRU may hold pages because all pages are UNEVICTABLE or
1569	 * memcg is too small and all pages are not on LRU. In that case,
1570	 * we use curret node.
1571	 */
1572	if (unlikely(node == MAX_NUMNODES))
1573		node = numa_node_id();
1574
1575	mem->last_scanned_node = node;
1576	return node;
1577}
1578
1579/*
1580 * Check all nodes whether it contains reclaimable pages or not.
1581 * For quick scan, we make use of scan_nodes. This will allow us to skip
1582 * unused nodes. But scan_nodes is lazily updated and may not cotain
1583 * enough new information. We need to do double check.
1584 */
1585bool mem_cgroup_reclaimable(struct mem_cgroup *mem, bool noswap)
1586{
1587	int nid;
1588
1589	/*
1590	 * quick check...making use of scan_node.
1591	 * We can skip unused nodes.
1592	 */
1593	if (!nodes_empty(mem->scan_nodes)) {
1594		for (nid = first_node(mem->scan_nodes);
1595		     nid < MAX_NUMNODES;
1596		     nid = next_node(nid, mem->scan_nodes)) {
1597
1598			if (test_mem_cgroup_node_reclaimable(mem, nid, noswap))
1599				return true;
1600		}
1601	}
1602	/*
1603	 * Check rest of nodes.
1604	 */
1605	for_each_node_state(nid, N_HIGH_MEMORY) {
1606		if (node_isset(nid, mem->scan_nodes))
1607			continue;
1608		if (test_mem_cgroup_node_reclaimable(mem, nid, noswap))
1609			return true;
1610	}
1611	return false;
1612}
1613
1614#else
1615int mem_cgroup_select_victim_node(struct mem_cgroup *mem)
1616{
1617	return 0;
1618}
1619
1620bool mem_cgroup_reclaimable(struct mem_cgroup *mem, bool noswap)
1621{
1622	return test_mem_cgroup_node_reclaimable(mem, 0, noswap);
1623}
1624#endif
1625
1626/*
1627 * Scan the hierarchy if needed to reclaim memory. We remember the last child
1628 * we reclaimed from, so that we don't end up penalizing one child extensively
1629 * based on its position in the children list.
1630 *
1631 * root_mem is the original ancestor that we've been reclaim from.
1632 *
1633 * We give up and return to the caller when we visit root_mem twice.
1634 * (other groups can be removed while we're walking....)
1635 *
1636 * If shrink==true, for avoiding to free too much, this returns immedieately.
1637 */
1638static int mem_cgroup_hierarchical_reclaim(struct mem_cgroup *root_mem,
1639						struct zone *zone,
1640						gfp_t gfp_mask,
1641						unsigned long reclaim_options,
1642						unsigned long *total_scanned)
1643{
1644	struct mem_cgroup *victim;
1645	int ret, total = 0;
1646	int loop = 0;
1647	bool noswap = reclaim_options & MEM_CGROUP_RECLAIM_NOSWAP;
1648	bool shrink = reclaim_options & MEM_CGROUP_RECLAIM_SHRINK;
1649	bool check_soft = reclaim_options & MEM_CGROUP_RECLAIM_SOFT;
1650	unsigned long excess;
1651	unsigned long nr_scanned;
1652
1653	excess = res_counter_soft_limit_excess(&root_mem->res) >> PAGE_SHIFT;
1654
1655	/* If memsw_is_minimum==1, swap-out is of-no-use. */
1656	if (!check_soft && root_mem->memsw_is_minimum)
1657		noswap = true;
1658
1659	while (1) {
1660		victim = mem_cgroup_select_victim(root_mem);
1661		if (victim == root_mem) {
1662			loop++;
1663			/*
1664			 * We are not draining per cpu cached charges during
1665			 * soft limit reclaim  because global reclaim doesn't
1666			 * care about charges. It tries to free some memory and
1667			 * charges will not give any.
1668			 */
1669			if (!check_soft && loop >= 1)
1670				drain_all_stock_async(root_mem);
1671			if (loop >= 2) {
1672				/*
1673				 * If we have not been able to reclaim
1674				 * anything, it might because there are
1675				 * no reclaimable pages under this hierarchy
1676				 */
1677				if (!check_soft || !total) {
1678					css_put(&victim->css);
1679					break;
1680				}
1681				/*
1682				 * We want to do more targeted reclaim.
1683				 * excess >> 2 is not to excessive so as to
1684				 * reclaim too much, nor too less that we keep
1685				 * coming back to reclaim from this cgroup
1686				 */
1687				if (total >= (excess >> 2) ||
1688					(loop > MEM_CGROUP_MAX_RECLAIM_LOOPS)) {
1689					css_put(&victim->css);
1690					break;
1691				}
1692			}
1693		}
1694		if (!mem_cgroup_reclaimable(victim, noswap)) {
1695			/* this cgroup's local usage == 0 */
1696			css_put(&victim->css);
1697			continue;
1698		}
1699		/* we use swappiness of local cgroup */
1700		if (check_soft) {
1701			ret = mem_cgroup_shrink_node_zone(victim, gfp_mask,
1702				noswap, zone, &nr_scanned);
1703			*total_scanned += nr_scanned;
1704		} else
1705			ret = try_to_free_mem_cgroup_pages(victim, gfp_mask,
1706						noswap);
1707		css_put(&victim->css);
1708		/*
1709		 * At shrinking usage, we can't check we should stop here or
1710		 * reclaim more. It's depends on callers. last_scanned_child
1711		 * will work enough for keeping fairness under tree.
1712		 */
1713		if (shrink)
1714			return ret;
1715		total += ret;
1716		if (check_soft) {
1717			if (!res_counter_soft_limit_excess(&root_mem->res))
1718				return total;
1719		} else if (mem_cgroup_margin(root_mem))
1720			return total;
1721	}
1722	return total;
1723}
1724
1725/*
1726 * Check OOM-Killer is already running under our hierarchy.
1727 * If someone is running, return false.
1728 * Has to be called with memcg_oom_lock
1729 */
1730static bool mem_cgroup_oom_lock(struct mem_cgroup *mem)
1731{
1732	int lock_count = -1;
1733	struct mem_cgroup *iter, *failed = NULL;
1734	bool cond = true;
1735
1736	for_each_mem_cgroup_tree_cond(iter, mem, cond) {
1737		bool locked = iter->oom_lock;
1738
1739		iter->oom_lock = true;
1740		if (lock_count == -1)
1741			lock_count = iter->oom_lock;
1742		else if (lock_count != locked) {
1743			/*
1744			 * this subtree of our hierarchy is already locked
1745			 * so we cannot give a lock.
1746			 */
1747			lock_count = 0;
1748			failed = iter;
1749			cond = false;
1750		}
1751	}
1752
1753	if (!failed)
1754		goto done;
1755
1756	/*
1757	 * OK, we failed to lock the whole subtree so we have to clean up
1758	 * what we set up to the failing subtree
1759	 */
1760	cond = true;
1761	for_each_mem_cgroup_tree_cond(iter, mem, cond) {
1762		if (iter == failed) {
1763			cond = false;
1764			continue;
1765		}
1766		iter->oom_lock = false;
1767	}
1768done:
1769	return lock_count;
1770}
1771
1772/*
1773 * Has to be called with memcg_oom_lock
1774 */
1775static int mem_cgroup_oom_unlock(struct mem_cgroup *mem)
1776{
1777	struct mem_cgroup *iter;
1778
1779	for_each_mem_cgroup_tree(iter, mem)
1780		iter->oom_lock = false;
1781	return 0;
1782}
1783
1784static void mem_cgroup_mark_under_oom(struct mem_cgroup *mem)
1785{
1786	struct mem_cgroup *iter;
1787
1788	for_each_mem_cgroup_tree(iter, mem)
1789		atomic_inc(&iter->under_oom);
1790}
1791
1792static void mem_cgroup_unmark_under_oom(struct mem_cgroup *mem)
1793{
1794	struct mem_cgroup *iter;
1795
1796	/*
1797	 * When a new child is created while the hierarchy is under oom,
1798	 * mem_cgroup_oom_lock() may not be called. We have to use
1799	 * atomic_add_unless() here.
1800	 */
1801	for_each_mem_cgroup_tree(iter, mem)
1802		atomic_add_unless(&iter->under_oom, -1, 0);
1803}
1804
1805static DEFINE_SPINLOCK(memcg_oom_lock);
1806static DECLARE_WAIT_QUEUE_HEAD(memcg_oom_waitq);
1807
1808struct oom_wait_info {
1809	struct mem_cgroup *mem;
1810	wait_queue_t	wait;
1811};
1812
1813static int memcg_oom_wake_function(wait_queue_t *wait,
1814	unsigned mode, int sync, void *arg)
1815{
1816	struct mem_cgroup *wake_mem = (struct mem_cgroup *)arg;
1817	struct oom_wait_info *oom_wait_info;
1818
1819	oom_wait_info = container_of(wait, struct oom_wait_info, wait);
1820
1821	if (oom_wait_info->mem == wake_mem)
1822		goto wakeup;
1823	/* if no hierarchy, no match */
1824	if (!oom_wait_info->mem->use_hierarchy || !wake_mem->use_hierarchy)
1825		return 0;
1826	/*
1827	 * Both of oom_wait_info->mem and wake_mem are stable under us.
1828	 * Then we can use css_is_ancestor without taking care of RCU.
1829	 */
1830	if (!css_is_ancestor(&oom_wait_info->mem->css, &wake_mem->css) &&
1831	    !css_is_ancestor(&wake_mem->css, &oom_wait_info->mem->css))
1832		return 0;
1833
1834wakeup:
1835	return autoremove_wake_function(wait, mode, sync, arg);
1836}
1837
1838static void memcg_wakeup_oom(struct mem_cgroup *mem)
1839{
1840	/* for filtering, pass "mem" as argument. */
1841	__wake_up(&memcg_oom_waitq, TASK_NORMAL, 0, mem);
1842}
1843
1844static void memcg_oom_recover(struct mem_cgroup *mem)
1845{
1846	if (mem && atomic_read(&mem->under_oom))
1847		memcg_wakeup_oom(mem);
1848}
1849
1850/*
1851 * try to call OOM killer. returns false if we should exit memory-reclaim loop.
1852 */
1853bool mem_cgroup_handle_oom(struct mem_cgroup *mem, gfp_t mask)
1854{
1855	struct oom_wait_info owait;
1856	bool locked, need_to_kill;
1857
1858	owait.mem = mem;
1859	owait.wait.flags = 0;
1860	owait.wait.func = memcg_oom_wake_function;
1861	owait.wait.private = current;
1862	INIT_LIST_HEAD(&owait.wait.task_list);
1863	need_to_kill = true;
1864	mem_cgroup_mark_under_oom(mem);
1865
1866	/* At first, try to OOM lock hierarchy under mem.*/
1867	spin_lock(&memcg_oom_lock);
1868	locked = mem_cgroup_oom_lock(mem);
1869	/*
1870	 * Even if signal_pending(), we can't quit charge() loop without
1871	 * accounting. So, UNINTERRUPTIBLE is appropriate. But SIGKILL
1872	 * under OOM is always welcomed, use TASK_KILLABLE here.
1873	 */
1874	prepare_to_wait(&memcg_oom_waitq, &owait.wait, TASK_KILLABLE);
1875	if (!locked || mem->oom_kill_disable)
1876		need_to_kill = false;
1877	if (locked)
1878		mem_cgroup_oom_notify(mem);
1879	spin_unlock(&memcg_oom_lock);
1880
1881	if (need_to_kill) {
1882		finish_wait(&memcg_oom_waitq, &owait.wait);
1883		mem_cgroup_out_of_memory(mem, mask);
1884	} else {
1885		schedule();
1886		finish_wait(&memcg_oom_waitq, &owait.wait);
1887	}
1888	spin_lock(&memcg_oom_lock);
1889	if (locked)
1890		mem_cgroup_oom_unlock(mem);
1891	memcg_wakeup_oom(mem);
1892	spin_unlock(&memcg_oom_lock);
1893
1894	mem_cgroup_unmark_under_oom(mem);
1895
1896	if (test_thread_flag(TIF_MEMDIE) || fatal_signal_pending(current))
1897		return false;
1898	/* Give chance to dying process */
1899	schedule_timeout(1);
1900	return true;
1901}
1902
1903/*
1904 * Currently used to update mapped file statistics, but the routine can be
1905 * generalized to update other statistics as well.
1906 *
1907 * Notes: Race condition
1908 *
1909 * We usually use page_cgroup_lock() for accessing page_cgroup member but
1910 * it tends to be costly. But considering some conditions, we doesn't need
1911 * to do so _always_.
1912 *
1913 * Considering "charge", lock_page_cgroup() is not required because all
1914 * file-stat operations happen after a page is attached to radix-tree. There
1915 * are no race with "charge".
1916 *
1917 * Considering "uncharge", we know that memcg doesn't clear pc->mem_cgroup
1918 * at "uncharge" intentionally. So, we always see valid pc->mem_cgroup even
1919 * if there are race with "uncharge". Statistics itself is properly handled
1920 * by flags.
1921 *
1922 * Considering "move", this is an only case we see a race. To make the race
1923 * small, we check MEM_CGROUP_ON_MOVE percpu value and detect there are
1924 * possibility of race condition. If there is, we take a lock.
1925 */
1926
1927void mem_cgroup_update_page_stat(struct page *page,
1928				 enum mem_cgroup_page_stat_item idx, int val)
1929{
1930	struct mem_cgroup *mem;
1931	struct page_cgroup *pc = lookup_page_cgroup(page);
1932	bool need_unlock = false;
1933	unsigned long uninitialized_var(flags);
1934
1935	if (unlikely(!pc))
1936		return;
1937
1938	rcu_read_lock();
1939	mem = pc->mem_cgroup;
1940	if (unlikely(!mem || !PageCgroupUsed(pc)))
1941		goto out;
1942	/* pc->mem_cgroup is unstable ? */
1943	if (unlikely(mem_cgroup_stealed(mem)) || PageTransHuge(page)) {
1944		/* take a lock against to access pc->mem_cgroup */
1945		move_lock_page_cgroup(pc, &flags);
1946		need_unlock = true;
1947		mem = pc->mem_cgroup;
1948		if (!mem || !PageCgroupUsed(pc))
1949			goto out;
1950	}
1951
1952	switch (idx) {
1953	case MEMCG_NR_FILE_MAPPED:
1954		if (val > 0)
1955			SetPageCgroupFileMapped(pc);
1956		else if (!page_mapped(page))
1957			ClearPageCgroupFileMapped(pc);
1958		idx = MEM_CGROUP_STAT_FILE_MAPPED;
1959		break;
1960	default:
1961		BUG();
1962	}
1963
1964	this_cpu_add(mem->stat->count[idx], val);
1965
1966out:
1967	if (unlikely(need_unlock))
1968		move_unlock_page_cgroup(pc, &flags);
1969	rcu_read_unlock();
1970	return;
1971}
1972EXPORT_SYMBOL(mem_cgroup_update_page_stat);
1973
1974/*
1975 * size of first charge trial. "32" comes from vmscan.c's magic value.
1976 * TODO: maybe necessary to use big numbers in big irons.
1977 */
1978#define CHARGE_BATCH	32U
1979struct memcg_stock_pcp {
1980	struct mem_cgroup *cached; /* this never be root cgroup */
1981	unsigned int nr_pages;
1982	struct work_struct work;
1983	unsigned long flags;
1984#define FLUSHING_CACHED_CHARGE	(0)
1985};
1986static DEFINE_PER_CPU(struct memcg_stock_pcp, memcg_stock);
1987static DEFINE_MUTEX(percpu_charge_mutex);
1988
1989/*
1990 * Try to consume stocked charge on this cpu. If success, one page is consumed
1991 * from local stock and true is returned. If the stock is 0 or charges from a
1992 * cgroup which is not current target, returns false. This stock will be
1993 * refilled.
1994 */
1995static bool consume_stock(struct mem_cgroup *mem)
1996{
1997	struct memcg_stock_pcp *stock;
1998	bool ret = true;
1999
2000	stock = &get_cpu_var(memcg_stock);
2001	if (mem == stock->cached && stock->nr_pages)
2002		stock->nr_pages--;
2003	else /* need to call res_counter_charge */
2004		ret = false;
2005	put_cpu_var(memcg_stock);
2006	return ret;
2007}
2008
2009/*
2010 * Returns stocks cached in percpu to res_counter and reset cached information.
2011 */
2012static void drain_stock(struct memcg_stock_pcp *stock)
2013{
2014	struct mem_cgroup *old = stock->cached;
2015
2016	if (stock->nr_pages) {
2017		unsigned long bytes = stock->nr_pages * PAGE_SIZE;
2018
2019		res_counter_uncharge(&old->res, bytes);
2020		if (do_swap_account)
2021			res_counter_uncharge(&old->memsw, bytes);
2022		stock->nr_pages = 0;
2023	}
2024	stock->cached = NULL;
2025}
2026
2027/*
2028 * This must be called under preempt disabled or must be called by
2029 * a thread which is pinned to local cpu.
2030 */
2031static void drain_local_stock(struct work_struct *dummy)
2032{
2033	struct memcg_stock_pcp *stock = &__get_cpu_var(memcg_stock);
2034	drain_stock(stock);
2035	clear_bit(FLUSHING_CACHED_CHARGE, &stock->flags);
2036}
2037
2038/*
2039 * Cache charges(val) which is from res_counter, to local per_cpu area.
2040 * This will be consumed by consume_stock() function, later.
2041 */
2042static void refill_stock(struct mem_cgroup *mem, unsigned int nr_pages)
2043{
2044	struct memcg_stock_pcp *stock = &get_cpu_var(memcg_stock);
2045
2046	if (stock->cached != mem) { /* reset if necessary */
2047		drain_stock(stock);
2048		stock->cached = mem;
2049	}
2050	stock->nr_pages += nr_pages;
2051	put_cpu_var(memcg_stock);
2052}
2053
2054/*
2055 * Tries to drain stocked charges in other cpus. This function is asynchronous
2056 * and just put a work per cpu for draining localy on each cpu. Caller can
2057 * expects some charges will be back to res_counter later but cannot wait for
2058 * it.
2059 */
2060static void drain_all_stock_async(struct mem_cgroup *root_mem)
2061{
2062	int cpu, curcpu;
2063	/*
2064	 * If someone calls draining, avoid adding more kworker runs.
2065	 */
2066	if (!mutex_trylock(&percpu_charge_mutex))
2067		return;
2068	/* Notify other cpus that system-wide "drain" is running */
2069	get_online_cpus();
2070	/*
2071	 * Get a hint for avoiding draining charges on the current cpu,
2072	 * which must be exhausted by our charging.  It is not required that
2073	 * this be a precise check, so we use raw_smp_processor_id() instead of
2074	 * getcpu()/putcpu().
2075	 */
2076	curcpu = raw_smp_processor_id();
2077	for_each_online_cpu(cpu) {
2078		struct memcg_stock_pcp *stock = &per_cpu(memcg_stock, cpu);
2079		struct mem_cgroup *mem;
2080
2081		if (cpu == curcpu)
2082			continue;
2083
2084		mem = stock->cached;
2085		if (!mem)
2086			continue;
2087		if (mem != root_mem) {
2088			if (!root_mem->use_hierarchy)
2089				continue;
2090			/* check whether "mem" is under tree of "root_mem" */
2091			if (!css_is_ancestor(&mem->css, &root_mem->css))
2092				continue;
2093		}
2094		if (!test_and_set_bit(FLUSHING_CACHED_CHARGE, &stock->flags))
2095			schedule_work_on(cpu, &stock->work);
2096	}
2097 	put_online_cpus();
2098	mutex_unlock(&percpu_charge_mutex);
2099	/* We don't wait for flush_work */
2100}
2101
2102/* This is a synchronous drain interface. */
2103static void drain_all_stock_sync(void)
2104{
2105	/* called when force_empty is called */
2106	mutex_lock(&percpu_charge_mutex);
2107	schedule_on_each_cpu(drain_local_stock);
2108	mutex_unlock(&percpu_charge_mutex);
2109}
2110
2111/*
2112 * This function drains percpu counter value from DEAD cpu and
2113 * move it to local cpu. Note that this function can be preempted.
2114 */
2115static void mem_cgroup_drain_pcp_counter(struct mem_cgroup *mem, int cpu)
2116{
2117	int i;
2118
2119	spin_lock(&mem->pcp_counter_lock);
2120	for (i = 0; i < MEM_CGROUP_STAT_DATA; i++) {
2121		long x = per_cpu(mem->stat->count[i], cpu);
2122
2123		per_cpu(mem->stat->count[i], cpu) = 0;
2124		mem->nocpu_base.count[i] += x;
2125	}
2126	for (i = 0; i < MEM_CGROUP_EVENTS_NSTATS; i++) {
2127		unsigned long x = per_cpu(mem->stat->events[i], cpu);
2128
2129		per_cpu(mem->stat->events[i], cpu) = 0;
2130		mem->nocpu_base.events[i] += x;
2131	}
2132	/* need to clear ON_MOVE value, works as a kind of lock. */
2133	per_cpu(mem->stat->count[MEM_CGROUP_ON_MOVE], cpu) = 0;
2134	spin_unlock(&mem->pcp_counter_lock);
2135}
2136
2137static void synchronize_mem_cgroup_on_move(struct mem_cgroup *mem, int cpu)
2138{
2139	int idx = MEM_CGROUP_ON_MOVE;
2140
2141	spin_lock(&mem->pcp_counter_lock);
2142	per_cpu(mem->stat->count[idx], cpu) = mem->nocpu_base.count[idx];
2143	spin_unlock(&mem->pcp_counter_lock);
2144}
2145
2146static int __cpuinit memcg_cpu_hotplug_callback(struct notifier_block *nb,
2147					unsigned long action,
2148					void *hcpu)
2149{
2150	int cpu = (unsigned long)hcpu;
2151	struct memcg_stock_pcp *stock;
2152	struct mem_cgroup *iter;
2153
2154	if ((action == CPU_ONLINE)) {
2155		for_each_mem_cgroup_all(iter)
2156			synchronize_mem_cgroup_on_move(iter, cpu);
2157		return NOTIFY_OK;
2158	}
2159
2160	if ((action != CPU_DEAD) || action != CPU_DEAD_FROZEN)
2161		return NOTIFY_OK;
2162
2163	for_each_mem_cgroup_all(iter)
2164		mem_cgroup_drain_pcp_counter(iter, cpu);
2165
2166	stock = &per_cpu(memcg_stock, cpu);
2167	drain_stock(stock);
2168	return NOTIFY_OK;
2169}
2170
2171
2172/* See __mem_cgroup_try_charge() for details */
2173enum {
2174	CHARGE_OK,		/* success */
2175	CHARGE_RETRY,		/* need to retry but retry is not bad */
2176	CHARGE_NOMEM,		/* we can't do more. return -ENOMEM */
2177	CHARGE_WOULDBLOCK,	/* GFP_WAIT wasn't set and no enough res. */
2178	CHARGE_OOM_DIE,		/* the current is killed because of OOM */
2179};
2180
2181static int mem_cgroup_do_charge(struct mem_cgroup *mem, gfp_t gfp_mask,
2182				unsigned int nr_pages, bool oom_check)
2183{
2184	unsigned long csize = nr_pages * PAGE_SIZE;
2185	struct mem_cgroup *mem_over_limit;
2186	struct res_counter *fail_res;
2187	unsigned long flags = 0;
2188	int ret;
2189
2190	ret = res_counter_charge(&mem->res, csize, &fail_res);
2191
2192	if (likely(!ret)) {
2193		if (!do_swap_account)
2194			return CHARGE_OK;
2195		ret = res_counter_charge(&mem->memsw, csize, &fail_res);
2196		if (likely(!ret))
2197			return CHARGE_OK;
2198
2199		res_counter_uncharge(&mem->res, csize);
2200		mem_over_limit = mem_cgroup_from_res_counter(fail_res, memsw);
2201		flags |= MEM_CGROUP_RECLAIM_NOSWAP;
2202	} else
2203		mem_over_limit = mem_cgroup_from_res_counter(fail_res, res);
2204	/*
2205	 * nr_pages can be either a huge page (HPAGE_PMD_NR), a batch
2206	 * of regular pages (CHARGE_BATCH), or a single regular page (1).
2207	 *
2208	 * Never reclaim on behalf of optional batching, retry with a
2209	 * single page instead.
2210	 */
2211	if (nr_pages == CHARGE_BATCH)
2212		return CHARGE_RETRY;
2213
2214	if (!(gfp_mask & __GFP_WAIT))
2215		return CHARGE_WOULDBLOCK;
2216
2217	ret = mem_cgroup_hierarchical_reclaim(mem_over_limit, NULL,
2218					      gfp_mask, flags, NULL);
2219	if (mem_cgroup_margin(mem_over_limit) >= nr_pages)
2220		return CHARGE_RETRY;
2221	/*
2222	 * Even though the limit is exceeded at this point, reclaim
2223	 * may have been able to free some pages.  Retry the charge
2224	 * before killing the task.
2225	 *
2226	 * Only for regular pages, though: huge pages are rather
2227	 * unlikely to succeed so close to the limit, and we fall back
2228	 * to regular pages anyway in case of failure.
2229	 */
2230	if (nr_pages == 1 && ret)
2231		return CHARGE_RETRY;
2232
2233	/*
2234	 * At task move, charge accounts can be doubly counted. So, it's
2235	 * better to wait until the end of task_move if something is going on.
2236	 */
2237	if (mem_cgroup_wait_acct_move(mem_over_limit))
2238		return CHARGE_RETRY;
2239
2240	/* If we don't need to call oom-killer at el, return immediately */
2241	if (!oom_check)
2242		return CHARGE_NOMEM;
2243	/* check OOM */
2244	if (!mem_cgroup_handle_oom(mem_over_limit, gfp_mask))
2245		return CHARGE_OOM_DIE;
2246
2247	return CHARGE_RETRY;
2248}
2249
2250/*
2251 * Unlike exported interface, "oom" parameter is added. if oom==true,
2252 * oom-killer can be invoked.
2253 */
2254static int __mem_cgroup_try_charge(struct mm_struct *mm,
2255				   gfp_t gfp_mask,
2256				   unsigned int nr_pages,
2257				   struct mem_cgroup **memcg,
2258				   bool oom)
2259{
2260	unsigned int batch = max(CHARGE_BATCH, nr_pages);
2261	int nr_oom_retries = MEM_CGROUP_RECLAIM_RETRIES;
2262	struct mem_cgroup *mem = NULL;
2263	int ret;
2264
2265	/*
2266	 * Unlike gloval-vm's OOM-kill, we're not in memory shortage
2267	 * in system level. So, allow to go ahead dying process in addition to
2268	 * MEMDIE process.
2269	 */
2270	if (unlikely(test_thread_flag(TIF_MEMDIE)
2271		     || fatal_signal_pending(current)))
2272		goto bypass;
2273
2274	/*
2275	 * We always charge the cgroup the mm_struct belongs to.
2276	 * The mm_struct's mem_cgroup changes on task migration if the
2277	 * thread group leader migrates. It's possible that mm is not
2278	 * set, if so charge the init_mm (happens for pagecache usage).
2279	 */
2280	if (!*memcg && !mm)
2281		goto bypass;
2282again:
2283	if (*memcg) { /* css should be a valid one */
2284		mem = *memcg;
2285		VM_BUG_ON(css_is_removed(&mem->css));
2286		if (mem_cgroup_is_root(mem))
2287			goto done;
2288		if (nr_pages == 1 && consume_stock(mem))
2289			goto done;
2290		css_get(&mem->css);
2291	} else {
2292		struct task_struct *p;
2293
2294		rcu_read_lock();
2295		p = rcu_dereference(mm->owner);
2296		/*
2297		 * Because we don't have task_lock(), "p" can exit.
2298		 * In that case, "mem" can point to root or p can be NULL with
2299		 * race with swapoff. Then, we have small risk of mis-accouning.
2300		 * But such kind of mis-account by race always happens because
2301		 * we don't have cgroup_mutex(). It's overkill and we allo that
2302		 * small race, here.
2303		 * (*) swapoff at el will charge against mm-struct not against
2304		 * task-struct. So, mm->owner can be NULL.
2305		 */
2306		mem = mem_cgroup_from_task(p);
2307		if (!mem || mem_cgroup_is_root(mem)) {
2308			rcu_read_unlock();
2309			goto done;
2310		}
2311		if (nr_pages == 1 && consume_stock(mem)) {
2312			/*
2313			 * It seems dagerous to access memcg without css_get().
2314			 * But considering how consume_stok works, it's not
2315			 * necessary. If consume_stock success, some charges
2316			 * from this memcg are cached on this cpu. So, we
2317			 * don't need to call css_get()/css_tryget() before
2318			 * calling consume_stock().
2319			 */
2320			rcu_read_unlock();
2321			goto done;
2322		}
2323		/* after here, we may be blocked. we need to get refcnt */
2324		if (!css_tryget(&mem->css)) {
2325			rcu_read_unlock();
2326			goto again;
2327		}
2328		rcu_read_unlock();
2329	}
2330
2331	do {
2332		bool oom_check;
2333
2334		/* If killed, bypass charge */
2335		if (fatal_signal_pending(current)) {
2336			css_put(&mem->css);
2337			goto bypass;
2338		}
2339
2340		oom_check = false;
2341		if (oom && !nr_oom_retries) {
2342			oom_check = true;
2343			nr_oom_retries = MEM_CGROUP_RECLAIM_RETRIES;
2344		}
2345
2346		ret = mem_cgroup_do_charge(mem, gfp_mask, batch, oom_check);
2347		switch (ret) {
2348		case CHARGE_OK:
2349			break;
2350		case CHARGE_RETRY: /* not in OOM situation but retry */
2351			batch = nr_pages;
2352			css_put(&mem->css);
2353			mem = NULL;
2354			goto again;
2355		case CHARGE_WOULDBLOCK: /* !__GFP_WAIT */
2356			css_put(&mem->css);
2357			goto nomem;
2358		case CHARGE_NOMEM: /* OOM routine works */
2359			if (!oom) {
2360				css_put(&mem->css);
2361				goto nomem;
2362			}
2363			/* If oom, we never return -ENOMEM */
2364			nr_oom_retries--;
2365			break;
2366		case CHARGE_OOM_DIE: /* Killed by OOM Killer */
2367			css_put(&mem->css);
2368			goto bypass;
2369		}
2370	} while (ret != CHARGE_OK);
2371
2372	if (batch > nr_pages)
2373		refill_stock(mem, batch - nr_pages);
2374	css_put(&mem->css);
2375done:
2376	*memcg = mem;
2377	return 0;
2378nomem:
2379	*memcg = NULL;
2380	return -ENOMEM;
2381bypass:
2382	*memcg = NULL;
2383	return 0;
2384}
2385
2386/*
2387 * Somemtimes we have to undo a charge we got by try_charge().
2388 * This function is for that and do uncharge, put css's refcnt.
2389 * gotten by try_charge().
2390 */
2391static void __mem_cgroup_cancel_charge(struct mem_cgroup *mem,
2392				       unsigned int nr_pages)
2393{
2394	if (!mem_cgroup_is_root(mem)) {
2395		unsigned long bytes = nr_pages * PAGE_SIZE;
2396
2397		res_counter_uncharge(&mem->res, bytes);
2398		if (do_swap_account)
2399			res_counter_uncharge(&mem->memsw, bytes);
2400	}
2401}
2402
2403/*
2404 * A helper function to get mem_cgroup from ID. must be called under
2405 * rcu_read_lock(). The caller must check css_is_removed() or some if
2406 * it's concern. (dropping refcnt from swap can be called against removed
2407 * memcg.)
2408 */
2409static struct mem_cgroup *mem_cgroup_lookup(unsigned short id)
2410{
2411	struct cgroup_subsys_state *css;
2412
2413	/* ID 0 is unused ID */
2414	if (!id)
2415		return NULL;
2416	css = css_lookup(&mem_cgroup_subsys, id);
2417	if (!css)
2418		return NULL;
2419	return container_of(css, struct mem_cgroup, css);
2420}
2421
2422struct mem_cgroup *try_get_mem_cgroup_from_page(struct page *page)
2423{
2424	struct mem_cgroup *mem = NULL;
2425	struct page_cgroup *pc;
2426	unsigned short id;
2427	swp_entry_t ent;
2428
2429	VM_BUG_ON(!PageLocked(page));
2430
2431	pc = lookup_page_cgroup(page);
2432	lock_page_cgroup(pc);
2433	if (PageCgroupUsed(pc)) {
2434		mem = pc->mem_cgroup;
2435		if (mem && !css_tryget(&mem->css))
2436			mem = NULL;
2437	} else if (PageSwapCache(page)) {
2438		ent.val = page_private(page);
2439		id = lookup_swap_cgroup(ent);
2440		rcu_read_lock();
2441		mem = mem_cgroup_lookup(id);
2442		if (mem && !css_tryget(&mem->css))
2443			mem = NULL;
2444		rcu_read_unlock();
2445	}
2446	unlock_page_cgroup(pc);
2447	return mem;
2448}
2449
2450static void __mem_cgroup_commit_charge(struct mem_cgroup *mem,
2451				       struct page *page,
2452				       unsigned int nr_pages,
2453				       struct page_cgroup *pc,
2454				       enum charge_type ctype)
2455{
2456	lock_page_cgroup(pc);
2457	if (unlikely(PageCgroupUsed(pc))) {
2458		unlock_page_cgroup(pc);
2459		__mem_cgroup_cancel_charge(mem, nr_pages);
2460		return;
2461	}
2462	/*
2463	 * we don't need page_cgroup_lock about tail pages, becase they are not
2464	 * accessed by any other context at this point.
2465	 */
2466	pc->mem_cgroup = mem;
2467	/*
2468	 * We access a page_cgroup asynchronously without lock_page_cgroup().
2469	 * Especially when a page_cgroup is taken from a page, pc->mem_cgroup
2470	 * is accessed after testing USED bit. To make pc->mem_cgroup visible
2471	 * before USED bit, we need memory barrier here.
2472	 * See mem_cgroup_add_lru_list(), etc.
2473 	 */
2474	smp_wmb();
2475	switch (ctype) {
2476	case MEM_CGROUP_CHARGE_TYPE_CACHE:
2477	case MEM_CGROUP_CHARGE_TYPE_SHMEM:
2478		SetPageCgroupCache(pc);
2479		SetPageCgroupUsed(pc);
2480		break;
2481	case MEM_CGROUP_CHARGE_TYPE_MAPPED:
2482		ClearPageCgroupCache(pc);
2483		SetPageCgroupUsed(pc);
2484		break;
2485	default:
2486		break;
2487	}
2488
2489	mem_cgroup_charge_statistics(mem, PageCgroupCache(pc), nr_pages);
2490	unlock_page_cgroup(pc);
2491	/*
2492	 * "charge_statistics" updated event counter. Then, check it.
2493	 * Insert ancestor (and ancestor's ancestors), to softlimit RB-tree.
2494	 * if they exceeds softlimit.
2495	 */
2496	memcg_check_events(mem, page);
2497}
2498
2499#ifdef CONFIG_TRANSPARENT_HUGEPAGE
2500
2501#define PCGF_NOCOPY_AT_SPLIT ((1 << PCG_LOCK) | (1 << PCG_MOVE_LOCK) |\
2502			(1 << PCG_ACCT_LRU) | (1 << PCG_MIGRATION))
2503/*
2504 * Because tail pages are not marked as "used", set it. We're under
2505 * zone->lru_lock, 'splitting on pmd' and compund_lock.
2506 */
2507void mem_cgroup_split_huge_fixup(struct page *head, struct page *tail)
2508{
2509	struct page_cgroup *head_pc = lookup_page_cgroup(head);
2510	struct page_cgroup *tail_pc = lookup_page_cgroup(tail);
2511	unsigned long flags;
2512
2513	if (mem_cgroup_disabled())
2514		return;
2515	/*
2516	 * We have no races with charge/uncharge but will have races with
2517	 * page state accounting.
2518	 */
2519	move_lock_page_cgroup(head_pc, &flags);
2520
2521	tail_pc->mem_cgroup = head_pc->mem_cgroup;
2522	smp_wmb(); /* see __commit_charge() */
2523	if (PageCgroupAcctLRU(head_pc)) {
2524		enum lru_list lru;
2525		struct mem_cgroup_per_zone *mz;
2526
2527		/*
2528		 * LRU flags cannot be copied because we need to add tail
2529		 *.page to LRU by generic call and our hook will be called.
2530		 * We hold lru_lock, then, reduce counter directly.
2531		 */
2532		lru = page_lru(head);
2533		mz = page_cgroup_zoneinfo(head_pc->mem_cgroup, head);
2534		MEM_CGROUP_ZSTAT(mz, lru) -= 1;
2535	}
2536	tail_pc->flags = head_pc->flags & ~PCGF_NOCOPY_AT_SPLIT;
2537	move_unlock_page_cgroup(head_pc, &flags);
2538}
2539#endif
2540
2541/**
2542 * mem_cgroup_move_account - move account of the page
2543 * @page: the page
2544 * @nr_pages: number of regular pages (>1 for huge pages)
2545 * @pc:	page_cgroup of the page.
2546 * @from: mem_cgroup which the page is moved from.
2547 * @to:	mem_cgroup which the page is moved to. @from != @to.
2548 * @uncharge: whether we should call uncharge and css_put against @from.
2549 *
2550 * The caller must confirm following.
2551 * - page is not on LRU (isolate_page() is useful.)
2552 * - compound_lock is held when nr_pages > 1
2553 *
2554 * This function doesn't do "charge" nor css_get to new cgroup. It should be
2555 * done by a caller(__mem_cgroup_try_charge would be useful). If @uncharge is
2556 * true, this function does "uncharge" from old cgroup, but it doesn't if
2557 * @uncharge is false, so a caller should do "uncharge".
2558 */
2559static int mem_cgroup_move_account(struct page *page,
2560				   unsigned int nr_pages,
2561				   struct page_cgroup *pc,
2562				   struct mem_cgroup *from,
2563				   struct mem_cgroup *to,
2564				   bool uncharge)
2565{
2566	unsigned long flags;
2567	int ret;
2568
2569	VM_BUG_ON(from == to);
2570	VM_BUG_ON(PageLRU(page));
2571	/*
2572	 * The page is isolated from LRU. So, collapse function
2573	 * will not handle this page. But page splitting can happen.
2574	 * Do this check under compound_page_lock(). The caller should
2575	 * hold it.
2576	 */
2577	ret = -EBUSY;
2578	if (nr_pages > 1 && !PageTransHuge(page))
2579		goto out;
2580
2581	lock_page_cgroup(pc);
2582
2583	ret = -EINVAL;
2584	if (!PageCgroupUsed(pc) || pc->mem_cgroup != from)
2585		goto unlock;
2586
2587	move_lock_page_cgroup(pc, &flags);
2588
2589	if (PageCgroupFileMapped(pc)) {
2590		/* Update mapped_file data for mem_cgroup */
2591		preempt_disable();
2592		__this_cpu_dec(from->stat->count[MEM_CGROUP_STAT_FILE_MAPPED]);
2593		__this_cpu_inc(to->stat->count[MEM_CGROUP_STAT_FILE_MAPPED]);
2594		preempt_enable();
2595	}
2596	mem_cgroup_charge_statistics(from, PageCgroupCache(pc), -nr_pages);
2597	if (uncharge)
2598		/* This is not "cancel", but cancel_charge does all we need. */
2599		__mem_cgroup_cancel_charge(from, nr_pages);
2600
2601	/* caller should have done css_get */
2602	pc->mem_cgroup = to;
2603	mem_cgroup_charge_statistics(to, PageCgroupCache(pc), nr_pages);
2604	/*
2605	 * We charges against "to" which may not have any tasks. Then, "to"
2606	 * can be under rmdir(). But in current implementation, caller of
2607	 * this function is just force_empty() and move charge, so it's
2608	 * guaranteed that "to" is never removed. So, we don't check rmdir
2609	 * status here.
2610	 */
2611	move_unlock_page_cgroup(pc, &flags);
2612	ret = 0;
2613unlock:
2614	unlock_page_cgroup(pc);
2615	/*
2616	 * check events
2617	 */
2618	memcg_check_events(to, page);
2619	memcg_check_events(from, page);
2620out:
2621	return ret;
2622}
2623
2624/*
2625 * move charges to its parent.
2626 */
2627
2628static int mem_cgroup_move_parent(struct page *page,
2629				  struct page_cgroup *pc,
2630				  struct mem_cgroup *child,
2631				  gfp_t gfp_mask)
2632{
2633	struct cgroup *cg = child->css.cgroup;
2634	struct cgroup *pcg = cg->parent;
2635	struct mem_cgroup *parent;
2636	unsigned int nr_pages;
2637	unsigned long uninitialized_var(flags);
2638	int ret;
2639
2640	/* Is ROOT ? */
2641	if (!pcg)
2642		return -EINVAL;
2643
2644	ret = -EBUSY;
2645	if (!get_page_unless_zero(page))
2646		goto out;
2647	if (isolate_lru_page(page))
2648		goto put;
2649
2650	nr_pages = hpage_nr_pages(page);
2651
2652	parent = mem_cgroup_from_cont(pcg);
2653	ret = __mem_cgroup_try_charge(NULL, gfp_mask, nr_pages, &parent, false);
2654	if (ret || !parent)
2655		goto put_back;
2656
2657	if (nr_pages > 1)
2658		flags = compound_lock_irqsave(page);
2659
2660	ret = mem_cgroup_move_account(page, nr_pages, pc, child, parent, true);
2661	if (ret)
2662		__mem_cgroup_cancel_charge(parent, nr_pages);
2663
2664	if (nr_pages > 1)
2665		compound_unlock_irqrestore(page, flags);
2666put_back:
2667	putback_lru_page(page);
2668put:
2669	put_page(page);
2670out:
2671	return ret;
2672}
2673
2674/*
2675 * Charge the memory controller for page usage.
2676 * Return
2677 * 0 if the charge was successful
2678 * < 0 if the cgroup is over its limit
2679 */
2680static int mem_cgroup_charge_common(struct page *page, struct mm_struct *mm,
2681				gfp_t gfp_mask, enum charge_type ctype)
2682{
2683	struct mem_cgroup *mem = NULL;
2684	unsigned int nr_pages = 1;
2685	struct page_cgroup *pc;
2686	bool oom = true;
2687	int ret;
2688
2689	if (PageTransHuge(page)) {
2690		nr_pages <<= compound_order(page);
2691		VM_BUG_ON(!PageTransHuge(page));
2692		/*
2693		 * Never OOM-kill a process for a huge page.  The
2694		 * fault handler will fall back to regular pages.
2695		 */
2696		oom = false;
2697	}
2698
2699	pc = lookup_page_cgroup(page);
2700	BUG_ON(!pc); /* XXX: remove this and move pc lookup into commit */
2701
2702	ret = __mem_cgroup_try_charge(mm, gfp_mask, nr_pages, &mem, oom);
2703	if (ret || !mem)
2704		return ret;
2705
2706	__mem_cgroup_commit_charge(mem, page, nr_pages, pc, ctype);
2707	return 0;
2708}
2709
2710int mem_cgroup_newpage_charge(struct page *page,
2711			      struct mm_struct *mm, gfp_t gfp_mask)
2712{
2713	if (mem_cgroup_disabled())
2714		return 0;
2715	/*
2716	 * If already mapped, we don't have to account.
2717	 * If page cache, page->mapping has address_space.
2718	 * But page->mapping may have out-of-use anon_vma pointer,
2719	 * detecit it by PageAnon() check. newly-mapped-anon's page->mapping
2720	 * is NULL.
2721  	 */
2722	if (page_mapped(page) || (page->mapping && !PageAnon(page)))
2723		return 0;
2724	if (unlikely(!mm))
2725		mm = &init_mm;
2726	return mem_cgroup_charge_common(page, mm, gfp_mask,
2727				MEM_CGROUP_CHARGE_TYPE_MAPPED);
2728}
2729
2730static void
2731__mem_cgroup_commit_charge_swapin(struct page *page, struct mem_cgroup *ptr,
2732					enum charge_type ctype);
2733
2734static void
2735__mem_cgroup_commit_charge_lrucare(struct page *page, struct mem_cgroup *mem,
2736					enum charge_type ctype)
2737{
2738	struct page_cgroup *pc = lookup_page_cgroup(page);
2739	/*
2740	 * In some case, SwapCache, FUSE(splice_buf->radixtree), the page
2741	 * is already on LRU. It means the page may on some other page_cgroup's
2742	 * LRU. Take care of it.
2743	 */
2744	mem_cgroup_lru_del_before_commit(page);
2745	__mem_cgroup_commit_charge(mem, page, 1, pc, ctype);
2746	mem_cgroup_lru_add_after_commit(page);
2747	return;
2748}
2749
2750int mem_cgroup_cache_charge(struct page *page, struct mm_struct *mm,
2751				gfp_t gfp_mask)
2752{
2753	struct mem_cgroup *mem = NULL;
2754	int ret;
2755
2756	if (mem_cgroup_disabled())
2757		return 0;
2758	if (PageCompound(page))
2759		return 0;
2760	/*
2761	 * Corner case handling. This is called from add_to_page_cache()
2762	 * in usual. But some FS (shmem) precharges this page before calling it
2763	 * and call add_to_page_cache() with GFP_NOWAIT.
2764	 *
2765	 * For GFP_NOWAIT case, the page may be pre-charged before calling
2766	 * add_to_page_cache(). (See shmem.c) check it here and avoid to call
2767	 * charge twice. (It works but has to pay a bit larger cost.)
2768	 * And when the page is SwapCache, it should take swap information
2769	 * into account. This is under lock_page() now.
2770	 */
2771	if (!(gfp_mask & __GFP_WAIT)) {
2772		struct page_cgroup *pc;
2773
2774		pc = lookup_page_cgroup(page);
2775		if (!pc)
2776			return 0;
2777		lock_page_cgroup(pc);
2778		if (PageCgroupUsed(pc)) {
2779			unlock_page_cgroup(pc);
2780			return 0;
2781		}
2782		unlock_page_cgroup(pc);
2783	}
2784
2785	if (unlikely(!mm))
2786		mm = &init_mm;
2787
2788	if (page_is_file_cache(page)) {
2789		ret = __mem_cgroup_try_charge(mm, gfp_mask, 1, &mem, true);
2790		if (ret || !mem)
2791			return ret;
2792
2793		/*
2794		 * FUSE reuses pages without going through the final
2795		 * put that would remove them from the LRU list, make
2796		 * sure that they get relinked properly.
2797		 */
2798		__mem_cgroup_commit_charge_lrucare(page, mem,
2799					MEM_CGROUP_CHARGE_TYPE_CACHE);
2800		return ret;
2801	}
2802	/* shmem */
2803	if (PageSwapCache(page)) {
2804		ret = mem_cgroup_try_charge_swapin(mm, page, gfp_mask, &mem);
2805		if (!ret)
2806			__mem_cgroup_commit_charge_swapin(page, mem,
2807					MEM_CGROUP_CHARGE_TYPE_SHMEM);
2808	} else
2809		ret = mem_cgroup_charge_common(page, mm, gfp_mask,
2810					MEM_CGROUP_CHARGE_TYPE_SHMEM);
2811
2812	return ret;
2813}
2814
2815/*
2816 * While swap-in, try_charge -> commit or cancel, the page is locked.
2817 * And when try_charge() successfully returns, one refcnt to memcg without
2818 * struct page_cgroup is acquired. This refcnt will be consumed by
2819 * "commit()" or removed by "cancel()"
2820 */
2821int mem_cgroup_try_charge_swapin(struct mm_struct *mm,
2822				 struct page *page,
2823				 gfp_t mask, struct mem_cgroup **ptr)
2824{
2825	struct mem_cgroup *mem;
2826	int ret;
2827
2828	*ptr = NULL;
2829
2830	if (mem_cgroup_disabled())
2831		return 0;
2832
2833	if (!do_swap_account)
2834		goto charge_cur_mm;
2835	/*
2836	 * A racing thread's fault, or swapoff, may have already updated
2837	 * the pte, and even removed page from swap cache: in those cases
2838	 * do_swap_page()'s pte_same() test will fail; but there's also a
2839	 * KSM case which does need to charge the page.
2840	 */
2841	if (!PageSwapCache(page))
2842		goto charge_cur_mm;
2843	mem = try_get_mem_cgroup_from_page(page);
2844	if (!mem)
2845		goto charge_cur_mm;
2846	*ptr = mem;
2847	ret = __mem_cgroup_try_charge(NULL, mask, 1, ptr, true);
2848	css_put(&mem->css);
2849	return ret;
2850charge_cur_mm:
2851	if (unlikely(!mm))
2852		mm = &init_mm;
2853	return __mem_cgroup_try_charge(mm, mask, 1, ptr, true);
2854}
2855
2856static void
2857__mem_cgroup_commit_charge_swapin(struct page *page, struct mem_cgroup *ptr,
2858					enum charge_type ctype)
2859{
2860	if (mem_cgroup_disabled())
2861		return;
2862	if (!ptr)
2863		return;
2864	cgroup_exclude_rmdir(&ptr->css);
2865
2866	__mem_cgroup_commit_charge_lrucare(page, ptr, ctype);
2867	/*
2868	 * Now swap is on-memory. This means this page may be
2869	 * counted both as mem and swap....double count.
2870	 * Fix it by uncharging from memsw. Basically, this SwapCache is stable
2871	 * under lock_page(). But in do_swap_page()::memory.c, reuse_swap_page()
2872	 * may call delete_from_swap_cache() before reach here.
2873	 */
2874	if (do_swap_account && PageSwapCache(page)) {
2875		swp_entry_t ent = {.val = page_private(page)};
2876		unsigned short id;
2877		struct mem_cgroup *memcg;
2878
2879		id = swap_cgroup_record(ent, 0);
2880		rcu_read_lock();
2881		memcg = mem_cgroup_lookup(id);
2882		if (memcg) {
2883			/*
2884			 * This recorded memcg can be obsolete one. So, avoid
2885			 * calling css_tryget
2886			 */
2887			if (!mem_cgroup_is_root(memcg))
2888				res_counter_uncharge(&memcg->memsw, PAGE_SIZE);
2889			mem_cgroup_swap_statistics(memcg, false);
2890			mem_cgroup_put(memcg);
2891		}
2892		rcu_read_unlock();
2893	}
2894	/*
2895	 * At swapin, we may charge account against cgroup which has no tasks.
2896	 * So, rmdir()->pre_destroy() can be called while we do this charge.
2897	 * In that case, we need to call pre_destroy() again. check it here.
2898	 */
2899	cgroup_release_and_wakeup_rmdir(&ptr->css);
2900}
2901
2902void mem_cgroup_commit_charge_swapin(struct page *page, struct mem_cgroup *ptr)
2903{
2904	__mem_cgroup_commit_charge_swapin(page, ptr,
2905					MEM_CGROUP_CHARGE_TYPE_MAPPED);
2906}
2907
2908void mem_cgroup_cancel_charge_swapin(struct mem_cgroup *mem)
2909{
2910	if (mem_cgroup_disabled())
2911		return;
2912	if (!mem)
2913		return;
2914	__mem_cgroup_cancel_charge(mem, 1);
2915}
2916
2917static void mem_cgroup_do_uncharge(struct mem_cgroup *mem,
2918				   unsigned int nr_pages,
2919				   const enum charge_type ctype)
2920{
2921	struct memcg_batch_info *batch = NULL;
2922	bool uncharge_memsw = true;
2923
2924	/* If swapout, usage of swap doesn't decrease */
2925	if (!do_swap_account || ctype == MEM_CGROUP_CHARGE_TYPE_SWAPOUT)
2926		uncharge_memsw = false;
2927
2928	batch = &current->memcg_batch;
2929	/*
2930	 * In usual, we do css_get() when we remember memcg pointer.
2931	 * But in this case, we keep res->usage until end of a series of
2932	 * uncharges. Then, it's ok to ignore memcg's refcnt.
2933	 */
2934	if (!batch->memcg)
2935		batch->memcg = mem;
2936	/*
2937	 * do_batch > 0 when unmapping pages or inode invalidate/truncate.
2938	 * In those cases, all pages freed continuously can be expected to be in
2939	 * the same cgroup and we have chance to coalesce uncharges.
2940	 * But we do uncharge one by one if this is killed by OOM(TIF_MEMDIE)
2941	 * because we want to do uncharge as soon as possible.
2942	 */
2943
2944	if (!batch->do_batch || test_thread_flag(TIF_MEMDIE))
2945		goto direct_uncharge;
2946
2947	if (nr_pages > 1)
2948		goto direct_uncharge;
2949
2950	/*
2951	 * In typical case, batch->memcg == mem. This means we can
2952	 * merge a series of uncharges to an uncharge of res_counter.
2953	 * If not, we uncharge res_counter ony by one.
2954	 */
2955	if (batch->memcg != mem)
2956		goto direct_uncharge;
2957	/* remember freed charge and uncharge it later */
2958	batch->nr_pages++;
2959	if (uncharge_memsw)
2960		batch->memsw_nr_pages++;
2961	return;
2962direct_uncharge:
2963	res_counter_uncharge(&mem->res, nr_pages * PAGE_SIZE);
2964	if (uncharge_memsw)
2965		res_counter_uncharge(&mem->memsw, nr_pages * PAGE_SIZE);
2966	if (unlikely(batch->memcg != mem))
2967		memcg_oom_recover(mem);
2968	return;
2969}
2970
2971/*
2972 * uncharge if !page_mapped(page)
2973 */
2974static struct mem_cgroup *
2975__mem_cgroup_uncharge_common(struct page *page, enum charge_type ctype)
2976{
2977	struct mem_cgroup *mem = NULL;
2978	unsigned int nr_pages = 1;
2979	struct page_cgroup *pc;
2980
2981	if (mem_cgroup_disabled())
2982		return NULL;
2983
2984	if (PageSwapCache(page))
2985		return NULL;
2986
2987	if (PageTransHuge(page)) {
2988		nr_pages <<= compound_order(page);
2989		VM_BUG_ON(!PageTransHuge(page));
2990	}
2991	/*
2992	 * Check if our page_cgroup is valid
2993	 */
2994	pc = lookup_page_cgroup(page);
2995	if (unlikely(!pc || !PageCgroupUsed(pc)))
2996		return NULL;
2997
2998	lock_page_cgroup(pc);
2999
3000	mem = pc->mem_cgroup;
3001
3002	if (!PageCgroupUsed(pc))
3003		goto unlock_out;
3004
3005	switch (ctype) {
3006	case MEM_CGROUP_CHARGE_TYPE_MAPPED:
3007	case MEM_CGROUP_CHARGE_TYPE_DROP:
3008		/* See mem_cgroup_prepare_migration() */
3009		if (page_mapped(page) || PageCgroupMigration(pc))
3010			goto unlock_out;
3011		break;
3012	case MEM_CGROUP_CHARGE_TYPE_SWAPOUT:
3013		if (!PageAnon(page)) {	/* Shared memory */
3014			if (page->mapping && !page_is_file_cache(page))
3015				goto unlock_out;
3016		} else if (page_mapped(page)) /* Anon */
3017				goto unlock_out;
3018		break;
3019	default:
3020		break;
3021	}
3022
3023	mem_cgroup_charge_statistics(mem, PageCgroupCache(pc), -nr_pages);
3024
3025	ClearPageCgroupUsed(pc);
3026	/*
3027	 * pc->mem_cgroup is not cleared here. It will be accessed when it's
3028	 * freed from LRU. This is safe because uncharged page is expected not
3029	 * to be reused (freed soon). Exception is SwapCache, it's handled by
3030	 * special functions.
3031	 */
3032
3033	unlock_page_cgroup(pc);
3034	/*
3035	 * even after unlock, we have mem->res.usage here and this memcg
3036	 * will never be freed.
3037	 */
3038	memcg_check_events(mem, page);
3039	if (do_swap_account && ctype == MEM_CGROUP_CHARGE_TYPE_SWAPOUT) {
3040		mem_cgroup_swap_statistics(mem, true);
3041		mem_cgroup_get(mem);
3042	}
3043	if (!mem_cgroup_is_root(mem))
3044		mem_cgroup_do_uncharge(mem, nr_pages, ctype);
3045
3046	return mem;
3047
3048unlock_out:
3049	unlock_page_cgroup(pc);
3050	return NULL;
3051}
3052
3053void mem_cgroup_uncharge_page(struct page *page)
3054{
3055	/* early check. */
3056	if (page_mapped(page))
3057		return;
3058	if (page->mapping && !PageAnon(page))
3059		return;
3060	__mem_cgroup_uncharge_common(page, MEM_CGROUP_CHARGE_TYPE_MAPPED);
3061}
3062
3063void mem_cgroup_uncharge_cache_page(struct page *page)
3064{
3065	VM_BUG_ON(page_mapped(page));
3066	VM_BUG_ON(page->mapping);
3067	__mem_cgroup_uncharge_common(page, MEM_CGROUP_CHARGE_TYPE_CACHE);
3068}
3069
3070/*
3071 * Batch_start/batch_end is called in unmap_page_range/invlidate/trucate.
3072 * In that cases, pages are freed continuously and we can expect pages
3073 * are in the same memcg. All these calls itself limits the number of
3074 * pages freed at once, then uncharge_start/end() is called properly.
3075 * This may be called prural(2) times in a context,
3076 */
3077
3078void mem_cgroup_uncharge_start(void)
3079{
3080	current->memcg_batch.do_batch++;
3081	/* We can do nest. */
3082	if (current->memcg_batch.do_batch == 1) {
3083		current->memcg_batch.memcg = NULL;
3084		current->memcg_batch.nr_pages = 0;
3085		current->memcg_batch.memsw_nr_pages = 0;
3086	}
3087}
3088
3089void mem_cgroup_uncharge_end(void)
3090{
3091	struct memcg_batch_info *batch = &current->memcg_batch;
3092
3093	if (!batch->do_batch)
3094		return;
3095
3096	batch->do_batch--;
3097	if (batch->do_batch) /* If stacked, do nothing. */
3098		return;
3099
3100	if (!batch->memcg)
3101		return;
3102	/*
3103	 * This "batch->memcg" is valid without any css_get/put etc...
3104	 * bacause we hide charges behind us.
3105	 */
3106	if (batch->nr_pages)
3107		res_counter_uncharge(&batch->memcg->res,
3108				     batch->nr_pages * PAGE_SIZE);
3109	if (batch->memsw_nr_pages)
3110		res_counter_uncharge(&batch->memcg->memsw,
3111				     batch->memsw_nr_pages * PAGE_SIZE);
3112	memcg_oom_recover(batch->memcg);
3113	/* forget this pointer (for sanity check) */
3114	batch->memcg = NULL;
3115}
3116
3117#ifdef CONFIG_SWAP
3118/*
3119 * called after __delete_from_swap_cache() and drop "page" account.
3120 * memcg information is recorded to swap_cgroup of "ent"
3121 */
3122void
3123mem_cgroup_uncharge_swapcache(struct page *page, swp_entry_t ent, bool swapout)
3124{
3125	struct mem_cgroup *memcg;
3126	int ctype = MEM_CGROUP_CHARGE_TYPE_SWAPOUT;
3127
3128	if (!swapout) /* this was a swap cache but the swap is unused ! */
3129		ctype = MEM_CGROUP_CHARGE_TYPE_DROP;
3130
3131	memcg = __mem_cgroup_uncharge_common(page, ctype);
3132
3133	/*
3134	 * record memcg information,  if swapout && memcg != NULL,
3135	 * mem_cgroup_get() was called in uncharge().
3136	 */
3137	if (do_swap_account && swapout && memcg)
3138		swap_cgroup_record(ent, css_id(&memcg->css));
3139}
3140#endif
3141
3142#ifdef CONFIG_CGROUP_MEM_RES_CTLR_SWAP
3143/*
3144 * called from swap_entry_free(). remove record in swap_cgroup and
3145 * uncharge "memsw" account.
3146 */
3147void mem_cgroup_uncharge_swap(swp_entry_t ent)
3148{
3149	struct mem_cgroup *memcg;
3150	unsigned short id;
3151
3152	if (!do_swap_account)
3153		return;
3154
3155	id = swap_cgroup_record(ent, 0);
3156	rcu_read_lock();
3157	memcg = mem_cgroup_lookup(id);
3158	if (memcg) {
3159		/*
3160		 * We uncharge this because swap is freed.
3161		 * This memcg can be obsolete one. We avoid calling css_tryget
3162		 */
3163		if (!mem_cgroup_is_root(memcg))
3164			res_counter_uncharge(&memcg->memsw, PAGE_SIZE);
3165		mem_cgroup_swap_statistics(memcg, false);
3166		mem_cgroup_put(memcg);
3167	}
3168	rcu_read_unlock();
3169}
3170
3171/**
3172 * mem_cgroup_move_swap_account - move swap charge and swap_cgroup's record.
3173 * @entry: swap entry to be moved
3174 * @from:  mem_cgroup which the entry is moved from
3175 * @to:  mem_cgroup which the entry is moved to
3176 * @need_fixup: whether we should fixup res_counters and refcounts.
3177 *
3178 * It succeeds only when the swap_cgroup's record for this entry is the same
3179 * as the mem_cgroup's id of @from.
3180 *
3181 * Returns 0 on success, -EINVAL on failure.
3182 *
3183 * The caller must have charged to @to, IOW, called res_counter_charge() about
3184 * both res and memsw, and called css_get().
3185 */
3186static int mem_cgroup_move_swap_account(swp_entry_t entry,
3187		struct mem_cgroup *from, struct mem_cgroup *to, bool need_fixup)
3188{
3189	unsigned short old_id, new_id;
3190
3191	old_id = css_id(&from->css);
3192	new_id = css_id(&to->css);
3193
3194	if (swap_cgroup_cmpxchg(entry, old_id, new_id) == old_id) {
3195		mem_cgroup_swap_statistics(from, false);
3196		mem_cgroup_swap_statistics(to, true);
3197		/*
3198		 * This function is only called from task migration context now.
3199		 * It postpones res_counter and refcount handling till the end
3200		 * of task migration(mem_cgroup_clear_mc()) for performance
3201		 * improvement. But we cannot postpone mem_cgroup_get(to)
3202		 * because if the process that has been moved to @to does
3203		 * swap-in, the refcount of @to might be decreased to 0.
3204		 */
3205		mem_cgroup_get(to);
3206		if (need_fixup) {
3207			if (!mem_cgroup_is_root(from))
3208				res_counter_uncharge(&from->memsw, PAGE_SIZE);
3209			mem_cgroup_put(from);
3210			/*
3211			 * we charged both to->res and to->memsw, so we should
3212			 * uncharge to->res.
3213			 */
3214			if (!mem_cgroup_is_root(to))
3215				res_counter_uncharge(&to->res, PAGE_SIZE);
3216		}
3217		return 0;
3218	}
3219	return -EINVAL;
3220}
3221#else
3222static inline int mem_cgroup_move_swap_account(swp_entry_t entry,
3223		struct mem_cgroup *from, struct mem_cgroup *to, bool need_fixup)
3224{
3225	return -EINVAL;
3226}
3227#endif
3228
3229/*
3230 * Before starting migration, account PAGE_SIZE to mem_cgroup that the old
3231 * page belongs to.
3232 */
3233int mem_cgroup_prepare_migration(struct page *page,
3234	struct page *newpage, struct mem_cgroup **ptr, gfp_t gfp_mask)
3235{
3236	struct mem_cgroup *mem = NULL;
3237	struct page_cgroup *pc;
3238	enum charge_type ctype;
3239	int ret = 0;
3240
3241	*ptr = NULL;
3242
3243	VM_BUG_ON(PageTransHuge(page));
3244	if (mem_cgroup_disabled())
3245		return 0;
3246
3247	pc = lookup_page_cgroup(page);
3248	lock_page_cgroup(pc);
3249	if (PageCgroupUsed(pc)) {
3250		mem = pc->mem_cgroup;
3251		css_get(&mem->css);
3252		/*
3253		 * At migrating an anonymous page, its mapcount goes down
3254		 * to 0 and uncharge() will be called. But, even if it's fully
3255		 * unmapped, migration may fail and this page has to be
3256		 * charged again. We set MIGRATION flag here and delay uncharge
3257		 * until end_migration() is called
3258		 *
3259		 * Corner Case Thinking
3260		 * A)
3261		 * When the old page was mapped as Anon and it's unmap-and-freed
3262		 * while migration was ongoing.
3263		 * If unmap finds the old page, uncharge() of it will be delayed
3264		 * until end_migration(). If unmap finds a new page, it's
3265		 * uncharged when it make mapcount to be 1->0. If unmap code
3266		 * finds swap_migration_entry, the new page will not be mapped
3267		 * and end_migration() will find it(mapcount==0).
3268		 *
3269		 * B)
3270		 * When the old page was mapped but migraion fails, the kernel
3271		 * remaps it. A charge for it is kept by MIGRATION flag even
3272		 * if mapcount goes down to 0. We can do remap successfully
3273		 * without charging it again.
3274		 *
3275		 * C)
3276		 * The "old" page is under lock_page() until the end of
3277		 * migration, so, the old page itself will not be swapped-out.
3278		 * If the new page is swapped out before end_migraton, our
3279		 * hook to usual swap-out path will catch the event.
3280		 */
3281		if (PageAnon(page))
3282			SetPageCgroupMigration(pc);
3283	}
3284	unlock_page_cgroup(pc);
3285	/*
3286	 * If the page is not charged at this point,
3287	 * we return here.
3288	 */
3289	if (!mem)
3290		return 0;
3291
3292	*ptr = mem;
3293	ret = __mem_cgroup_try_charge(NULL, gfp_mask, 1, ptr, false);
3294	css_put(&mem->css);/* drop extra refcnt */
3295	if (ret || *ptr == NULL) {
3296		if (PageAnon(page)) {
3297			lock_page_cgroup(pc);
3298			ClearPageCgroupMigration(pc);
3299			unlock_page_cgroup(pc);
3300			/*
3301			 * The old page may be fully unmapped while we kept it.
3302			 */
3303			mem_cgroup_uncharge_page(page);
3304		}
3305		return -ENOMEM;
3306	}
3307	/*
3308	 * We charge new page before it's used/mapped. So, even if unlock_page()
3309	 * is called before end_migration, we can catch all events on this new
3310	 * page. In the case new page is migrated but not remapped, new page's
3311	 * mapcount will be finally 0 and we call uncharge in end_migration().
3312	 */
3313	pc = lookup_page_cgroup(newpage);
3314	if (PageAnon(page))
3315		ctype = MEM_CGROUP_CHARGE_TYPE_MAPPED;
3316	else if (page_is_file_cache(page))
3317		ctype = MEM_CGROUP_CHARGE_TYPE_CACHE;
3318	else
3319		ctype = MEM_CGROUP_CHARGE_TYPE_SHMEM;
3320	__mem_cgroup_commit_charge(mem, page, 1, pc, ctype);
3321	return ret;
3322}
3323
3324/* remove redundant charge if migration failed*/
3325void mem_cgroup_end_migration(struct mem_cgroup *mem,
3326	struct page *oldpage, struct page *newpage, bool migration_ok)
3327{
3328	struct page *used, *unused;
3329	struct page_cgroup *pc;
3330
3331	if (!mem)
3332		return;
3333	/* blocks rmdir() */
3334	cgroup_exclude_rmdir(&mem->css);
3335	if (!migration_ok) {
3336		used = oldpage;
3337		unused = newpage;
3338	} else {
3339		used = newpage;
3340		unused = oldpage;
3341	}
3342	/*
3343	 * We disallowed uncharge of pages under migration because mapcount
3344	 * of the page goes down to zero, temporarly.
3345	 * Clear the flag and check the page should be charged.
3346	 */
3347	pc = lookup_page_cgroup(oldpage);
3348	lock_page_cgroup(pc);
3349	ClearPageCgroupMigration(pc);
3350	unlock_page_cgroup(pc);
3351
3352	__mem_cgroup_uncharge_common(unused, MEM_CGROUP_CHARGE_TYPE_FORCE);
3353
3354	/*
3355	 * If a page is a file cache, radix-tree replacement is very atomic
3356	 * and we can skip this check. When it was an Anon page, its mapcount
3357	 * goes down to 0. But because we added MIGRATION flage, it's not
3358	 * uncharged yet. There are several case but page->mapcount check
3359	 * and USED bit check in mem_cgroup_uncharge_page() will do enough
3360	 * check. (see prepare_charge() also)
3361	 */
3362	if (PageAnon(used))
3363		mem_cgroup_uncharge_page(used);
3364	/*
3365	 * At migration, we may charge account against cgroup which has no
3366	 * tasks.
3367	 * So, rmdir()->pre_destroy() can be called while we do this charge.
3368	 * In that case, we need to call pre_destroy() again. check it here.
3369	 */
3370	cgroup_release_and_wakeup_rmdir(&mem->css);
3371}
3372
3373/*
3374 * A call to try to shrink memory usage on charge failure at shmem's swapin.
3375 * Calling hierarchical_reclaim is not enough because we should update
3376 * last_oom_jiffies to prevent pagefault_out_of_memory from invoking global OOM.
3377 * Moreover considering hierarchy, we should reclaim from the mem_over_limit,
3378 * not from the memcg which this page would be charged to.
3379 * try_charge_swapin does all of these works properly.
3380 */
3381int mem_cgroup_shmem_charge_fallback(struct page *page,
3382			    struct mm_struct *mm,
3383			    gfp_t gfp_mask)
3384{
3385	struct mem_cgroup *mem;
3386	int ret;
3387
3388	if (mem_cgroup_disabled())
3389		return 0;
3390
3391	ret = mem_cgroup_try_charge_swapin(mm, page, gfp_mask, &mem);
3392	if (!ret)
3393		mem_cgroup_cancel_charge_swapin(mem); /* it does !mem check */
3394
3395	return ret;
3396}
3397
3398#ifdef CONFIG_DEBUG_VM
3399static struct page_cgroup *lookup_page_cgroup_used(struct page *page)
3400{
3401	struct page_cgroup *pc;
3402
3403	pc = lookup_page_cgroup(page);
3404	if (likely(pc) && PageCgroupUsed(pc))
3405		return pc;
3406	return NULL;
3407}
3408
3409bool mem_cgroup_bad_page_check(struct page *page)
3410{
3411	if (mem_cgroup_disabled())
3412		return false;
3413
3414	return lookup_page_cgroup_used(page) != NULL;
3415}
3416
3417void mem_cgroup_print_bad_page(struct page *page)
3418{
3419	struct page_cgroup *pc;
3420
3421	pc = lookup_page_cgroup_used(page);
3422	if (pc) {
3423		int ret = -1;
3424		char *path;
3425
3426		printk(KERN_ALERT "pc:%p pc->flags:%lx pc->mem_cgroup:%p",
3427		       pc, pc->flags, pc->mem_cgroup);
3428
3429		path = kmalloc(PATH_MAX, GFP_KERNEL);
3430		if (path) {
3431			rcu_read_lock();
3432			ret = cgroup_path(pc->mem_cgroup->css.cgroup,
3433							path, PATH_MAX);
3434			rcu_read_unlock();
3435		}
3436
3437		printk(KERN_CONT "(%s)\n",
3438				(ret < 0) ? "cannot get the path" : path);
3439		kfree(path);
3440	}
3441}
3442#endif
3443
3444static DEFINE_MUTEX(set_limit_mutex);
3445
3446static int mem_cgroup_resize_limit(struct mem_cgroup *memcg,
3447				unsigned long long val)
3448{
3449	int retry_count;
3450	u64 memswlimit, memlimit;
3451	int ret = 0;
3452	int children = mem_cgroup_count_children(memcg);
3453	u64 curusage, oldusage;
3454	int enlarge;
3455
3456	/*
3457	 * For keeping hierarchical_reclaim simple, how long we should retry
3458	 * is depends on callers. We set our retry-count to be function
3459	 * of # of children which we should visit in this loop.
3460	 */
3461	retry_count = MEM_CGROUP_RECLAIM_RETRIES * children;
3462
3463	oldusage = res_counter_read_u64(&memcg->res, RES_USAGE);
3464
3465	enlarge = 0;
3466	while (retry_count) {
3467		if (signal_pending(current)) {
3468			ret = -EINTR;
3469			break;
3470		}
3471		/*
3472		 * Rather than hide all in some function, I do this in
3473		 * open coded manner. You see what this really does.
3474		 * We have to guarantee mem->res.limit < mem->memsw.limit.
3475		 */
3476		mutex_lock(&set_limit_mutex);
3477		memswlimit = res_counter_read_u64(&memcg->memsw, RES_LIMIT);
3478		if (memswlimit < val) {
3479			ret = -EINVAL;
3480			mutex_unlock(&set_limit_mutex);
3481			break;
3482		}
3483
3484		memlimit = res_counter_read_u64(&memcg->res, RES_LIMIT);
3485		if (memlimit < val)
3486			enlarge = 1;
3487
3488		ret = res_counter_set_limit(&memcg->res, val);
3489		if (!ret) {
3490			if (memswlimit == val)
3491				memcg->memsw_is_minimum = true;
3492			else
3493				memcg->memsw_is_minimum = false;
3494		}
3495		mutex_unlock(&set_limit_mutex);
3496
3497		if (!ret)
3498			break;
3499
3500		mem_cgroup_hierarchical_reclaim(memcg, NULL, GFP_KERNEL,
3501						MEM_CGROUP_RECLAIM_SHRINK,
3502						NULL);
3503		curusage = res_counter_read_u64(&memcg->res, RES_USAGE);
3504		/* Usage is reduced ? */
3505  		if (curusage >= oldusage)
3506			retry_count--;
3507		else
3508			oldusage = curusage;
3509	}
3510	if (!ret && enlarge)
3511		memcg_oom_recover(memcg);
3512
3513	return ret;
3514}
3515
3516static int mem_cgroup_resize_memsw_limit(struct mem_cgroup *memcg,
3517					unsigned long long val)
3518{
3519	int retry_count;
3520	u64 memlimit, memswlimit, oldusage, curusage;
3521	int children = mem_cgroup_count_children(memcg);
3522	int ret = -EBUSY;
3523	int enlarge = 0;
3524
3525	/* see mem_cgroup_resize_res_limit */
3526 	retry_count = children * MEM_CGROUP_RECLAIM_RETRIES;
3527	oldusage = res_counter_read_u64(&memcg->memsw, RES_USAGE);
3528	while (retry_count) {
3529		if (signal_pending(current)) {
3530			ret = -EINTR;
3531			break;
3532		}
3533		/*
3534		 * Rather than hide all in some function, I do this in
3535		 * open coded manner. You see what this really does.
3536		 * We have to guarantee mem->res.limit < mem->memsw.limit.
3537		 */
3538		mutex_lock(&set_limit_mutex);
3539		memlimit = res_counter_read_u64(&memcg->res, RES_LIMIT);
3540		if (memlimit > val) {
3541			ret = -EINVAL;
3542			mutex_unlock(&set_limit_mutex);
3543			break;
3544		}
3545		memswlimit = res_counter_read_u64(&memcg->memsw, RES_LIMIT);
3546		if (memswlimit < val)
3547			enlarge = 1;
3548		ret = res_counter_set_limit(&memcg->memsw, val);
3549		if (!ret) {
3550			if (memlimit == val)
3551				memcg->memsw_is_minimum = true;
3552			else
3553				memcg->memsw_is_minimum = false;
3554		}
3555		mutex_unlock(&set_limit_mutex);
3556
3557		if (!ret)
3558			break;
3559
3560		mem_cgroup_hierarchical_reclaim(memcg, NULL, GFP_KERNEL,
3561						MEM_CGROUP_RECLAIM_NOSWAP |
3562						MEM_CGROUP_RECLAIM_SHRINK,
3563						NULL);
3564		curusage = res_counter_read_u64(&memcg->memsw, RES_USAGE);
3565		/* Usage is reduced ? */
3566		if (curusage >= oldusage)
3567			retry_count--;
3568		else
3569			oldusage = curusage;
3570	}
3571	if (!ret && enlarge)
3572		memcg_oom_recover(memcg);
3573	return ret;
3574}
3575
3576unsigned long mem_cgroup_soft_limit_reclaim(struct zone *zone, int order,
3577					    gfp_t gfp_mask,
3578					    unsigned long *total_scanned)
3579{
3580	unsigned long nr_reclaimed = 0;
3581	struct mem_cgroup_per_zone *mz, *next_mz = NULL;
3582	unsigned long reclaimed;
3583	int loop = 0;
3584	struct mem_cgroup_tree_per_zone *mctz;
3585	unsigned long long excess;
3586	unsigned long nr_scanned;
3587
3588	if (order > 0)
3589		return 0;
3590
3591	mctz = soft_limit_tree_node_zone(zone_to_nid(zone), zone_idx(zone));
3592	/*
3593	 * This loop can run a while, specially if mem_cgroup's continuously
3594	 * keep exceeding their soft limit and putting the system under
3595	 * pressure
3596	 */
3597	do {
3598		if (next_mz)
3599			mz = next_mz;
3600		else
3601			mz = mem_cgroup_largest_soft_limit_node(mctz);
3602		if (!mz)
3603			break;
3604
3605		nr_scanned = 0;
3606		reclaimed = mem_cgroup_hierarchical_reclaim(mz->mem, zone,
3607						gfp_mask,
3608						MEM_CGROUP_RECLAIM_SOFT,
3609						&nr_scanned);
3610		nr_reclaimed += reclaimed;
3611		*total_scanned += nr_scanned;
3612		spin_lock(&mctz->lock);
3613
3614		/*
3615		 * If we failed to reclaim anything from this memory cgroup
3616		 * it is time to move on to the next cgroup
3617		 */
3618		next_mz = NULL;
3619		if (!reclaimed) {
3620			do {
3621				/*
3622				 * Loop until we find yet another one.
3623				 *
3624				 * By the time we get the soft_limit lock
3625				 * again, someone might have aded the
3626				 * group back on the RB tree. Iterate to
3627				 * make sure we get a different mem.
3628				 * mem_cgroup_largest_soft_limit_node returns
3629				 * NULL if no other cgroup is present on
3630				 * the tree
3631				 */
3632				next_mz =
3633				__mem_cgroup_largest_soft_limit_node(mctz);
3634				if (next_mz == mz)
3635					css_put(&next_mz->mem->css);
3636				else /* next_mz == NULL or other memcg */
3637					break;
3638			} while (1);
3639		}
3640		__mem_cgroup_remove_exceeded(mz->mem, mz, mctz);
3641		excess = res_counter_soft_limit_excess(&mz->mem->res);
3642		/*
3643		 * One school of thought says that we should not add
3644		 * back the node to the tree if reclaim returns 0.
3645		 * But our reclaim could return 0, simply because due
3646		 * to priority we are exposing a smaller subset of
3647		 * memory to reclaim from. Consider this as a longer
3648		 * term TODO.
3649		 */
3650		/* If excess == 0, no tree ops */
3651		__mem_cgroup_insert_exceeded(mz->mem, mz, mctz, excess);
3652		spin_unlock(&mctz->lock);
3653		css_put(&mz->mem->css);
3654		loop++;
3655		/*
3656		 * Could not reclaim anything and there are no more
3657		 * mem cgroups to try or we seem to be looping without
3658		 * reclaiming anything.
3659		 */
3660		if (!nr_reclaimed &&
3661			(next_mz == NULL ||
3662			loop > MEM_CGROUP_MAX_SOFT_LIMIT_RECLAIM_LOOPS))
3663			break;
3664	} while (!nr_reclaimed);
3665	if (next_mz)
3666		css_put(&next_mz->mem->css);
3667	return nr_reclaimed;
3668}
3669
3670/*
3671 * This routine traverse page_cgroup in given list and drop them all.
3672 * *And* this routine doesn't reclaim page itself, just removes page_cgroup.
3673 */
3674static int mem_cgroup_force_empty_list(struct mem_cgroup *mem,
3675				int node, int zid, enum lru_list lru)
3676{
3677	struct zone *zone;
3678	struct mem_cgroup_per_zone *mz;
3679	struct page_cgroup *pc, *busy;
3680	unsigned long flags, loop;
3681	struct list_head *list;
3682	int ret = 0;
3683
3684	zone = &NODE_DATA(node)->node_zones[zid];
3685	mz = mem_cgroup_zoneinfo(mem, node, zid);
3686	list = &mz->lists[lru];
3687
3688	loop = MEM_CGROUP_ZSTAT(mz, lru);
3689	/* give some margin against EBUSY etc...*/
3690	loop += 256;
3691	busy = NULL;
3692	while (loop--) {
3693		struct page *page;
3694
3695		ret = 0;
3696		spin_lock_irqsave(&zone->lru_lock, flags);
3697		if (list_empty(list)) {
3698			spin_unlock_irqrestore(&zone->lru_lock, flags);
3699			break;
3700		}
3701		pc = list_entry(list->prev, struct page_cgroup, lru);
3702		if (busy == pc) {
3703			list_move(&pc->lru, list);
3704			busy = NULL;
3705			spin_unlock_irqrestore(&zone->lru_lock, flags);
3706			continue;
3707		}
3708		spin_unlock_irqrestore(&zone->lru_lock, flags);
3709
3710		page = lookup_cgroup_page(pc);
3711
3712		ret = mem_cgroup_move_parent(page, pc, mem, GFP_KERNEL);
3713		if (ret == -ENOMEM)
3714			break;
3715
3716		if (ret == -EBUSY || ret == -EINVAL) {
3717			/* found lock contention or "pc" is obsolete. */
3718			busy = pc;
3719			cond_resched();
3720		} else
3721			busy = NULL;
3722	}
3723
3724	if (!ret && !list_empty(list))
3725		return -EBUSY;
3726	return ret;
3727}
3728
3729/*
3730 * make mem_cgroup's charge to be 0 if there is no task.
3731 * This enables deleting this mem_cgroup.
3732 */
3733static int mem_cgroup_force_empty(struct mem_cgroup *mem, bool free_all)
3734{
3735	int ret;
3736	int node, zid, shrink;
3737	int nr_retries = MEM_CGROUP_RECLAIM_RETRIES;
3738	struct cgroup *cgrp = mem->css.cgroup;
3739
3740	css_get(&mem->css);
3741
3742	shrink = 0;
3743	/* should free all ? */
3744	if (free_all)
3745		goto try_to_free;
3746move_account:
3747	do {
3748		ret = -EBUSY;
3749		if (cgroup_task_count(cgrp) || !list_empty(&cgrp->children))
3750			goto out;
3751		ret = -EINTR;
3752		if (signal_pending(current))
3753			goto out;
3754		/* This is for making all *used* pages to be on LRU. */
3755		lru_add_drain_all();
3756		drain_all_stock_sync();
3757		ret = 0;
3758		mem_cgroup_start_move(mem);
3759		for_each_node_state(node, N_HIGH_MEMORY) {
3760			for (zid = 0; !ret && zid < MAX_NR_ZONES; zid++) {
3761				enum lru_list l;
3762				for_each_lru(l) {
3763					ret = mem_cgroup_force_empty_list(mem,
3764							node, zid, l);
3765					if (ret)
3766						break;
3767				}
3768			}
3769			if (ret)
3770				break;
3771		}
3772		mem_cgroup_end_move(mem);
3773		memcg_oom_recover(mem);
3774		/* it seems parent cgroup doesn't have enough mem */
3775		if (ret == -ENOMEM)
3776			goto try_to_free;
3777		cond_resched();
3778	/* "ret" should also be checked to ensure all lists are empty. */
3779	} while (mem->res.usage > 0 || ret);
3780out:
3781	css_put(&mem->css);
3782	return ret;
3783
3784try_to_free:
3785	/* returns EBUSY if there is a task or if we come here twice. */
3786	if (cgroup_task_count(cgrp) || !list_empty(&cgrp->children) || shrink) {
3787		ret = -EBUSY;
3788		goto out;
3789	}
3790	/* we call try-to-free pages for make this cgroup empty */
3791	lru_add_drain_all();
3792	/* try to free all pages in this cgroup */
3793	shrink = 1;
3794	while (nr_retries && mem->res.usage > 0) {
3795		int progress;
3796
3797		if (signal_pending(current)) {
3798			ret = -EINTR;
3799			goto out;
3800		}
3801		progress = try_to_free_mem_cgroup_pages(mem, GFP_KERNEL,
3802						false);
3803		if (!progress) {
3804			nr_retries--;
3805			/* maybe some writeback is necessary */
3806			congestion_wait(BLK_RW_ASYNC, HZ/10);
3807		}
3808
3809	}
3810	lru_add_drain();
3811	/* try move_account...there may be some *locked* pages. */
3812	goto move_account;
3813}
3814
3815int mem_cgroup_force_empty_write(struct cgroup *cont, unsigned int event)
3816{
3817	return mem_cgroup_force_empty(mem_cgroup_from_cont(cont), true);
3818}
3819
3820
3821static u64 mem_cgroup_hierarchy_read(struct cgroup *cont, struct cftype *cft)
3822{
3823	return mem_cgroup_from_cont(cont)->use_hierarchy;
3824}
3825
3826static int mem_cgroup_hierarchy_write(struct cgroup *cont, struct cftype *cft,
3827					u64 val)
3828{
3829	int retval = 0;
3830	struct mem_cgroup *mem = mem_cgroup_from_cont(cont);
3831	struct cgroup *parent = cont->parent;
3832	struct mem_cgroup *parent_mem = NULL;
3833
3834	if (parent)
3835		parent_mem = mem_cgroup_from_cont(parent);
3836
3837	cgroup_lock();
3838	/*
3839	 * If parent's use_hierarchy is set, we can't make any modifications
3840	 * in the child subtrees. If it is unset, then the change can
3841	 * occur, provided the current cgroup has no children.
3842	 *
3843	 * For the root cgroup, parent_mem is NULL, we allow value to be
3844	 * set if there are no children.
3845	 */
3846	if ((!parent_mem || !parent_mem->use_hierarchy) &&
3847				(val == 1 || val == 0)) {
3848		if (list_empty(&cont->children))
3849			mem->use_hierarchy = val;
3850		else
3851			retval = -EBUSY;
3852	} else
3853		retval = -EINVAL;
3854	cgroup_unlock();
3855
3856	return retval;
3857}
3858
3859
3860static unsigned long mem_cgroup_recursive_stat(struct mem_cgroup *mem,
3861					       enum mem_cgroup_stat_index idx)
3862{
3863	struct mem_cgroup *iter;
3864	long val = 0;
3865
3866	/* Per-cpu values can be negative, use a signed accumulator */
3867	for_each_mem_cgroup_tree(iter, mem)
3868		val += mem_cgroup_read_stat(iter, idx);
3869
3870	if (val < 0) /* race ? */
3871		val = 0;
3872	return val;
3873}
3874
3875static inline u64 mem_cgroup_usage(struct mem_cgroup *mem, bool swap)
3876{
3877	u64 val;
3878
3879	if (!mem_cgroup_is_root(mem)) {
3880		if (!swap)
3881			return res_counter_read_u64(&mem->res, RES_USAGE);
3882		else
3883			return res_counter_read_u64(&mem->memsw, RES_USAGE);
3884	}
3885
3886	val = mem_cgroup_recursive_stat(mem, MEM_CGROUP_STAT_CACHE);
3887	val += mem_cgroup_recursive_stat(mem, MEM_CGROUP_STAT_RSS);
3888
3889	if (swap)
3890		val += mem_cgroup_recursive_stat(mem, MEM_CGROUP_STAT_SWAPOUT);
3891
3892	return val << PAGE_SHIFT;
3893}
3894
3895static u64 mem_cgroup_read(struct cgroup *cont, struct cftype *cft)
3896{
3897	struct mem_cgroup *mem = mem_cgroup_from_cont(cont);
3898	u64 val;
3899	int type, name;
3900
3901	type = MEMFILE_TYPE(cft->private);
3902	name = MEMFILE_ATTR(cft->private);
3903	switch (type) {
3904	case _MEM:
3905		if (name == RES_USAGE)
3906			val = mem_cgroup_usage(mem, false);
3907		else
3908			val = res_counter_read_u64(&mem->res, name);
3909		break;
3910	case _MEMSWAP:
3911		if (name == RES_USAGE)
3912			val = mem_cgroup_usage(mem, true);
3913		else
3914			val = res_counter_read_u64(&mem->memsw, name);
3915		break;
3916	default:
3917		BUG();
3918		break;
3919	}
3920	return val;
3921}
3922/*
3923 * The user of this function is...
3924 * RES_LIMIT.
3925 */
3926static int mem_cgroup_write(struct cgroup *cont, struct cftype *cft,
3927			    const char *buffer)
3928{
3929	struct mem_cgroup *memcg = mem_cgroup_from_cont(cont);
3930	int type, name;
3931	unsigned long long val;
3932	int ret;
3933
3934	type = MEMFILE_TYPE(cft->private);
3935	name = MEMFILE_ATTR(cft->private);
3936	switch (name) {
3937	case RES_LIMIT:
3938		if (mem_cgroup_is_root(memcg)) { /* Can't set limit on root */
3939			ret = -EINVAL;
3940			break;
3941		}
3942		/* This function does all necessary parse...reuse it */
3943		ret = res_counter_memparse_write_strategy(buffer, &val);
3944		if (ret)
3945			break;
3946		if (type == _MEM)
3947			ret = mem_cgroup_resize_limit(memcg, val);
3948		else
3949			ret = mem_cgroup_resize_memsw_limit(memcg, val);
3950		break;
3951	case RES_SOFT_LIMIT:
3952		ret = res_counter_memparse_write_strategy(buffer, &val);
3953		if (ret)
3954			break;
3955		/*
3956		 * For memsw, soft limits are hard to implement in terms
3957		 * of semantics, for now, we support soft limits for
3958		 * control without swap
3959		 */
3960		if (type == _MEM)
3961			ret = res_counter_set_soft_limit(&memcg->res, val);
3962		else
3963			ret = -EINVAL;
3964		break;
3965	default:
3966		ret = -EINVAL; /* should be BUG() ? */
3967		break;
3968	}
3969	return ret;
3970}
3971
3972static void memcg_get_hierarchical_limit(struct mem_cgroup *memcg,
3973		unsigned long long *mem_limit, unsigned long long *memsw_limit)
3974{
3975	struct cgroup *cgroup;
3976	unsigned long long min_limit, min_memsw_limit, tmp;
3977
3978	min_limit = res_counter_read_u64(&memcg->res, RES_LIMIT);
3979	min_memsw_limit = res_counter_read_u64(&memcg->memsw, RES_LIMIT);
3980	cgroup = memcg->css.cgroup;
3981	if (!memcg->use_hierarchy)
3982		goto out;
3983
3984	while (cgroup->parent) {
3985		cgroup = cgroup->parent;
3986		memcg = mem_cgroup_from_cont(cgroup);
3987		if (!memcg->use_hierarchy)
3988			break;
3989		tmp = res_counter_read_u64(&memcg->res, RES_LIMIT);
3990		min_limit = min(min_limit, tmp);
3991		tmp = res_counter_read_u64(&memcg->memsw, RES_LIMIT);
3992		min_memsw_limit = min(min_memsw_limit, tmp);
3993	}
3994out:
3995	*mem_limit = min_limit;
3996	*memsw_limit = min_memsw_limit;
3997	return;
3998}
3999
4000static int mem_cgroup_reset(struct cgroup *cont, unsigned int event)
4001{
4002	struct mem_cgroup *mem;
4003	int type, name;
4004
4005	mem = mem_cgroup_from_cont(cont);
4006	type = MEMFILE_TYPE(event);
4007	name = MEMFILE_ATTR(event);
4008	switch (name) {
4009	case RES_MAX_USAGE:
4010		if (type == _MEM)
4011			res_counter_reset_max(&mem->res);
4012		else
4013			res_counter_reset_max(&mem->memsw);
4014		break;
4015	case RES_FAILCNT:
4016		if (type == _MEM)
4017			res_counter_reset_failcnt(&mem->res);
4018		else
4019			res_counter_reset_failcnt(&mem->memsw);
4020		break;
4021	}
4022
4023	return 0;
4024}
4025
4026static u64 mem_cgroup_move_charge_read(struct cgroup *cgrp,
4027					struct cftype *cft)
4028{
4029	return mem_cgroup_from_cont(cgrp)->move_charge_at_immigrate;
4030}
4031
4032#ifdef CONFIG_MMU
4033static int mem_cgroup_move_charge_write(struct cgroup *cgrp,
4034					struct cftype *cft, u64 val)
4035{
4036	struct mem_cgroup *mem = mem_cgroup_from_cont(cgrp);
4037
4038	if (val >= (1 << NR_MOVE_TYPE))
4039		return -EINVAL;
4040	/*
4041	 * We check this value several times in both in can_attach() and
4042	 * attach(), so we need cgroup lock to prevent this value from being
4043	 * inconsistent.
4044	 */
4045	cgroup_lock();
4046	mem->move_charge_at_immigrate = val;
4047	cgroup_unlock();
4048
4049	return 0;
4050}
4051#else
4052static int mem_cgroup_move_charge_write(struct cgroup *cgrp,
4053					struct cftype *cft, u64 val)
4054{
4055	return -ENOSYS;
4056}
4057#endif
4058
4059
4060/* For read statistics */
4061enum {
4062	MCS_CACHE,
4063	MCS_RSS,
4064	MCS_FILE_MAPPED,
4065	MCS_PGPGIN,
4066	MCS_PGPGOUT,
4067	MCS_SWAP,
4068	MCS_PGFAULT,
4069	MCS_PGMAJFAULT,
4070	MCS_INACTIVE_ANON,
4071	MCS_ACTIVE_ANON,
4072	MCS_INACTIVE_FILE,
4073	MCS_ACTIVE_FILE,
4074	MCS_UNEVICTABLE,
4075	NR_MCS_STAT,
4076};
4077
4078struct mcs_total_stat {
4079	s64 stat[NR_MCS_STAT];
4080};
4081
4082struct {
4083	char *local_name;
4084	char *total_name;
4085} memcg_stat_strings[NR_MCS_STAT] = {
4086	{"cache", "total_cache"},
4087	{"rss", "total_rss"},
4088	{"mapped_file", "total_mapped_file"},
4089	{"pgpgin", "total_pgpgin"},
4090	{"pgpgout", "total_pgpgout"},
4091	{"swap", "total_swap"},
4092	{"pgfault", "total_pgfault"},
4093	{"pgmajfault", "total_pgmajfault"},
4094	{"inactive_anon", "total_inactive_anon"},
4095	{"active_anon", "total_active_anon"},
4096	{"inactive_file", "total_inactive_file"},
4097	{"active_file", "total_active_file"},
4098	{"unevictable", "total_unevictable"}
4099};
4100
4101
4102static void
4103mem_cgroup_get_local_stat(struct mem_cgroup *mem, struct mcs_total_stat *s)
4104{
4105	s64 val;
4106
4107	/* per cpu stat */
4108	val = mem_cgroup_read_stat(mem, MEM_CGROUP_STAT_CACHE);
4109	s->stat[MCS_CACHE] += val * PAGE_SIZE;
4110	val = mem_cgroup_read_stat(mem, MEM_CGROUP_STAT_RSS);
4111	s->stat[MCS_RSS] += val * PAGE_SIZE;
4112	val = mem_cgroup_read_stat(mem, MEM_CGROUP_STAT_FILE_MAPPED);
4113	s->stat[MCS_FILE_MAPPED] += val * PAGE_SIZE;
4114	val = mem_cgroup_read_events(mem, MEM_CGROUP_EVENTS_PGPGIN);
4115	s->stat[MCS_PGPGIN] += val;
4116	val = mem_cgroup_read_events(mem, MEM_CGROUP_EVENTS_PGPGOUT);
4117	s->stat[MCS_PGPGOUT] += val;
4118	if (do_swap_account) {
4119		val = mem_cgroup_read_stat(mem, MEM_CGROUP_STAT_SWAPOUT);
4120		s->stat[MCS_SWAP] += val * PAGE_SIZE;
4121	}
4122	val = mem_cgroup_read_events(mem, MEM_CGROUP_EVENTS_PGFAULT);
4123	s->stat[MCS_PGFAULT] += val;
4124	val = mem_cgroup_read_events(mem, MEM_CGROUP_EVENTS_PGMAJFAULT);
4125	s->stat[MCS_PGMAJFAULT] += val;
4126
4127	/* per zone stat */
4128	val = mem_cgroup_nr_lru_pages(mem, BIT(LRU_INACTIVE_ANON));
4129	s->stat[MCS_INACTIVE_ANON] += val * PAGE_SIZE;
4130	val = mem_cgroup_nr_lru_pages(mem, BIT(LRU_ACTIVE_ANON));
4131	s->stat[MCS_ACTIVE_ANON] += val * PAGE_SIZE;
4132	val = mem_cgroup_nr_lru_pages(mem, BIT(LRU_INACTIVE_FILE));
4133	s->stat[MCS_INACTIVE_FILE] += val * PAGE_SIZE;
4134	val = mem_cgroup_nr_lru_pages(mem, BIT(LRU_ACTIVE_FILE));
4135	s->stat[MCS_ACTIVE_FILE] += val * PAGE_SIZE;
4136	val = mem_cgroup_nr_lru_pages(mem, BIT(LRU_UNEVICTABLE));
4137	s->stat[MCS_UNEVICTABLE] += val * PAGE_SIZE;
4138}
4139
4140static void
4141mem_cgroup_get_total_stat(struct mem_cgroup *mem, struct mcs_total_stat *s)
4142{
4143	struct mem_cgroup *iter;
4144
4145	for_each_mem_cgroup_tree(iter, mem)
4146		mem_cgroup_get_local_stat(iter, s);
4147}
4148
4149#ifdef CONFIG_NUMA
4150static int mem_control_numa_stat_show(struct seq_file *m, void *arg)
4151{
4152	int nid;
4153	unsigned long total_nr, file_nr, anon_nr, unevictable_nr;
4154	unsigned long node_nr;
4155	struct cgroup *cont = m->private;
4156	struct mem_cgroup *mem_cont = mem_cgroup_from_cont(cont);
4157
4158	total_nr = mem_cgroup_nr_lru_pages(mem_cont, LRU_ALL);
4159	seq_printf(m, "total=%lu", total_nr);
4160	for_each_node_state(nid, N_HIGH_MEMORY) {
4161		node_nr = mem_cgroup_node_nr_lru_pages(mem_cont, nid, LRU_ALL);
4162		seq_printf(m, " N%d=%lu", nid, node_nr);
4163	}
4164	seq_putc(m, '\n');
4165
4166	file_nr = mem_cgroup_nr_lru_pages(mem_cont, LRU_ALL_FILE);
4167	seq_printf(m, "file=%lu", file_nr);
4168	for_each_node_state(nid, N_HIGH_MEMORY) {
4169		node_nr = mem_cgroup_node_nr_lru_pages(mem_cont, nid,
4170				LRU_ALL_FILE);
4171		seq_printf(m, " N%d=%lu", nid, node_nr);
4172	}
4173	seq_putc(m, '\n');
4174
4175	anon_nr = mem_cgroup_nr_lru_pages(mem_cont, LRU_ALL_ANON);
4176	seq_printf(m, "anon=%lu", anon_nr);
4177	for_each_node_state(nid, N_HIGH_MEMORY) {
4178		node_nr = mem_cgroup_node_nr_lru_pages(mem_cont, nid,
4179				LRU_ALL_ANON);
4180		seq_printf(m, " N%d=%lu", nid, node_nr);
4181	}
4182	seq_putc(m, '\n');
4183
4184	unevictable_nr = mem_cgroup_nr_lru_pages(mem_cont, BIT(LRU_UNEVICTABLE));
4185	seq_printf(m, "unevictable=%lu", unevictable_nr);
4186	for_each_node_state(nid, N_HIGH_MEMORY) {
4187		node_nr = mem_cgroup_node_nr_lru_pages(mem_cont, nid,
4188				BIT(LRU_UNEVICTABLE));
4189		seq_printf(m, " N%d=%lu", nid, node_nr);
4190	}
4191	seq_putc(m, '\n');
4192	return 0;
4193}
4194#endif /* CONFIG_NUMA */
4195
4196static int mem_control_stat_show(struct cgroup *cont, struct cftype *cft,
4197				 struct cgroup_map_cb *cb)
4198{
4199	struct mem_cgroup *mem_cont = mem_cgroup_from_cont(cont);
4200	struct mcs_total_stat mystat;
4201	int i;
4202
4203	memset(&mystat, 0, sizeof(mystat));
4204	mem_cgroup_get_local_stat(mem_cont, &mystat);
4205
4206
4207	for (i = 0; i < NR_MCS_STAT; i++) {
4208		if (i == MCS_SWAP && !do_swap_account)
4209			continue;
4210		cb->fill(cb, memcg_stat_strings[i].local_name, mystat.stat[i]);
4211	}
4212
4213	/* Hierarchical information */
4214	{
4215		unsigned long long limit, memsw_limit;
4216		memcg_get_hierarchical_limit(mem_cont, &limit, &memsw_limit);
4217		cb->fill(cb, "hierarchical_memory_limit", limit);
4218		if (do_swap_account)
4219			cb->fill(cb, "hierarchical_memsw_limit", memsw_limit);
4220	}
4221
4222	memset(&mystat, 0, sizeof(mystat));
4223	mem_cgroup_get_total_stat(mem_cont, &mystat);
4224	for (i = 0; i < NR_MCS_STAT; i++) {
4225		if (i == MCS_SWAP && !do_swap_account)
4226			continue;
4227		cb->fill(cb, memcg_stat_strings[i].total_name, mystat.stat[i]);
4228	}
4229
4230#ifdef CONFIG_DEBUG_VM
4231	cb->fill(cb, "inactive_ratio", calc_inactive_ratio(mem_cont, NULL));
4232
4233	{
4234		int nid, zid;
4235		struct mem_cgroup_per_zone *mz;
4236		unsigned long recent_rotated[2] = {0, 0};
4237		unsigned long recent_scanned[2] = {0, 0};
4238
4239		for_each_online_node(nid)
4240			for (zid = 0; zid < MAX_NR_ZONES; zid++) {
4241				mz = mem_cgroup_zoneinfo(mem_cont, nid, zid);
4242
4243				recent_rotated[0] +=
4244					mz->reclaim_stat.recent_rotated[0];
4245				recent_rotated[1] +=
4246					mz->reclaim_stat.recent_rotated[1];
4247				recent_scanned[0] +=
4248					mz->reclaim_stat.recent_scanned[0];
4249				recent_scanned[1] +=
4250					mz->reclaim_stat.recent_scanned[1];
4251			}
4252		cb->fill(cb, "recent_rotated_anon", recent_rotated[0]);
4253		cb->fill(cb, "recent_rotated_file", recent_rotated[1]);
4254		cb->fill(cb, "recent_scanned_anon", recent_scanned[0]);
4255		cb->fill(cb, "recent_scanned_file", recent_scanned[1]);
4256	}
4257#endif
4258
4259	return 0;
4260}
4261
4262static u64 mem_cgroup_swappiness_read(struct cgroup *cgrp, struct cftype *cft)
4263{
4264	struct mem_cgroup *memcg = mem_cgroup_from_cont(cgrp);
4265
4266	return mem_cgroup_swappiness(memcg);
4267}
4268
4269static int mem_cgroup_swappiness_write(struct cgroup *cgrp, struct cftype *cft,
4270				       u64 val)
4271{
4272	struct mem_cgroup *memcg = mem_cgroup_from_cont(cgrp);
4273	struct mem_cgroup *parent;
4274
4275	if (val > 100)
4276		return -EINVAL;
4277
4278	if (cgrp->parent == NULL)
4279		return -EINVAL;
4280
4281	parent = mem_cgroup_from_cont(cgrp->parent);
4282
4283	cgroup_lock();
4284
4285	/* If under hierarchy, only empty-root can set this value */
4286	if ((parent->use_hierarchy) ||
4287	    (memcg->use_hierarchy && !list_empty(&cgrp->children))) {
4288		cgroup_unlock();
4289		return -EINVAL;
4290	}
4291
4292	memcg->swappiness = val;
4293
4294	cgroup_unlock();
4295
4296	return 0;
4297}
4298
4299static void __mem_cgroup_threshold(struct mem_cgroup *memcg, bool swap)
4300{
4301	struct mem_cgroup_threshold_ary *t;
4302	u64 usage;
4303	int i;
4304
4305	rcu_read_lock();
4306	if (!swap)
4307		t = rcu_dereference(memcg->thresholds.primary);
4308	else
4309		t = rcu_dereference(memcg->memsw_thresholds.primary);
4310
4311	if (!t)
4312		goto unlock;
4313
4314	usage = mem_cgroup_usage(memcg, swap);
4315
4316	/*
4317	 * current_threshold points to threshold just below usage.
4318	 * If it's not true, a threshold was crossed after last
4319	 * call of __mem_cgroup_threshold().
4320	 */
4321	i = t->current_threshold;
4322
4323	/*
4324	 * Iterate backward over array of thresholds starting from
4325	 * current_threshold and check if a threshold is crossed.
4326	 * If none of thresholds below usage is crossed, we read
4327	 * only one element of the array here.
4328	 */
4329	for (; i >= 0 && unlikely(t->entries[i].threshold > usage); i--)
4330		eventfd_signal(t->entries[i].eventfd, 1);
4331
4332	/* i = current_threshold + 1 */
4333	i++;
4334
4335	/*
4336	 * Iterate forward over array of thresholds starting from
4337	 * current_threshold+1 and check if a threshold is crossed.
4338	 * If none of thresholds above usage is crossed, we read
4339	 * only one element of the array here.
4340	 */
4341	for (; i < t->size && unlikely(t->entries[i].threshold <= usage); i++)
4342		eventfd_signal(t->entries[i].eventfd, 1);
4343
4344	/* Update current_threshold */
4345	t->current_threshold = i - 1;
4346unlock:
4347	rcu_read_unlock();
4348}
4349
4350static void mem_cgroup_threshold(struct mem_cgroup *memcg)
4351{
4352	while (memcg) {
4353		__mem_cgroup_threshold(memcg, false);
4354		if (do_swap_account)
4355			__mem_cgroup_threshold(memcg, true);
4356
4357		memcg = parent_mem_cgroup(memcg);
4358	}
4359}
4360
4361static int compare_thresholds(const void *a, const void *b)
4362{
4363	const struct mem_cgroup_threshold *_a = a;
4364	const struct mem_cgroup_threshold *_b = b;
4365
4366	return _a->threshold - _b->threshold;
4367}
4368
4369static int mem_cgroup_oom_notify_cb(struct mem_cgroup *mem)
4370{
4371	struct mem_cgroup_eventfd_list *ev;
4372
4373	list_for_each_entry(ev, &mem->oom_notify, list)
4374		eventfd_signal(ev->eventfd, 1);
4375	return 0;
4376}
4377
4378static void mem_cgroup_oom_notify(struct mem_cgroup *mem)
4379{
4380	struct mem_cgroup *iter;
4381
4382	for_each_mem_cgroup_tree(iter, mem)
4383		mem_cgroup_oom_notify_cb(iter);
4384}
4385
4386static int mem_cgroup_usage_register_event(struct cgroup *cgrp,
4387	struct cftype *cft, struct eventfd_ctx *eventfd, const char *args)
4388{
4389	struct mem_cgroup *memcg = mem_cgroup_from_cont(cgrp);
4390	struct mem_cgroup_thresholds *thresholds;
4391	struct mem_cgroup_threshold_ary *new;
4392	int type = MEMFILE_TYPE(cft->private);
4393	u64 threshold, usage;
4394	int i, size, ret;
4395
4396	ret = res_counter_memparse_write_strategy(args, &threshold);
4397	if (ret)
4398		return ret;
4399
4400	mutex_lock(&memcg->thresholds_lock);
4401
4402	if (type == _MEM)
4403		thresholds = &memcg->thresholds;
4404	else if (type == _MEMSWAP)
4405		thresholds = &memcg->memsw_thresholds;
4406	else
4407		BUG();
4408
4409	usage = mem_cgroup_usage(memcg, type == _MEMSWAP);
4410
4411	/* Check if a threshold crossed before adding a new one */
4412	if (thresholds->primary)
4413		__mem_cgroup_threshold(memcg, type == _MEMSWAP);
4414
4415	size = thresholds->primary ? thresholds->primary->size + 1 : 1;
4416
4417	/* Allocate memory for new array of thresholds */
4418	new = kmalloc(sizeof(*new) + size * sizeof(struct mem_cgroup_threshold),
4419			GFP_KERNEL);
4420	if (!new) {
4421		ret = -ENOMEM;
4422		goto unlock;
4423	}
4424	new->size = size;
4425
4426	/* Copy thresholds (if any) to new array */
4427	if (thresholds->primary) {
4428		memcpy(new->entries, thresholds->primary->entries, (size - 1) *
4429				sizeof(struct mem_cgroup_threshold));
4430	}
4431
4432	/* Add new threshold */
4433	new->entries[size - 1].eventfd = eventfd;
4434	new->entries[size - 1].threshold = threshold;
4435
4436	/* Sort thresholds. Registering of new threshold isn't time-critical */
4437	sort(new->entries, size, sizeof(struct mem_cgroup_threshold),
4438			compare_thresholds, NULL);
4439
4440	/* Find current threshold */
4441	new->current_threshold = -1;
4442	for (i = 0; i < size; i++) {
4443		if (new->entries[i].threshold < usage) {
4444			/*
4445			 * new->current_threshold will not be used until
4446			 * rcu_assign_pointer(), so it's safe to increment
4447			 * it here.
4448			 */
4449			++new->current_threshold;
4450		}
4451	}
4452
4453	/* Free old spare buffer and save old primary buffer as spare */
4454	kfree(thresholds->spare);
4455	thresholds->spare = thresholds->primary;
4456
4457	rcu_assign_pointer(thresholds->primary, new);
4458
4459	/* To be sure that nobody uses thresholds */
4460	synchronize_rcu();
4461
4462unlock:
4463	mutex_unlock(&memcg->thresholds_lock);
4464
4465	return ret;
4466}
4467
4468static void mem_cgroup_usage_unregister_event(struct cgroup *cgrp,
4469	struct cftype *cft, struct eventfd_ctx *eventfd)
4470{
4471	struct mem_cgroup *memcg = mem_cgroup_from_cont(cgrp);
4472	struct mem_cgroup_thresholds *thresholds;
4473	struct mem_cgroup_threshold_ary *new;
4474	int type = MEMFILE_TYPE(cft->private);
4475	u64 usage;
4476	int i, j, size;
4477
4478	mutex_lock(&memcg->thresholds_lock);
4479	if (type == _MEM)
4480		thresholds = &memcg->thresholds;
4481	else if (type == _MEMSWAP)
4482		thresholds = &memcg->memsw_thresholds;
4483	else
4484		BUG();
4485
4486	/*
4487	 * Something went wrong if we trying to unregister a threshold
4488	 * if we don't have thresholds
4489	 */
4490	BUG_ON(!thresholds);
4491
4492	usage = mem_cgroup_usage(memcg, type == _MEMSWAP);
4493
4494	/* Check if a threshold crossed before removing */
4495	__mem_cgroup_threshold(memcg, type == _MEMSWAP);
4496
4497	/* Calculate new number of threshold */
4498	size = 0;
4499	for (i = 0; i < thresholds->primary->size; i++) {
4500		if (thresholds->primary->entries[i].eventfd != eventfd)
4501			size++;
4502	}
4503
4504	new = thresholds->spare;
4505
4506	/* Set thresholds array to NULL if we don't have thresholds */
4507	if (!size) {
4508		kfree(new);
4509		new = NULL;
4510		goto swap_buffers;
4511	}
4512
4513	new->size = size;
4514
4515	/* Copy thresholds and find current threshold */
4516	new->current_threshold = -1;
4517	for (i = 0, j = 0; i < thresholds->primary->size; i++) {
4518		if (thresholds->primary->entries[i].eventfd == eventfd)
4519			continue;
4520
4521		new->entries[j] = thresholds->primary->entries[i];
4522		if (new->entries[j].threshold < usage) {
4523			/*
4524			 * new->current_threshold will not be used
4525			 * until rcu_assign_pointer(), so it's safe to increment
4526			 * it here.
4527			 */
4528			++new->current_threshold;
4529		}
4530		j++;
4531	}
4532
4533swap_buffers:
4534	/* Swap primary and spare array */
4535	thresholds->spare = thresholds->primary;
4536	rcu_assign_pointer(thresholds->primary, new);
4537
4538	/* To be sure that nobody uses thresholds */
4539	synchronize_rcu();
4540
4541	mutex_unlock(&memcg->thresholds_lock);
4542}
4543
4544static int mem_cgroup_oom_register_event(struct cgroup *cgrp,
4545	struct cftype *cft, struct eventfd_ctx *eventfd, const char *args)
4546{
4547	struct mem_cgroup *memcg = mem_cgroup_from_cont(cgrp);
4548	struct mem_cgroup_eventfd_list *event;
4549	int type = MEMFILE_TYPE(cft->private);
4550
4551	BUG_ON(type != _OOM_TYPE);
4552	event = kmalloc(sizeof(*event),	GFP_KERNEL);
4553	if (!event)
4554		return -ENOMEM;
4555
4556	spin_lock(&memcg_oom_lock);
4557
4558	event->eventfd = eventfd;
4559	list_add(&event->list, &memcg->oom_notify);
4560
4561	/* already in OOM ? */
4562	if (atomic_read(&memcg->under_oom))
4563		eventfd_signal(eventfd, 1);
4564	spin_unlock(&memcg_oom_lock);
4565
4566	return 0;
4567}
4568
4569static void mem_cgroup_oom_unregister_event(struct cgroup *cgrp,
4570	struct cftype *cft, struct eventfd_ctx *eventfd)
4571{
4572	struct mem_cgroup *mem = mem_cgroup_from_cont(cgrp);
4573	struct mem_cgroup_eventfd_list *ev, *tmp;
4574	int type = MEMFILE_TYPE(cft->private);
4575
4576	BUG_ON(type != _OOM_TYPE);
4577
4578	spin_lock(&memcg_oom_lock);
4579
4580	list_for_each_entry_safe(ev, tmp, &mem->oom_notify, list) {
4581		if (ev->eventfd == eventfd) {
4582			list_del(&ev->list);
4583			kfree(ev);
4584		}
4585	}
4586
4587	spin_unlock(&memcg_oom_lock);
4588}
4589
4590static int mem_cgroup_oom_control_read(struct cgroup *cgrp,
4591	struct cftype *cft,  struct cgroup_map_cb *cb)
4592{
4593	struct mem_cgroup *mem = mem_cgroup_from_cont(cgrp);
4594
4595	cb->fill(cb, "oom_kill_disable", mem->oom_kill_disable);
4596
4597	if (atomic_read(&mem->under_oom))
4598		cb->fill(cb, "under_oom", 1);
4599	else
4600		cb->fill(cb, "under_oom", 0);
4601	return 0;
4602}
4603
4604static int mem_cgroup_oom_control_write(struct cgroup *cgrp,
4605	struct cftype *cft, u64 val)
4606{
4607	struct mem_cgroup *mem = mem_cgroup_from_cont(cgrp);
4608	struct mem_cgroup *parent;
4609
4610	/* cannot set to root cgroup and only 0 and 1 are allowed */
4611	if (!cgrp->parent || !((val == 0) || (val == 1)))
4612		return -EINVAL;
4613
4614	parent = mem_cgroup_from_cont(cgrp->parent);
4615
4616	cgroup_lock();
4617	/* oom-kill-disable is a flag for subhierarchy. */
4618	if ((parent->use_hierarchy) ||
4619	    (mem->use_hierarchy && !list_empty(&cgrp->children))) {
4620		cgroup_unlock();
4621		return -EINVAL;
4622	}
4623	mem->oom_kill_disable = val;
4624	if (!val)
4625		memcg_oom_recover(mem);
4626	cgroup_unlock();
4627	return 0;
4628}
4629
4630#ifdef CONFIG_NUMA
4631static const struct file_operations mem_control_numa_stat_file_operations = {
4632	.read = seq_read,
4633	.llseek = seq_lseek,
4634	.release = single_release,
4635};
4636
4637static int mem_control_numa_stat_open(struct inode *unused, struct file *file)
4638{
4639	struct cgroup *cont = file->f_dentry->d_parent->d_fsdata;
4640
4641	file->f_op = &mem_control_numa_stat_file_operations;
4642	return single_open(file, mem_control_numa_stat_show, cont);
4643}
4644#endif /* CONFIG_NUMA */
4645
4646static struct cftype mem_cgroup_files[] = {
4647	{
4648		.name = "usage_in_bytes",
4649		.private = MEMFILE_PRIVATE(_MEM, RES_USAGE),
4650		.read_u64 = mem_cgroup_read,
4651		.register_event = mem_cgroup_usage_register_event,
4652		.unregister_event = mem_cgroup_usage_unregister_event,
4653	},
4654	{
4655		.name = "max_usage_in_bytes",
4656		.private = MEMFILE_PRIVATE(_MEM, RES_MAX_USAGE),
4657		.trigger = mem_cgroup_reset,
4658		.read_u64 = mem_cgroup_read,
4659	},
4660	{
4661		.name = "limit_in_bytes",
4662		.private = MEMFILE_PRIVATE(_MEM, RES_LIMIT),
4663		.write_string = mem_cgroup_write,
4664		.read_u64 = mem_cgroup_read,
4665	},
4666	{
4667		.name = "soft_limit_in_bytes",
4668		.private = MEMFILE_PRIVATE(_MEM, RES_SOFT_LIMIT),
4669		.write_string = mem_cgroup_write,
4670		.read_u64 = mem_cgroup_read,
4671	},
4672	{
4673		.name = "failcnt",
4674		.private = MEMFILE_PRIVATE(_MEM, RES_FAILCNT),
4675		.trigger = mem_cgroup_reset,
4676		.read_u64 = mem_cgroup_read,
4677	},
4678	{
4679		.name = "stat",
4680		.read_map = mem_control_stat_show,
4681	},
4682	{
4683		.name = "force_empty",
4684		.trigger = mem_cgroup_force_empty_write,
4685	},
4686	{
4687		.name = "use_hierarchy",
4688		.write_u64 = mem_cgroup_hierarchy_write,
4689		.read_u64 = mem_cgroup_hierarchy_read,
4690	},
4691	{
4692		.name = "swappiness",
4693		.read_u64 = mem_cgroup_swappiness_read,
4694		.write_u64 = mem_cgroup_swappiness_write,
4695	},
4696	{
4697		.name = "move_charge_at_immigrate",
4698		.read_u64 = mem_cgroup_move_charge_read,
4699		.write_u64 = mem_cgroup_move_charge_write,
4700	},
4701	{
4702		.name = "oom_control",
4703		.read_map = mem_cgroup_oom_control_read,
4704		.write_u64 = mem_cgroup_oom_control_write,
4705		.register_event = mem_cgroup_oom_register_event,
4706		.unregister_event = mem_cgroup_oom_unregister_event,
4707		.private = MEMFILE_PRIVATE(_OOM_TYPE, OOM_CONTROL),
4708	},
4709#ifdef CONFIG_NUMA
4710	{
4711		.name = "numa_stat",
4712		.open = mem_control_numa_stat_open,
4713		.mode = S_IRUGO,
4714	},
4715#endif
4716};
4717
4718#ifdef CONFIG_CGROUP_MEM_RES_CTLR_SWAP
4719static struct cftype memsw_cgroup_files[] = {
4720	{
4721		.name = "memsw.usage_in_bytes",
4722		.private = MEMFILE_PRIVATE(_MEMSWAP, RES_USAGE),
4723		.read_u64 = mem_cgroup_read,
4724		.register_event = mem_cgroup_usage_register_event,
4725		.unregister_event = mem_cgroup_usage_unregister_event,
4726	},
4727	{
4728		.name = "memsw.max_usage_in_bytes",
4729		.private = MEMFILE_PRIVATE(_MEMSWAP, RES_MAX_USAGE),
4730		.trigger = mem_cgroup_reset,
4731		.read_u64 = mem_cgroup_read,
4732	},
4733	{
4734		.name = "memsw.limit_in_bytes",
4735		.private = MEMFILE_PRIVATE(_MEMSWAP, RES_LIMIT),
4736		.write_string = mem_cgroup_write,
4737		.read_u64 = mem_cgroup_read,
4738	},
4739	{
4740		.name = "memsw.failcnt",
4741		.private = MEMFILE_PRIVATE(_MEMSWAP, RES_FAILCNT),
4742		.trigger = mem_cgroup_reset,
4743		.read_u64 = mem_cgroup_read,
4744	},
4745};
4746
4747static int register_memsw_files(struct cgroup *cont, struct cgroup_subsys *ss)
4748{
4749	if (!do_swap_account)
4750		return 0;
4751	return cgroup_add_files(cont, ss, memsw_cgroup_files,
4752				ARRAY_SIZE(memsw_cgroup_files));
4753};
4754#else
4755static int register_memsw_files(struct cgroup *cont, struct cgroup_subsys *ss)
4756{
4757	return 0;
4758}
4759#endif
4760
4761static int alloc_mem_cgroup_per_zone_info(struct mem_cgroup *mem, int node)
4762{
4763	struct mem_cgroup_per_node *pn;
4764	struct mem_cgroup_per_zone *mz;
4765	enum lru_list l;
4766	int zone, tmp = node;
4767	/*
4768	 * This routine is called against possible nodes.
4769	 * But it's BUG to call kmalloc() against offline node.
4770	 *
4771	 * TODO: this routine can waste much memory for nodes which will
4772	 *       never be onlined. It's better to use memory hotplug callback
4773	 *       function.
4774	 */
4775	if (!node_state(node, N_NORMAL_MEMORY))
4776		tmp = -1;
4777	pn = kzalloc_node(sizeof(*pn), GFP_KERNEL, tmp);
4778	if (!pn)
4779		return 1;
4780
4781	mem->info.nodeinfo[node] = pn;
4782	for (zone = 0; zone < MAX_NR_ZONES; zone++) {
4783		mz = &pn->zoneinfo[zone];
4784		for_each_lru(l)
4785			INIT_LIST_HEAD(&mz->lists[l]);
4786		mz->usage_in_excess = 0;
4787		mz->on_tree = false;
4788		mz->mem = mem;
4789	}
4790	return 0;
4791}
4792
4793static void free_mem_cgroup_per_zone_info(struct mem_cgroup *mem, int node)
4794{
4795	kfree(mem->info.nodeinfo[node]);
4796}
4797
4798static struct mem_cgroup *mem_cgroup_alloc(void)
4799{
4800	struct mem_cgroup *mem;
4801	int size = sizeof(struct mem_cgroup);
4802
4803	/* Can be very big if MAX_NUMNODES is very big */
4804	if (size < PAGE_SIZE)
4805		mem = kzalloc(size, GFP_KERNEL);
4806	else
4807		mem = vzalloc(size);
4808
4809	if (!mem)
4810		return NULL;
4811
4812	mem->stat = alloc_percpu(struct mem_cgroup_stat_cpu);
4813	if (!mem->stat)
4814		goto out_free;
4815	spin_lock_init(&mem->pcp_counter_lock);
4816	return mem;
4817
4818out_free:
4819	if (size < PAGE_SIZE)
4820		kfree(mem);
4821	else
4822		vfree(mem);
4823	return NULL;
4824}
4825
4826/*
4827 * At destroying mem_cgroup, references from swap_cgroup can remain.
4828 * (scanning all at force_empty is too costly...)
4829 *
4830 * Instead of clearing all references at force_empty, we remember
4831 * the number of reference from swap_cgroup and free mem_cgroup when
4832 * it goes down to 0.
4833 *
4834 * Removal of cgroup itself succeeds regardless of refs from swap.
4835 */
4836
4837static void __mem_cgroup_free(struct mem_cgroup *mem)
4838{
4839	int node;
4840
4841	mem_cgroup_remove_from_trees(mem);
4842	free_css_id(&mem_cgroup_subsys, &mem->css);
4843
4844	for_each_node_state(node, N_POSSIBLE)
4845		free_mem_cgroup_per_zone_info(mem, node);
4846
4847	free_percpu(mem->stat);
4848	if (sizeof(struct mem_cgroup) < PAGE_SIZE)
4849		kfree(mem);
4850	else
4851		vfree(mem);
4852}
4853
4854static void mem_cgroup_get(struct mem_cgroup *mem)
4855{
4856	atomic_inc(&mem->refcnt);
4857}
4858
4859static void __mem_cgroup_put(struct mem_cgroup *mem, int count)
4860{
4861	if (atomic_sub_and_test(count, &mem->refcnt)) {
4862		struct mem_cgroup *parent = parent_mem_cgroup(mem);
4863		__mem_cgroup_free(mem);
4864		if (parent)
4865			mem_cgroup_put(parent);
4866	}
4867}
4868
4869static void mem_cgroup_put(struct mem_cgroup *mem)
4870{
4871	__mem_cgroup_put(mem, 1);
4872}
4873
4874/*
4875 * Returns the parent mem_cgroup in memcgroup hierarchy with hierarchy enabled.
4876 */
4877static struct mem_cgroup *parent_mem_cgroup(struct mem_cgroup *mem)
4878{
4879	if (!mem->res.parent)
4880		return NULL;
4881	return mem_cgroup_from_res_counter(mem->res.parent, res);
4882}
4883
4884#ifdef CONFIG_CGROUP_MEM_RES_CTLR_SWAP
4885static void __init enable_swap_cgroup(void)
4886{
4887	if (!mem_cgroup_disabled() && really_do_swap_account)
4888		do_swap_account = 1;
4889}
4890#else
4891static void __init enable_swap_cgroup(void)
4892{
4893}
4894#endif
4895
4896static int mem_cgroup_soft_limit_tree_init(void)
4897{
4898	struct mem_cgroup_tree_per_node *rtpn;
4899	struct mem_cgroup_tree_per_zone *rtpz;
4900	int tmp, node, zone;
4901
4902	for_each_node_state(node, N_POSSIBLE) {
4903		tmp = node;
4904		if (!node_state(node, N_NORMAL_MEMORY))
4905			tmp = -1;
4906		rtpn = kzalloc_node(sizeof(*rtpn), GFP_KERNEL, tmp);
4907		if (!rtpn)
4908			return 1;
4909
4910		soft_limit_tree.rb_tree_per_node[node] = rtpn;
4911
4912		for (zone = 0; zone < MAX_NR_ZONES; zone++) {
4913			rtpz = &rtpn->rb_tree_per_zone[zone];
4914			rtpz->rb_root = RB_ROOT;
4915			spin_lock_init(&rtpz->lock);
4916		}
4917	}
4918	return 0;
4919}
4920
4921static struct cgroup_subsys_state * __ref
4922mem_cgroup_create(struct cgroup_subsys *ss, struct cgroup *cont)
4923{
4924	struct mem_cgroup *mem, *parent;
4925	long error = -ENOMEM;
4926	int node;
4927
4928	mem = mem_cgroup_alloc();
4929	if (!mem)
4930		return ERR_PTR(error);
4931
4932	for_each_node_state(node, N_POSSIBLE)
4933		if (alloc_mem_cgroup_per_zone_info(mem, node))
4934			goto free_out;
4935
4936	/* root ? */
4937	if (cont->parent == NULL) {
4938		int cpu;
4939		enable_swap_cgroup();
4940		parent = NULL;
4941		root_mem_cgroup = mem;
4942		if (mem_cgroup_soft_limit_tree_init())
4943			goto free_out;
4944		for_each_possible_cpu(cpu) {
4945			struct memcg_stock_pcp *stock =
4946						&per_cpu(memcg_stock, cpu);
4947			INIT_WORK(&stock->work, drain_local_stock);
4948		}
4949		hotcpu_notifier(memcg_cpu_hotplug_callback, 0);
4950	} else {
4951		parent = mem_cgroup_from_cont(cont->parent);
4952		mem->use_hierarchy = parent->use_hierarchy;
4953		mem->oom_kill_disable = parent->oom_kill_disable;
4954	}
4955
4956	if (parent && parent->use_hierarchy) {
4957		res_counter_init(&mem->res, &parent->res);
4958		res_counter_init(&mem->memsw, &parent->memsw);
4959		/*
4960		 * We increment refcnt of the parent to ensure that we can
4961		 * safely access it on res_counter_charge/uncharge.
4962		 * This refcnt will be decremented when freeing this
4963		 * mem_cgroup(see mem_cgroup_put).
4964		 */
4965		mem_cgroup_get(parent);
4966	} else {
4967		res_counter_init(&mem->res, NULL);
4968		res_counter_init(&mem->memsw, NULL);
4969	}
4970	mem->last_scanned_child = 0;
4971	mem->last_scanned_node = MAX_NUMNODES;
4972	INIT_LIST_HEAD(&mem->oom_notify);
4973
4974	if (parent)
4975		mem->swappiness = mem_cgroup_swappiness(parent);
4976	atomic_set(&mem->refcnt, 1);
4977	mem->move_charge_at_immigrate = 0;
4978	mutex_init(&mem->thresholds_lock);
4979	return &mem->css;
4980free_out:
4981	__mem_cgroup_free(mem);
4982	root_mem_cgroup = NULL;
4983	return ERR_PTR(error);
4984}
4985
4986static int mem_cgroup_pre_destroy(struct cgroup_subsys *ss,
4987					struct cgroup *cont)
4988{
4989	struct mem_cgroup *mem = mem_cgroup_from_cont(cont);
4990
4991	return mem_cgroup_force_empty(mem, false);
4992}
4993
4994static void mem_cgroup_destroy(struct cgroup_subsys *ss,
4995				struct cgroup *cont)
4996{
4997	struct mem_cgroup *mem = mem_cgroup_from_cont(cont);
4998
4999	mem_cgroup_put(mem);
5000}
5001
5002static int mem_cgroup_populate(struct cgroup_subsys *ss,
5003				struct cgroup *cont)
5004{
5005	int ret;
5006
5007	ret = cgroup_add_files(cont, ss, mem_cgroup_files,
5008				ARRAY_SIZE(mem_cgroup_files));
5009
5010	if (!ret)
5011		ret = register_memsw_files(cont, ss);
5012	return ret;
5013}
5014
5015#ifdef CONFIG_MMU
5016/* Handlers for move charge at task migration. */
5017#define PRECHARGE_COUNT_AT_ONCE	256
5018static int mem_cgroup_do_precharge(unsigned long count)
5019{
5020	int ret = 0;
5021	int batch_count = PRECHARGE_COUNT_AT_ONCE;
5022	struct mem_cgroup *mem = mc.to;
5023
5024	if (mem_cgroup_is_root(mem)) {
5025		mc.precharge += count;
5026		/* we don't need css_get for root */
5027		return ret;
5028	}
5029	/* try to charge at once */
5030	if (count > 1) {
5031		struct res_counter *dummy;
5032		/*
5033		 * "mem" cannot be under rmdir() because we've already checked
5034		 * by cgroup_lock_live_cgroup() that it is not removed and we
5035		 * are still under the same cgroup_mutex. So we can postpone
5036		 * css_get().
5037		 */
5038		if (res_counter_charge(&mem->res, PAGE_SIZE * count, &dummy))
5039			goto one_by_one;
5040		if (do_swap_account && res_counter_charge(&mem->memsw,
5041						PAGE_SIZE * count, &dummy)) {
5042			res_counter_uncharge(&mem->res, PAGE_SIZE * count);
5043			goto one_by_one;
5044		}
5045		mc.precharge += count;
5046		return ret;
5047	}
5048one_by_one:
5049	/* fall back to one by one charge */
5050	while (count--) {
5051		if (signal_pending(current)) {
5052			ret = -EINTR;
5053			break;
5054		}
5055		if (!batch_count--) {
5056			batch_count = PRECHARGE_COUNT_AT_ONCE;
5057			cond_resched();
5058		}
5059		ret = __mem_cgroup_try_charge(NULL, GFP_KERNEL, 1, &mem, false);
5060		if (ret || !mem)
5061			/* mem_cgroup_clear_mc() will do uncharge later */
5062			return -ENOMEM;
5063		mc.precharge++;
5064	}
5065	return ret;
5066}
5067
5068/**
5069 * is_target_pte_for_mc - check a pte whether it is valid for move charge
5070 * @vma: the vma the pte to be checked belongs
5071 * @addr: the address corresponding to the pte to be checked
5072 * @ptent: the pte to be checked
5073 * @target: the pointer the target page or swap ent will be stored(can be NULL)
5074 *
5075 * Returns
5076 *   0(MC_TARGET_NONE): if the pte is not a target for move charge.
5077 *   1(MC_TARGET_PAGE): if the page corresponding to this pte is a target for
5078 *     move charge. if @target is not NULL, the page is stored in target->page
5079 *     with extra refcnt got(Callers should handle it).
5080 *   2(MC_TARGET_SWAP): if the swap entry corresponding to this pte is a
5081 *     target for charge migration. if @target is not NULL, the entry is stored
5082 *     in target->ent.
5083 *
5084 * Called with pte lock held.
5085 */
5086union mc_target {
5087	struct page	*page;
5088	swp_entry_t	ent;
5089};
5090
5091enum mc_target_type {
5092	MC_TARGET_NONE,	/* not used */
5093	MC_TARGET_PAGE,
5094	MC_TARGET_SWAP,
5095};
5096
5097static struct page *mc_handle_present_pte(struct vm_area_struct *vma,
5098						unsigned long addr, pte_t ptent)
5099{
5100	struct page *page = vm_normal_page(vma, addr, ptent);
5101
5102	if (!page || !page_mapped(page))
5103		return NULL;
5104	if (PageAnon(page)) {
5105		/* we don't move shared anon */
5106		if (!move_anon() || page_mapcount(page) > 2)
5107			return NULL;
5108	} else if (!move_file())
5109		/* we ignore mapcount for file pages */
5110		return NULL;
5111	if (!get_page_unless_zero(page))
5112		return NULL;
5113
5114	return page;
5115}
5116
5117static struct page *mc_handle_swap_pte(struct vm_area_struct *vma,
5118			unsigned long addr, pte_t ptent, swp_entry_t *entry)
5119{
5120	int usage_count;
5121	struct page *page = NULL;
5122	swp_entry_t ent = pte_to_swp_entry(ptent);
5123
5124	if (!move_anon() || non_swap_entry(ent))
5125		return NULL;
5126	usage_count = mem_cgroup_count_swap_user(ent, &page);
5127	if (usage_count > 1) { /* we don't move shared anon */
5128		if (page)
5129			put_page(page);
5130		return NULL;
5131	}
5132	if (do_swap_account)
5133		entry->val = ent.val;
5134
5135	return page;
5136}
5137
5138static struct page *mc_handle_file_pte(struct vm_area_struct *vma,
5139			unsigned long addr, pte_t ptent, swp_entry_t *entry)
5140{
5141	struct page *page = NULL;
5142	struct inode *inode;
5143	struct address_space *mapping;
5144	pgoff_t pgoff;
5145
5146	if (!vma->vm_file) /* anonymous vma */
5147		return NULL;
5148	if (!move_file())
5149		return NULL;
5150
5151	inode = vma->vm_file->f_path.dentry->d_inode;
5152	mapping = vma->vm_file->f_mapping;
5153	if (pte_none(ptent))
5154		pgoff = linear_page_index(vma, addr);
5155	else /* pte_file(ptent) is true */
5156		pgoff = pte_to_pgoff(ptent);
5157
5158	/* page is moved even if it's not RSS of this task(page-faulted). */
5159	if (!mapping_cap_swap_backed(mapping)) { /* normal file */
5160		page = find_get_page(mapping, pgoff);
5161	} else { /* shmem/tmpfs file. we should take account of swap too. */
5162		swp_entry_t ent;
5163		mem_cgroup_get_shmem_target(inode, pgoff, &page, &ent);
5164		if (do_swap_account)
5165			entry->val = ent.val;
5166	}
5167
5168	return page;
5169}
5170
5171static int is_target_pte_for_mc(struct vm_area_struct *vma,
5172		unsigned long addr, pte_t ptent, union mc_target *target)
5173{
5174	struct page *page = NULL;
5175	struct page_cgroup *pc;
5176	int ret = 0;
5177	swp_entry_t ent = { .val = 0 };
5178
5179	if (pte_present(ptent))
5180		page = mc_handle_present_pte(vma, addr, ptent);
5181	else if (is_swap_pte(ptent))
5182		page = mc_handle_swap_pte(vma, addr, ptent, &ent);
5183	else if (pte_none(ptent) || pte_file(ptent))
5184		page = mc_handle_file_pte(vma, addr, ptent, &ent);
5185
5186	if (!page && !ent.val)
5187		return 0;
5188	if (page) {
5189		pc = lookup_page_cgroup(page);
5190		/*
5191		 * Do only loose check w/o page_cgroup lock.
5192		 * mem_cgroup_move_account() checks the pc is valid or not under
5193		 * the lock.
5194		 */
5195		if (PageCgroupUsed(pc) && pc->mem_cgroup == mc.from) {
5196			ret = MC_TARGET_PAGE;
5197			if (target)
5198				target->page = page;
5199		}
5200		if (!ret || !target)
5201			put_page(page);
5202	}
5203	/* There is a swap entry and a page doesn't exist or isn't charged */
5204	if (ent.val && !ret &&
5205			css_id(&mc.from->css) == lookup_swap_cgroup(ent)) {
5206		ret = MC_TARGET_SWAP;
5207		if (target)
5208			target->ent = ent;
5209	}
5210	return ret;
5211}
5212
5213static int mem_cgroup_count_precharge_pte_range(pmd_t *pmd,
5214					unsigned long addr, unsigned long end,
5215					struct mm_walk *walk)
5216{
5217	struct vm_area_struct *vma = walk->private;
5218	pte_t *pte;
5219	spinlock_t *ptl;
5220
5221	split_huge_page_pmd(walk->mm, pmd);
5222
5223	pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl);
5224	for (; addr != end; pte++, addr += PAGE_SIZE)
5225		if (is_target_pte_for_mc(vma, addr, *pte, NULL))
5226			mc.precharge++;	/* increment precharge temporarily */
5227	pte_unmap_unlock(pte - 1, ptl);
5228	cond_resched();
5229
5230	return 0;
5231}
5232
5233static unsigned long mem_cgroup_count_precharge(struct mm_struct *mm)
5234{
5235	unsigned long precharge;
5236	struct vm_area_struct *vma;
5237
5238	down_read(&mm->mmap_sem);
5239	for (vma = mm->mmap; vma; vma = vma->vm_next) {
5240		struct mm_walk mem_cgroup_count_precharge_walk = {
5241			.pmd_entry = mem_cgroup_count_precharge_pte_range,
5242			.mm = mm,
5243			.private = vma,
5244		};
5245		if (is_vm_hugetlb_page(vma))
5246			continue;
5247		walk_page_range(vma->vm_start, vma->vm_end,
5248					&mem_cgroup_count_precharge_walk);
5249	}
5250	up_read(&mm->mmap_sem);
5251
5252	precharge = mc.precharge;
5253	mc.precharge = 0;
5254
5255	return precharge;
5256}
5257
5258static int mem_cgroup_precharge_mc(struct mm_struct *mm)
5259{
5260	unsigned long precharge = mem_cgroup_count_precharge(mm);
5261
5262	VM_BUG_ON(mc.moving_task);
5263	mc.moving_task = current;
5264	return mem_cgroup_do_precharge(precharge);
5265}
5266
5267/* cancels all extra charges on mc.from and mc.to, and wakes up all waiters. */
5268static void __mem_cgroup_clear_mc(void)
5269{
5270	struct mem_cgroup *from = mc.from;
5271	struct mem_cgroup *to = mc.to;
5272
5273	/* we must uncharge all the leftover precharges from mc.to */
5274	if (mc.precharge) {
5275		__mem_cgroup_cancel_charge(mc.to, mc.precharge);
5276		mc.precharge = 0;
5277	}
5278	/*
5279	 * we didn't uncharge from mc.from at mem_cgroup_move_account(), so
5280	 * we must uncharge here.
5281	 */
5282	if (mc.moved_charge) {
5283		__mem_cgroup_cancel_charge(mc.from, mc.moved_charge);
5284		mc.moved_charge = 0;
5285	}
5286	/* we must fixup refcnts and charges */
5287	if (mc.moved_swap) {
5288		/* uncharge swap account from the old cgroup */
5289		if (!mem_cgroup_is_root(mc.from))
5290			res_counter_uncharge(&mc.from->memsw,
5291						PAGE_SIZE * mc.moved_swap);
5292		__mem_cgroup_put(mc.from, mc.moved_swap);
5293
5294		if (!mem_cgroup_is_root(mc.to)) {
5295			/*
5296			 * we charged both to->res and to->memsw, so we should
5297			 * uncharge to->res.
5298			 */
5299			res_counter_uncharge(&mc.to->res,
5300						PAGE_SIZE * mc.moved_swap);
5301		}
5302		/* we've already done mem_cgroup_get(mc.to) */
5303		mc.moved_swap = 0;
5304	}
5305	memcg_oom_recover(from);
5306	memcg_oom_recover(to);
5307	wake_up_all(&mc.waitq);
5308}
5309
5310static void mem_cgroup_clear_mc(void)
5311{
5312	struct mem_cgroup *from = mc.from;
5313
5314	/*
5315	 * we must clear moving_task before waking up waiters at the end of
5316	 * task migration.
5317	 */
5318	mc.moving_task = NULL;
5319	__mem_cgroup_clear_mc();
5320	spin_lock(&mc.lock);
5321	mc.from = NULL;
5322	mc.to = NULL;
5323	spin_unlock(&mc.lock);
5324	mem_cgroup_end_move(from);
5325}
5326
5327static int mem_cgroup_can_attach(struct cgroup_subsys *ss,
5328				struct cgroup *cgroup,
5329				struct task_struct *p)
5330{
5331	int ret = 0;
5332	struct mem_cgroup *mem = mem_cgroup_from_cont(cgroup);
5333
5334	if (mem->move_charge_at_immigrate) {
5335		struct mm_struct *mm;
5336		struct mem_cgroup *from = mem_cgroup_from_task(p);
5337
5338		VM_BUG_ON(from == mem);
5339
5340		mm = get_task_mm(p);
5341		if (!mm)
5342			return 0;
5343		/* We move charges only when we move a owner of the mm */
5344		if (mm->owner == p) {
5345			VM_BUG_ON(mc.from);
5346			VM_BUG_ON(mc.to);
5347			VM_BUG_ON(mc.precharge);
5348			VM_BUG_ON(mc.moved_charge);
5349			VM_BUG_ON(mc.moved_swap);
5350			mem_cgroup_start_move(from);
5351			spin_lock(&mc.lock);
5352			mc.from = from;
5353			mc.to = mem;
5354			spin_unlock(&mc.lock);
5355			/* We set mc.moving_task later */
5356
5357			ret = mem_cgroup_precharge_mc(mm);
5358			if (ret)
5359				mem_cgroup_clear_mc();
5360		}
5361		mmput(mm);
5362	}
5363	return ret;
5364}
5365
5366static void mem_cgroup_cancel_attach(struct cgroup_subsys *ss,
5367				struct cgroup *cgroup,
5368				struct task_struct *p)
5369{
5370	mem_cgroup_clear_mc();
5371}
5372
5373static int mem_cgroup_move_charge_pte_range(pmd_t *pmd,
5374				unsigned long addr, unsigned long end,
5375				struct mm_walk *walk)
5376{
5377	int ret = 0;
5378	struct vm_area_struct *vma = walk->private;
5379	pte_t *pte;
5380	spinlock_t *ptl;
5381
5382	split_huge_page_pmd(walk->mm, pmd);
5383retry:
5384	pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl);
5385	for (; addr != end; addr += PAGE_SIZE) {
5386		pte_t ptent = *(pte++);
5387		union mc_target target;
5388		int type;
5389		struct page *page;
5390		struct page_cgroup *pc;
5391		swp_entry_t ent;
5392
5393		if (!mc.precharge)
5394			break;
5395
5396		type = is_target_pte_for_mc(vma, addr, ptent, &target);
5397		switch (type) {
5398		case MC_TARGET_PAGE:
5399			page = target.page;
5400			if (isolate_lru_page(page))
5401				goto put;
5402			pc = lookup_page_cgroup(page);
5403			if (!mem_cgroup_move_account(page, 1, pc,
5404						     mc.from, mc.to, false)) {
5405				mc.precharge--;
5406				/* we uncharge from mc.from later. */
5407				mc.moved_charge++;
5408			}
5409			putback_lru_page(page);
5410put:			/* is_target_pte_for_mc() gets the page */
5411			put_page(page);
5412			break;
5413		case MC_TARGET_SWAP:
5414			ent = target.ent;
5415			if (!mem_cgroup_move_swap_account(ent,
5416						mc.from, mc.to, false)) {
5417				mc.precharge--;
5418				/* we fixup refcnts and charges later. */
5419				mc.moved_swap++;
5420			}
5421			break;
5422		default:
5423			break;
5424		}
5425	}
5426	pte_unmap_unlock(pte - 1, ptl);
5427	cond_resched();
5428
5429	if (addr != end) {
5430		/*
5431		 * We have consumed all precharges we got in can_attach().
5432		 * We try charge one by one, but don't do any additional
5433		 * charges to mc.to if we have failed in charge once in attach()
5434		 * phase.
5435		 */
5436		ret = mem_cgroup_do_precharge(1);
5437		if (!ret)
5438			goto retry;
5439	}
5440
5441	return ret;
5442}
5443
5444static void mem_cgroup_move_charge(struct mm_struct *mm)
5445{
5446	struct vm_area_struct *vma;
5447
5448	lru_add_drain_all();
5449retry:
5450	if (unlikely(!down_read_trylock(&mm->mmap_sem))) {
5451		/*
5452		 * Someone who are holding the mmap_sem might be waiting in
5453		 * waitq. So we cancel all extra charges, wake up all waiters,
5454		 * and retry. Because we cancel precharges, we might not be able
5455		 * to move enough charges, but moving charge is a best-effort
5456		 * feature anyway, so it wouldn't be a big problem.
5457		 */
5458		__mem_cgroup_clear_mc();
5459		cond_resched();
5460		goto retry;
5461	}
5462	for (vma = mm->mmap; vma; vma = vma->vm_next) {
5463		int ret;
5464		struct mm_walk mem_cgroup_move_charge_walk = {
5465			.pmd_entry = mem_cgroup_move_charge_pte_range,
5466			.mm = mm,
5467			.private = vma,
5468		};
5469		if (is_vm_hugetlb_page(vma))
5470			continue;
5471		ret = walk_page_range(vma->vm_start, vma->vm_end,
5472						&mem_cgroup_move_charge_walk);
5473		if (ret)
5474			/*
5475			 * means we have consumed all precharges and failed in
5476			 * doing additional charge. Just abandon here.
5477			 */
5478			break;
5479	}
5480	up_read(&mm->mmap_sem);
5481}
5482
5483static void mem_cgroup_move_task(struct cgroup_subsys *ss,
5484				struct cgroup *cont,
5485				struct cgroup *old_cont,
5486				struct task_struct *p)
5487{
5488	struct mm_struct *mm = get_task_mm(p);
5489
5490	if (mm) {
5491		if (mc.to)
5492			mem_cgroup_move_charge(mm);
5493		put_swap_token(mm);
5494		mmput(mm);
5495	}
5496	if (mc.to)
5497		mem_cgroup_clear_mc();
5498}
5499#else	/* !CONFIG_MMU */
5500static int mem_cgroup_can_attach(struct cgroup_subsys *ss,
5501				struct cgroup *cgroup,
5502				struct task_struct *p)
5503{
5504	return 0;
5505}
5506static void mem_cgroup_cancel_attach(struct cgroup_subsys *ss,
5507				struct cgroup *cgroup,
5508				struct task_struct *p)
5509{
5510}
5511static void mem_cgroup_move_task(struct cgroup_subsys *ss,
5512				struct cgroup *cont,
5513				struct cgroup *old_cont,
5514				struct task_struct *p)
5515{
5516}
5517#endif
5518
5519struct cgroup_subsys mem_cgroup_subsys = {
5520	.name = "memory",
5521	.subsys_id = mem_cgroup_subsys_id,
5522	.create = mem_cgroup_create,
5523	.pre_destroy = mem_cgroup_pre_destroy,
5524	.destroy = mem_cgroup_destroy,
5525	.populate = mem_cgroup_populate,
5526	.can_attach = mem_cgroup_can_attach,
5527	.cancel_attach = mem_cgroup_cancel_attach,
5528	.attach = mem_cgroup_move_task,
5529	.early_init = 0,
5530	.use_id = 1,
5531};
5532
5533#ifdef CONFIG_CGROUP_MEM_RES_CTLR_SWAP
5534static int __init enable_swap_account(char *s)
5535{
5536	/* consider enabled if no parameter or 1 is given */
5537	if (!strcmp(s, "1"))
5538		really_do_swap_account = 1;
5539	else if (!strcmp(s, "0"))
5540		really_do_swap_account = 0;
5541	return 1;
5542}
5543__setup("swapaccount=", enable_swap_account);
5544
5545#endif
5546